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We conduct numerical flow control studies on a NACA4412 wing. Direct numerical

simulation of laminar separated flows is conducted in the Nek5000 spectral element code. We

identify the system dynamics in real time and continuously update the state-space model as

new measurement data become available using the online dynamic mode decomposition. A

linear quadratic tracking controller is designed for the separation location, such that it follows

a predefined reference target. The controller gains are then recomputed online based on the

new system updates, allowing for an adaptive formulation of real-time feedback control that

accounts for changes of the flow due to external disturbances or due to the effects of actuation

itself. For the NACA4412 airfoil at 0◦ angle of attack, adaptive online control of the separation

location was more effective than steady blowing at moving the separation point downstream

for a given actuator strength. At angle of attack of 10◦, an increase of �;/�3 by ≈ 30% was

achieved.

I. Nomenclature

U = angle of attack (◦)
2 = wing chord
XC = DNS time step
ΔC = state-space model step size
f = vector of body forces
? = pressure
u = velocity vector
*∞ = free-stream velocity
u: = control input vector at step :
 = controller gain
: = discrete time step of the state-space model
; = controller update step
�: = state matrix of the state-space model at discrete step :
�: = input matrix of the state-space model at discrete step :
�: = output matrix of the state-space model at discrete step :
= = number of states
< = number of control inputs
@ = number of temporal snapshots
'4 = Reynolds number
a = kinematic viscosity
_ = eigenvalue of the state matrix
x: = state vector at step :
G0, H0, I0 = actuator coordinates

II. Introduction

Aerodynamic flow control aims to enhance the performance of lifting surfaces by improving lift and drag
characteristics, delaying separation, and reducing the oscillatory loads due to vortex shedding. Since the goal of
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any flow control is to alter the flow dynamics with as little actuation as possible, the approach of many studies is to
leverage the inherent hydrodynamic instabilities. Using the physical knowledge of the flow, small control inputs can be
applied in regions where the instabilities are most receptive to actuation and can greatly affect the flow.

Flow control aimed at mitigating separation over lifting bodies has predominantly relied on exploiting the receptivity
of the separated flow to periodic actuation within a narrow frequency range. A lot of effort has been devoted to studies
of various actuation parameters with the effects on the flow evaluated a posteriori [1–3].

In the past decade, there has been an abundance of studies analyzing the wake dynamics of finite-wing flows at
low Reynolds number. A significant number of studies focused on analyzing the vortex dynamics during unsteady
maneuvers such as translation and rotation [4, 5], surging and plunging [6, 7], pitching [8–10], and flapping [11, 12].
The flows at these conditions are massively separated and dominated by unsteady vortex shedding. Large scale vortex
structures present in these unsteady flows, such as leading edge vortices [13, 14], can augment unsteady vortical lift.
The use of these structures for flow control [15] have also been studied.

Despite the large number of works on finite wings, the applications of online (or adaptive) active feedback control
for these flows have been rather scarce. Neural networks have been used for adaptive system identification and control
for lift augmentation over an airfoil based on limited surface measurements [16] and for wake stabilization and drag
reduction [17]. Despite their significant potential, such approaches do not account for the flow physics. On the other
hand, data-driven modal decompositions, such as the widely used dynamic mode decomposition (DMD) [18], are
known to capture the physics of the limit cycle oscillations of a separated flow. Online DMD with control was used in
[19] to iteratively update a dynamic model and recompute the feedback gains of a linear quadratic regulator (LQR) in
experimental control of separation over a plate. While still data-driven, such an approach relies on a physics based
reduced order model of the flow. Recently adaptive model predictive control was applied for controlling separation
location over a two-dimensional airfoil flow computed using Reynolds averaged Navier Stokes equation [20].

This work is motivated by the fact that many modern (or envisioned) applications for micro-aerial vehicles include
flights at stalled conditions and in unsteady (gusty) environments [21, 22] where active flow control may be necessary
for safe operations. Hence, the aim of this work is to develop an online closed-loop control approach for the unsteady
separated flow. Our overall concept of adaptive online control is similar to that in [20]. However, in our case, it is
applied to an unsteady flow computed using DNS and online DMD is used for system identification. The rest of the
paper is organized as follows. System identification, controller design and the overall control concept are explained in
Sec. III. Results in section Sec. IV consider the effect of controller weights, show a comparison of the online approach
with steady blowing and the effect on aerodynamic performance at 0◦ angle of attack. Finally, the online control is also
applied at 10◦ angle of attack.

III. Methodology

A. Numerical Setup

The flow is governed by nondimensional, incompressible Navier-Stokes and continuity equations:

mCu + u · ∇u = −∇? + '4−1∇2u + f , ∇ · u = 0, (1)

where u = (D, E, F)T is the velocity vector, ? is pressure, f is the vector of external body forces acting on the flow and
T denotes the transpose. The Reynolds number defined as '4 ≡ *∞2/a, where*∞ is the free-stream velocity, 2 is the
wing chord, and a the kinematic viscosity. These governing equations are solved by DNS using the spectral element
code Nek5000 [23]. The two-dimensional computational domain is decomposed into quadrilateral spectral elements.
Within each element, the solution variables are represented in terms of tensor-product Lagrange polynomials, the order
of which is adjusted for convergence and is typically 5 ≤ ? ≤ 9.

We conduct a DNS of a NACA4412 wing segment at '42 = 5 × 104 and U = 0◦. The computational domain spans
±102 in G and H and 0.22 in I and is discretized by a C-type mesh shown in Fig. 1. The spectral element mesh shown in
Fig. 1(a,b) has 75,000 elements and a polynomial of order of 6 is used. Uniform inlet boundary conditions are applied at
the west, south and north far field faces, with outflow at the east face. Front and back faces are assigned a periodic
boundary condition.

The boundary layer is tripped by applying random volumetric body forcing normal to the wing along a spanwise
line, shown in red in Fig. 1(c), at 10%2. The forcing is applied inside a region defined by a Gaussian distribution and is
modulated by a random harmonic function in the spanwise direction and over time. The details of the tripping method
used can be found in [24]. The trip forcing region extends to twice the local boundary layer thickness.
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Fig. 1 Mesh used for NACA4412 wing showing full domain (a) and the near wing region (b) and the wing surface

(c) showing locations of state measurement points (black), actuator forcing distribution (orange), boundary layer

trip (red) and separation bubble (green). Only the spectral elements are shown in (a,b).

The control actuators were modeled as a spatially localized body forces acting on the flow. This is similar to the
actuation approach previously used by [25, 26]. For every actuator the force at any point in the domain at step : is given
by

f = e\�act (G, H, I)�constD: (2)

where e\ = [cos \, sin \, 0]T is a unit vector specifying the direction of the forcing which is pitched by \ with respect
to the free stream, u: is the control input for the actuator at step : , and �const is a constant used to scale the input. The
location where the actuator affects the flow is determined by �act (G, H, I), which is a spatial distribution of the following
form:

�act (G, H, I) = exp

(
−0.5

(
(G − G0)

2

02
G

+
(H − H0)

2

02
H

+
(I − I0)

2

02
I

))
, (3)

where G0, H0, I0 are the coordinates of the actuator and 0G , 0H , 0I are parameters determining the shape of the
distribution in respective directions. The value of �act is set to zero at locations where �act < 0.01. The values of
0G = 0H = 0I = 0.005, which adequately scale the forcing region such that its height is on the order of boundary layer
thickness were chosen and �const was set to 10. The forcing region was placed at G/2 = 0.4 as shown by the orange
contours of �act in Fig. 1(c). The region extend all the way across the span and approximates a blowing slot. For
reference, the separation bubble of the uncontrolled turbulent flow is shown in green.

B. Dynamic Mode Decomposition with Control

Dynamic mode decomposition with control (DMDc) [27] is an extension of DMD. The main feature of DMDc
is its ability to distinguish the underlying system dynamics from the effects of actuation, which produces accurate
input-output models for an actuated system. The training snapshots are arranged in three matrices

- = [x1, x2, . . . , x<−1], - ′
= [x2, x3, . . . , x<], * = [u1, u2, . . . , u<−1], (4)

where - is the = × (@ − 1) snapshot matrix, - ′ is the snapshot matrix shifted by one snapshots and* is the < × (@ − 1)
control matrix containing the corresponding actuator signals. Here = is the size of the control grid, @ is the total number
of snapshots and < is the number of control actuators. The DMDc input matrix is constructed by appending the training
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data control matrix to the snapshot matrix

Ω =

[
-

*

]
. (5)

Next, the SVD of the input matrix is taken
Ω = *ΩΣΩ+

T
Ω
. (6)

The state and input matrices of the reduced order system are then computed as follows:

� = - ′+T
Ω
Σ
−1*T

1 ,

� = - ′+T
Ω
Σ
−1*T

2 ,
(7)

where*1 includes the 1 to = rows of*Ω and*2 includes the = + 1 to @ rows of*Ω. Assuming that � has a set of linearly
independent eigenvectors, the dynamic modes are then obtained by solving the eigenvalue problem

�, = ,Λ, (8)

where Λ is a diagonal matrix of complex DMDc eigenvalues _ and , is a matrix containing the corresponding
eigenvectors in its columns. The � and � matrices obtained with DMDc can be used to construct a discrete-time linear
(control) system:

x:+1 = �x: + �u: , (9)

where x: and x:+1 are the state vectors of the state-space model at the discrete step : and : + 1, respectively. The
discrete stage : corresponds to time C: and and discrete step : + 1 corresponds to time C:+1 with C:+1 = C: + ΔC.

C. Online Dynamic Mode Decomposition with Control

The classical DMD [18] formulation requires access to all prior snapshots to form the data matrix and compute the
singular value decomposition. Therefore, system identification using DMD with control (DMDc) [27] can only be done
once enough state vector measurements are collected as training data. Such a posteriori analysis is not suitable for
situations when sufficient number of state vector measurements at different time instances are not available or if the
data matrix is too large to store in memory. If the flow in question significantly changes its dynamics, for example
due to external disturbances, these will not be accounted for unless they were present in the original training data.
Once a control strategy is employed, the effect of the control input itself can significantly vary the flow dynamics,
potentially rendering the original model obsolete. Online dynamic mode decomposition (oDMD) [28] provides a way to
continuously update the DMD estimate, representing the flow dynamics as a time-varying linear system. The added
benefit is that the full data matrix does not have to be formed or stored. This makes oDMDc particularly attractive
for problems with low spatial resolution (low number of state vector components =) but high temporal resolution of
measurements. The extension of oDMD for control based on the approach of [19] is summarized below.

Recall that the classical DMD describes a linear system x:+1 = �DMDx: , which can be solved as

�DMD = - ′-+, (10)

where the superscript + denotes the pseudo-inverse. Using the definition of the pseudo-inverse -+
= -T

[
--T

]−1
and

assuming that � can change with time, we can write

�̃:−1 = ":−1%:−1, (11)

where ":−1 = - ′-T and %:−1 =
[
--T

]−1
. At step : , a new state measurement, x: , and the previous state measurement,

x:−1, are available and the matrices " and % can be updated using

": = [- ′ x:] [- x:−1]
T
= ":−1 + x:x

T
:−1, (12)

%: =

(
[- x:−1] [- x:−1]

T
)−1

=
[
%−1
:−1 + x:−1x

T
:−1

]−1
. (13)
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DMD can be expanded to include control inputs by simply taking �̃ = [� �] and substituting x: for [x: u:]
T as

demonstrated in [27]. After some algebraic manipulations, the details of which can be found in [28], the following set of
update equations (Eq. (14-16)), which include the effect of control, can be written for step : as follows:

%: =
1

^

©­«
%:−1 + W:%:−1

[
x:−1

u:−1

] [
x:−1

u:−1

]T

%:−1
ª®¬
, (14)

where x: is the new state vector value, x:−1 is the previous state measurement and u:−1 is the previous control input.
Note that that %: in Eq. 14 is (= +<) × (= +<) to account for the fact that the state measurement vectors are size = and
the control vector is of size <, with = and < being the number of states and actuators, respectively. Here, u:−1 is the
control input applied at : − 1 to get from x:−1 to x: . The scalar W: in Eq. 14 is defined as

W: = 1 +
©­«
1 +

[
x:−1

u:−1

]T

%:−1

[
x:−1

u:−1

]ª®¬
. (15)

Equation 14 has a weighting factor ^ ∈ (0, 1], which affects the contribution of older snapshots to the current system
estimate. Setting a low value (^ → 0) will aggressively attenuate old data, while a value close to unity will result in a
gradual decay of old snapshots. The state-space model can be updated using

[
�: �:

]
=

[
�:−1 �:−1

]
+ W:

(
x: −

[
�:−1 �:−1

] [
x:−1

u:−1

]) [
x:−1

u:−1

]T

%:−1, (16)

which considers the error between the current measured state x: and its prediction using an “old” state-space model and
state at : − 1. This algorithm can be initialized either with normal DMDc or using a random pair [�0 �0] and setting
%0 = V�, where � is the identity matrix and V is a large positive scalar. This results in a time-varying (discrete-time)
state-space model

x:+1 = �:x: + �:u: , (17)

that is amenable for controller design.

D. Controller Design

When non-zero steady state needs to be reached, or when the final steady state requires a non-zero steady-state
control input, the linear quadratic tracker (LQT) controller can be used [29]. The LQT performance index is defined as

�8 =
1

2
(y# − ȳ# )

T
Π (y# − ȳ# ) +

1

2

8+#−1∑
:=8

(
(y: − ȳ:)

T& (y: − ȳ:) + uT
:'u:

)
, (18)

where ȳ: = [ ȳ8 , ..., ȳ8+#−1] is the reference signal that the system’s output trajectory must track and # (positive integer)
is the (finite) time horizon. Here, & and ' are positive definite diagonal weight matrices of sizes = × = and < × <,
respectively. The value of & determines how much weight should be placed on that output vector component. Larger
&88 values mean that it is more important to minimize the error in the component H8 of the output vector. Similarly, the
value of ' for a specific actuator penalizes actuator usage. Lower value of ' 9 9 meaning that control polity is allowed
to use control input vectors, where the component D 9 can be larger than the other input components. The additional
symmetric, positive definite matrix Π weights the steady-state error between the output vector y# and the reference
(target) output vector ȳ# . The LQT optimal control input contains a feedback and a feed-forward term

u: = − :x: + �: . (19)

The feedback gain  : is defined as

 : =

(
�̂T(:+1�̂ + '

)−1
�̂T(:+1 �̂. (20)

Here the matrix (:+1 is the solution of the Riccati difference equation, which is given by

(: = �̂T(:+1

(
�̂ − �̂ :

)
+ �T&�, (21)
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and is solved backwards in time. Note that �̂ and �̂ are assumed to be constant for the time horizon # . The feed-forward
gain � is given by,

�: =

((
�̂T(:+1�̂ + '

)−1
�̂T

)
v:+1 (22)

where

v: =

(
�̂ − �̂ :

)T
v:+1 + �

T& ȳ: . (23)

Eqs. (20) and (23) are iterated backwards in time starting at step # with the starting conditions of (# = �T
Π� and

v# = �T
Π ȳ# , respectively. Note that in contrast with the infinite horizon LQR problem, the LQT gains are, in general,

time-varying even for the time-invariant system defined by �̂ and �̂.

E. Overall Control Concept

We wish to control the separation location on the wing, such that it tracks a predefined reference target. The state
vector G consists of streamwise velocity fluctuations measured at = points slightly above the wing surface. For the
purposes of flow control, the separation point is taken as the location where the value of the streamwise velocity changes
sign to negative (the start of the reversed flow region of the separation bubble). The number of states, =, is chosen
to give reasonable resolution of the separation location. The streamwise velocity for the state vector is measured at
600 points just above the wing suction surface. These are uniformly spaced with 60 points in the streamwise direction
starting from G/2 = 0.4 to 1 (the trailing edge) and with 10 points across the span as shown in Fig. 1(c). The streamwise
velocity is spanwise averaged along the 10 points to generate single state vector. The state dimension, =, is therefore 60.
At each linear model step : , a new value of the state vector is interpolated from the DNS solution. The online DMDc is
then applied to this current state vector (G:−1) and the one stored from the previous step (G:) to update the time-varying
�: and �: .
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Fig. 2 Relationship between the various timescales of the online control problem.

We introduce the output H: that is equal to the index of the state vector, where separation occurs. This simplifies the
generation of the target signal for the tracking controller, as instead of specifying a vector of desired streamwise velocity
distribution, only a single value of the desired separation location is required. An output matrix �: , which maps the
state vector (x:) to the output vector (H:) is needed to complete the state-space model. Since, in our case, there is no
analytical relationship between the separation location and the values of the state, it is found by solving the linear system

y: = �:x: . (24)

At every step : , H: is computed as the first index of x: , where the value of the streamwise velocity changes sign to
negative and Eq. 24 is solved for �: . Because the output takes integer values, this is only done when the error between
the current output H: (computed from current x:) and H̃: = �:−1x: (output obtained using the old output matrix) is
greater than 0.5.
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Interval C ΔC XC

Model update ΔC>�"�2 0.01 1 10

Control update ΔC!&) 0.5-1 50-100 500-1,000

Time horizon C# 100 10,000 100,000

Table 1 Timescales for NACA4412 separation control.

A tracking controller is then designed. For the purposes of controller design, the matrices �, � and � are treated as
if they were constant for the whole time horizon over which the controller is designed. This simplification has to be
made because future �, � and � matrices are not known. In the following, we use �̂ = �: , �̂ = �: and �̂: to denote
these constant state, input and output matrices obtained from the current estimate of the online DMDc. We then apply
time-invariant versions of the controllers on this time-invariant system

x:+1 = �̂x: + �̂u:

y: = �̂:x: .
(25)

The resulting gains will not be strictly optimal in the optimal control sense since the actual system in Eq. (17) to which
we will apply the feedback is time-varying and nonlinear. However, for the current estimate of the oDMDc when the
gains are recomputed, they will be in the set of optimal feedback gains.

At each controller update step ;, a sequence of feedback and feed-forward gains  ; and �; is computed for the LQT
time horizon # . Here,  ; refers to an < by = by # array of gains computed at controller update step ;. The controller
gains do not have to be updated at each linear models step, as long as the rate of its updates is sufficient to account for
any expected variations of the system and the update interval is less than or equal to the LQT time horizon. In between
the controller updates, the latest sequence of gains is used to obtain the control signal, which is introduced as a linear
feedback to the DNS as

u: = − ;
:x: + �

;
: , (26)

where  ;
:

and �;
:

mean the LQT gains for the :-th step. The relationship between the DNS step (XC), the linear model
step (ΔC), controller update interval (ΔC!&) ) and the time horizon (#) is summarized in Fig. 2. The typical values of
these time intervals are show in table 1.

IV. Results

A. System Identification

The performance of the the classical DMDc in predicting the future evolution of the states is compared to the oDMDc
in Fig. 3. The color contours show the variation of the state vector (streamwise flow velocity near the surface of the
wing) with time. Blue indicates reversed flow and the contour of zero streamwise velocity (corresponding to separation
or reattachment) is shown with a dashed line. For both cases, training data were collected for 14 ≤ C ≤ 30 every 10
DNS time steps. A training control input was applied at the beginning of the training window. For DMDc, Eq. 7 is used
to obtain the state-space system, while for oDMDc, the update equations Eq. 14-16, initialized with a random � and �
pair were used. The prediction of the states after C = 30 assuming zero control input using these state-space models is
plotted in middle and bottom subplots in Fig. 3. For oDMDc, the last pair of �: ,�: corresponding to C = 30 was used.
Both approaches fail to capture the exact dynamics of the turbulent separation, but oDMDc prediction is more accurate
in the mean location of the separation and reattachment lines. The DMDc prediction blows up due to uns unstable mode
identified by DMDc. It should be noted that the DMDc model is highly dependent on the training data used. Various
training control inputs and different lengths of the overall training data may result in better performance than that shown
in Fig. 3. However, for same conditions, the oDMDc model preforms better. Another important advantage of the online
system identification, which is not shown here, is its ability to accommodate changes of the conditions flow conditions,
for example, changes of angle of attack due to gusts or maneuvers.
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Fig. 4 Effect of the R weight of the LQT on the mean strength of the jet control signal and the average tracking

error.

Fig. 5 Effect of the controller update interval on the mean strength of the jet control signal and the average

tracking error.

(a) (b)

Fig. 6 Variation of mean separation location (a) and tracking error (b) with mean control input strength for

open loop and adaptive online control.
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Fig. 9 Effect of control on the aerodynamic coefficients at U = 0◦. Solid lines represent running averages, with

instantaneous fluctuations plotted with transparent lines. Online control run is using % = & = 1, ' = 10, # =

100B,Δ!&) = 0.5B.

Fig. 10 Separation location at U = 10◦ without control.
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