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Challenges in Model Agnostic Controller
Learning for Unstable Systems

Mario Sznaier , Fellow, IEEE , and Mustafa Bozdag , Graduate Student Member, IEEE

Abstract—Model agnostic controller learning, for
instance by direct policy optimization, has been the
object of renewed attention lately, since it avoids a
computationally expensive system identification step.
Indeed, direct policy search has been empirically shown to
lead to optimal controllers in a number of cases of practical
importance. However, to date, these empirical results have
not been backed up with a comprehensive theoretical
analysis for general problems. In this letter we use a simple
example to show that direct policy optimization is not
directly generalizable to other seemingly simple problems.
In such cases, direct optimization of a performance index
can lead to unstable pole/zero cancellations, resulting in
the loss of internal stability and unbounded outputs in
response to arbitrarily small perturbations. We conclude
this letter by analyzing several alternatives to avoid this
phenomenon, suggesting some new directions in direct
control policy optimization.

Index Terms—Data-driven control, robust control,
machine learning.

I. INTRODUCTION

R
ECENTLY, there has been renewed interest in “model

free” control design techniques where the goal is to

design a controller that optimizes performance based purely on

experimental data. These techniques are attractive since they

hold the promise of optimizing performance while avoiding

a computationally expensive systems identification step [1].

Indeed, direct control policy optimization techniques have

achieved remarkable success in a range of classical control

problems, ranging from Linear Quadratic (LQR, LQG) to H∞
and controller auto-tuning. While a general theory supporting

these results is still emerging [2], recent results show that,

in spite of lack of convexity, direct optimization can lead to

optimal policies in these problems [3], [4], [5], [6], [7], [8], [9],

[10] and provide bounds on the sample complexity [11], [12].

Hence, the hope is that these techniques can provide a viable

alternative to the traditional systems identification-control
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design pipeline. The goal of this letter is to point out to

the dangers of using direct optimization even in seemingly

simple problems. As we illustrate with a simple first order

system, direct policy optimization can lead to unstable pole

zero cancellations and hence the loss of internal stability.

In turn, this can result in unbounded signals in response to

arbitrarily small perturbations to the control action.

This letter is organized as follows: Section II introduces the

notation and required definitions; Section III contains the main

result of this letter: a simple example where model agnostic

performance optimization over all continuous stabilizing con-

trollers leads to a pole/zero cancellation and loss of internal

stability; Section IV connects this example with the empirical

observation in [13] that adding noise during training increases

robustness, and discusses some ideas to avoid the loss of

internal stability. Section V offers some conclusions and points

out to directions for further research.

II. NOTATION AND DEFINITIONS

‖u‖ .=
√

uTu denotes the usual Euclidean norm in Rn. For a

given sequence xk, ‖x‖2
.=

√

∑

‖xk‖2. �2 denotes the Hilbert

space of real vector sequences with finite ‖x‖2, equipped with

the inner product 〈x, y〉 .=
∑

xiyi. �
∞ denotes the Banach space

of bounded real sequences equipped with the norm ‖xk‖∞
.=

supk |xk|. We will denote with capital letters the z-transform

of sequences in �2, e.g., X(z) =
∑

xkz−k. By a slight abuse

of notation, sometimes we will write ‖X(z)‖2 to denote the �2

norm of the sequence {xk}. Given a sequence xk, we will denote

by (xk)τ its truncation, that is, (xk)τ = xk for 0 ≤ k ≤ τ and

(xk)τ = 0 otherwise. In this context the extended space �∞
e is

defined as �∞
e = {u : (u)τ ∈ �∞ ∀ τ ∈ [0,∞)}. RH∞ denotes

the Lebesgue space of complex valued rational functions with

bounded analytic continuation in |z| > 1, equipped with the

norm ‖G(z)‖H∞
.= sup|λ|>1 |G(z)|. In the sequel, we will

represent a linear time-invariant system G : �∞
e → �∞

e either

by its convolution kernel g or the transfer function G(z). It

is well known [14] that, if G is stable, then its �2 induced

norm ‖G‖�2→�2 = ‖G(z)‖H∞ . Finally, given a matrix M, ‖M‖2

denotes its �2 → �2 induced norm.

Definition 1 [15]: An operator H : �∞
e → �∞

e is finite �∞-

gain stable if there exist constants γ ≥ 0, β ≥ 0 such that

‖(Hw)τ‖∞ ≤ γ ‖(w)τ‖∞ + β, ∀w ∈ �∞
e and τ ∈ [0,∞).

In the sequel, by a slight abuse of notation we will restrict

this definition to the case where β = 0, that is, we will

only consider mappings where H0 = 0. Thus, in the case of

linear systems, finite-�∞ gain stability reduces to the standard

bounded-input bounded-output stability.
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Fig. 1. The closed loop is internally stable if all four mappings [rw ]T →
[ev ]T are stable.

Fig. 2. Closed loop for the simple example.

Definition 2: The loop shown in Fig. 1 is finite �∞ gain

internally stable if all four mappings
[

r w
]T →

[

e v
]T

are

finite �∞ gain stable.

III. A SIMPLE FIRST ORDER EXAMPLE

Here we present a simple example where input/output

optimization leads to loss of internal stability: Given the open

loop unstable system shown in Fig. 2, where a > 1, find a

controller C that minimizes ‖e‖2 to an input r of the form:

rk =
{

ro, 0 ≤ k ≤ n − 1

0, otherwise
⇒ R(z) = ro

zn − 1

(z − 1)zn−1
(1)

where the amplitude ro and width n are unknown. We consider

three scenarios: (A) optimization over all internally stabilizing

LTI controllers; (B) optimization over all LTI controllers that

only stabilize the mapping r → e; and (C) optimization over

all time-invariant continuous nonlinear controllers that render

the mapping r → e finite gain �∞-stable.

A. Optimization Over All Internally Stabilizing Controllers

Consider first the case where the optimization is performed

over all internally stabilizing LTI controllers, that is:

C = arg min
Cint. stab.

∥

∥

∥

∥

∥

1

1 + C(z) 1
z−a

R(z)

∥

∥

∥

∥

∥

2

Using the Youla parameterization [14] and expressing S(z)

in terms of the Youla parameter Q(z) leads to the following

(weighted) model matching problem1:

min
Q(z)∈RH∞

‖R(z)M(z)(Y(z) + N(z)Q(z))‖2 (2)

where N and M are a coprime factorization of the plant P =
1

z−a
and where Y(z) is a solution of the following Bezout

equation in X(z), Y(z) ∈ RH∞:

N(z)X(z) + M(z)Y(z) = 1 (3)

The problem above can be simplified by choosing a coprime

factorization where M(z) satisfies |M(z)| = 1 for all |z| = 1

and thus, for all signals x ∈ �2, ‖M(z)X(z)‖2 = ‖X(z)‖2:

N = 1

az − 1
, M = z − a

az − 1
, X = a2 − 1, Y = a (4)

1Please see the Appendix in [16].

leading to:

min
Q∈RH∞

‖R(z)M(z)[Y(z) + N(z)Q(z)]‖2 =

min
Q̃∈RH∞

∥

∥

∥

∥

aR(z) + R(z)

z
Q̃

∥

∥

∥

∥

2

(5)

where we used the fact that M(z) is all pass and we defined

Q̃(z)
.= Q(z)

z

az − 1

Problem (5) can be explicitly solved by considering an

expansion of the optimal Q̃ of the form

Q̃(z) = qo + q1

z
+ · · · qn−1

zn−1
+ Q̃(z)tail

zn

Parseval’s Theorem combined with the explicit expression for

R(z) yields:
∥

∥

∥

∥

aR(z) + R(z)

z
Q̃

∥

∥

∥

∥

2

2

= r2
o

∥

∥

∥

∥

a + a + qo

z
+ a + qo + q1

z2
· · · +

a + qo + · · · qn−2

zn−1
+

∑

qi

zn
+ O(q1, · · · , qn−1, Q̃tail)

zn+1

∥

∥

∥

∥

∥

2

2

= r2
o

[

a2 + (a + qo)
2 + · · · + (a + qo + · · · qn−1)

2
]

+r2
o(

∑

qi)
2 + r2

o

∥

∥

∥
O(q1, · · · , qn−1, Q̃tail)

∥

∥

∥

2

2

Hence the optimal solution is given by qo = −a,

qi = 0, i ≥ 1, Q̃tail = 0, with the corresponding Q, controller

C, closed-loop sensitivity S, and optimal cost given by

Q = −a(az − 1)

z
, C = (a2 + a − 1)z − a2

a(z − 1)

S = a(z − a)(z − 1)

(az − 1)z
, S(z)R(z) = aro(z − a)(zn − 1)

(az − 1)zn

‖S(z)R(z)‖2 = aro

√
2 (6)

Since the cost aro

√
2 in (6) is optimal, any controller yielding

a lower cost cannot be internally stabilizing. Note that since

Q is stable and proper, the closed loop system must satisfy

S(∞) = 1 and S(a) = 0. These interpolation conditions follow

from (5) and the fact that M(a)N(a) = M(∞)N(∞) = 0.

Indeed, problem (2) can be recast as:

min
S∈RH∞

‖S(z)R(z)‖2 s.t. S(∞) = 1, S(a) = 0 (7)

B. Input/Output Optimization Over LTI Controllers

In this section we show that simply optimizing ‖S(z)R(z)‖2

without taking into account the interpolation constraint

S(a) = 0 leads to controllers that are not internally stabilizing.

Consider a controller in the form:

C1(z) = K

∏nz

i=1(z − zi)
∏np

i=1(z − pi)
. (8)

Direct minimization of ‖S(z)R(z)‖2 with respect to K, zi, pi,

with np = nz = 1, using MATLAB’s [17] command

fminsearch
2 leads to

C1(z) = (z − a)

(z − 1)
(9)

2Interestingly, this model agnostic optimization yields a controller with a
pole at z = 1, which is consistent with the internal model principle [18].
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Fig. 3. Closed loop responses for the controllers (6) and (9):
(a) Tracking error; (b) Response to a random perturbation w .

that yields the closed–loop mapping r → e:

S = z − 1

z
with ‖S(z)R(z)‖2 =

∥

∥

∥

∥

z − 1

z
· ro(z

n − 1)

(z − 1)zn−1

∥

∥

∥

∥

2

= ro‖1 − 1

zn
‖2 = ro

√
2 < aro

√
2 (10)

By parameterizing all controllers as C = Q(z−a)/z(1− Q
z
) and

dropping the no unstable pole/zero cancellation requirement,

it can be shown that this controller with Q = 1 is globally

optimal over the set of all LTI controllers that optimize

‖S(z)R(z)‖2 s.t. the input/output stability constraint.

A comparison of the closed loop response obtained using the

controllers (6) and (9) is shown in Fig. 3. For the experiments,

we use ro = 1, a = 1.1. As expected, the controller (9)

achieves a lower cost than (6). However, the resulting closed

loop system r → e is not internally stable, due to the unstable

pole/zero cancellation. Specifically, the closed-loop transfer

functions from w to e and u are:

Tew = z − 1

z(z − a)
, Tuw = 1

z
(11)

Therefore, any arbitrarily small perturbation to the control

action will lead to an unbounded output (Fig. 3, (b)). This

instability does not show in the performance index being

optimized. Thus, any algorithm that seeks to optimize it with

respect to the parameters of a controller of the form (8) with

nz ≥ 1, np ≥ 1 and achieves global optimality will lead

to a controller that has to perform as well as (9), resulting

in an input/output optimal controller that is not internally

stabilizing. Further, since Tuw is stable, the control action

remains bounded, even if the output does not. Hence the loss

of internal stability cannot be detected by adding noise to

the signal r during training and monitoring the magnitude of

the control. Indeed, adding a disturbance w ∼ N (0, 0.1) to r

during training still leads to the controller (9) and the unstable

pole/zero cancellation.

The flaw in the input/output optimization discussed above

is that it does not enforce the interpolation conditions.

Indeed, while the sensitivity S = z−1
z

satisfies the condition

S(∞) = 1, it does not satisfy the interpolation condition

S(a) = 0. Removing the interpolation constraints leads to a

super-optimal controller that is not internally stabilizing due

to the unstable pole/zero cancellation.

Remark 1: The loss of internal stability cannot be avoided

by regularizing the performance index by adding a penalty

in the control action. This penalty will avoid using integral

Fig. 4. A controller that minimizes
‖e‖2
|ro | cannot render the mapping

[r w ]T → [u e]T finite �∞ gain stable.

action but still leads to an unstable pole/zero cancellation. For

instance, changing the objective in the optimization above to

J = ‖S(z)R(z)‖2 + ‖u‖2 leads, for the case a = 1.1, to

C(z) = 0.60843(z − 1.1)

z − 0.9935

which still exhibits the unstable pole/zero cancellation.3

C. General Optimization Based Nonlinear Controllers

In this section we show that any continuous nonlinear

controller that (i) renders the input/output mapping r →
s

.= [u e]T finite-gain �∞ stable, and (ii) achieves tracking

performance ‖ek‖2 = ro

√
2 for all ro, will not internally

stabilize the loop. Specifically, we will show that the resulting

closed loop system shown in Fig. 4 cannot have a finite �∞

gain from [r w]T → [u e]T .

Theorem 1: Consider a finite dimensional nonlinear

controller of the form

uk = fu(θk) (12)

where θk
.=

[

uk−1

ek

]

, uk−1
.=

[

uk−1 · · · uk−m

]T
, ek

.=
[

ek · · · ek−m

]

, m is the memory of the controller, and fu is

continuous. Let �cl denote the corresponding closed loop

mapping from the input r to the output sequence {
[

uk ek

]T}.
If the controller (12) is such that:

(i) �cl is finite �∞ gain stable, e.g., ‖
[

u e
]T‖∞ ≤ Kr‖r‖∞

and

(ii) when r is a width-n pulse of the form (1), ‖e‖2 = ro

√
2.

then the closed loop mapping
[

r w
]T →

[

u e
]T

does not have

finite �∞ gain.

Proof: Consider the controller (12) and note that finite

closed-loop �∞ gain of �cl implies that fu(0) = 0. Assume for

now that fu is twice differentiable and consider its linearization

around 0:

uk = ∂fu(0)

∂θ

[

uk−1

ek

]

+ 1

2

[

u
T
k−1e

T
k

]∂2fu(θo)

∂θi∂θj

[

uk−1

ek

]

(13)

By contradiction, assume that the closed loop mapping
[

r w
]T →

[

u e
]T

has finite �∞ gain Kw. We will show that

under this assumption, the linear controller

uk = L(uk−1, ek)
.= ∂fu(0)

∂u
uk−1 + ∂fu(0)

∂e
ek (14)

is internally stabilizing. By construction, the control sequence

generated by the linear controller (14) is the same sequence

3Please see the Appendix in [16] for a comparison against LQG control.
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generated by the nonlinear one in the presence of a fictitious

disturbance

ŵk = −1

2

[

u
T
k−1e

T
k

]∂2fu(θo)

∂θi∂θj

[

uk−1

ek

]

with |ŵk| ≤ 0.5

∥

∥

∥

∥

∂2fu(θo)

∂θi∂θj

∥

∥

∥

∥

2

∥

∥

∥

∥

[

uk−1

ek

]
∥

∥

∥

∥

2

Hence

‖ŵ‖∞ ≤ C1

∥

∥

∥

∥

[

u

e

]
∥

∥

∥

∥

2

∞
≤ C1K2

w

∥

∥

∥

∥

[

r

w

]
∥

∥

∥

∥

2

∞
(15)

for some constant C1 that depends on m, the memory of the

controller and the norm of the Hessian. Since the plant is

linear, the error generated by the linear controller L satisfies

eL = eNL + eŵ (16)

where eŵ denotes the error due effect of the fictitious pertur-

bation, with

‖eŵ‖∞ ≤ Kw

∥

∥

∥

∥

[

r

ŵ

]
∥

∥

∥

∥

∞
(17)

Thus
∥

∥

∥

∥

[

uL
eL

]
∥

∥

∥

∥

∞
≤

∥

∥

∥

∥

[

uNL

eNL

]
∥

∥

∥

∥

∞
+

∥

∥

∥

∥

[

ŵ

eŵ

]
∥

∥

∥

∥

∞

≤ Kw

∥

∥

∥

∥

[

r

w

]∥

∥

∥

∥

∞
+

∥

∥

∥

∥

[

ŵ

eŵ

]∥

∥

∥

∥

∞
This inequality, combined with (15) and (17), shows that if
[

r

w

]

∈ �∞, then

[

uL
eL

]

∈ �∞. Since both the plant and the

controller L are linear, this implies that the mapping

[

r

w

]

→
[

uL
eL

]

has all its poles in the open disk |z| < 1 (e.g., it is

bounded input bounded output (BIBO) stable). To complete

the proof, we need to show that the linear controller L achieves

a tracking error ‖e‖2 < aro

√
2 to the input (1). Let Tew

denote the closed loop mapping w → e achieved by the

linear controller L. Since the nonlinear controller achieves an

error ‖eNL‖2 = ro

√
2 to the input (1), from the open-loop

optimization in Section III-B, it follows that uNLk = 0 and

ek = 0 ∀k ≥ n+1, which implies ŵk = 0, k ≥ n+2+m. Hence

‖ŵ‖2 ≤ (n + 2 + m)‖ŵ‖∞. From (15), (16) and assumptions

(i) and (ii) we have:

‖eL‖2 ≤ ‖eNL‖2 + ‖Tew‖�2→�2‖ŵ‖2 ≤ ‖eNL‖2 +
‖Tew‖�2→�2C2K2

r ‖r‖2
2 ≤ ro

√
2 + O(r2

o) < aro

√
2 (18)

if ro is small enough. It follows that the LTI controller (14)

internally stabilizes the loop and achieves ‖e‖2 < aro

√
2

which contradicts (6).

Consider now the general case where fu(.) is continuous but

not necessarily smooth. Since by assumption fu(.) renders the

mapping

[

r

w

]

→
[

u

e

]

finite �∞ gain stable, then, as long as

r, w are confined to a compact set, so are u, e. From Stone-

Weierstrass theorem [19] it follows that fu can be uniformly

approximated arbitrarily close in this set by a polynomial

pu(u, e), with pu(0) = fu(0) = 0. Thus, the effect of this

approximation can be absorbed into ŵ, as another term with

Fig. 5. Illustration of Theorem 1. (a) Control action for the neural net
controller, with and without noise added. (b) A small perturbation w
leads to an unbounded output.

|wap| ≤ ε, in the proof that L is internally stabilizing. In

terms of performance, since pu(0) = 0 by construction, a same

reasoning as before shows that, for the input (1), wap = 0

for k > n + m + 2. Hence, ‖wap‖2 ≤ (n + m + 2)ε and the

proof that the controller L (obtained now by linearizing the

polynomial pu) achieves ‖e‖2 < aro

√
2 still holds.

To empirically validate our results, we use a simple neural

network controller with the following architecture:

Input: x ∈ R
3×1, Output: y := z(2), y ∈ R,

FC1: z(1) := W(1)x + b(1), W(1) ∈ R
2×3, b(1) ∈ R

2×1

Activation: a(1) := ReLU(z(1)), a(1) ∈ R
2×1

FC2: z(2) := W(2)a(1) + b(2), W(2) ∈ R
1×2, b(2) ∈ R(19)

The input to the neural network is the vector

[u[k − 1], e[k − 1], e[k]], which includes the previous values

for the control action and tracking error to fit the described

mapping in (12). The bias terms b(1) and b(2) are set to

b(1) = [0, 0, 0]T and b(2) = 0 due to the finite �2 gain

assumption. In this simple case, the optimal weights W(1) :=
[−0.6460, 0.7106,−0.6460; 0.4119,−0.4335, 3.1555], W(2)

:= [−1.5480, 0.3169] were found in 36 seconds using

MATLAB’s command fminsearch to minimize the tracking

error to a pulse of the form (1) with both positive and negative

amplitudes and different pulse-widths. In Figure 5, we observe

the neural network achieving the optimal ‖e‖2 given in (12) as

ro

√
2. However, as we introduce a zero-mean random normal

noise signal with σn = 0.1 to the control input u, as expected,

the output becomes unbounded.

IV. POSSIBLE SOLUTIONS TO AVOID LOSING INTERNAL

STABILITY AND THEIR LIMITATIONS

As noted in Section III-B, the loss of internal stability can

be traced to the existence of interpolation conditions. Direct

unconstrained optimization of the tracking error leads to super-

optimal controllers that violate these constraints. This issue

can be solved by enforcing the interpolation constraints during

the optimization. However, this can be difficult to accomplish

in a model-agnostic setting. Below, we briefly discuss some

options for enforcing these constraints.

Adding noise while training: Recall that internal stability

is equivalent to input-output stability, provided that there are

no unstable pole/zero cancellations between the plant and the

controller [14]. Thus, perhaps the simplest way to implicitly

avoid pole/zero cancellations is to add random noise to the

control action during training, a technique that was empirically
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Fig. 6. Adding noise to the control action during training avoids the loss
of internal stability at the price of 25% performance degradation.

Fig. 7. Closed loop control response to perturbations in the reference
(red) and the control (blue), for a model agnostic controller for the non-

minimum phase plant G = z+1
z2

. Perturbing the reference signal leads

to unbounded control.

shown to improve robustness in [13]. While this is easy to

implement in a model agnostic framework, it has the drawback

of leading to suboptimal performance. This is illustrated in

Fig. 6, where adding a signal w ∼ N (0, 10−4) leads to an

internally stabilizing controller, albeit with a 25% performance

degradation.

A further problem is that this approach critically hinges on

adding noise at the right location. For instance, as illustrated in

Section III-B, if the noise was instead added to the reference

signal r, the resulting controller will still exhibit the unstable

pole/zero cancellation. Similarly, if the plant is changed to (the

non-minimum phase one) G = z+1
z2 , then the optimal model

agnostic controller is given by C = z2

(z+1)(z−1)
. Fig. 7 shows

the control action for a model agnostic controller, trained with

noise added to the control action, in response to perturbations

w1 and w2, both chosen as a binary signal with amplitude 0.1,

added to the reference input r and the control u, respectively.

As shown there, in this case the control action in response to

w1, the perturbation of the reference, grows unbounded, even

though the system was trained with noise added to the control.

This highlights the importance of placing the perturbations

at the “right” place when training, so that the interpolation

constraints are implicitly enforced.

Prestabilizing the Plant: An alternative to adding noise is to

use a two step process where a prestabilizing controller Cps is

learned first and then a second controller is added to optimize

Fig. 8. Prestabilizing a minimum-phase plant leads to optimal
model agnostic controllers. (a) Loop showing the overall control action.
(b) Equivalent input/output mapping.

performance. In this case, the mapping r → e is given by (see

Fig. 8)

Ter = 1

1 + G(C + Cps)
= Sps

1

1 + GpsC
(20)

where

Gps
.= G

1 + GCps

and Sps
.= 1

1 + GCps

(21)

The advantage of this approach is that, as long as the

unknown plant is minimum phase, the interpolation constraints

(and hence internal stability) are automatically satisfied if

the controller C achieves input/output stability of the presta-

bililized plant, that is 1
1+CGps

is stable. This follows from

[14, Lemma 2.3] and the fact that if G is minimum phase so

is Gps. Since Gps is stable by construction, there cannot be

unstable pole/zero cancellations between C and Gps.

Further, in this case, the controller C can recover any

performance achieved by a controller working directly with the

original plant. Since by assumption the plant G is minimum

phase, it satisfies the so-called parity-interlacing property.

Hence, it can be stabilized with an open-loop stable controller

([14], page 91). In turn, this implies that pre-stabilizing the

plant does not affect achievable performance ([14], page 87).

For the simple example in this letter, one can search for

a static stabilizing controller by simply minimizing the �2

norm of the impulse response ‖1/(1+K/(z−a)‖2. Therefore,

we use a 3 layer single-input, single output neural network

with the input e[k] to estimate such a controller. The resulting

Cps has the weights W(1) := [0.4561; 1.5840;−0.7662],

W(2) := [0.1.2235, 0.3421,−1.4357], with a ReLU activation

in between and biases set to zero. Once a suitable Cps has

been found, we then use the neural network in (19) as

the C in Fig. 8(b) and optimize the weights. The resulting

controller weights (computed in 428 seconds) are W(1) :=
[0.5138, 0.3661,−0.6312; 2.3475, 0.5361,−0.8748], W(2) :=
[−0.7884, 0.5315]. The tracking error e achieved by the

overall controller (C + Cps) is shown in Fig. 9, both with and

without noise added to the control action. As shown there, for

the simple example in this letter, this approach indeed leads to

an internally stabilizing controller that achieves near optimal

performance.

Drawbacks of this approach include the need for having a

pre-stabilizing controller Cps, which could be non-trivial to

find, and its limitation to minimum phase plants. In principle,

non-minimum phase plants can be handled by adding noise

to the control action, but this could entail performance loss.

Further, if the plant is non-strongly stabilizable, the two-step

approach may not be able to recover optimal performance.
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Fig. 9. Tracking error e achieved by the overall NN controller C + Cps
with and without noise added to the control action.

Learning a Coprime Factorization of the Plant: While not

strictly model agnostic, this is a data-driven approach where

a model of the plant is learned first and then used to design

a controller. Consider first the case of (unknown) LTI plants.

The main idea is (i) to learn a coprime factorization of the

plant, G = NM−1, where the factors N, M satisfy

(3) for some stable X, Y , (ii) construct a prestabilizing

controller Cps = X/Y (see [14]), and (iii) use the procedure

outlined above. Alternatively, one could directly use the

parameterization of all stabilizing controllers C = X−MQ
Y+NQ

and optimize over the parameter Q. A potential difficulty

here is that, due to the use of finite, noisy data records,

only approximations Ñ, M̃ are learned. Thus, in principle

there is no guarantee that the controller Cps will prestabilize

the actual plant. As shown in a recent paper [20], this can

be addressed by learning the factors Ñ, M̃ using as a loss

function the gap metric between (Ñ, M̃) and (N, M). The

advantages of using this metric (vis-a-vis other metrics) is that,

if the resulting gap is below a quantity that can be directly

computed from the experimental data, then the controller Csp is

guaranteed to stabilize the true plant. Further, the factors Ñ, M̃

can be learned by solving a convex optimization problem.

The main disadvantage of this approach is that, at present

time, computing the gap requires knowledge of the frequency

response of the plant. Hence, it cannot be directly applied

to the case of interest in this letter where only finite time

domain data is available. A time-domain characterization of

the gap metric is needed to address this issue and to extend

the approach to nonlinear plants.

V. CONCLUSION

Model free direct policy optimization has the promise

of optimizing performance while avoiding a computationally

expensive system identification step. Further, it has been

empirically shown to lead to optimal controllers in a number

of cases of practical importance. However, as we show in this

letter with a very simple example, the success that direct policy

optimization has achieved in some classes of problems is not

directly generalizable to other seemingly simple problems,

where it can lead to closed-loop systems that are fragile to

arbitrarily small perturbations. This effect can be traced to

the fact that model agnostic optimization can lead to unstable

pole/zero cancellations and hence loss of internal stability.

With this in mind, we proposed several ways to overcome

this difficulty, provided that some minimal a priori information

about the unknown plant is available. Our results also point

out to the need to develop a framework for learning stabilizing

controllers from finite, time domain data records, using as loss

function the gap metric. This metric is, at its core, a distance

between closed-loop systems, as opposed to the open-loop

metrics more commonly used when learning models from data.
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