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Challenges in Model Agnostic Controller
Learning for Unstable Systems
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Abstract—Model agnostic controller learning, for
instance by direct policy optimization, has been the
object of renewed attention lately, since it avoids a
computationally expensive system identification step.
Indeed, direct policy search has been empirically shown to
lead to optimal controllers in a number of cases of practical
importance. However, to date, these empirical results have
not been backed up with a comprehensive theoretical
analysis for general problems. In this letter we use a simple
example to show that direct policy optimization is not
directly generalizable to other seemingly simple problems.
In such cases, direct optimization of a performance index
can lead to unstable pole/zero cancellations, resulting in
the loss of internal stability and unbounded outputs in
response to arbitrarily small perturbations. We conclude
this letter by analyzing several alternatives to avoid this
phenomenon, suggesting some new directions in direct
control policy optimization.

Index Terms—Data-driven control, robust

machine learning.

control,

[. INTRODUCTION

ECENTLY, there has been renewed interest in “model

free” control design techniques where the goal is to
design a controller that optimizes performance based purely on
experimental data. These techniques are attractive since they
hold the promise of optimizing performance while avoiding
a computationally expensive systems identification step [1].
Indeed, direct control policy optimization techniques have
achieved remarkable success in a range of classical control
problems, ranging from Linear Quadratic (LQR, LQG) to Ho
and controller auto-tuning. While a general theory supporting
these results is still emerging [2], recent results show that,
in spite of lack of convexity, direct optimization can lead to
optimal policies in these problems [3], [4], [5], [6], [7], [8], [9],
[10] and provide bounds on the sample complexity [11], [12].
Hence, the hope is that these techniques can provide a viable
alternative to the traditional systems identification-control
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design pipeline. The goal of this letter is to point out to
the dangers of using direct optimization even in seemingly
simple problems. As we illustrate with a simple first order
system, direct policy optimization can lead to unstable pole
zero cancellations and hence the loss of internal stability.
In turn, this can result in unbounded signals in response to
arbitrarily small perturbations to the control action.

This letter is organized as follows: Section II introduces the
notation and required definitions; Section III contains the main
result of this letter: a simple example where model agnostic
performance optimization over all continuous stabilizing con-
trollers leads to a pole/zero cancellation and loss of internal
stability; Section IV connects this example with the empirical
observation in [13] that adding noise during training increases
robustness, and discusses some ideas to avoid the loss of
internal stability. Section V offers some conclusions and points
out to directions for further research.

[1. NOTATION AND DEFINITIONS

llu|| = vuTu denotes the usual Euclidean norm in R". For a
given sequence xx, ||x]l2 = v/ Xl £2 denotes the Hilbert
space of real vector sequences with finite ||x||2, equipped with
the inner product (x, y) = Y x;y;. £°° denotes the Banach space
of bounded real sequences equipped with the norm ||xg|/co =
supy, |xk|. We will denote with capital letters the z-transform
of sequences in £2, e.g., X(z) = Zxkz_k. By a slight abuse
of notation, sometimes we will write || X(z)]|> to denote the 22
norm of the sequence {x;}. Given a sequence xi, we will denote
by (xx). its truncation, that is, (xx); = x; for 0 < k < t and
(xx)r = 0 otherwise. In this context the extended space £5° is
defined as £3° = {u: (u); € £*° V 7 € [0, 00)}. RHoo denotes
the Lebesgue space of complex valued rational functions with
bounded analytic continuation in |z| > 1, equipped with the
norm [|G(2)ll3,, = supj=; |G(@)]. In the sequel, we will
represent a linear time-invariant system G : £3° — £2° either
by its convolution kernel g or the transfer function G(z). It
is well known [14] that, if G is stable, then its £2 induced
norm ||Gll,2_, 2 = [|G(2) |3, - Finally, given a matrix M, || M]|»
denotes its ¢> — ¢2 induced norm.

Definition 1 [15]: An operator H : £3° — £2° is finite £°°-
gain stable if there exist constants y > 0,8 > 0 such that
[HW)zlloo < 7IIW)zlloo + B, YW € £2° and T € [0, 00).

In the sequel, by a slight abuse of notation we will restrict
this definition to the case where § = 0, that is, we will
only consider mappings where HO = 0. Thus, in the case of
linear systems, finite-£°° gain stability reduces to the standard
bounded-input bounded-output stability.
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Fig. 1. The closed loop is internally stable if all four mappings [rW]T —
[ev]T are stable.
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Fig. 2. Closed loop for the simple example.

Definition 2: The loop shown in Fig. 1 is finite £ gain
. . . T T
internally stable if all four mappings [r w] — [e v] are
finite £°° gain stable.

IIl. A SIMPLE FIRST ORDER EXAMPLE

Here we present a simple example where input/output
optimization leads to loss of internal stability: Given the open
loop unstable system shown in Fig. 2, where a > 1, find a
controller C that minimizes |/e||; to an input r of the form:

ro, 0<k<n-—1 7"—1
- S R(Z) =rp—————
Tk 0, otherwise @ =r (z—Dz+!

(D

where the amplitude r, and width n are unknown. We consider
three scenarios: (A) optimization over all internally stabilizing
LTT controllers; (B) optimization over all LTI controllers that
only stabilize the mapping r — ¢; and (C) optimization over
all time-invariant continuous nonlinear controllers that render
the mapping r — e finite gain ¢*°-stable.

A. Optimization Over All Internally Stabilizing Controllers

Consider first the case where the optimization is performed
over all internally stabilizing LTI controllers, that is:

C = argmin R(2)

Cint. stab.

1+ Cl)L ’

Using the Youla parameterization [14] and expressing S(z)
in terms of the Youla parameter Q(z) leads to the following
(weighted) model matching problem!:

IR()M(2)(Y(2) + N(2) Q)2 2

min
0(eRHoo
where N and M are a coprime factorization of the plant P =
L and where Y(z) is a solution of the following Bezout
equation in X(z), Y(2) € RHco:

N@QX@)+M@2)Y(@) =1 3

The problem above can be simplified by choosing a coprime
factorization where M(z) satisfies |M(z)| = 1 for all |z] = 1
and thus, for all signals x € £2, [M(2)X@) |2 = [1X(2)|2:

1 Z—a

N: M:

, X=d>-1,Y=a &
az — 1

az—1’

Iplease see the Appendix in [16].

leading to:
min [R(M )Y (2) + N@)Q@)]ll; =
eRHoo
R -
_min |aR(z) + ﬁQ (5
0eRHoo z 2
where we used the fact that M(z) is all pass and we defined
~ . z
0(z) = 0(2)
az—1

Problem (5) can be explicitly solved by considering an
expansion of the optimal Q of the form

> q1 dn-1 . 0@
Q(Z)=q0+?+...zn_l Z—n

Parseval’s Theorem combined with the explicit expression for
R(z) yields:
2

R(z) ~ a-+ a+q,+
aR(Z)+QQ =r(2, a-+ q0+ 6]02 n..
Z 2 Z Z
~ 2
a+qo+-qn—2 2 qi O, qn—1, Orail)
Zn—l + " + Zn—H
2
:r{%l:a2+(a+‘h)2+"‘+(a+‘Io+"'Qn—1)2:|
~ 2
+r(%(z qi)z + r(% O(qlv s qn—1, Qlclil) ‘2
Hence the optimal solution is given by ¢, = -—a,

qgi=0,i>1, Qm,-z = 0, with the corresponding Q, controller
C, closed-loop sensitivity S, and optimal cost given by

Q:_a(az—l)’ C:(a2+a—l)z—a2
z a(z—1)
_az-—aiz-1 _arz—a)(@ = 1)
S= - SORO=—C" 1
IS@QR@) 2 = ar,V2 (6)

Since the cost araﬁ in (6) is optimal, any controller yielding
a lower cost cannot be internally stabilizing. Note that since
Q is stable and proper, the closed loop system must satisfy
S(00) = 1 and S(a) = 0. These interpolation conditions follow
from (5) and the fact that M(a)N(a) = M(c0)N(oc0) = 0.
Indeed, problem (2) can be recast as:

Se%i;_l[m IS@R@)2  s.t.S(00) =1, S(a) =0 (N

B. Input/Output Optimization Over LTI Controllers

In this section we show that simply optimizing ||S(2)R(z)||2
without taking into account the interpolation constraint
S(a) = 0 leads to controllers that are not internally stabilizing.
Consider a controller in the form:

[1E,Gc—2z)
= (®)
[T, —p)

Direct minimization of ||S(z)R(z)||> with respect to K, z;, pi,

Ci(z) =K

with n, = n; = 1, using MATLAB’s [17] command
fminsearch? leads to
(z—a)
Ci(z) = 9
10 == ©

2Interestingly, this model agnostic optimization yields a controller with a
pole at z = 1, which is consistent with the internal model principle [18].
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Fig. 3. Closed loop responses for the controllers (6) and (9):

(a) Tracking error; (b) Response to a random perturbation w.

that yields the closed—loop mapping r — e:

) ro(Z" —1)
(z— Dzt

z—1

-1
s = ZT with |S@R@)|2 =

2

=r,|l1 — %IIz = roV2 < argV2 (10)
By parameterizing all controllers as C = Q(z—a)/z(1— %) and
dropping the no unstable pole/zero cancellation requirement,
it can be shown that this controller with Q = 1 is globally
optimal over the set of all LTI controllers that optimize
IS(z2)R(z)||2 s.t. the input/output stability constraint.

A comparison of the closed loop response obtained using the
controllers (6) and (9) is shown in Fig. 3. For the experiments,
we use r, = 1, a = 1.1. As expected, the controller (9)
achieves a lower cost than (6). However, the resulting closed
loop system r — e is not internally stable, due to the unstable
pole/zero cancellation. Specifically, the closed-loop transfer
functions from w to e and u are:

z—1 1

Tew: uw —

2(z—a)’ z

11

Therefore, any arbitrarily small perturbation to the control
action will lead to an unbounded output (Fig. 3, (b)). This
instability does not show in the performance index being
optimized. Thus, any algorithm that seeks to optimize it with
respect to the parameters of a controller of the form (8) with
n; > 1,n, > 1 and achieves global optimality will lead
to a controller that has to perform as well as (9), resulting
in an input/output optimal controller that is not internally
stabilizing. Further, since T, is stable, the control action
remains bounded, even if the output does not. Hence the loss
of internal stability cannot be detected by adding noise to
the signal r during training and monitoring the magnitude of
the control. Indeed, adding a disturbance w ~ A/(0, 0.1) to r
during training still leads to the controller (9) and the unstable
pole/zero cancellation.

The flaw in the input/output optimization discussed above
is that it does not enforce the interpolation conditions.
Indeed, while the sensitivity S = % satisfies the condition
S(oo) =1, it does not satisfy the interpolation condition
S(a) = 0. Removing the interpolation constraints leads to a
super-optimal controller that is not internally stabilizing due
to the unstable pole/zero cancellation.

Remark 1: The loss of internal stability cannot be avoided
by regularizing the performance index by adding a penalty
in the control action. This penalty will avoid using integral

w
N ulv 1
r e fu(“k—n:kflvek—n:k)
- zZ—a

; lellz
Fig. 4. 7ol

Ir w]” - [u e finite £°° gain stable.

A controller that minimizes cannot render the mapping

action but still leads to an unstable pole/zero cancellation. For
instance, changing the objective in the optimization above to
J = IS()R(2)|]2 + ||lu|l> leads, for the case a = 1.1, to

_0.60843(z — 1.1)

C
© z—0.9935

which still exhibits the unstable pole/zero cancellation.’

C. General Optimization Based Nonlinear Controllers

In this section we show that any continuous nonlinear
controller that (i) renders the input/output mapping r —
s = [u e]” finite-gain £ stable, and (ii) achieves tracking
performance |lerll2 = roa/2 for all r,, will not internally
stabilize the loop. Specifically, we will show that the resulting
closed loop system shown in Fig. 4 cannot have a finite £*°
gain from [r w]’ — [u e]’.

Theorem 1: Consider a finite dimensional
controller of the form

nonlinear

Uk = fu(Or)

Up—1 .
) e =
€k

[ek--ek—m], m is the memory of the controller, and f; is
continuous. Let @, denote the corresponding closed loop
mapping from the input r to the output sequence {|[ux ek]T}.
If the controller (12) is such that:

(1) @ is finite £°° gain stable, e.g., ||[u e]T||Oo < K ||Irllco

and
(ii) when r is a width-n pulse of the form (1), el = rov/2.
then the closed loop mapping [r W]T — [u e] does not have
finite £°° gain.

Proof: Consider the controller (12) and note that finite
closed-loop £°° gain of ®; implies that f,,(0) = 0. Assume for
now that f;, is twice differentiable and consider its linearization
around 0:

(12)

where 0; = [uk—l"'uk—m]Ts e =

Uup =

fuO [ug—y] | 1 p 71 3%u(80) [upy
80 [ ek ]+ 2[“/{716/6] aglaej ek (13)

By contradiction, assume that the closed loop mapping
[r w]T — [u e]T has finite £ gain K,,. We will show that
under this assumption, the linear controller

0fu(0) afu(0)
Uj—1 e
ou de

is internally stabilizing. By construction, the control sequence
generated by the linear controller (14) is the same sequence

up = L(ui—1, ex) = k (14)

3Please see the Appendix in [16] for a comparison against LQG control.
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generated by the nonlinear one in the presence of a fictitious
disturbance

A 1 [ ]ZL T] 82fu(00) |:uk_1:|

=——|u,_,e
W= M1 050, | e
3%£,(0 2
with || < 0.5 3 Sul@o) || [utis
36:06; ||| ex
Hence
u 2 ’ 2
~ 2
Ileo < Ci M <Gk} M (15)
o0 0

for some constant C; that depends on m, the memory of the
controller and the norm of the Hessian. Since the plant is
linear, the error generated by the linear controller £ satisfies

e =enNL t ey (16)

where e, denotes the error due effect of the fictitious pertur-
bation, with

lewlloo < Ky (17)

Thus

o]

M

This inequality, combined with (15) and (17), shows that if

"1 € €%, then Zé’ € £*°. Since both the plant and the

controller £ are linear, this implies that the mapping |:;}:| —

‘[Zﬁ has all its poles in the open disk |z] < 1 (e.g., it is

ounded input bounded output (BIBO) stable). To complete
the proof, we need to show that the linear controller £ achieves
a tracking error |els < aryN/2 to the input (1). Let T,y
denote the closed loop mapping w — e achieved by the
linear controller £. Since the nonlinear controller achieves an
error |lenzllz = ro/2 to the input (1), from the open-loop
optimization in Section III-B, it follows that uarz; = 0 and
er = 0 Yk > n+1, which implies wy = 0, k > n+2+m. Hence
Wll2 < (n+ 2 4+ m)||W|leo. From (15), (16) and assumptions
(i) and (ii) we have:

lecllz < llearcllz + 1 Tewll 2 2 1Wll2 < llearzllz +
I Towll 2 2 C2K2 NP3 < 1o/2 4+ OG2) < argy/2 (18)

if r, is small enough. It follows that the LTI controller (14)
internally stabilizes the loop and achieves |le|> < aryN2
which contradicts (6).

Consider now the general case where f,(.) is continuous but
not necessarily smooth. Since by assumption f,(.) renders the

mapping ;}J — |:Z finite £>° gain stable, then, as long as
r,w are confined to a compact set, so are u, e. From Stone-
Weierstrass theorem [19] it follows that f;, can be uniformly
approximated arbitrarily close in this set by a polynomial

pu(u, e), with p,(0) = f,(0) = 0. Thus, the effect of this
approximation can be absorbed into w, as another term with

Hh o o

=

Control Action
o
Tracking Error

@
e

JUH,LJH A"t
B ] Pl

4 —uo, =0

S
@
o
S

—llell, = 141,0,=0
——lle,ll,= 71,0, =0.1 1

N
&

——u,0 =0.1
n

o
&
8

0 20 40 60 80 100 0 20 40 60 80 100
Time Time

(a) (b)

Fig. 5. lllustration of Theorem 1. (a) Control action for the neural net
controller, with and without noise added. (b) A small perturbation w
leads to an unbounded output.

[Wap| < €, in the proof that £ is internally stabilizing. In
terms of performance, since p,(0) = 0 by construction, a same
reasoning as before shows that, for the input (1), wgy = 0
for k > n+m + 2. Hence, |[wgpll2 < (n+ m + 2)e and the
proof that the controller £ (obtained now by linearizing the
polynomial p,) achieves |e|l>» < ary~/2 still holds. [ |

To empirically validate our results, we use a simple neural
network controller with the following architecture:

Input: x € R**!, Output: y =%, yeR,

FC1: ;U == whx 4 pD w ¢ R23 pD ¢ R2¥!
Activation: a'V = ReLU(z'""), o'V € R?*!

FC2: z? = w®uD 4 p@ W c R™2 p® ¢ R(19)

The input to the neural network is the vector
[ulk — 1], e[k — 1], e[k]], which includes the previous values
for the control action and tracking error to fit the described
mapping in (12). The bias terms b and b are set to
b = [0,0,0]" and »® = 0 due to the finite ¢» gain
assumption. In this simple case, the optimal weights W) =
[—0.6460, 0.7106, —0.6460; 0.4119, —0.4335, 3.1555], W
= [—1.5480,0.3169] were found in 36 seconds using
MATLAB’s command fminsearch to minimize the tracking
error to a pulse of the form (1) with both positive and negative
amplitudes and different pulse-widths. In Figure 5, we observe
the neural network achieving the optimal ||e||, given in (12) as
ro«/i. However, as we introduce a zero-mean random normal
noise signal with o, = 0.1 to the control input u, as expected,
the output becomes unbounded.

IV. POSSIBLE SOLUTIONS TO AVOID LOSING INTERNAL
STABILITY AND THEIR LIMITATIONS

As noted in Section III-B, the loss of internal stability can
be traced to the existence of interpolation conditions. Direct
unconstrained optimization of the tracking error leads to super-
optimal controllers that violate these constraints. This issue
can be solved by enforcing the interpolation constraints during
the optimization. However, this can be difficult to accomplish
in a model-agnostic setting. Below, we briefly discuss some
options for enforcing these constraints.

Adding noise while training: Recall that internal stability
is equivalent to input-output stability, provided that there are
no unstable pole/zero cancellations between the plant and the
controller [14]. Thus, perhaps the simplest way to implicitly
avoid pole/zero cancellations is to add random noise to the
control action during training, a technique that was empirically
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—=— model agnostic controller with noisy training, [le|=1.93
—*+— Youla based optimal controller, [e|[=1.55
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tracking error
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Fig. 6. Adding noise to the control action during training avoids the loss
of internal stability at the price of 25% performance degradation.

20

—s— Binary Signal Added to the Reference
15+ —=e— Binary Signal Added to the Control Action

Control Action
O

20 . . . . . . . .
0 20 40 60 80 100 120 140 160
Time

Fig. 7. Closed loop control response to perturbations in the reference
(red) and the control (blue), for a model agnostic controller for the non-

minimum phase plant G = % Perturbing the reference signal leads
to unbounded control.

shown to improve robustness in [13]. While this is easy to
implement in a model agnostic framework, it has the drawback
of leading to suboptimal performance. This is illustrated in
Fig. 6, where adding a signal w ~ A(0, 10~%) leads to an
internally stabilizing controller, albeit with a 25% performance
degradation.

A further problem is that this approach critically hinges on
adding noise at the right location. For instance, as illustrated in
Section III-B, if the noise was instead added to the reference
signal r, the resulting controller will still exhibit the unstable
pole/zero cancellation. Similarly, if the plant is changed to (the
non-minimum phase one) G = then the optimal model

agnostic controller is given by C = m. Fig. 7 shows
the control action for a model agnostic controller, trained with
noise added to the control action, in response to perturbations
wi and wy, both chosen as a binary signal with amplitude 0.1,
added to the reference input r and the control u, respectively.
As shown there, in this case the control action in response to
wi, the perturbation of the reference, grows unbounded, even
though the system was trained with noise added to the control.
This highlights the importance of placing the perturbations
at the “right” place when training, so that the interpolation
constraints are implicitly enforced.

Prestabilizing the Plant: An alternative to adding noise is to
use a two step process where a prestabilizing controller Cpy is
learned first and then a second controller is added to optimize

(a)

Fig. 8. Prestabilizing a minimum-phase plant leads to optimal
model agnostic controllers. (a) Loop showing the overall control action.
(b) Equivalent input/output mapping.

performance. In this case, the mapping r — e is given by (see
Fig. 8)

1 1
T, = =S 20
T T UHGICHCp) T+ GyC 20)
where
Gps = d S, = ! 1)
= —— an = —
P 4+ GCpy P51 4 GCpy

The advantage of this approach is that, as long as the
unknown plant is minimum phase, the interpolation constraints
(and hence internal stability) are automatically satisfied if
the controller C achieves input/output stability of the presta-
bililized plant, that is 5 +éG is stable. This follows from
[14, Lemma 2.3] and the fact that if G is minimum phase so
is Gps. Since Gy is stable by construction, there cannot be
unstable pole/zero cancellations between C and Gy;.

Further, in this case, the controller C can recover any
performance achieved by a controller working directly with the
original plant. Since by assumption the plant G is minimum
phase, it satisfies the so-called parity-interlacing property.
Hence, it can be stabilized with an open-loop stable controller
([14], page 91). In turn, this implies that pre-stabilizing the
plant does not affect achievable performance ([14], page 87).

For the simple example in this letter, one can search for
a static stabilizing controller by simply minimizing the ¢2
norm of the impulse response ||1/(1+ K/(z—a)||2. Therefore,
we use a 3 layer single-input, single output neural network
with the input e[k] to estimate such a controller. The resulting
Cps has the weights W) = [0.4561; 1.5840; —0.7662],
W® :=10.1.2235,0.3421, —1.4357], with a ReLU activation
in between and biases set to zero. Once a suitable Cps has
been found, we then use the neural network in (19) as
the C in Fig. 8(b) and optimize the weights. The resulting
controller weights (computed in 428 seconds) are W1 =
[0.5138,0.3661, —0.6312; 2.3475, 0.5361, —0.8748], W®? =
[—0.7884,0.5315]. The tracking error e achieved by the
overall controller (C + Cpy) is shown in Fig. 9, both with and
without noise added to the control action. As shown there, for
the simple example in this letter, this approach indeed leads to
an internally stabilizing controller that achieves near optimal
performance.

Drawbacks of this approach include the need for having a
pre-stabilizing controller Cpg, which could be non-trivial to
find, and its limitation to minimum phase plants. In principle,
non-minimum phase plants can be handled by adding noise
to the control action, but this could entail performance loss.
Further, if the plant is non-strongly stabilizable, the two-step
approach may not be able to recover optimal performance.
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Tracking Error
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Fig. 9. Tracking error e achieved by the overall NN controller C + Cps
with and without noise added to the control action.

Learning a Coprime Factorization of the Plant: While not
strictly model agnostic, this is a data-driven approach where
a model of the plant is learned first and then used to design
a controller. Consider first the case of (unknown) LTI plants.
The main idea is (i) to learn a coprime factorization of the
plant, G = NM —1 where the factors N, M satisfy

(3) for some stable X, Y, (ii) construct a prestabilizing
controller Cpy = X/Y (see [14]), and (iii) use the procedure
outlined above. Alternatively, one could directly use the
parameterization of all stabilizing controllers C = }éjr%Q
and optimize over the parameter Q. A potential difficulty
here is that, due to the use of finite, noisy data records,
only approximations N, M are learned. Thus, in principle
there is no guarantee that the controller C,; will prestabilize
the actual plant. As shown in a recent paper [20], this can
be addressed by learning the factors N, M using as a loss
function the gap metric between (]V, 1\71) and (N, M). The
advantages of using this metric (vis-a-vis other metrics) is that,
if the resulting gap is below a quantity that can be directly
computed from the experimental data, then the controller Cy), is
guaranteed to stabilize the true plant. Further, the factors N, M
can be learned by solving a convex optimization problem.
The main disadvantage of this approach is that, at present
time, computing the gap requires knowledge of the frequency
response of the plant. Hence, it cannot be directly applied
to the case of interest in this letter where only finite time
domain data is available. A time-domain characterization of
the gap metric is needed to address this issue and to extend
the approach to nonlinear plants.

V. CONCLUSION

Model free direct policy optimization has the promise
of optimizing performance while avoiding a computationally
expensive system identification step. Further, it has been
empirically shown to lead to optimal controllers in a number
of cases of practical importance. However, as we show in this
letter with a very simple example, the success that direct policy
optimization has achieved in some classes of problems is not
directly generalizable to other seemingly simple problems,
where it can lead to closed-loop systems that are fragile to

arbitrarily small perturbations. This effect can be traced to
the fact that model agnostic optimization can lead to unstable
pole/zero cancellations and hence loss of internal stability.
With this in mind, we proposed several ways to overcome
this difficulty, provided that some minimal a priori information
about the unknown plant is available. Our results also point
out to the need to develop a framework for learning stabilizing
controllers from finite, time domain data records, using as loss
function the gap metric. This metric is, at its core, a distance
between closed-loop systems, as opposed to the open-loop
metrics more commonly used when learning models from data.
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