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Abstract—The growing complexity of dynamical systems
and advances in data collection necessitate robust
data-driven control strategies without explicit system iden-
tification and robust synthesis. Data-driven stability has
been explored in linear and nonlinear systems, often by
turning the problem into a linear or positive semidefinite
program. This letter focuses on contractivity, which refers
to the exponential convergence of all system trajectories
toward each other under a specified metric. Data-driven
closed-loop contractivity has been studied for the case
of weighted �2-norms and assuming nonlinearities are
Lipschitz bounded in subsets of R

n. We extend the anal-
ysis by considering Riemannian metrics for polynomial
dynamics. The key to our derivation is to leverage the
convex criteria for closed-loop contraction and duality
results to efficiently check infinite dimensional membership
constraints. Numerical examples demonstrate the effective-
ness of the proposed method for both linear and nonlinear
systems.

Index Terms—Control theory, contraction, data-driven
control, nonlinear control.

I. INTRODUCTION

D
ATA-DRIVEN control (DDC) methods seek to avoid

the computational complexity and potential conservatism

entailed in traditional plant identification-robust control design

pipeline by synthesizing controllers directly from experimental

data. For Linear Time-Invariant (LTI) systems a number

of computationally tractable DDC techniques have been

developed in the past few years [1], [2], [3]. DDC of nonlinear

systems is considerably more challenging. Local stabilization

can be achieved by estimating the Jacobian of the system

around a point combined with LTI data-driven techniques [4].

Data-driven global stabilization of nonlinear systems is a

much harder problem. Without assuming some form of
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nonlinearity, the problem of obtaining stability certificates

becomes intractable. To address these difficulties, [5] assumed

polynomial dynamics and resorted to finding a data-driven

density function so that the resulting problem was transformed

into linear programs. Similarly, in [6], a positive semidefinite

program is derived by using quadratic-like Lyapunov functions

to ensure closed-loop stability.

This letter focuses on deriving data-driven control strategies

for contractivity under Riemannian metrics. Introduced by the

seminal paper [7], contractivity can be seen in some ways as

a “stronger” property than stability. For excellent treatments

of contractivity with �p norms see [8], [9]. Informally, con-

tractive systems are those where, a suitably defined, distance

between different trajectories tends to zero exponentially fast,

regardless of the initial conditions. Contractive systems are

attractive for many reasons. Firstly, if a time-invariant system

is exponentially contracting in R
n it implies existence of a

global exponentially stable equilibrium point [10]. Secondly,

tools from semialgebraic geometry enable the search over

a wide class of contraction metrics via semidefinite pro-

grams [10]. Thirdly contraction guarantees entrainment to

periodic forcing [7], [9]. Finally, for constant Riemannian

Metrics contraction is invariant under any additive distur-

bance [11].

A convex optimization approach to finding control con-

traction metrics in a model-based setting was first studied

in [12]. The approach developed there is the basis of our data-

driven results. To enhance its computational efficiency, several

extensions were proposed, most notably those utilizing neural

network-based contraction metrics. For the case of known

dynamics [13], [14] propose the use of a Neural Network

(NN) to co-synthesize a contraction metric and a controller.

Unknown dynamics were addressed in [15], where a NN is

used to first identify a model and then learn a contraction

metric M. This is followed by a validation step to find a

trusted domain D along with bounds on the identification error,

and to verify that M is indeed a contraction in D. While

this approach was successfully used to control several robotic

systems, it suffers from the conservatism inherent in the model

error bounding step and the non-convexity of the two step

process.

Alternatively, [16] exploits the equivalence between

Koopman and contraction approaches for systems with a

hyperbolic equilibrium point to learn contraction metrics from

2475-1456 c© 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2025 at 22:21:03 UTC from IEEE Xplore.  Restrictions apply. 



596 IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025

data for non-actuated systems. However, dealing with actuated

systems generically requires bilinear, rather than linear, immer-

sions [17]. Further, if the open-loop plant has multiple

omega-limit sets, continuous one-to-one linear immersions

do not exist [18]. Finally, [19] is the closest to the present

paper, in the sense that it finds a constant matrix P such

that δx�P−1δx is a control contraction metric for all systems

compatible with the observed data and priors. However, as

illustrated in the examples in Section V, limiting the search

to state-independent metrics can lead to infeasible problems,

even if a state-dependent contraction metric exists.

Contributions: To address the issues noted above, we

introduce a novel convex data-driven formulation for finding

Riemannian control contraction metrics directly from noisy

data. Specifically, our contributions are:

1) A framework for non-conservatively recasting the

data-driven control contraction problem, where the

Riemannian metrics are restricted to the second-order

polynomial matrices, into a sum-of-squares (SOS)

problem. By working directly with an exact characteriza-

tion of the set of all plants consistent with the observed

data and priors, this formulation avoids the conservatism

entailed in overbounding this set or the noise description.

2) A reformulation of the above problem as a functional

Linear Program (LP), which via duality is independent

of the parameters of the unknown plant.

3) Recasting this functional LP as a finite-dimensional

Semi-Definite Program (SDP). Notably, the maxi-

mal size of the matrices in this SDP is at least

O((order of the system)2) smaller than those appearing

in the original SOS problem, resulting in substantial

computational complexity reduction.

This letter is organized as follows: Section II provides the

definitions and theorems that will be used throughout this

letter, along with the problem definition. Section III presents

a sufficient condition that solves the problem exploiting

Lagrange duality. Section IV develops a tractable relaxation

of the dual optimization problem. Section V illustrates these

results with numerical examples. Finally, Section VI presents

conclusions and directions for future research.

II. PRELIMINARIES

A. Notation

R
n(Rn

+) n-tuples of (non-negative) real numbers

1, 0, I vector/matrix of all 1s, 0s, identity matrix

‖x‖p�p norm of vector x

X� the transpose of X

x � 0 x is element-wise non-negative

(x)k denotes the kth element of a vector

S++
n the set of positive definite matrices

S++
n x positive definite matrix-valued polynomials

X � 0 X is positive semidefinite

X � 0 X is positive definite

f ∈ Cd the dth derivative of f exists and is continuous

vec(X) vectorization of matrix X along columns

⊗ matrix Kronecker product

Tr(A) trace of a matrix A

B. Kronecker Product Property

The following property of Kronecker product [20] will be

used in this letter:

vec
(

B�X�A�
)

=
(

A ⊗ B�
)

vec
(

X�
)

. (1)

C. Sum-of-Squares

Here we briefly review some concepts from semialgebraic

optimization that will be used to recast the data-driven

contraction problem into a tractable convex optimization. A

polynomial p(x) is an SOS iff it can be written as p(x) =
∑

i qi(x)
2, for some polynomials qi. Alternatively, p(x) is SOS

iff there exists a polynomial vector v(x) and a matrix Q � 0

such that p(x) = v(x)�Qv(x).

A semialgebraic set K is defined by a finite number of

bounded degree polynomials {gi(x)}
Ng

i=1 and {hj(x)}
Nh

j=1:

K = {x ∈ R
n | gi(x) ≥ 0, hj(x) = 0,

i = 1, . . . , Ng, j = 1, . . . , Nh}. (2)

The set K is Archimedean if there exists an R > 0 such that

the polynomial R − ‖x‖2
2 satisfies

R − ‖x‖2
2 = σ0(x) +

∑

i

σi(x)gi(x) +
∑

j

φj(x)hj(x)

for some polynomials φj(x) and SOS polynomials σi(x). A

matrix-valued polynomial P ∈ S++
n [x] if ∀x ∈ R

n:P(x) ∈ S++
n .

A matrix-valued polynomial is SOS if there exists a vector of

polynomials v(x) and a Gram matrix Q � 0 such that P(x) =

(v(x) ⊗ I)�Q(v(x) ⊗ I). Every positive definite matrix-valued

polynomial P(x) over an Archimedean set K satisfies ([21,

Th. 2], Scherer Positivstellensatz)

P(x) = σ0(x) +
∑

i

σi(x)gi(x) +
∑

j

φj(x)hj(x). (3)

for σi(x) SOS polynomial matrices and φj symmetric polyno-

mial matrices. The Putinar Positivstellensatz is the restriction

of the Scherer Positivstellensatz to n = 1 [22].

D. Contraction Theory

Informally, a system described by an ODE of the form

ẋ(t) = f (x), f ∈ C1
(

R
n,Rn

)

(4)

is contractive if there exists a uniformly positive definite

metric tensor, meaning M(x) ∈ C1(Rn, S++
n ) and αI �

M(x) for some α > 0, such that the associated Riemannian

differential distance between trajectories decreases with time,

that is d(δx�M(x)δx)
dt

< 0. This concept leads to the following

definition:

Definition 1 [10]: The system (4) is said to be exponen-

tially contracting, if there exists a uniformly positive definite

metric M ∈ C1(Rn, S++
n ), a real number λ > 0 such that the

following matrix inequality holds ∀x ∈ R
n:

∂f (x)

∂x

�

M(x) + M(x)
∂f (x)

∂x
+ Ṁ(x) ≺ −2λM(x). (5)

In the sequel, by a slight abuse of notation we will refer to

systems satisfying (5) as contractive. [10, Th. 1] shows that
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if (5) is satisfied then there exists a single global exponentially

stable equilibrium point.

E. The Data-Driven Contraction Problem

In this letter, we will consider continuous-time control-affine

polynomial systems of the form

ẋ = f (x) + Gu = Fφ(x) + Gu (6)

where x ∈ R
n and u ∈ R

m are state and control, f is a

polynomial up to certain degree, φ(x) represents a vector of

monomials of x and F, G are constant matrices. For example,

f (x) =

[

3x2 − x2
1

x2

]

=

[

3 −1

1 0

][

x2

x2
1

]

= Fφ(x). (7)

Assume that T noisy measurements {ẋ[i], x[i], u[i]}T
i=1 satisfy-

ing:

ẋ[i] = f (x[i]) + Gu[i] + η[i], ‖η[i]‖∞ ≤ ε,∀i = 1, . . . , T (8)

are available. Here the �∞ bounded noise η models, for

instance, process disturbances or the error incurred when

approximating ẋ by finite differences.

Definition 2: The consistency set P1 of the system (6) is

the set of all F compatible with the measurements (8) in the

following sense:

P1
.
= {F : ‖Fφ(x[i]) + Gu[i] − ẋ[i]‖∞ ≤ ε, i = 1, . . . , T} (9)

Problem 1: Given noisy data {ẋ, x, u} generated by a system

of form (6), with a known G, find a smooth M(x) and a state

feedback control law u(x) such that for all F ∈ P1, the closed-

loop system is contractive under the metric induced by M(x).

Remark 1: The case where G is a potentially unknown

polynomial function of x can be reduced to the problem

above by filtering the control action with known dynamics and

absorbing the unknown G(x) into f (x), e.g.,
[

ẋ

u̇

]

=

[

f (x) + G(x)u

0

]

+

[

0

I

]

v. (10)

III. DATA-DRIVEN CONTRACTION CONTROL

The goal of this section is to establish tractable conditions

for finding a (differential) data-driven control law that renders

all systems in P1 contractive. This will be accomplished by

recasting the problem into a robust optimization problem.

A. Robust Optimization Reformulation

Begin by rewriting the consistency set as

P1
.
= {F : Tr

(

F�±
i,k

)

≤ d±
i,k,

∀i = {1, . . . , T}, k = {1, . . . , n}} (11)

where �±
i,k is a matrix with ±φ(x[i]) in its kth column and

zeros elsewhere:

�±
i,k =

[

0, . . . ,±φ(x[i]), . . . , 0
]

,

and d±
i,k = ε ± (ẋ[i] − Gu[i])k. (12)

For example, for a single measurement x[1], u[1] ∈ R
2, we

have

�±
1,1 =

[

±φ(x[1]) 0
]

, d±
1,1 = ε ± (ẋ[1] − Gu[1])1

�±
1,2 =

[

0 ±φ(x[1])
]

, d±
1,2 = ε ± (ẋ[1] − Gu[1])2. (13)

In the sequel the ± superscript in �±
i,k and d±

i,k is omitted to

keep the notation cleaner.

For actuated systems of the form (6), condition (5) now

depends on finding a differential control input ∂u(x)
∂x

that

satisfies:

Ṁ(x) +

(

F
∂φ(x)

∂x
+ G

∂u(x)

∂x

)�

M(x)

+M(x)

(

F
∂φ(x)

∂x
+ G

∂u(x)

∂x

)

≺ −2λM(x). (14)

If M(x),
∂u(x)
∂x

exist and satisfy the above then M(x) is

referred to as a control contraction metric. Using the change

of variable W = M−1 and leveraging Proposition 2 in [12],

the differential control law ∂u(x)
∂x

= − 1
2
ρ(x)G�W−1(x) renders

the closed-loop system contractive if there exists W(x) ∈ S++
n

and a function ρ(x) such that ∀x ∈ R
n (we omit (x) for brevity

hereafter):

−Ẇ + W

(

F
∂φ

∂x

)�

+

(

F
∂φ

∂x

)

W + 2λW − ρGG� ≺ 0 (15)

∑

j

∂W(x)

∂xj
(Gei)j = 0, ∀i = 1, . . . , n (16)

where ei is the i-th basis vector in R
n. For the future,

condition (16) is abbreviated as ∂GW(x) = 0.

In terms of (11), (15) and (16), Problem 1 can be reformu-

lated as:

Problem 2: Find W ∈ S++
n [x], ρ and λ > 0 such that (15)-

(16) hold for all F satisfying the trace condition (11).

Remark 2: Since M = W−1, in principle global contractiv-

ity requires W(x) to be uniformly bounded above, e.g., W(x) �

σ I; ∀x ∈ R
n, which clearly cannot be accomplished with a

polynomial matrix. However, [12, Lemma 1] shows that this

condition can be relaxed to existence of a quadratic bound

on the maximum eigenvalue of W(x), that is λmax(W(x)) ≤

‖Ax+B‖2
2 for some matrix A and vector B. Since this condition

is automatically satisfied for W ∈ S++
2 [x], in the sequel we

will consider only second order polynomial matrices.

B. Solution via Duality

In principle, Problem 2 can be reduced to sequence of

SDPs by restating it as a polynomial optimization in the

indeterminates x and Fij, the elements of F, and exploiting

Scherer’s Positivstellensatz [21]. However, this approach is

practically limited to relatively small, low-order systems due

to the very poor scaling properties of the resulting SDP with

respect to the size of F. To avoid this difficulty, in this

letter, we will pursue a duality-based approach to obtain an

equivalent condition that does not involve F.
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Assume for now that x is fixed and hence ρ and W are

constant. Scalarizing (15) leads to the following equivalent

condition:

y�
(

W∂φ�F� + F∂φW − Ẇ + 2λW − ρGG�
)

y < 0

∀‖y‖2 = 1 and F that satisfyTr
(

F�i,k

)

≤ di,k. (17)

This condition can be reduced to an SDP via Putinar’s

Positivstellensatz in y and Fij. However, as before, this

leads to problems with poor scaling properties. Rather

than pursuing this approach, we will enforce (17) by

computing

p∗(y, W, ρ) = max
F

y�
(

W∂φ�F� + F∂φW − Ẇ

+2λW − ρGG�
)

y

subject to: di,k − Tr
(

F�i,k

)

≥ 0 (18)

and finding W(x) and ρ(x) such that p∗(y, W, ρ) < 0 for all

‖y‖2 = 1 and such that (16) is satisfied.

Theorem 1: A metric tensor W(x) ∈ C1(Rn, S++
n ) and a

function ρ(x) solve Problem 2 if there exist non-negative

functions μi,k(x, y) such that:

y�
(

−2λW + ρGG�
)

y −
∑

i,k

μi,kdi,k > 0 (19a)

∀‖y‖2 = 1

vec

⎛

¿−2∂φWyy� +
∑

i,k

μi,k�i,k

À

⎠

�

(19b)

+
∑

i

Tr

(

∂W

∂xi

yy�

)

(

e�
i ⊗ φ�

)

= 0

∂WG(x) = 0 (19c)

μi,k(x, y) ≥ 0, W(x) � 0. (19d)

Moreover, if the consistency set P1 has a non-empty interior,

then the condition is also necessary.

Proof: The Lagrangian of (18) for fixed y, W, ρ is given by:

L
(

F, μi,k

)

=
∑

i,k

μi,k

(

di,k − Tr(F�i,k)
)

+y�
(

W∂φ�F� + F∂φW − Ẇ + 2λW − ρGG�
)

y

= Tr

§

¨

©

F

⎛

¿2∂φWyy� −
∑

i,k

μi,k�i,k

À

⎠

«

¬

­

−Tr
{(

Ẇ − 2λW + ρGG�
)

yy�
}

+
∑

i,k

μi,kdi,k.

(20)

Expanding Ẇ by leveraging (19c) and (1) yields:

Ẇ =
∑

i

∂W

∂xi

(

φ�F�
)

ei =
∑

i

∂W

∂xi

(

e�
i ⊗ φ�

)

vec
(

F�
)

.

(21)

Using the former identity and the fact that Tr(AB) =

vec(B)�vec(A�), the Lagrangian becomes:

L
(

F, μi,k

)

= vec

⎛

¿2∂φWyy� −
∑

i,k

μi,k�i,k

À

⎠

�

vec
(

F�
)

−
∑

i

Tr

(

∂W

∂xi

yy�

)

(

e�
i ⊗ φ�

)

vec
(

F�
)

+Tr
(

(2λW − ρGG�)yy�
)

+
∑

i,k

μi,kdi,k. (22)

Notice that L(F, μi,k) is affine in F, therefore, the dual

function:

g
(

μi,k

)

= sup
F

L
(

F, μi,k

)

(23)

is finite only if (19c) holds. Therefore:

g
(

μi,k

)

=

§

¨

©

Tr
{(

2λW − ρGG�
)

yy�
}

+
∑

i,k[μd]i,k

if (19c) holds and

∞ otherwise

(24)

Hence, if there exist non-negative multipliers μi,k(x, y) ≥ 0

satisfying (19), g(μi,k) < 0. From weak duality [23] it follows

that p∗(y, W, ρ) < 0 for all ‖y‖2 = 1, ρ(x), W(x) � 0.

Thus (15)-(16) hold for all F satisfying (11). Moreover, if the

consistency set P1 has a non-empty interior, then (18) is a lin-

ear program in F which now satisfies Slater’s condition at each

y, W(x), ρ(x). Hence strong duality holds and p∗(y, W, ρ) =

g∗(μi,k). Thus (19) is also necessary.

Corollary 1: The differential feedback control law ∂u
∂x

=

− 1
2
ρ(x)G�W−1(x) renders all systems in P1 contractive.

IV. TRACTABLE RELAXATIONS

From Theorem 1 it follows that Problem 2 reduces to a

feasibility problem in W(x) ∈ S++
n , μi,k(x, y) ∈ R+, and

ρ(x). However, searching for a matrix function W(x) � 0 is

generically intractable. To avoid this problem we will restrict

the search to SOS matrices, that is W(x) = (� ⊗ I)�Q(� ⊗ I)

where Q � 0 and � is a basis of monomials per [21].

Further, in view of Remark 2, we will only consider second

order polynomial matrices, that is W(x) ∈ S++
2 [x]. Similarly,

to guarantee that μi,k ≥ 0 the search is performed for μi,k

belonging to the set of SOS polynomials. Finally, we also

restrict ρ to be a polynomial. Under these assumptions, (19)

is a semi-algebraic optimization over W, μ and ρ, that satisfy

the linear constraints in (19b), (19c). Therefore, we utilize

Putinar’s Positivstellensatz and other standard SOS tools to

solve it via a sequence of SDPs.

It is important to get an understanding of the computa-

tional complexity before presenting the examples. Assume

the system dimension is n, the highest degree in φ is p, the

highest degree in W is 2q (where q is either 0 or 1 in view of

Remark 2) and T data samples were collected. As discussed

W(x) = (� ⊗ I)�Q(� ⊗ I) where � is the vector of all

monomials up to degree q of the system state. Hence the size

of the Gram matrix Q is n
(

n+q
q

)

× n
(

n+q
q

)

.
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Furthermore, based on the set P1 and the number of data

samples T , there are 2nT SOS functions μi,k each of which

should have degree in x at least 2q + p − 1 and degree 2 in y.

Thus, the associated Gram matrices have dimension nG × nG

with nG ≈ (n + 1)
( p−1

2 +q+n
n

)

.

On the other hand, enforcing (15) directly through Scherer’s

Positivstellensatz in the indeterminate x ∈ R
n and F ∈

R
n×l, involves an n × n SOS matrix in (n + nl) variables.

Assuming polynomials of order 2q in W(x) and nF in F

the corresponding Gram matrix will have dimension nS × nS

where nS ≈ n
( p−1

2 +q+n
n

)(

nl+nF

nF

)

. In summary, finding higher-

order metrics comes at the cost of combinatorial complexity

in the size of the positive semidefinite matrix constraints.

However, exploiting duality mitigates the growth of the largest

Gram matrix, as compared to straight application of Scherer’s

Positivstellensatz, when l > 1, even when choosing nF = 1.

Additionally, while increasing the number of data samples can

shrink the consistency set P1 it increases the amount of SOS

functions μi,k needed.

V. NUMERICAL EXAMPLES

To decrease numerical errors and computational complexity,

the following examples assume that it is known beforehand

which monomials appear in the dynamics. Thus we will use a

dictionary φ containing only those terms. Additionally due to

the limitations of numerical solvers in handling zero equality

constraints as required in (19b) and (19c), we adopt the

heuristic that any polynomial coefficient smaller than 10−5

in W, ρ is set to 0. To enforce the other constraints in (19)

we utilize the solvesos function in the YALMIP toolbox

and with MOSEK as the underlying solver. Furthermore in

the optimization program to solve Problem 2 we consider

λ a positive fixed constant. When this choice resulted in

infeasibility, we reran the optimization routine with a smaller λ

while maintaining the positivity constraint. In practice finding

the optimal value for λ can be done via a bisection algorithm

described in [9, Sec. II-G]. Note that a larger λ is desirable,

since it yields faster convergence to the origin. Each data-

driven problem below was solved under 100 seconds, on a

Apple M1 Pro with 16GB of RAM. Only 60 measurements

were required, namely {x[i], ẋ[i]}60
i=1 (the control input u is

assumed to be zero), generated with the ode45 or ode15s

commands in MATLAB and coming from six randomized

initial conditions in the interval [−1, 1]n. The derivative

ẋ[i] is disturbed by adding uniform random noise bounded

above by ‖ε‖∞ = 1
15

maxi(|ẋ[i]|). The code is available at:

https://github.com/andoliv1/Contraction-For-DDC.

A. Linear System

First, we validate our results in a linear system. Consider

the system given by:

ẋ =

[

0.4285 −0.4298

0.4018 1.3036

]

x +

[

−0.7826 0.7731

−0.5110 0.0339

]

u. (25)

If u = [0, 0]� the above is unstable with eigenvalues

at 0.7291, 1.0030. The objective is to find a controller u

and metric tensor W that ensures the system is contractive

from data observations. Solving (19) produces the following

constant matrix W ∈ S++
n and scalar ρ

W =

[

0.1019 0.0154

0.0154 0.0028

]

, ρ = 9.9686. (26)

In order to close the loop in the underlying system,

one needs to define u(x) from ∂u(x)
∂x

= − 1
2
ρG�W−1.

Following [24], but simplifying the control input to track the

origin:

u(x) =

∫ 1

0

−
1

2
ρ(γ (s))G�W(γ (s))−1 ∂γ (s)

∂s
ds (27)

where γ : [0, 1] → R
2, γ (0) = [0, 0]�, γ (1) = x is the

geodesic under the norm induced by W−1, which if constant

implies γ (s) = sx. Since both ρ, W are constant we have that

the feedback controller that makes the system contractive is

u(x) = − 1
2
ρG�W−1x. Note that in this case a similar result

can be obtained using Krasovskii’s criteria [7].

B. Nonlinear Systems

We alter the system referenced in [10] such that it is no

longer open-loop contractive and it has a control input:
[

ẋ1

ẋ2

]

=

[

−x2 − 3
2

x2
1 − 1

2
x3

1

3x1 + x2

]

+

[

1 0

0 1

]

u. (28)

Running the optimization program (19) with respect to (28)

results in:

W =

[

0.0074 −0.0027

−0.0027 0.1018

]

,

ρ = 3.9508 − 0.0005x1 + 2.9056x2
1 + 2.9044x2

2. (29)

To demonstrate the need for a nonlinear contraction metric,

let’s draw from the example in [12]:
⎡

£

ẋ1

ẋ2

ẋ3

¤

⎦ =

⎡

£

−x1 + x3

x2
1 − x2 − 2x1x3 + x3

−x2

¤

⎦+

⎡

£

0

0

1

¤

⎦u. (30)

First it should be noted that trying to find a constant

matrix W and polynomial ρ that makes the system closed-

loop contractive resulted in infeasible solutions, meaning W

was rank deficient or the solver could not find a solution.

Therefore, from Remark 2 we should allow W ∈ S++
2 [x]. Now

running (19) the following W and ρ are found that make the

closed-loop system contractive (only the (3,3)-th entry of W,

denoted as W3,3(x) and the first 7 components of ρ are shown

for the sake of brevity):

W3,3(x) = 0.0173 − 0.00027x1

−0.0004x2 + 0.0015x2
1 + 0.0015x2

2 (31)

ρ(x) = 2.765 − 0.0002x1 + 0.3204x2
1

+0.2962x2
2 + 0.2999x2

3 . . . (32)

As mentioned before, enforcing contraction in the closed

loop with respect to the Riemannian metric requires the

geodesic in (27), which amounts to finding:

γ ∗ = arg minγ∈�(0,x(t))

∫ 1

0

∂γ (s)

∂s

�

M(γ (s))
∂γ (s)

∂s
ds (33)

Authorized licensed use limited to: Northeastern University. Downloaded on August 20,2025 at 22:21:03 UTC from IEEE Xplore.  Restrictions apply. 



600 IEEE CONTROL SYSTEMS LETTERS, VOL. 9, 2025

Fig. 1. Progression of trajectories for different initial conditions.

Fig. 2. Graph of the approximate distance between x(t) and 0 computed
using the approximate geodesic. The piecewise linear relation between
t and the y-axis in log scale indicates x(t) is exponentially converging to
the origin.

where �(0, x(t)) is the set of smooth regular curves that

connect the origin to x(t) [12]. Finding an explicit solution of

the above is computationally hard as noted in [24]. Therefore,

to obtain an approximate solution we discretize (33) into

a finite sum and turn γ into a piecewise linear path with

boundary conditions. The order of the discretization of γ was

set to be 100, meaning γ consisted of 100 piecewise linear

steps. The resulting nonlinear program is fed into CasADi

using IPOPT as the underlying solver and each run of the

problem took less than 0.5 seconds. Figures 1 and 2 show the

evolution of 5 different initial value problems of system (30)

with the computed control input applied.

VI. CONCLUSION

We study the problem of finding a metric and state feedback

controller that renders all systems compatible with noisy

experimental data contractive. Previous works on this problem

have considered the case of searching for weighted �2-norms

that render sector-bounded nonlinear systems compatible with

data contractive [19]. Our approach extends this by considering

polynomial systems in unbounded domains and searching

for Riemannian metrics. The key to our formulation lies in

leveraging the convex criteria developed in [12] and applying

duality to significantly reduce computational complexity. The

problem can be solved efficiently for low dimensional systems

and low order metric tensor W but remains challenging

as the system dimension and order increase. Future work

seeks to address this by using alternative characterizations of

contractivity based on matrix log norms [9].
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