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Abstract—The growing complexity of dynamical systems
and advances in data collection necessitate robust
data-driven control strategies without explicit system iden-
tification and robust synthesis. Data-driven stability has
been explored in linear and nonlinear systems, often by
turning the problem into a linear or positive semidefinite
program. This letter focuses on contractivity, which refers
to the exponential convergence of all system trajectories
toward each other under a specified metric. Data-driven
closed-loop contractivity has been studied for the case
of weighted ¢>-norms and assuming nonlinearities are
Lipschitz bounded in subsets of R". We extend the anal-
ysis by considering Riemannian metrics for polynomial
dynamics. The key to our derivation is to leverage the
convex criteria for closed-loop contraction and duality
results to efficiently check infinite dimensional membership
constraints. Numerical examples demonstrate the effective-
ness of the proposed method for both linear and nonlinear
systems.

Index Terms—Control theory, contraction, data-driven
control, nonlinear control.

. INTRODUCTION

ATA-DRIVEN control (DDC) methods seek to avoid
D the computational complexity and potential conservatism
entailed in traditional plant identification-robust control design
pipeline by synthesizing controllers directly from experimental
data. For Linear Time-Invariant (LTI) systems a number
of computationally tractable DDC techniques have been
developed in the past few years [1], [2], [3]. DDC of nonlinear
systems is considerably more challenging. Local stabilization
can be achieved by estimating the Jacobian of the system
around a point combined with LTI data-driven techniques [4].
Data-driven global stabilization of nonlinear systems is a
much harder problem. Without assuming some form of
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nonlinearity, the problem of obtaining stability certificates
becomes intractable. To address these difficulties, [5] assumed
polynomial dynamics and resorted to finding a data-driven
density function so that the resulting problem was transformed
into linear programs. Similarly, in [6], a positive semidefinite
program is derived by using quadratic-like Lyapunov functions
to ensure closed-loop stability.

This letter focuses on deriving data-driven control strategies
for contractivity under Riemannian metrics. Introduced by the
seminal paper [7], contractivity can be seen in some ways as
a “stronger” property than stability. For excellent treatments
of contractivity with £, norms see [8], [9]. Informally, con-
tractive systems are those where, a suitably defined, distance
between different trajectories tends to zero exponentially fast,
regardless of the initial conditions. Contractive systems are
attractive for many reasons. Firstly, if a time-invariant system
is exponentially contracting in R" it implies existence of a
global exponentially stable equilibrium point [10]. Secondly,
tools from semialgebraic geometry enable the search over
a wide class of contraction metrics via semidefinite pro-
grams [10]. Thirdly contraction guarantees entrainment to
periodic forcing [7], [9]. Finally, for constant Riemannian
Metrics contraction is invariant under any additive distur-
bance [11].

A convex optimization approach to finding control con-
traction metrics in a model-based setting was first studied
in [12]. The approach developed there is the basis of our data-
driven results. To enhance its computational efficiency, several
extensions were proposed, most notably those utilizing neural
network-based contraction metrics. For the case of known
dynamics [13], [14] propose the use of a Neural Network
(NN) to co-synthesize a contraction metric and a controller.
Unknown dynamics were addressed in [15], where a NN is
used to first identify a model and then learn a contraction
metric M. This is followed by a validation step to find a
trusted domain D along with bounds on the identification error,
and to verify that M is indeed a contraction in D. While
this approach was successfully used to control several robotic
systems, it suffers from the conservatism inherent in the model
error bounding step and the non-convexity of the two step
process.

Alternatively, [16] exploits the equivalence between
Koopman and contraction approaches for systems with a
hyperbolic equilibrium point to learn contraction metrics from
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data for non-actuated systems. However, dealing with actuated
systems generically requires bilinear, rather than linear, immer-
sions [17]. Further, if the open-loop plant has multiple
omega-limit sets, continuous one-to-one linear immersions
do not exist [18]. Finally, [19] is the closest to the present
paper, in the sense that it finds a constant matrix P such
that 6x" P~18x is a control contraction metric for all systems
compatible with the observed data and priors. However, as
illustrated in the examples in Section V, limiting the search
to state-independent metrics can lead to infeasible problems,
even if a state-dependent contraction metric exists.

Contributions: To address the issues noted above, we
introduce a novel convex data-driven formulation for finding
Riemannian control contraction metrics directly from noisy
data. Specifically, our contributions are:

1) A framework for non-conservatively recasting the
data-driven control contraction problem, where the
Riemannian metrics are restricted to the second-order
polynomial matrices, into a sum-of-squares (SOS)
problem. By working directly with an exact characteriza-
tion of the set of all plants consistent with the observed
data and priors, this formulation avoids the conservatism
entailed in overbounding this set or the noise description.

2) A reformulation of the above problem as a functional
Linear Program (LP), which via duality is independent
of the parameters of the unknown plant.

3) Recasting this functional LP as a finite-dimensional
Semi-Definite Program (SDP). Notably, the maxi-
mal size of the matrices in this SDP is at least
O((order of the system)z) smaller than those appearing
in the original SOS problem, resulting in substantial
computational complexity reduction.

This letter is organized as follows: Section II provides the
definitions and theorems that will be used throughout this
letter, along with the problem definition. Section III presents
a sufficient condition that solves the problem exploiting
Lagrange duality. Section IV develops a tractable relaxation
of the dual optimization problem. Section V illustrates these
results with numerical examples. Finally, Section VI presents
conclusions and directions for future research.

[I. PRELIMINARIES

A. Notation
R"(R%) n-tuples of (non-negative) real numbers
1,0, 7 vector/matrix of all 1s, Os, identity matrix
llx]|p£p norm of vector x
xT the transpose of X
x>0 x is element-wise non-negative
)k denotes the ky, element of a vector
S the set of positive definite matrices
SHtx positive definite matrix-valued polynomials
X>0 X is positive semidefinite
X>0 X is positive definite
fecd the d” derivative of f exists and is continuous
vec(X) vectorization of matrix X along columns

® matrix Kronecker product
Tr(A) trace of a matrix A

B. Kronecker Product Property

The following property of Kronecker product [20] will be
used in this letter:

Vec(BTXTAT) - (A ® BT)vec<XT). (1

C. Sum-of-Squares

Here we briefly review some concepts from semialgebraic
optimization that will be used to recast the data-driven
contraction problem into a tractable convex optimization. A
polynomial p(x) is an SOS iff it can be written as p(x) =
> idi (x)2, for some polynomials g;. Alternatively, p(x) is SOS
iff there exists a polynomial vector v(x) and a matrix Q > 0
such that p(x) = v(x)TQv(x).

A semialgebraic set K is defined by a finite number of

bounded degree polynomials {g,-(x)}i.v”'1 and {hj(x)}jvzhlz
K={xeR"|g) >0, hi(x) =0,

i=1,...,Ng, j=1,.... N} )

The set K is Archimedean if there exists an R > 0 such that
the polynomial R — ||x||% satisfies

R— x5 = 00(0) + ) _ 0i(0)gi(0) + Y _ ¢j()h;(x)
i J

for some polynomials ¢;(x) and SOS polynomials o;(x). A
matrix-valued polynomial P € S+ [x] if Vx € R":P(x) € S} .
A matrix-valued polynomial is SOS if there exists a vector of
polynomials v(x) and a Gram matrix Q > 0 such that P(x) =
v(x) ® I)TQ(v(x) ® I). Every positive definite matrix-valued
polynomial P(x) over an Archimedean set K satisfies ([21,
Th. 2], Scherer Positivstellensatz)

P(x) = 00(x) + Y _0i0)gi®) + Y jhix).  (3)
i J

for o;(x) SOS polynomial matrices and ¢; symmetric polyno-
mial matrices. The Putinar Positivstellensatz is the restriction
of the Scherer Positivstellensatz to n = 1 [22].

D. Contraction Theory
Informally, a system described by an ODE of the form

(1) =f), feC'(R,R") 4)

is contractive if there exists a uniformly positive definite
metric tensor, meaning M(x) € C!'(R",Sf*) and ol <
M(x) for some o > 0, such that the associated Riemannian
differential distance between trajectories decreases with time,
that is d@x Mesn) 0. This concept leads to the followin

dt p g
definition:

Definition 1 [10]: The system (4) is said to be exponen-
tially contracting, if there exists a uniformly positive definite
metric M € C'(R", S;F), a real number A > 0 such that the
following matrix inequality holds Vx € R":

T
w Mx)+M ()c)m
x ox

In the sequel, by a slight abuse of notation we will refer to

systems satisfying (5) as contractive. [10, Th. 1] shows that

+M>x) < —22Mx).  (5)
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if (5) is satisfied then there exists a single global exponentially
stable equilibrium point.

E. The Data-Driven Contraction Problem

In this letter, we will consider continuous-time control-affine
polynomial systems of the form

X =fx) 4+ Gu=F¢(x) + Gu (6)

where x € R” and u € R™ are state and control, f is a
polynomial up to certain degree, ¢ (x) represents a vector of
monomials of x and F, G are constant matrices. For example,

3xp — x> 3-1
=] e o

Assume that T noisy measurements {x[7], x[{], u[z]}T | satisfy-
ing:

x[i] = f (i) + Gulil + nlil, [Inlilllo < €,Vi=1,...,

are available. Here the ¢, bounded noise 1 models, for
instance, process disturbances or the error incurred when
approximating x by finite differences.

Definition 2: The consistency set P; of the system (6) is
the set of all F' compatible with the measurements (8) in the
following sense:

fo) = [

T(8)

= {F: [IF(x[i]) + Guli] — x[illloo <€, i=1,...,T}(9)

Problem 1: Given noisy data {x, x, u} generated by a system
of form (6), with a known G, find a smooth M(x) and a state
feedback control law u(x) such that for all F € Py, the closed-
loop system is contractive under the metric induced by M (x).

Remark 1: The case where G is a potentially unknown
polynomial function of x can be reduced to the problem
above by filtering the control action with known dynamics and
absorbing the unknown G(x) into f(x), e.g.,

x| _|fx)+GXu 0
)= 1)
I11. DATA-DRIVEN CONTRACTION CONTROL

The goal of this section is to establish tractable conditions
for finding a (differential) data-driven control law that renders
all systems in P; contractive. This will be accomplished by
recasting the problem into a robust optimization problem.

(10)

A. Robust Optimization Reformulation

Begin by rewriting the consistency set as

P, = (F: Tr(Fcbffk) <d*

ik’
Vi={l,....,T),k={1,...,n}) (11)

where @fk is a matrix with £¢ (x[i]) in its kp column and
zeros elsewhere:
of, =[0..... £pGliD), ... 0],

and d7, = € £ (ili] — Guli]);. (12)

For example, for a single measurement x[1], u[1] € R2, we
have

O = [£6 (1) 0], d| = € + (1] — Gu[1]),
D7, = [0 £4([1D)]. di, = € £ G[1] = Gull]),. (13)

In the sequel the £ superscript in CIDik and d ik 1s omitted to
keep the notation cleaner.

For actuated systems of the form (6), condition (5) now
depends on finding a differential control input % that
satisfies:

M) +( i +Gau(x)> M)
+M(x) <F8¢(x) + GBM(x)) < —2AM). (14)
0x 0x
If M(x), a:g(;) exist and satisfy the above then M(x) is

referred to as a control contraction metric. Using the change
of variable W = M~! and leveragmg Proposition 2 in [12],
the differential control law 8u(x) ,o(x) G"W~L(x) renders
the closed-loop system contractlve if there exists W(x) € S+
and a function p(x) such that Vx € R" (we omit (x) for brevity
hereafter):

-
—W+ W(F?) + <F2—¢)W+2AW— pGGT <0 (15)
X X

oW
S (Geny =0, vi=1,...,n
;0

(16)

where e; is the i-th basis vector in R”. For the future,
condition (16) is abbreviated as dgW(x) = 0.

In terms of (11), (15) and (16), Problem 1 can be reformu-
lated as:

Problem 2: Find W € S} [x], p and A > 0 such that (15)-
(16) hold for all F satisfying the trace condition (11).

Remark 2: Since M = W™, in principle global contractiv-
ity requires W(x) to be uniformly bounded above, e.g., W(x) <
ol; Vx € R", which clearly cannot be accomplished with a
polynomial matrix. However, [12, Lemma 1] shows that this
condition can be relaxed to existence of a quadratic bound
on the maximum eigenvalue of W(x), that is Apmax(W(x)) <
||Ax+B||% for some matrix A and vector B. Since this condition
is automatically satisfied for W € S2+[x] in the sequel we
will consider only second order polynomial matrices.

B. Solution via Duality

In principle, Problem 2 can be reduced to sequence of
SDPs by restating it as a polynomial optimization in the
indeterminates x and Fj;, the elements of F, and exploiting
Scherer’s Positivstellensatz [21]. However, this approach is
practically limited to relatively small, low-order systems due
to the very poor scaling properties of the resulting SDP with
respect to the size of F. To avoid this difficulty, in this
letter, we will pursue a duality-based approach to obtain an
equivalent condition that does not involve F.
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Assume for now that x is fixed and hence p and W are
constant. Scalarizing (15) leads to the following equivalent
condition:

yT(WaabTFT £ FIQW — W+ 24W — pGGT)y <0
Y]yl = 1 and F that satisfyTr(FdJi,k) <d;r. 17

This condition can be reduced to an SDP via Putinar’s
Positivstellensatz in y and Fj;. However, as before, this
leads to problems with poor scaling properties. Rather
than pursuing this approach, we will enforce (17) by
computing

P*(, W, p) = maxy” (W3¢TFT L FOW — W

LMW — pGGT)y

subject to: djx — Tr(F®;x) =0 (18)
and finding W(x) and p(x) such that p*(y, W, p) < 0 for all
llyll2 = 1 and such that (16) is satisfied.

Theorem 1: A metric tensor W(x) € C'(R",S*) and a
function p(x) solve Problem 2 if there exist non-negative
functions p; x(x,y) such that:

yT (—uW + ,oGGT)y — > lindix > 0 (192)
i,k
Viylz =1
.

vec| —20Wiy" + ) ix®ix (19b)

i,k

W T\(,T T

() o)

AWg(x) =0 (19¢)
wik(x,y) =0, W(x) > 0. (194d)

Moreover, if the consistency set P; has a non-empty interior,
then the condition is also necessary.
Proof: The Lagrangian of (18) for fixed y, W, p is given by:

L(F, i) = Z pik(dix — Tr(FD;g))
i,k
+yT (Wa¢>TFT L FIQW — W+ 20W — ,oGGT>y

= Tr{F(28¢Wny -3 m,kﬂbi,k) ]
ik

—Tr{ (W —2AW + pGGT)ny} + Z Wi kdi k-
ik
(20)
Expanding W by leveraging (19¢) and (1) yields:
. ow aw
W= Xl: a-)q(quFT)ei = 2,: a_x,»(e"T ® ¢T)vec(FT).

2L

Using the former identity and the fact that Tr(AB) =
vec(B) Tvec(AT), the Lagrangian becomes:

T

L(F, jtix) = vec| 20¢pWyy" — Z,u,',kcbi,k VCC(FT>
ik
aw
— Xl: Tr(a_x,-ny) (e,-T ® ¢T)Vec(FT>
+Te(@W = pGGHWT) + D pisdix- (22)
ik

Notice that L(F, u;x) is affine in F, therefore, the dual
function:

g(mik) = sup L(F, wix) (23)
F
is finite only if (19c) holds. Therefore:
Tr{(2AW — pGG T )yy "} + 3, ([ud]; 4
g (Mi,k) = if (19¢) holds and (24)

oo  otherwise

Hence, if there exist non-negative multipliers w;x(x,y) > 0
satisfying (19), g(u; ) < 0. From weak duality [23] it follows
that p*(y, W, p) < 0 for all |yl = 1,px), Wx) = 0.
Thus (15)-(16) hold for all F satisfying (11). Moreover, if the
consistency set P; has a non-empty interior, then (18) is a lin-
ear program in F’ which now satisfies Slater’s condition at each
v, W(x), p(x). Hence strong duality holds and p*(y, W, p) =
&*(uix). Thus (19) is also necessary.

Corollary 1: The differential feedback control law du

ax
—% ,o(x)G—r W~1(x) renders all systems in P; contractive.

IV. TRACTABLE RELAXATIONS

From Theorem 1 it follows that Problem 2 reduces to a
feasibility problem in W(x) € St uix(x,y) € Ry, and
p(x). However, searching for a matrix function W(x) > 0 is
generically intractable. To avoid this problem we will restrict
the search to SOS matrices, thatis W(x) = (¥ @ I) TQ(¥ ® I)
where Q > 0 and ¥ is a basis of monomials per [21].
Further, in view of Remark 2, we will only consider second
order polynomial matrices, that is W(x) € S;“ Tx]. Similarly,
to guarantee that p;; > O the search is performed for w;x
belonging to the set of SOS polynomials. Finally, we also
restrict p to be a polynomial. Under these assumptions, (19)
is a semi-algebraic optimization over W, u and p, that satisfy
the linear constraints in (19b), (19c). Therefore, we utilize
Putinar’s Positivstellensatz and other standard SOS tools to
solve it via a sequence of SDPs.

It is important to get an understanding of the computa-
tional complexity before presenting the examples. Assume
the system dimension is n, the highest degree in ¢ is p, the
highest degree in W is 2q (where ¢ is either 0 or 1 in view of
Remark 2) and T data samples were collected. As discussed
W) = (WDTQ(¥ ®I) where ¥ is the vector of all
monomials up to degree g of the system state. Hence the size

of the Gram matrix Q is n(”zq) X n(”;q).
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Furthermore, based on the set P; and the number of data
samples T, there are 2nT SOS functions u;x each of which
should have degree in x at least 2g + p — 1 and degree 2 in y.
Thus, the associated Qram matrices have dimension ng X ng
with ng ~ (n + 1)( P J;ﬁ").

On the other hand, enforcing (15) directly through Scherer’s
Positivstellensatz in the indeterminate x € R” and F €
R™! involves an n x n SOS matrix in (n + nl) variables.
Assuming polynomials of order 2¢g in W(x) and nr in F
the correspondingl Gram matrix will have dimension ng x ng
where ng ~ n(pT:’H") (”[:F”F ). In summary, finding higher-
order metrics comes at the cost of combinatorial complexity
in the size of the positive semidefinite matrix constraints.
However, exploiting duality mitigates the growth of the largest
Gram matrix, as compared to straight application of Scherer’s
Positivstellensatz, when [ > 1, even when choosing np = 1.
Additionally, while increasing the number of data samples can
shrink the consistency set P; it increases the amount of SOS
functions p;x needed.

V. NUMERICAL EXAMPLES

To decrease numerical errors and computational complexity,
the following examples assume that it is known beforehand
which monomials appear in the dynamics. Thus we will use a
dictionary ¢ containing only those terms. Additionally due to
the limitations of numerical solvers in handling zero equality
constraints as required in (19b) and (19c), we adopt the
heuristic that any polynomial coefficient smaller than 107>
in W, p is set to 0. To enforce the other constraints in (19)
we utilize the solvesos function in the YALMIP toolbox
and with MOSEK as the underlying solver. Furthermore in
the optimization program to solve Problem 2 we consider
A a positive fixed constant. When this choice resulted in
infeasibility, we reran the optimization routine with a smaller A
while maintaining the positivity constraint. In practice finding
the optimal value for A can be done via a bisection algorithm
described in [9, Sec. II-G]. Note that a larger XA is desirable,
since it yields faster convergence to the origin. Each data-
driven problem below was solved under 100 seconds, on a
Apple M1 Pro with 16GB of RAM. Only 60 measurements
were required, namely {x[], x[ l]}GO] (the control input u is
assumed to be zero), generated with the ode45 or odel5s
commands in MATLAB and coming from six randomized
initial conditions in the interval [—1, 1]". The derivative
x[i] is disturbed by adding uniform random noise bounded
above by |€]lco = %max,'(|)'c[i]|). The code is available at:
https://github.com/andoliv1/Contraction-For-DDC.

A. Linear System
First, we validate our results in a linear system. Consider
the system given by:

. [0.4285 —0.4298 —0.7826 0.7731 25)
*=10.4018 1.3036 [* | -0.51100.0339 |*

If u = [0,0]7 the above is unstable with eigenvalues
at 0.7291, 1.0030. The objective is to find a controller u
and metric tensor W that ensures the system is contractive

from data observations. Solving (19) produces the following
constant matrix W € S;'* and scalar p

W= [0.1019 0.0154

0.0154 0.0028 (26)

:|, o = 9.9686.

In order to close the loop in the underlying system,
one needs to define u(x) from % = —%pGTW’l.
Following [24], but simplifying the control input to track the
origin:

AP
as

1
1 _
u(x) = / =P (NG Wy )™

0
where y : [0,1] — R2, y(0) = [0,0]", y(1) = x is the
geodesic under the norm induced by W~!, which if constant
implies y (s) = sx. Since both p, W are constant we have that
the feedback controller that makes the system contractive is

u(x) = —% oGTW~1x. Note that in this case a similar result
can be obtained using Krasovskii’s criteria [7].

B. Nonlinear Systems

We alter the system referenced in [10] such that it is no
longer open-loop contractive and it has a control input:

| _[-xn—3xd - 30 L[1o],
X 3x1 +x2 o1
Running the optimization program (19) with respect to (28)

results in:

W= 0.0074 —0.0027
|1 —0.0027 0.1018

p = 3.9508 — 0.0005x] + 2.9056x7 + 2.9044x3.

(28)

(29)

To demonstrate the need for a nonlinear contraction metric,
let’s draw from the example in [12]:

X1 —Xx1 + x3 0
X | = x% —xp —2x1x3+x3 | + |0 |u 30)
X3 —Xx) 1

First it should be noted that trying to find a constant
matrix W and polynomial p that makes the system closed-
loop contractive resulted in infeasible solutions, meaning W
was rank deficient or the solver could not find a solution.
Therefore, from Remark 2 we should allow W € S;’ T[x]. Now
running (19) the following W and p are found that make the
closed-loop system contractive (only the (3,3)-th entry of W,
denoted as W3 3(x) and the first 7 components of p are shown
for the sake of brevity):

W3.3(x) = 0.0173 — 0.00027x;

—0.0004x; + 0.0015x} +0.0015x3  (31)
p(x) = 2.765 — 0.0002x; + 0.3204x7
+0.2962x3 4 0.2999x3 . . . (32)

As mentioned before, enforcing contraction in the closed
loop with respect to the Riemannian metric requires the
geodesic in (27), which amounts to finding:

-
y* :argMinyeF(O,x(t))/ % M(y(s)) ()

ds (33)
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Fig. 1. Progression of trajectories for different initial conditions.
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Fig. 2. Graph of the approximate distance between x(t) and 0 computed
using the approximate geodesic. The piecewise linear relation between
t and the y-axis in log scale indicates x(f) is exponentially converging to
the origin.

where I'(0,x(r)) is the set of smooth regular curves that
connect the origin to x(¢) [12]. Finding an explicit solution of
the above is computationally hard as noted in [24]. Therefore,
to obtain an approximate solution we discretize (33) into
a finite sum and turn y into a piecewise linear path with
boundary conditions. The order of the discretization of y was
set to be 100, meaning y consisted of 100 piecewise linear
steps. The resulting nonlinear program is fed into CasADi
using IPOPT as the underlying solver and each run of the
problem took less than 0.5 seconds. Figures 1 and 2 show the
evolution of 5 different initial value problems of system (30)
with the computed control input applied.

VI. CONCLUSION

We study the problem of finding a metric and state feedback
controller that renders all systems compatible with noisy
experimental data contractive. Previous works on this problem
have considered the case of searching for weighted ¢,-norms
that render sector-bounded nonlinear systems compatible with
data contractive [19]. Our approach extends this by considering
polynomial systems in unbounded domains and searching
for Riemannian metrics. The key to our formulation lies in
leveraging the convex criteria developed in [12] and applying
duality to significantly reduce computational complexity. The
problem can be solved efficiently for low dimensional systems

and low order metric tensor W but remains challenging
as the system dimension and order increase. Future work
seeks to address this by using alternative characterizations of
contractivity based on matrix log norms [9].
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