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Abstract— In this paper, we study the finite-horizon optimal
density steering problem for discrete-time stochastic linear
dynamical systems. Specifically, we focus on steering proba-
bility densities represented as Gaussian mixture models which
are known to give good approximations for general smooth
probability density functions. We then revisit the covariance
steering problem for Gaussian distributions and derive its
optimal control policy. Subsequently, we propose a randomized
policy to enhance the numerical tractability of the problem
and demonstrate that under this policy the state distribution
remains a Gaussian mixture. By leveraging these results, we
reduce the Gaussian mixture steering problem to a linear
program. We also discuss the problem of steering general
distributions using Gaussian mixture approximations. Finally,
we present the results of non-trivial numerical experiments
and demonstrate that our approach can be applied to general
distribution steering problems.

I. INTRODUCTION

In this paper, we consider the problem of characterizing

control policies that can steer the probability distribution of

the initial state of a discrete-time stochastic linear dynamical

system to a target distribution in finite time. These types of

problems can be classified as a variant of the “optimal mass

transport” problem [1]. Specifically, we focus on Gaussian

mixture models to represent the initial and target state

probability distributions due to their universal approximation

properties [2, Chapter 3].

Typically, three different approaches are employed to solve

density steering problems. In the first approach, continuous-

time dynamics are utilized to derive the Fokker-Planck partial

differential equation (PDE), describing the evolution of the

probability density function of the state. Control policies are

designed for this PDE using Lyapunov-based methods [3],

[4]. The second approach considers a discrete state space and

employs Markov chain-based methods, and utilizes convex

optimization tools to design a transition matrix of the Markov

chain for steering the probability distribution [5], [6]. Lastly,

optimal mass transport-based approaches treat the dynamic

problem as a static mass transport problem using transition

costs between initial and terminal states. This associated

problem is solved using well-known optimal mass transport

algorithms [1], [7]–[9].

Our approach is primarily aligned with optimal mass

transport-based methods. However, rather than seeking the

optimal transport map in a general discretized state-space,

we adopt Gaussian mixture models in conjunction with

covariance steering theory [10]–[12]. This enables us to

formulate and solve a lower-dimensional linear program,

offering a more efficient and effective approach.

Literature Review: The problem of density steering has

received significant attention in previous research. In [7],

the authors propose a similar problem and re-frame it as

an optimal mass transport problem. Meanwhile, in [13], the

authors tackle the density steering problem using dynamic

programming over probability spaces. However, it is worth

noting that both of teh aforementioned approaches involve

discretizing the continuous state-space, as the computation of

the optimal transport map and Bellman recursion necessitates

such discretization.

Additionally, Markov chain-based density steering meth-

ods also rely on discretizing the continuous state space to

synthesize a Markov chain that characterizes the probabilistic

motion of individual agents. In the infinite horizon case,

formulating this Markov chain can be cast as a convex semi-

definite program [5], while in the finite horizon case the

problem is not convex and should be addressed as a general

nonlinear program [6], [14].

In [15], the authors derive the necessary conditions for

optimality for the density steering problem with nonlinear

drift in terms of coupled PDEs which they solve by using

the Feynman-Kac lemma and point cloud sampling. In [16],

the authors study the distribution steering problem for linear

systems excited by non-Gaussian noise using characteristic

functions. In [17], the authors employ power moments to

formulate convex optimization problems for steering general

probability densities in a one-dimensional setting. A PDE-

based optimal robotic swarm coverage control policy is

obtained by deriving necessary conditions of optimality in

[18]. For systems affected by multiplicative noise, infinite

horizon optimal density steering laws have been derived in

[19]. Finally, in [20], a hierarchical clustering-based density

steering algorithm is presented for distributed large-scale

applications.

The density steering problem using Gaussian mixture

models has been investigated in the past [21], [22]. However,

a notable limitation of [21], [22] is that their proposed

density steering methods do not explicitly account for the

system’s dynamics. Moreover, their approach relies on spatial

discretization methods, thereby failing to fully exploit the

advantages offered by Gaussian mixture models.

Main Contributions: All of the aforementioned approaches

for density steering problems require either state space dis-

cretization, solving partial differential equations, or extensive

sampling. In contrast, our approach sidesteps these issues, of-

fering a computationally efficient solution to the optimal den-

sity steering problem. To this aim, we firstly derive a closed-

form solution for the optimal state feedback policy, which is



designed to guide an initial Gaussian state distribution to a

desired terminal state while considering quadratic input and

state costs. Secondly, we introduce a class of randomized

state feedback policies aimed at simplifying the primary

problem into a finite-dimensional optimization challenge. We

also demonstrate that this control policy ensures that the state

density will remain a Gaussian mixture model for the whole

time horizon. Thirdly, we reveal that the intricate finite-

dimensional optimization problem can be effectively reduced

to a linear program. Finally, we showcase the effectiveness

of our methodology in steering arbitrary densities through

Gaussian mixture approximation, leveraging the expectation-

maximization algorithm.

II. PROBLEM FORMULATION

Notation: R
n (Rn×m) denotes the space of n-dimensional

real vectors (n×m matrices). Z+ represents positive integers.

Positive definite (semi-definite) n×n matrices are denoted by

S
++
n (S+n ). For any x ∈ R

n and Q ∈ S
+
n , ∥x∥Q is the notation

for
√

xTQx. The identity matrix of size n×n is In. Vertical

concatenation of vectors or matrices x0, . . . , xN is denoted

as vertcat(x0, x1, . . . , xN ). The trace operator is represented

by tr (·). The nuclear norm of a matrix A ∈ R
n×m is denoted

by ∥A∥∗. The block diagonal matrix with diagonal blocks

A1, . . . , AN is written as bdiag(A1, . . . , AN ). Expectation

and covariance of a random variable x are given as E [x] and

Cov (x), respectively. The notation x ∼ N (µ,Σ) means that

x is a Gaussian random variable with mean µ and covariance

Σ. We use ∆n to denote the probability simplex in R
n,

where ∆n := {[p1, . . . , pn]
T ∈ R

n :
∑n

i=1 pi = 1 and pi ≥
0 ∀i}. When x follows a Gaussian mixture model, we write

x ∼ GMM({pi, µi,Σi}
n−1
i=0 ) where {pi}

n−1
i=0 ∈ ∆n. The

probability density function of a random variable x ∈ R
n

evaluated at x′ ∈ R
n is Px(x

′). If x ∼ N (µ,Σ), the

Px(x
′) is denoted as PN (x′;µ,Σ). For random variables

x ∈ R
n, y ∈ R

m, x|y = ŷ denotes the conditional random

variable x given y = ŷ. Finally, for an arbitrary set A ⊆ R
n,

P(A) represents the set of all random variables over A.

Problem Setup and Formulation: We consider a discrete-

time stochastic linear dynamical system:

xk+1 = Akxk +Bkuk (1)

where xk ∈ R
n and uk ∈ R

m are the state and

the input processes, respectively. We assume that x0 ∼
GMM({p0i , µ

0
i ,Σ

0
i }

r−1
i=0 ) such that {pi}

r−1
i=0 ∈ ∆r, µ0

i ∈ R
n

and Σ0
i ∈ S

++
n for all i ∈ {0, . . . , n− 1}.

A control policy with a horizon N ∈ Z
+ for the system

in (1) is defined as a sequence of control laws π = {πi}
N−1
i=0

where each πk : Rn → P(Rm) is a function that maps the

state xk to a random variable representing control inputs.

The set of randomized control policies is denoted by Π.

Throughout the paper, we consider quadratic cost functions

in the form:

J(X0:N , U0:N−1) =
N−1
∑

k=0

∥uk∥
2
Rk

+ ∥xk − x′
k∥

2
Qk

+ ∥xN − x′
N∥2QN

(2)

where X0:N = {xk}
N
k=0 is the state process and U0:N−1 =

{uk}
N−1
k=0 is the input process. Since we have defined the

system dynamics and control policies, now we provide the

formulation of the Gaussian mixture model (GMM) density

steering problem:

Problem 1 (GMM Density Steering Problem). Let N ∈ Z
+,

Ak ∈ R
n×n, Bk ∈ R

n×m, Rk ∈ S
++
m , Qk ∈ S

+
n be given for

all k ∈ {0, . . . , N − 1}. Also, let r, t ∈ Z
+, {p0i }

r−1
i=0 ∈ ∆r,

{pdi }
t−1
i=0 ∈ ∆t, {µ

0
i }

r−1
i=0 , {µd

i }
t−1
i=0 , {Σ0

i }
r−1
i=0 , {Σd

i }
t−1
i=0 such

that µ0
i , µ

d
i ∈ R

n and Σ0
i ,Σ

d
i ∈ S

++
n be given. Find an

admissible control policy π⋆ ∈ Π that solves the following

problem:

min
π∈Π

E [J(X0:N , U0:N−1)] (3a)

s.t. (1)

x0 ∼ GMM
(

{p0i , µ
0
i ,Σ

0
i }

r−1
i=0

)

(3b)

xN ∼ GMM
(

{pdi , µ
d
i ,Σ

d
i }

t−1
i=0

)

(3c)

uk = πk(xk) (3d)

Throughout the paper, we make the following assumption

regarding the controllability of the system in (1). Note that

this is not a limiting assumption since many real-world linear

dynamical systems are actually controllable.

Assumption 1. The system dynamics given in (1) is con-

trollable over a given problem horizon N . In other words,

the controllability grammian defined as:

GN :0 =

N−1
∑

k=0

ΦN,k+1BkB
T
k Φ

T
N,k+1 (4)

is non-singular with Φk2,k1
:= Ak2−1Ak2−2 . . . Ak1

, Φk,k =
In for all k2, k1 ∈ Z

+ such that k2 ≥ k1.

III. OPTIMAL COVARIANCE STEERING FOR GAUSSIAN

DISTRIBUTIONS

Optimal covariance steering problems for linear dynamical

systems with quadratic cost functions have been extensively

studied in the literature [10], [11]. A closed-form solution to

the optimal covariance steering problem is provided in [11]

for the case where the cost function is a convex quadratic

function of the input. In this section, we expand upon these

findings and derive a closed-form solution to the covariance

steering problem, considering quadratic cost functions that

depend on both the state and input. This result will be

subsequently applied in Section IV to formulate Problem 1

as a linear program. To begin, we revisit the formal definition

of the Gaussian covariance steering problem:

Problem 2 (Gaussian Covariance Steering). Let µ0, µd ∈
R

n, Σ0,Σd ∈ S
++
n , Rk ∈ S

++
m , Qk ∈ S

+
n for all k ∈

{0, . . . , N} be given. Find an admissible control policy π⋆ ∈



Π that solves the following problem:

min
π∈Π

E [J(X0:N , U0:N−1)] (5a)

s.t. (1)

x0 ∼ N (µ0,Σ0) (5b)

xN ∼ N (µd,Σd) (5c)

In [12], it is demonstrated that the optimal policy for

the linear-quadratic Gaussian density steering problem takes

the form of a deterministic affine state feedback policy,

expressed as πk(xk) = ūk + Kk(xk − µk) where µk =
E [xk]. Furthermore, for deterministic linear systems, this

affine state feedback policy can be equivalently expressed

in terms of the initial state as πk(x0) = ūk + Lk(x0 − µ0)
[11]. Consequently, the optimal Gaussian covariance steering

problem can be rewritten equivalently in terms of decision

variables {ūk, Lk}
N−1
k=0 as follows:

min
Ū,L

ŪTRŪ+ tr
(

RLΣ0L
T
)

+ X̃TQX̃

+ tr
(

Q(Γ+HuL)Σ0(Γ+HuL)
T
)

(6a)

s.t. µd = ΦN,0µ0 +BNŪ, (6b)

Σd = (ΦN,0 +BNL)Σ0(ΦN,0 +BNL)T, (6c)

where X := vertcat(x0, . . . , xN ), X̄ := E [X],
X̃ := X̄ − X′, , X′ := vertcat(x′

0, . . . , x
′
N ),

U := vertcat(u0, . . . , uN−1), Ū := E [U] =
vertcat(ū0, . . . , ūN−1), Q := bdiag(Q0, . . . , QN ), R :=
bdiag(R0, . . . , RN−1), L := vertcat(L0, . . . , LN−1),
BN := [ΦN,1B0,ΦN,2B1, . . . ,ΦN,NBN−1]. Note that

BNBT
N

= GN :0 where GN :0 is defined as in (4). The matrices

Γ,Hu is derived from the vertical concatenation of the state

and input vectors as the concatenated vectors satisfy the

following equalities:

X = Γx0 +HuU, (7a)

U = L(x0 − µ0) + Ū. (7b)

The derivation of (7) and the expressions of the matrices Γ

and Hu are omitted due to space restrictions and the readers

can refer to [11].

The constraints in (6b) and (6c) correspond to the mean

and covariance steering constraints in the problem defined

in (6). Since the state mean depends on Ū and the state

covariance depends on L, and the objective function is

separable in Ū and L, the mean and covariance steering

problems can be decoupled. The mean steering problem is

formulated as follows:

min
Ū

Jmean(Ū) (8)

s.t. (6b)

where

Jmean(Ū) := ŪTRŪ

+ (Γµ0 +HuŪ−X′)TQ
(

Γµ0 +HuŪ−X′
)

. (9)

Note that the problem in (8) is a strictly convex quadratic

program with affine equality constraints since Rk ∈ S
++
m .

The closed-form solution to such problems can be obtained

using the first-order conditions of optimality (KKT condi-

tions) [23]. The following proposition provides the optimal

feed-forward control input Ū.

Proposition 1. Under Assumption 1, the optimal control

sequence Ū⋆ that solves the problem in (8) is given by:

Λ⋆ =2(BNM−1BT
N
)−1×

(BNM−1Hu
TQY + (µd − ΦN,0µ0)), (10)

Ū⋆ =(1/2)M−1(BN
TΛ⋆ − 2Hu

TQY ), (11)

where M = R+HuQHu
T, Y = Γµ0 −X′.

Similarly, the decoupled covariance steering problem can

be written as follows:

min
L

Jcov(L) (12)

s.t. (6c)

where

Jcov(L) :=tr
(

RLΣ0L
T
)

+ tr
(

Q(Γ+HuL)Σ0(Γ+HuL)
T
)

. (13)

The objective function Jcov(L) of the covariance steering

problem given in (12) is a convex quadratic function of the

decision variable L. However, the terminal covariance con-

straint in (6c) is a non-convex quadratic equality constraint.

The next proposition provides the closed-form solution to

problem given in (12) and the optimal value of the objective

function as a function of the problem parameters.

Proposition 2. Given that Assumption 1 holds for the system

defined in (1), then optimal sequence of feedback controller

gains L⋆ that solves the problem in (12) is given by:

L⋆ = h+DZ, (14a)

h = BT
N
G−1
N :0

(

Σ
1/2
d TΣ

−1/2
0 − ΦN,0

)

, (14b)

Z = −
(

DTMD
)−1

DT
(

Mh+HT
u
QΓ

)

, (14c)

T = −VΩU
T
Ω , (14d)

Ω = Σ
1/2
0

(

ΘT
5 QHu −ΘT

4 R
)

Θ1BN
TG−1

N :0Σ
1/2
d , (14e)

where D ∈ R
mN×mN−n is an arbitrary matrix whose

columns are orthogonal to the vector space spanned by the

columns of BT
N

, i.e., BND = 0, M = R + HT
u
QHu,

Ω = UΩΛΩV
T
Ω is the singular value decomposition of

matrix Ω, Θ1 := INm − D(DTMD)−1DTM , Θ2 :=
D(DTMD)−1DTHT

u
QΓ, Θ3 := BT

N
G−1
N :0ΦN :0, Θ4 :=

Θ1Θ3 + Θ2, Θ5 := Γ − HuΘ4. Furthermore, the optimal

value of the objective function is given as:

J⋆
cov = tr

(

R
(

Θ1ZΘT
1 +Θ4Σ0Θ

T
4

))

+ tr
(

Q
(

HuΘ1ZΘT
1 H

T
u
+Θ5Σ0Θ

T
5

))

− 2∥Ω∥∗, (15)

where Z := BT
N
G−1
N :0ΣdG

−1
N :0BN.



Proof. Observe that the constraint (6c) can be equivalently

written as follows:

T = Σ
−1/2
d (ΦN :0 +BNL)Σ

1/2
0 , TTT = In. (16a)

Also, pick a full-rank matrix D ∈ R
mN×mN−n such that

BND = 0. Using D, we can write L = BT
N
Y +DZ where

Y ∈ R
n×n and Z ∈ R

Nm−n×n. Note that there is a one to

one mapping between L and the pair Y, Z since both BN and

D are full rank and they have orthogonal columns. Thus, we

can rewrite (16a) as T = Σ
−1/2
d (ΦN :0 + GN :0Y )Σ0. Thus,

we obtain:

L = BT
NG−1

N :0

(

Σ
1/2
d TΣ

−1/2
0 − ΦN :0

)

+DZ. (16b)

By plugging the right-hand-side of (16b) into L in Jcov(L),
we can recast the optimization problem in (12) as follows:

min
T,Z

J1(T, Z) (16c)

s.t. TTT = In (16d)

where J1(T, Z) = Jcov
(

BT
NG−1

N :0

(

Σ
1/2
d TΣ

−1/2
0 − ΦN :0

)

+
DZ

)

. Note that the objective function J1(T, Z) is a convex

quadratic function. For a fixed T , minZ J1(T, Z) is an

unconstrained convex quadratic program. Thus, the optimal

Z can be found by solving the equation ∇ZJ1(T, Z) = 0;

it follows that

Z⋆(T ) = −(DTMD)−1DT(Mh(T ) +HT
u
QΓ) (16e)

where h(T ) = BNG−1
N :0(Σ

1/2
d TΣ

−1/2
0 − ΦN,0), Z

⋆(T ) de-

notes the optimal Z for a fixed T . By plugging the expression

of Z⋆(T ) back into J1(T, Z), we obtain the following

optimization problem:

min
T

J2(T ) (16f)

s.t. TTT = In (16g)

where J2(T ) = J1(T, Z
⋆(T )). Expanding J2(T ),

we obtain that J2(T ) = C + 2tr (ΩT ) where the

constant term C = tr
(

R
(

Θ1ZΘT
1 +Θ4Σ0Θ

T
4

))

+
tr
(

Q
(

HuΘ1ZΘT
1 H

T
u
+Θ5Σ0Θ

T
5

))

. Finally, from Von

Neuman trace inequality [24], we obtain that T ⋆ =
argminTTT=In tr (ΩT ) is given as −VΩU

T
Ω and tr (ΩT ⋆) =

tr (ΛΩ) =
∑

i σi(Ω) = ∥Ω∥∗. ■

Remark 1. Note that in the special case in which Q = 0,

the problem in (12) is equivalent to the covariance steering

problem that is studied in [11]. Thus, the optimal policy

derived in Proposition 2 is equal to the optimal policy defined

in [11, Eq. (20)].

IV. REDUCTION TO LINEAR PROGRAM

To establish a computationally efficient problem formula-

tion, we define a finite-dimensional set of randomized poli-

cies. This approach enables us to recast Problem 1 as a linear

program. First, we characterize the set of policies that can

transform the initial Gaussian mixture model corresponding

to the initial state of the system into another (target) Gaussian

mixture model. Then, we formulate a finite-dimensional non-

linear program using the Gaussian mixture steering policies.

Next, we reduce the resulting nonlinear program into a linear

program by applying the results presented in Proposition 1

and Proposition 2.

A. GMM Steering Policies

To solve Problem 1 efficiently, we propose a set of

randomized state feedback policies Πr ⊂ Π. Every π ∈ Πr

is a sequence of functions {π0, π1, . . . , πN−1} such that each

πk : Rn → P(Rm) is given as follows:

πk(x0) = Li,j
k (x0 − µ̄i

0) + ūi,j
k w.p. γi,j(x0) (17)

where Li,j
k ∈ R

m×n, ūi,j
k ∈ R

m for all k ∈ {0, . . . , N −
1}, i ∈ {0, . . . , r − 1} and j ∈ {0, . . . , t− 1}. Furthermore,

γi,j : R
n → R is given by:

γi,j(x0) =
piPN (x0; µ̄

i
0, Σ̄

i
0)

∑r−1
i=0 piPN (x0; µ̄i

0, Σ̄
i
0)
λi,j (18)

where
∑

j λi,j = 1 for all i and λi,j ,≥ 0. Note that,
∑

i,j γi,j = 1 and γi,j ≥ 0, and the policy π will return

a valid probability distribution over the control sequences

for a given x0.

The policy defined in (17) is based on the intuition that

under affine state feedback policies, the state distribution

xk will remain Gaussian, provided that the initial state

distribution is also Gaussian. The term
piPN (x0;µ̄

i
0
,Σ̄0i)

∑r−1

i=0
piPN (x0;µ̄i

0
,Σ̄i

0
)

represents the likelihood that the initial state x0 will be

drawn from the ith component of the Gaussian mixture

model with components ({pi, µ̄i, Σ̄i}
r−1
i=0 ). Consequently, the

control policy in (17) is an ideal choice for steering prob-

ability distributions defined by Gaussian mixture models.

The following proposition states that if a policy π ∈ Πr

is applied to the dynamical system in (1) whose initial

state is sampled from GMM({pi, µi,Σi}
r−1
i=0 ), then the

terminal state xN will have the Gaussian mixture distribution

GMM({qi, µ
f
i ,Σ

f
i }

t−1
i=0) whose parameters are determined

by the policy π ∈ Πr.

Proposition 3. Let x0 ∈ R
n be the initial

state of the system given in (1) such that x0 ∼
GMM({pi, µ

0
i ,Σ

0
i }

r−1
i=0 ) and π ∈ Πr with parameters

({µ̄i, Σ̄i}
r−1
i=0 , {λi,j}

r−1,t−1
i=0,j=0 , {ū

i,j
k , Li,j

k }r−1,t−1,N−1
i=0,j=0,k=0 ) and

µ0
i = µ̄i, Σ

0
i = Σ̄i for all i ∈ {0, . . . , r − 1}. Furthermore,

let uk = πk(x0) for all k ∈ {0, . . . , N − 1}, then

xN ∼ GMM({qj , µ
f
j ,Σ

f
j }) such that

qj =

r−1
∑

i=0

piλi,j , (19a)

µf
j = ΦN :0µ

0
i +BNŪi,j , (19b)

Σf
j = (ΦN :0 +BNLi,j)Σ

0
i (ΦN :0 +BNLi,j)

T, (19c)

where (19a)-(19c) hold for all j ∈ {0, . . . , t −
1}, Li,j = vertcat(Li,j

0 , . . . Li,j
N−1) and Ūi,j =

vertcat(ūi,j
0 , . . . , ūi,j

N−1).



Proof. First, note that, by virtue of Bayes’ Theorem on con-

ditional probability densities, the probability density function

of xN can be written as follows:

PxN
(x̂) =

∫

Rn

∫

RmN

PxN |x0=x̂0,U=Û (x̂) PU |x0=x̂(Û)

× Px0
(x̂0) dÛ dx̂0. (20)

Furthermore, the conditional probability density functions in

(20) are given as follows:

PxN |x0=x̂0,U=Û (x̂) = δ(x̂ = ΦN :0x̂0 +BNÛ) (21)

PU |x0=x̂0
(Û) =

r−1
∑

i=0

t−1
∑

j=0

γi,j(x̂0)δ(Û = Li,j(x̂0 − µ0
i ) + Ūi,j) (22)

where δ(·) denotes the dirac delta function, (21) can be

obtained since system dynamics in (1) and (22) can be

obtained from the definition of the policy set Πr in (17).

Let us analyze the inner integral in (20) first. Observe that

Px0
(x̂0) does not depend on Û and thus it can be taken out

of the inner integral. Plug the expressions in (21) and (22)

into (20) to obtain:

=

∫

RmN

δ(x̂ = ΦN :0x̂0 +BNÛ)×

r−1,t−1
∑

i=0,j=0

γi,j(x̂0)δ(Û = Li,j(x̂0 − µ0
i ) + Ūi,j) dÛ , (23)

=

r−1,t−1
∑

i=0,j=0

γi,j(x̂0)δ
(

x̂ = ΦN :0x̂0

+BN(Li,j(x̂0 − µ0
i ) + Ūi,j)

)

. (24)

Equation (24) is obtained by using the linearity of the

integral operator and the properties of the dirac delta

function. The expression in (24) can be rewritten as
∑

i,j γi,j(x̂0)δ(Hi,j x̂0−hi,j = x̂) for brevity, where Hi,j :=

ΦN :0 + BNLi,j and hi,j := BN(Li,jµ
0
i − Ūi,j). Observe

that the denominator of γi,j(x̂0) defined in (18) is equal to

Px0
(x̂0). By using this fact, it follows that

PxN
(x̂) =

r−1
∑

i=0

t−1
∑

j=0

piλi,jgi,j(x̂), (25)

where gi,j(x̂) :=
∫

Rn N (x̂0; µ̄
i
0, Σ̄

i
0)δ(Hi,j x̂0 − hi,j =

x̂) dx̂0. Furthermore,

gi,j(x̂) =

∫

Rn

PN (H−1
i,j (zi,j + hi,j); µ̄

i
0, Σ̄

i
0)

× |H−1
i,j |δ(zi,j = x̂) dzi,j , (26)

= PN (H−1
i,j (x̂+ hi,j); µ̄

i
0, Σ̄

i
0)|H

−1
i,j |, (27)

= PN (x̂;Hi,jµ
0
i − hi,j ,Hi,jΣ

0
iH

T
i,j), (28)

where |Hi,j | is the determinant of Hi,j . Equation (26) is

obtained by applying the variable transformation zi,j =
Hi,j x̂0−hi,j . Then, the standard property of the dirac delta

function yields (27). Expanding N (H−1
i,j (x̂+ hi,j); µ̄

i
0, Σ̄

i
0),

we obtain (28). After that, we expand Hi,j , hi,j and define

(19b) and (19c) to obtain gi,j(x̂) := N (x̂;µf
j ,Σ

f
j ). Finally,

the proof is concluded by plugging this expression into (25)

and defining (19a). ■

Remark 2. In the statement of Proposition 3, it is given that

for each j ∈ {0, . . . , t − 1} every Ūi,j should satisfy (19b)

and every Li,j should satisfy (19c). This seems like an extra

condition for the policy to satisfy and limits the applicability

of the policy proposed in (17). However, the number of

terminal Gaussian components t is actually determined by

the parameters Ūi,j ,Li,j . To see this, take an arbitrary set

{Ūℓ,Lℓ}
s
ℓ=0 for each i ∈ {0, . . . , r−1} and ℓ ∈ {0, . . . , s},

define µf
i×s+ℓ = ΦN :0µ

0
i +BNŪℓ and Σf

i×s+ℓ = (ΦN :0 +
BNLℓ)Σ

0
i (ΦN :0 +BNLℓ)

T. Thus, we can set t = s× r to

obtain (19b) and (19c).

B. Reduction to LP

Since we have demonstrated that, within the set of policies

Πr defined in (17), the initial Gaussian mixture state dis-

tribution is transformed into another Gaussian mixture, and

these policies in Πr are parameterized by a finite number of

decision variables, we can utilize the set of policies Πr to

formulate a finite-dimensional optimization problem aimed

at solving Problem 1.

Minimizing Problem 1 over randomized policies defined

in (17) is written as a finite-dimensional nonlinear program

in terms of decision variables {λi,j , Ūi,j ,Li,j}
r−1,t−1
i=0,j=0 as

follows:

min
λi,j ,Ūi,j ,Li,j

Jr({λi,j , Ūi,j ,Li,j}
r−1,t−1
i=0,j=0) (29a)

s.t. λi,j ≥ 0 (29b)

t−1
∑

j=0

λi,j = 1, (29c)

r−1
∑

i=0

p0iλi,j = pdj , ∀j ∈ {0, . . . , t− 1} (29d)

µd
j = ΦN :0µ

0
i +BNŪi,j (29e)

Σd
j = Hi,jΣ

0
iH

T
i,j (29f)

where Hi,j = ΦN :0 + BNLi,j , Jr({λi,j , Ūi,j ,Li,j}) =
E [J(X0:N , U0:N−1)]. Constraints in (29b) and (29c) are due

to the parametrization of the control policy in (17). The

constraints in (29d), (29e) and (29f) are obtained by making

the right hand side of the equalities in (19a), (19b) and (19c)

equal to pdj , µd
j and Σd

j , respectively. Furthermore, constraints

(29c) and (29d) are enforced for all i ∈ {0, . . . , r − 1} and

for all j ∈ {0, . . . , t − 1}, respectively. And the constraints

(29b), (29e) and (29f) are enforced for all i, j in {0, . . . , r−
1}×{0, . . . , t−1}. Objective function Jr(·) can be rewritten

in terms of the decision variables {λi,j , Ūi,j ,Li,j} using the

law of iterated expectations as:

Jr(·) :=
∑

i

∑

j

λi,j(Jmean(Ūi,j) + Jcov(Li,j)) (30)

where Jmean(·) and Jcov(·) are defined in (9) and (13),

respectively. Note that the parameters {µ̄0
i , Σ̄

0
i }

r−1
i=0 are also








