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Abstract—This letter presents a density function based
safe control synthesis framework for the pursuit-evasion
problem. We extend safety analysis to dynamic unsafe sets
by formulating a reach-avoid type pursuit-evasion differen-
tial game as a robust safe control problem. Using density
functions and semi-algebraic sets, we derive sufficient
conditions for weak eventuality and evasion, reformulat-
ing the problem into a convex sum-of-squares program
solvable via standard semidefinite programming solvers.
This approach avoids the computational complexity of solv-
ing the Hamilton-Jacobi-Isaacs partial differential equation,
offering a scalable and efficient framework. Numerical sim-
ulations demonstrate the efficacy of the proposed method.

Index Terms—Game theory, Lyapunov methods, robust
control.

[. INTRODUCTION

AFETY plays a critical role in control theory applications

as the systems we deploy in the real world must operate
reliably. This requirement has become as fundamental as
classical notions like stability or controllability, especially
with the widespread use of cyber-physical systems such as
drone swarms and autonomous vehicles [1], [2]. Designing
controllers for such systems is often challenging as they
must satisfy multiple objectives and constraints to ensure
safety.

Numerous methods have been developed to certify the
safety of dynamical systems since Nagumo introduced set
invariance in the 1940s [3]. Set invariance has been central to
many of these approaches following the advent of Lyapunov
theory. Level-set methods separate regions of interest using
the O-contour of a function, with barrier functions ensuring
trajectory safety if their superlevel sets remain invariant [4].
Control barrier functions (CBFs) extend this concept, akin to
the generalization of Lyapunov functions to control Lyapunov
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functions (CLFs) [5], enabling the synthesis of safe control
laws [6]. Density functions, originally formulated as a dual to
Lyapunov stability, serve as barrier-like certificates [7], [8].

Like barrier functions, they define safe and unsafe regions
via a O-level set, ensuring safety in the superlevel sets under
invariance conditions. Safe controllers and density functions
can be jointly computed using convex methods, includ-
ing sum-of-squares (SOS) formulations [9], [10]. Data-driven
approaches [11] and robust extensions [12] further enhance
these methods. The field of safe control primarily addresses
problems with static unsafe sets. Static reachable sets extend
safety analysis to reach-avoid scenarios, often characterized
by Lyapunov-like reachability conditions [13], [14], [15]. The
reach-avoid problem is also widely studied in the Hamilton-
Jacobi (HJ) reachability framework from optimal control
theory [16], [17]. The HIJ equation, a partial differential
equation (PDE) governing the value function’s evolution, plays
a key role in differential game theory alongside Pontryagin’s
maximum principle.

Pursuit-evasion games are zero-sum differential games
extensively studied in [18]. A classical two-player pursuit-
evasion game is generally formulated as a minimax problem
with time-to-capture as the objective. In the reach-avoid
case, reaching a target for the evader flags the termination
of the game instead of a time constraint [19]. There is a
growing body of work in the literature addressing alternative
settings, including perimeter-defense games, where geometric
solution methods are employed instead of directly solving HII
equations [20], [21], [22]. Although geometric methods could
be applied to solve such a problem, under more complex state
constraints and dynamics, these methods become impracti-
cal [23], [24]. In [25], the value function for a pursuit-evasion
game is formulated and shown to be the unique viscosity solu-
tion to the Hamilton-Jacobi-Isaacs (HIJI) equation. However,
solving the HII PDE subject to state and time constraints is a
daunting task. To solve an HII equation on the reachable sets,
discretization of the state space is often required, resulting
in an exponential scaling of computational complexity with
respect to system dimensionality.

In this work, we formulate the pursuit-evasion game as a
robust safe control problem with a dynamic unsafe set, where
the evader must reach a target set while avoiding capture by
a pursuer and staying within a bounded environment. The
unsafe region is defined by a catch radius around the pursuer.
By modeling both agents as a single system and treating
the pursuer’s action as a bounded disturbance, we recast the
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problem as robust control synthesis. Using density functions,
we derive sufficient conditions for safety and reachability.
Assuming polynomial dynamics and semi-algebraic sets, we
apply Putinar’s Positivstellensatz to convert the problem into
a sum-of-squares (SOS) program solvable via semidefinite
(SDP) programming. To the best of our knowledge, our work
is the first study of pursuit-evasion games through the lens of
safe control methods in a computationally efficient fashion.
The main contributions of this work consist of:

« Formulating the pursuit-evasion game as a robust safe
control problem with the use of density functions,

« Proposing a convex optimization framework as an alter-
native to the numerically demanding task of solving PDEs
with state constraints,

« Providing a numerical simulation to validate the theoret-
ical approach, demonstrating its practical feasibility.

Il. PRELIMINARIES

A. Notation
R, R"

x, X, X Scalar, vector, matrix

1,0,1

[1X]loo €oo-norm of vector x

Set of real numbers, n-tuples
Vector/matrix of all 1s, Os, identity matrix

|Ix]l2 €2-norm of vector x

X > 0 X is positive semidefinite

fe C? The d™ partial derivatives of [ are continuous
VV The gradient of a scalar function V

V - f The divergence of a vector valued function f
R[x ] Polynomials in the indeterminate x ¢ R"

B. Safety and Eventuality

The general formulation of a nonlinear system is
given as:

X = f(x, u(x)) (D
where x e X CTR"and u: X — U < R™ are the state
and the control input of the system respectively. Given the
initial set A&, the unsafe set A;, and target set &, we assume
they are mutually exclusive and contained in the bounded set
X c R". Assuming f and u belong to C', and given the initial
condition x(0) = xgp € Aj, the solution to (1) exists and is
unique. Let ¢ (xp) denote this solution as a function of time
t. The system (1):

1) Is safe under X \ A&, if there exists u : X — U such
that for all xg € X}, Vt € [0, 00), ¢:(xp) € X \ Xy;
2) Eventually reaches A, if there exists u : A — U such
that for all xp in X}, 3T € [0, 00), ¢7(x0) € &}
3) Is safe under X \ A, until it eventually reaches X, if
there exists u : X — U such that for all xg in A}, 3T €
[0, 00), ¢r(x0) € A, and VI € [0, T] ¢r(xo) € X \ A
If the eventuality property holds for almost everywhere
in A, then the weak eventuality holds [26]. The term
“almost everywhere” (and “almost all” later on) implies the
property holds at all states except on a set of measure
Zero.

C. Pursuit-Evasion Games

The core problem in differential game theory is the zero-
sum two-player game known as pursuit-evasion for the
following dynamical system:

X = f(x, u(x), w(x)) (2)

where the additional w:X — W < R™ is the control action
of the pursuer. In the vanilla case, the goal of the pursuer
is to catch the evader while the evaders goal is to avoid
being captured as long as possible, with time-to-capture as
the cost/reward for the agents [18], [19]. We focus on the
reach-avoid case of the game from the evader’s perspective,
where the evader is trying to reach a target set A, rather than
maximizing time-to-capture, while avoiding an unsafe set X,
formulated as the following:

Xr=1{x:(hx) <0}, Xa={x:(h(x) <0} (3)

where h, and h, are functions whose zero-level sets implicitly
define the boundaries of the reach and avoid regions. The tradi-
tional approach to solve this problem involves the construction
of a value function:

V(x, f) = inf sup max [h,(cpr), — I‘[E.;ll']lr]ha(qﬁr)] 4)

which is the unique viscosity solution of the following
Hamilton-Jacobi-Isaacs (HJI) PDE [25]:

h Vix,t i inf o 0 5
max{ —ha(x) — V(x, 1), = +sgplw 2= X[ = ©)
Solving the HIJI equation for reach-avoid pursuit-evasion
games is inherently challenging due to the safety and reacha-
bility constraints, and the need to handle min-max optimization
over the control strategies of both players. Instead, we try to
approach this problem from a safe control perspective.

D. Density Functions

Density functions, introduced in [7] as a dual to Lyapunov
stability, represent a distribution over states evolving according
to the system dynamics. The following theorem provides
sufficient conditions for the weak eventuality and safety
properties using density functions for autonomous systems.

Theorem 1: From [27]. Consider the dynamical system X =
f(x) with f € CY(R", R"), the bounded set X C R", and the
sets A, Az, A, € A, If there exists an open set X; 2 A&; and
a density function p € C'(R") satisfying:

p(x) >0, ¥x € &;, (6)
p(x) <0, Vx € cl(3X \ 8X,) U X, 7
V-(pf)(x) >0, Vx cl(X \ X)), (8)

then the weak eventuality and safety properties hold. For
almost all initial states Xp € A;, the trajectory x(f) with x(0) =
xp will satisfy x(T) € A, for some T = 0 and x(1) ¢ A,
Xx(t) e X forall t € [0, T].

The proof of Theorem 1 relies on Liouville’s Theorem given
in [7]. Building on this result, in this letter, we extend the
framework to pursuit-evasion games.

Remark 1: The advantages of using a density based
approach are two-fold: (i) the eventuality property guarantees
that the evader will reach a safe target set and, (ii) as shown
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in Theorem 2, it leads to a jointly convex formulation in the
density function and evader strategy. Further, this strategy does
not require computing the optimal pursuer policy.

E. Sum-of-Squares

Sum-of-squares (SOS) optimization is a framework used
in certain classes of polynomial optimization problems where
the main goal is to establish non-negativity over a region.
The SOS formulations in this paper are based on Putinar’s
Positivstellensatz, defined as the following [28], [29].

Definition 1: A polynomial p € R[x] is SOS if there exist

polynomials {g; € ]R[x]}}il such that:

N
P =) qix)*. ©)
i=1

The set of SOS polynomials forms the cone X[x], with its
restriction to degree 2d denoted as X;[x]. The cone Z4[x] has
a positive semidefinite (PSD) representation given by:

p@) =v(x)  Qv(x),

where v(x) is the vector of monomials up to degree d, and
Q > 0 is a PSD matrix. A sufficient condition for p(x) to be
nonnegative over the semialgebraic set {x | h;(x) = 0,1 =
1,..., N} is the existence of oy, ..., oy, € X[x] such that:

(10)

Ne
pe) =00+ ) oihi(x). an

i=1

In this work, we adopt a similar approach to [12], [15],
leveraging SOS optimization for the simultaneous synthesis of
density functions and control laws.

[1l. PROBLEM STATEMENT

This paper aims to design a controller to guide an evader
in a reach-avoid pursuit-evasion game. The dynamics of the
pursuer and evader are described as follows:

ie :ﬁ’-(xe) +ge(xe)“(xe= Xp)
Xp = fo(Xp) + 8o (%p) W(Xe, Xp)

where X, € R" and x, € R" represent the coordinates of the
evader and pursuer, respectively. The variable u € R™e denotes
the control input to the evader, while w € R™ denotes the
input to the pursuer, which is considered uncontrollable by the
evader. To represent both the evader and pursuer as a unified
dynamical system, we define the combined state vector as:

12)

x=[x x]". (13)
Therefore, the combined system is
X = (%) + gu()u(x) + gw(X)W(x) (14)
where
_|/fe _ | & ol b
f—[fp], 8u= [0], gw—[gp]. (15)

We assume that, initially, both the evader and pursuer are
confined within the initial set A;. The objective of the evader
is to reach a designated target set A, while remaining within
the bounded region A and avoiding capture by the pursuer.
Capture occurs when the evader and pursuer are in proximity

to each other, occupying a location within the unsafe set A,
which is a function of both x, and x,. Additionally, we define
the path-connected set A, = X'\ &} as the region within which
the evader can move freely.

IV. DENSITY-BASED ROBUST EVASION

In pursuit-evasion, the evader typically does not have direct
access to the pursuer policy. In principle, the optimal pursuer
policy can be inferred by solving the PDE (5), but, as
mentioned before, this is far from trivial. In this paper, we will
circumvent this difficulty by modeling the pursuer’s strategy as
an unknown but bounded disturbance w(x) € W to be rejected
by a robust control policy. In other words, regardless of the
actions taken by the pursuer, the evader safely reaches the
designated target. To this end, we need the following technical
requirements:

Assumption 1: Let the following conditions hold:

e X is bounded,

« The initial set A&}, unsafe set A, and target set X, are

mutually disjoint subsets of R” contained in &,

« A} is an open set,

« The active set A, = cl(X'\ (X,UAL)) has a path-connected

interior, i.e., at each time, there is a continuous path from
the evader to the target within A,

« W is a compact subset of R".

Theorem 2: Consider the dynamical system (14) with [ €
Cl(R", R™), Bu. 8w € C\®",R™), n = n, + np, and m =
m, +mp, Let V e CI@R",R(), V(x) > 0 Vx € cl(X \ X,)
and o > 1 be a given function and scalar, respectively. Then,
if there exist a density function p : R" — R and a vector
field y:R" — R" continuously differentiable on A} such that
Assumption 1 and the following conditions hold

V(x) >0, Vxe X'\ &, (16)
p(x) =0, Vx e A, (17)
p(x) <0, Vx ecl(d k' \ ad,) U &g, (18)
V. (ﬁ(f"‘gww) +gulir) =
o (PG + guw) + 8a¥), (19)
Yw e W, ¥x ecl(X\ X)),
then, the control input u = ¥ enforces the weak eventuality

and evasion properties on ( f4) in a robust manner i.e., for
almost all xp € A;, 3T > 0 ¢r(xp) € A, and Vi <
[0, T] ¢¢(xp) ¢ A, for all pursuers actions w € W.

Proof: For the controlled system (14), to apply the condi-
tion (8) treating w as a disturbance, we must have V - (p(f +
guu + gww)) > 0 for all w € W. To make this condition
linear in the unknowns p and W, we introduce ¥ = pu. The
condition then becomes V - (p(f + gww) + g, ¥) > 0 for all
w € W. Substitute p = % and ¥ = ,}’—a to express it in terms
of p and V. Rewriting the LHS gives:

P v
Vi (WU’ + gwW) + guﬁ)

VeV - (5(f + guw) + gu¥)
= V2
aveloV - (5(f + guw) + guﬂ_:)
_ o _
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Since V* > 0, the condition V- (o (f + 2, W)+ g,¥) > 0 holds
if and only if:

V- (56 + 8w + 2a¥) — et (P +guw) +8¥) >0,

which corresponds to (19). Because V is positive on X\ &,
the conditions (17) and (18) follow directly from (6) and (7),
respectively. Thus, the three conditions (17), (18), and (19)
imply the conditions of Theorem 1, completing the proof. Wl

Since Theorem 2 is framed for a pursuit-evasion game, we
refer to the safety property as evasion, highlighting its ability
to handle dynamic unsafe sets. In Theorem 2, the feasibility
conditions represent the winning regions for the evader, and

the controller u = % is the security strategy of the evader.
Remark 2: Note that setting V(-) = 1 recovers the con-
ditions in Theorem 1. These additional degrees of freedom
facilitate the satisfaction of the eventuality condition via a
rational density function, as in [30], [31]. In particular, in this
paper, motivated by [31] we use V = ||x, — x,.[|,2,., the squared
distance to the center of the target arc Xx,. B
Remark 3: The controlled system (14) with u =
becomes singular at points where p = 0. To avoid these
regions, it is necessary to introduce a constraint that bounds
u along the safe trajectory, ensuring the system remains well-
defined. Since p and ¥ are optimization variables, we must

o

impose constraints to satisfy [|u|lo, = ||%|[m 2 s

(ﬁumu — 1} > 0) A (ﬁumax + ﬁr > O).

Figure 1 illustrates the scenario of Theorem 2 from the
evader’s perspective, simplifying the four-dimensional state-
space to 2D. Notably, the purple curve does not influence
the conditions of Theorem 2. This curve represents the outer
boundary of the the target set A, which only appears in
conditions (18) and (19). In these conditions, the relevant
boundary of A, is the inner green curve, because it forms
a shared boundary between A, and A¢, implying that any
trajectory within A, that reaches A, must necessarily cross
it. Thus, &, is only accessible from the green curve for
trajectories within A}, rendering the purple curve irrelevant.

In standard reach-avoid scenarios, the system under con-
sideration cannot admit a stable equilibrium point in X;
otherwise, the divergence condition (19) would be violated.
Thus, stable equilibria are typically excluded from A, explic-
itly [8]. In a pursuit-evasion game, this scenario is inherently
precluded. Suppose, by contradiction, that the strategies
u(x), w(x) are such that the closed loop system (14) has an
equilibrium point (x7. x7). For this equilibrium to exist, the
pursuer must have no incentive to move. However, since there
exists an unsafe region A, that both agents cannot occupy
simultaneously, x} is necessarily outside of this region. If the
evader is not within the unsafe region, the pursuer must move
towards it to fulfill its objective, thereby contradicting the
assumption that x;'; is an equilibrium.

(20)

V. CONVEX RELAXATION

The density-based robust control formulation presented in
Section IV results in a nonlinear feasibility problem. To solve
this problem efficiently, we make the following simplifying
assumptions: (i) the dynamics are integrators with a constraint
that bounds the velocity; (ii) the initial, target, and unsafe
sets are semi-algebraic; and (iii) o and W are polynomials.
Under these assumptions, results from SOS programming can

Fig. 1. The reach-avoid environment. The objective is to remain in &,
avoiding Xz, and reaching X using a connected path within X-. The
initial states for the evader and the pursuer are indicated with X and
Xjp, which together form &; = XjeNAXjp. For pursuit-evasion, the unsafe
set Xz is dynamic. It is important to note that all these sets are defined
in a four-dimensional state space. This 2D illustration is for intuition
only and does not fully capture the true structure of these sets.

be leveraged to reduce the synthesis problem in Theorem 2 to
a convex semidefinite optimization.

A. System Dynamics and Semi-Algebraic Sets

The dynamics of both the evader and the pursuer are
assumed to be linear in the control input, satisfying f, =f, =
0, and g, = g, = I, with a norm constraint imposed on the
control input u. Thus, the full system dynamics are defined as:

= (21)

X = [“], [[ullco < Umax-

This formulation can be approximately transformed into the
Dubins car model via a suitable change of parameters, as
demonstrated in [30]. This renders the problem to a game
where the control actions u and w directly affect the positions
of the evader and the pursuer. To define the initial, unsafe, and
target sets that will be considered in this problem, we use the
following functions:
hxe(®) =1+ — R,
hxp(®) =3 + 35 — R,
2 2
hie(x) = (Il = xx'e|) -+ (x?. _Iiez) _R?e’
2 2
hip(X) = (X3 — Xip, )™ + (X4 — Xip,) " — RE,
ha(x) = (x1 —x3)* + (2 — x4)* — R,
2 2
) = (51— 3,)" + (12 — ) — B2
The functions in (22) define circular regions centered at

different points in the state space. Using these functions, we
define the sets in consideration as:

X = {x:(hxe <0V h, <0) A(hxp, <0}
X; = {x:(hie < 0) A (hip <0)}
Xo = {x:(hxe < 0) A (hxp <0) A (ha <0)}

X, = [x:(hxe > 0) A (he <0) A(hxp, <0)} (23)

The sets (23) satisfy the conditions of Theorem 2: &;, A,, and
A&, are contained in A’; A is bounded; A; is open; and A}, Ay,
and A, are mutually disjoint. Therefore, we have
Xc‘ = Cl(X \ (Xr U Xa)) =
{(hxe <0) A (hxp <0) A (ha = 0)}
cl(@aX \aX,)UAXA, =

(22)

Authorized licensed use limited to: Northeastem University. Downloaded on August 20,2025 at 22:26:08 UTC from IEEE Xplore. Restrictions apply.



436

IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025

{(hxe =0Ahp >0) V(hy,=0)
V(ha <O0Ahy. <0Ahy, <0)},
(X \ &) = {(hx. <0) A (hxp, <0)}.

(24)

B. Designing the Controller
With the assumptions given in Section V-A, we obtain

= I — ﬁfe"’ge‘i' — ﬂ:l’
B+ gwW) + gu = [ L gpw] - [ﬁw].

Thus, the divergence condition (19) can be restated as

\ \
V. I:»‘_’W:I > aVlog(V) - [ﬁw]Vx ecl(X\ X)), Ywe W.
(25)

Expanding the divergence and gradient operators, the
inequality in (25) can be written as

V.- (1}) + (Vpp — @pV,ylog(V)) - w > aV, log(V) - ¥.(26)

where V, and V, denotes the divergence or gradient w.r.t.
X, and x, respectively. Define the set P as all w € R
satisfying (26). Additionally, model the pursuer’s movements
with bounded velocity:

o]

Robust weak eventuality and evasion are achieved if (26)
holds for all w € W, or, equivalently, iff W € P. From the
generalized Farkas’ lemma [32], this inclusion is equivalent to
the existence of a vector function y(x) > 0 such that:

(27)

YN = —V,p +apV,log(V)
yle <V, ¥ —aV.log(V) - ¥ (28)
where
I
N= [—l]’ € = Wnpax 1. (29)

These results leads to the following theorem, providing a
sufficient condition for robust weak eventuality and evasion.

Theorem 3: Let the assumptions in Section V-A hold. If
there exist functions Y:R” — R”, p : R* — R, and y:R” — R
such that

p>0 ¥xe X (30)
p<0Vxecl@X\aX,)UX, (31)
y>0VvxcR" (32)

Vy'N=—VV,p+apV,V Vx ecl(X \ &) (33)
Vy'e < VV. ¥ —aV.V - ¥ Vx € cl(X \ X,)(34)
W < tmax Vx € X, (35)

Then, the control input u = % enforces the weak eventuality

and evasion properties on (21) in a robust manner i.e., for
almost all xp € A;, 3T > 0 ¢r(xp) € A, and Vi <
[0, T1 ¢e(xp) ¢ A, for all pursuers actions w € W.

5 5
4| 4
3t 3
21 2
1} 1
0f 0
At -1
2| 2
3 -3
-4t -4
f5 4 3 21012345 543240012345
Fig. 2 Final trajectories with tail-chasing (left) and go-to-middie (right)

pursuers. The evader reaching the target set while avoiding the catch
radius of the pursuer and remaining in the bounded region, using the
density function p. The dashed black line is the p = 0 level set.

C. SOS Implementation

The conditions in Theorem 3 can be formulated using
Putinar’s Positivstellensatz theorem [33] as follows:

(30) : p + oichic + oiphip € Zlx]
(31 : —p+Arehxe — orchpe c X[x]
— P+ Aphxp € Zx]
— P +0aha + Oachye + oaphy, € ZIX]
(32) =y € ¥[x]
(33) : V¥ IN+VV,p —apV,V =0
(34): —Vy'e+VV. ¥y —aV, V.- ¥
+ 0gehye + ogphxp c X[x]
(35) : Plmaxln — ¥ + Ouerhxe
+ oup1hxp — Ouatha € X[x]
Pltmaxln + ¥ + ouerhx.
+ oup2hxp — Oua2ha € X[x]
(0) : Gie, Tip, Ore, O, Ode, Odp € X[x]
Ouels Oue2, Oupls Oup2, Oual, Oua2 € LX]
(A Aes Ap e R[x]

The (o) condition ensures the polynomial multipliers o are
SOS, while A, and A, do not need to be SOS as they concern
boundary conditions. Solving this feasibility problem gives us

R=TE

¥ and §p, and the corresponding control action u =

V1. NUMERICAL EXAMPLE

We evaluate the proposed method on a reach-avoid
pursuit-evasion game with two pursuer strategies. Our code
is available at http:github.com/mbozdag08/pursuit-evasion-
density. The environment and region parameters in (22) are
defined as follows:

R=4, Ri=Rjp=03, R;=R,=0.5,
X, = [Rcos(r/4), Rsin(/4)].

The target region lies on the boundary of X with radius R.
The maximum control inputs are set as #max = 0.015 for the
evader and Wpya, = 0.01 for the pursuer, ensuring the evader
has a feasible escape strategy. Polynomial degrees are chosen
as d; = dy = 10, dyv = 2« = 36, with multiplier degrees
deg(o) = dteg(l) = 6. Two pursuer strategies are considered.
In the first, the pursuer follows a fail-chasing policy, always
moving toward the evader at full speed. In the second, a go-
fo-middle strategy is used, where the pursuer moves toward
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Distance

0 10 20 30 40 (1] 10 20 30
Time (t) Time (t)

Fig. 3. The distance between the evader and the pursuer over time for
tail-chasing (left) and go-to-middle (right) pursuers. The dashed red line
shows the catch-radius of the pursuer.

the midpoint between the evader and the center of the target
arc. Initial positions are chosen as x;, = [0.5, —1.8] and
Xjp = [0.5, 1] for the tail-chasing case, and x;, = [-2, 0] and
X, = [—2,2] for the go-to-middle case. The SOS program
is implemented in MATLAB [34] using YALMIP [35] and
solved with MOSEK [36].

Figure 2 shows final-time snapshots of both simulations.
The environment A and the pursuer’s unsafe zone A, are
shown as solid red circles. Dotted circles mark initial sets,
and trajectories are shown as solid lines. In both scenarios,
the evader (blue trajectory) reaches the crescent-shaped target
region A, (green) while staying outside the unsafe region
(red). Figure 3 shows the Euclidean distance between the
evader and the pursuer over time. In both cases, the distance
remains above the capture radius, validating safety throughout
the simulations.

VIl. CONCLUSION

This letter uses density functions to solve a reach-avoid
pursuit-evasion game from a safe control perspective. Our
approach offers a computationally efficient alternative to the
classical HJI framework of differential game theory. The
implemented SOS formulation yields a valid control action
that satisfies the weak eventuality and evasion constraints of
the game. Future work involves extending the density function
approach to other variations of the game and with more
complicated, unknown pursuer dynamics.
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