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Abstract

Structural information on protein–protein interactions (PPIs) is
essential for improved understanding of regulatory interactome
networks that confer various physiological and pathological
responses. Additionally, maladaptive PPIs constitute desirable
therapeutic targets due to inherently high disease state spec-
ificity. Recent advances in chemical cross-linking strategies
coupled with mass spectrometry (XL-MS) have positioned XL-
MS as a promising technology to not only elucidate the mo-
lecular architecture of individual protein assemblies, but also to
characterize proteome-wide PPI networks. Moreover, quanti-
tative in vivo XL-MS provides a new capability for the visuali-
zation of cellular interactome dynamics elicited by drug
treatments, disease states, or aging effects. The emerging field
of XL-MS based complexomics enables unique insights on
protein moonlighting and protein complex remodeling. These
techniques provide complimentary information necessary for
in-depth structural interactome studies to better comprehend
how PPIs mediate function in living systems.
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Developments in cross-linker design and
methodology
Protein complexes and their dynamic modules underpin
most biological function and mediate many diseases
[1e5]. Spatial restraints generated from XL-MS analysis
provide valuable medium resolution structural insights
on protein assemblies. The high sensitivity, speed, and
the ability to handle sample heterogeneity have made
the XL-MS approach superior to traditional biophysical
methods, especially in analyzing proteome-wide PPI
networks [6e9]. In addition, quantification of cross-link
products can elucidate novel conformations and in-

teractions or shifts in structural equilibrium under
different physiological or pathological states.

Development of in vivo XL-MS strategies is important as
many PPIs are lost upon cell lysis (Figure 1) [10,11].
Many cross-linking technological advancements aim to
increase numbers of detected cross-linked peptides
using cell lysate cross-linking approaches. These ad-
vancements have potential to advance in vivo studies
although many do not address challenges specific for
in vivo cross-linking [12,13]. In vivo XL-MS poses

particular challenges because of low efficiency of cross-
link formation due to the high cellular protein concen-
tration (200e300 mg/mL [14]) and high prevalence of
Lysine residues (6% of all amino acids in human prote-
ome [15]) relative to the achievable cross-linker con-
centration. Therefore, affinity enrichment features were
incorporated even in early cleavable cross-linkers
designed for in vivo applications [16].

Cross-link enrichment is an active area of development
(Figure 2(a)). (3,5-bis(((2,5-dioxopyrrolidin-1-yl)oxy)

carbonyl)phenyl)phosphonic acid (PhoX) is a cross-
linker that can be utilized with immobilized metal ion
affinity chromatography (IMAC) for the enrichment of
cross-links formed in cell lysates [17]. However, the
decreased membrane permeability of PhoX makes it less
suitable for in vivo studies. Addition of tert-Butyl mask-
ing groups to PhoX (tBu-Phox) improved its membrane
permeability, enabling cross-linking in living cells [18].
Incorporation of MS cleavable glycosidic bonds into the
cross-linker spacer arm is another strategy to increase
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Figure 1

In vivo qualitative and quantitative cross-linking. In vivo cross-linking experiments utilize membrane permeable cross-linking reagents to capture
native protein–protein interactions and conformations in intact cells, tissues and organelles. After the in vivo reaction is complete, proteins are extracted
and digested, subjected to various methods to enrich cross-links, and analyzed on a high-resolution mass spectrometer. Mass spectrometry data is used
to identify cross-links and obtain information on intra-protein (conformations) and inter-protein (PPIs) structural networks that exist in cells, tissues, or
organelles. Quantitative in vivo XL can be used to compare phenotypes, disease states, age effects, drug treatments and other perturbations. Quanti-
tation can be done on the MS1 level (LFQ, SILAC, isotope labeled light/heavy cross-linker) or on the MS2 level (PRM, DIA, TMT, isobaric cross-linker).
Quantitative XL-MS allows detection of changes in PPI networks and protein conformations and complexes.
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cross-linker permeability [19]. In addition to membrane
permeability, in vivo cross-link formation is limited by
the half-life of the activated ester groups commonly
used for cross-linking reactions [12,13,18,20e23],
measured to be 7.5 min at pH 8.0 [24]. The non-
hydrolyzable, highly reactive di-ortho-phthalaldehyde
(DOPA) cross-linkers provide an attractive solution
[25]. Improved enrichment of in vivo cross-links

achieved by protein-based click-chemistry conjugation
with acid-cleavable linkers increased cross-linking
coverage of low abundance proteins and detection of
previously unreported PPIs [26,27]. Recently, a tetra-
meric cross-linker that can link up to four proteins
extended XL-MS structural capabilities beyond binary
protein interactions [28]. Bisby is based on a four-armed
branched peptide backbone with cleavable features
common to other PIR molecules. Identification of cross-
linked species with four peptides indicates that all four
reactive sites existed proximal to one another during

cross-linker reaction. Detection of tetralinks was facili-
tated by novel real-time MS methods to provide struc-
tural insights on multi-protein complexes in intact
organelles. Proteins and complexes exist within struc-
tural ensembles inside cells and the kinetics of cross-
linker reactions can limit what cross-linked peptides
may be observed. Therefore, quantitative measure-
ments of cross-linked peptide levels are essential to
visualize changes in phenotypes or in cells during drug
treatment or other perturbations to help unravel
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complex or conformational dynamics. Alternatively,
photo-cross-linking advancements offer significantly
reduced reaction periods and may offer improved abili-
ties for highly dynamic protein complexes [29]. How-
ever, the lower reaction specificity of photo-cross-linkers
can generate a variety of cross-linked products yet each
with lower abundance relative to cross-linkers with
higher reaction specificity.

Methods that can enable quantitative XL-MS (qXL-
MS) add another dimension to structural insights. Be-
sides mapping PPI networks, qXL-MS elucidates
changes in cross-linked levels in different samples. This
capability informs how protein conformations, in-
teractions, and/or modification levels are altered [30].
Similar to traditional quantitative proteomics methods,
qXL-MS can utilize either MS1-signals for XL quanti-
tation such as label free quantitation (LFQ) [31],
SILAC and isotope labeled cross-linkers [32e34], or

utilize MSn-signals for XL quantitation such as parallel
reaction monitoring (PRM) [24], tandem mass tag
(TMT) [35], Data Independent Acquisition (DIA)
[36], as well as isobaric cross-linker approaches [37]
(Figure 1). Implementation of traditional quantitation
methods might require optimization for cross-linked
samples. For example, identification of TMT-labeled
cross-linked peptides benefits from increased normal-
ized collision energy (NCE) compared to unlabeled
cross-links [38]. Implementing a stepped NCE resulted
www.sciencedirect.com
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Figure 2

Novel cross-linkers and integration of cross-linking with other structural biology methods. a) Novel cross-linkers enable capture of higher order
structural information (Bisby), enrichment of cross-linked peptides (BSP and tBu-PhoX), enhanced detection with cleavability (Bisby and TDS), faster
cross-link formation (DOPAn), and enhanced membrane permeability (tBu-PhoX). b) Proteome cross-linking is performed to provide distance restraints of
proximate residues within a protein or between subunits for protein complexes. Cross-linked peptides can be enriched by SEC, SCX, or affinity purification
to facilitate identification. Identified cross-links, measured protein relative quantitation, and PPI network database can be used to predict the composition
of protein complexes. XL-MS data can be integrated with other structural information either experimentally determined (HDX-MS, Cryo-EM, X-Ray
crystallography, NMR, SAXS/WAXS) or computationally predicted (e.g. AlphaFold) to provide novel structural insights using tools such as AlphaLink,
HADDOCK, ROSETTA, or UCSF IMP.

System-level XL-MS Botticelli et al. 3
in higher reporter ion intensities, necessary for a reliable
quantitation, with MS2 based identification and quan-

titation outperforming MS3. Recently, a hybrid strategy
utilizing MS3 for identification and subsequent selec-
tion of cross-links with targeted PRM quantitation was
used with a commercial cross-linker [39]. LFQ, where
cross-link abundance is estimated by integrating its
precursor peak in MS1 scans, was applied to compare
respiratory supercomplex formation in WT and trans-
genic mice [40]. DIA-based quantitative proteome
strategies have also supported qXL-MS [36].

An alternative quantitative approach involves modifying

cross-linker molecules by inserting heavy isotopes at
specific locations to produce two [37] or multiple
isobaric molecules [41] to facilitate multiplexed quan-
titation of in vivo cross-linked peptide levels [20].
Isobaric cross-linkers such as isobaric quantitative Pro-
tein Interaction Reporter (iqPIR) reagents enable
quantitation in MS2 spectra using multiple peptide,
fragment ions and replicate measurements to determine
variance and establish statistical confidence filters on
quantified ratios [42]. Apportionment algorithms are
employed to the overlapping isotope envelopes of
www.sciencedirect.com
stump-containing peptide and fragment ions on the basis
of the predicted relative peak intensities [42]. Encoding

quantitative information into cross-linker molecules can
reduce variability associated with sample processing
since cross-linked proteins can be mixed pre-digestion.

Technological advancements in data acquisition have
been adopted for cross-linked samples to improve depth
of coverage for in vivo XL-MS. For instance, high-field
Asymmetric Waveform Ion Mobility Mass Spectrom-
etry (FAIMS) provides ion separation on the gas phase
size/charge ratio, orthogonal to an upstream size exclu-
sion chromatography (SEC) fractionation of analyte size.

The combination of FAIMS and SEC, with FAIMS pa-
rameters optimized for each SEC fraction with machine
learning, nearly doubled the number of observed cross-
links [43]. Another instrumentation advance is Parallel
Accumulation Serial Fragmentation (PASEF), which can
partition cross-linked from linear and DE species for
data dependent acquisition (DDA) [44,45]. Recently, a
4D-DIA method using PASEF for XL identification and
quantitation from cellular and cell lysate samples
showed an improvement in repeatable identifications of
83% compared to 38% with a DDA approach [46].
Current Opinion in Structural Biology 2024, 87:102872
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Furthermore, applying real-time library search (RTLS)
with cross-linker specific diagnostic peaks can inde-
pendently target either cross-links or a combination of
cross-links and DE species, resulting in 14e35% in-
crease in IDs [47].

The numbers of cross-linked species that can be detec-
ted and/or quantified in a given experiment are highly
dependent upon the separation methods, mass spec-
trometry instrumentation, number of LC/MS/MS runs
and many other parameters. However, current published
datasets can reach tens of thousands of cross-linked
peptides [48]. Moreover, each detected cross-link spe-

cies holds intrinsic value as a protein or complex
conformational probe that can enable future quantitative
measurements to visualize systems-level conformational
dynamics. This constitutes a tangible and actionable
aspect of XL-MS data, not readily paralleled with many
other structural biology techniques.
Informatics advances
Advancements in cross-linked peptide analysis software
such as CRIMP 2.0 and MaxLynx have improved the
automation of cross-linked peptide analysis and the
reliability of their identifications [49,50], despite not
yet integrating advancements in artificial intelligence
(AI) based cross-linked peptide prediction tools that can
predict retention times [51] and MS/MS spectra [52].
Future iterations of cross-linked peptide identification
software capable of parallel analysis of different cross-
linker chemistries and proteolytic cleavages that can
be integrated into a combined output will be critical for

the progress in complexomics.

Inference of protein conformations giving rise to ac-
quired XL-MS data is a major informatics challenge
(Figure 2(b)). Traditionally one looks for available

structures where most cross-linked residues are within
the expected distance range for the cross-linker.
Sometimes however, no structures are yet known, or
cross-links are formed in disordered regions or unsolved
conformations of existing structures. AlphaFold2 har-
nesses the power of an artificial intelligence deep
learning technique and co-evolving sequence variations
to yield advanced protein structural prediction capabil-
ities [53]. AlphaLink software, a modified version of
AlphaFold2, incorporates experimental cross-link dis-
tance restraint information to complement its co-

evolutionary relationships and can steer predictions to-
wards sample specific protein conformations, including
those that are state-specific [29]. This is an advance
over existing ROSETTA [54] and HADDOCK [55]
cross-link based protein docking. Use of qXL-MS data
and Alphafold2 with shallow alignments revealed a non-
canonical nucleotide transporter conformation was
enriched in the mitochondrial interactomes in failing
hearts [21].
Current Opinion in Structural Biology 2024, 87:102872
Inter-protein cross-links give information about in-
teractions between proteins. AlphaFold2-predicted
structures can be leveraged to model pairs of interact-
ing proteins using its FoldDock pipeline [56], which is
important since the majority of protein interactions have
not been structurally characterized. The interfaces of
predicted high-confidence binary human protein com-
plexes using this approach are enriched in post-

translational modifications and disease-related mutations
[1]. Moreover, the pairwise AlphaFold2 interactions are
utilized in the CombFold software at the hierarchical and
combinatorial assembly stage to model large protein
complexes [57], as further expanded below.

Integration of experimental results, including cross-
linking data, complements computational scoring and
enhances the prediction accuracy of protein and com-
plex structural models [55]. The IMProv software in-
tegrates the UCSF integrative Modeling Platform

(IMP) with cryo-EM densities and crystallographic
structures together with cross-link data, with the added
option to use distance restraints conditioned by
hydrogenedeuterium exchange MS [58]. Assembline is
another software package that uses cross-link data
together with low resolution in-cell cryo-ET maps to
perform integrative structural modeling to generate
model ensembles for large cellular complexes that
preferentially satisfy cross-link distance constraints
[59]. Cross-links can be mapped to protein complex
structures predicted with AlphaFold Multimer [11] to

assess them or used to guide protein complex prediction
with IMP. However, at the scale of complexomics, the
computational costs to predict the structure of all
identified complexes and the labor costs to manually
validate their legitimacy are too large. The integration of
protein language models and geometric transformers
into complexomics data analysis workflows holds prom-
ise for large-scale complex structure prediction and
analysis. Recently, ESMFold a protein structure pre-
diction algorithm that utilizes a protein language model
with a geometric transformer has demonstrated much
faster structure prediction than AlphaFold2 with similar

accuracy, but it has not been directly trained on protein
complexes [60]. Also, a deep learning model that pre-
dicts the quality of protein complex structures,
DProQA, holds promise for the validation of large data-
sets of predicted protein complexes inferred by cross-
linking mass spectrometry complexomics data [61].

A challenge for qXL-MS is to identify conformational
causes of observed interactome differences in compared
samples. Tüting et al., manually mapped cross-links on
an impressive 146 ribosome structures to reveal

conformational plasticity [62]. The XLinkDB public
cross-link database and analysis toolset automatically
incorporates all structures that exist in the protein
databank (PDB) and maps observed cross-links on those
with the highest homology and coverage [63]. XlinkDB
www.sciencedirect.com
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was recently further developed to support quantitation
of dead-end (DE) peptides, cross-linker modified
products with only one terminus attached to a protein,
to help infer causes of observed cross-link abundance
differences in two samples not due to protein level
changes [64]. Whereas the abundance of both cross-
links and their corresponding DE peptides are affected
by conformational differences near the attached resi-

dues, including peptide PTMs, only cross-link levels are
sensitive to solvent accessible distances between cross-
linked residues. XLinkDB automatically integrates
cross-link and DE peptide quantitation to generate
possible hypotheses for observed cross-link abundance
level differences. In this manner, DE peptides can play
an important role in improved interpretation of XL
peptide level changes and conformational differences
between compared samples. Exploration of cross-link
data as interaction networks and in context of struc-
tures is also facilitated by the xiView platform [65].
XL-MS enabled structural & cellular biology
Capturing PPIs and protein conformations in their
native environments is of great utility to almost any
biomedical research area. For instance, recent cross-
linking experiments with intact human cytomegalo-
virus have revealed virion layer-specific organization of
viral and host proteins, a critical target for the treatment
of infectious diseases [66]. Additionally, coupling in vivo
cross-linking with subsequent affinity enrichment of the
bait protein allows capture of interactions of interest
with much higher precision and resolution than con-
ventional affinity purification mass spectrometry [67].

In vivo cross-linking is particularly advantageous in
analyzing membrane proteins and their complexes,
which usually require unperturbed membrane lipid en-
vironments for conformational stabilization. Unlike
traditional methods, such as blue native PAGE (BN-
PAGE) or complexome profiling, that require membrane
extraction prior to analysis, cross-linking can be
performed on intact cells, tissues or organelles,
providing unique insights on protein organization within
physiological environments. XL-MS has been applied to

verify depletion of respiratory supercomplex assemblies
upon subunit genetic manipulation and to study
apoptotic pathways in relation to complex IV [40,68].
The ability of in vivo XL-MS to capture native mito-
chondrial environments has also been applied to study
large non-membrane protein complexes, such as the 2-
oxoglutarate dehydrogenase complex [69,70].
Furthermore, quantitative in vivo cross-linking enabled
visualization of mitochondrial interactome changes
within murine heart failure tissues and in age-related
muscle function decline [21,22]. In both studies,
molecular-level insight observed through interactome
differences helped rationalize functional differences not
www.sciencedirect.com
regulated at the proteome level. Multiplexed quantita-
tive cross-linking enabled visualization of conserved and
unique interactome changes in cancer cells treated with
multiple drugs that all target the molecular chaperone
HSP90 for functional inhibition [20].

Although significant progress has been made in under-
standing PPI networks through in vivo XL-MS ap-

proaches, detection of low abundant cross-linked
peptides remains challenging [71]. Additionally, identi-
fied cross-links often lack protein complex specificity.
However, separation of protein complexes in their native
state followed by cross-linking provides a complementary
approach to reduce sample complexity and provide
complex specificity for identified cross-links to inform
the prediction of protein complex structures, especially
since proteins often participate in several different
complexes [72]. Separation of complexes from biological
samples using native gel electrophoresis, such as BN-

PAGE, or with SEC [73] has shown utility in complex-
ome profiling [74,75], which seeks to identify complexes
based on protein co-fractionation and abundance alone.
Algorithms based on statistical clustering methods such
as ComplexBrowser or AI algorithms trained on known
complex databases, such as ComplexFinder, have been
applied to enable automated identification of protein
complexes in complexome profiling experiments, yet
without XL-MS data [76,77]. Advancements in XL-MS
and AI-enabled analysis are beginning to pave the way
for the next generation of Complexomics, which seeks to

identify and predict the structure of proteome-wide
complexes using native separations and cross-linking
(Figure 3). Most notably, a new cross-linking method
that integrates native gel electrophoresis separation of
protein complexes with in-gel cross-linking for the PPI
analysis of fractionated protein complexes [72] could see
wide applications, especially when combined with the
developments discussed in this review. Similar approach
utilizing SEC separations have been shown useful [78].

The future of XL-MS enabled structural biology holds
many discoveries as cross-linker chemistries advance to

enable better cross-link formation, quantitation, and
enrichment, and as the detection and analysis of cross-
links improves with new instrumentation and computa-
tional analysis methods. As XL-MS becomes widely uti-
lized to tackle challenging biochemical and cell biology
questions, the MS-based proteomics community has
been actively engaged in developing guidelines and
generating methodological and reporting standards from
best practice in experimental design to data sharing and
community benchmark exercise [79,80]. The proper
adoption of a robust protocol in XL-MS workflow, and a

rigorous assessment of error rate in data analysis will be
critical for the routine application of XL-MS inMS-based
proteomics core facilities. The development of commu-
nity benchmarks in reagents and datasets will provide
transparency in assessing methodological and software
Current Opinion in Structural Biology 2024, 87:102872
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Figure 3

The Future Workflow of Complexomics Integrates Complexome Profiling with Cross-linking MS and AI-enabled Informatics Pipelines. Upstream
native separations such as size exclusion chromatography (SEC), native IEF liquid fractionation, or BN-PAGE can reduce sample complexity and facilitate
cross-link identification. Orthogonal cross-linking with cross-linkers of various length, polarity, and reactivity could be used to broaden structural infor-
mation sampling. Complex-specific cross-links derived from BN-PAGE in-gel cross-linking experiments or cross-linked SEC fractions combined with
relative protein quantitation can be used to computationally predict protein complex composition and connectivity. Integration of XL-MS data with other
structural information leads to novel structural insights as described in Figure 2(b). Structure analysis tools, such as DProQA, could be used to auto-
matically evaluate the quality of the predicted structures.
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advances for expert users. For the long-term sustainability
of XL-MS as a standard structural method in near future,
data access through public repositories will be essential

for knowledge transfer to computational biologists and
biology experimentalists to gain structural insights and
develop testable hypotheses.
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