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Abstract—Emotion recognition in conversations has become
increasingly relevant due to its potential applications across
various fields such as customer service, social media, and
mental health. In this work, we explore multimodal emotion
detection using both textual and audio data. Our models
leverage deep learning architectures, including Transformer-
based models such as Bidirectional Encoder Representations
from Transformers (BERT), Robustly optimized BERT ap-
proach (RoBERTa), Audio Spectrogram Transformer (AST),
Wav2Vec2), Bidirectional Long Short-Term Memory (BiL-
STM), and four fusion strategies that combine features from
multiple modalities. We evaluate our approaches using two
widely used emotion datasets, IEMOCAP and EMOY. Experi-
mental results show that fusion models consistently outperform
single-modality models, with Late Fusion achieving the highest
weighted F1-Score of approximately 78% on IEMOCAP using
both audio and text.
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I. INTRODUCTION

Emotion is a powerful feeling that defines an individual’s
mental state and guides their actions. Researchers have
utilized textual emotion detection and sentiment analysis
for various applications, including customer service and
chatbots [1]. In these realms, studying customer interac-
tions and chat dialogue sentiment enables improvements in
customer care experiences. Emotion detection frameworks
have also been used in social media analysis and monitor-
ing [2], which allows for the comprehension of emotions
represented in social media posts and comments, as well
as insights into public sentiment and opinion. Furthermore,
similar frameworks have been used in psychological re-
search and treatment [3], which provides the ability to
assess emotional states and development in therapy sessions
through the analysis of text or transcriptions [4]. Although
recent work on emotion detection for the aforementioned
applications has been promising, extracting specific emo-
tions such as fear, nervousness, calmness, and confidence
from text and speech in order to detect liars and deceivers
has not been thoroughly studied.

One existing approach that has gained attention in the past
few years is Emotion Recognition in Conversations (ERC),
or the process of identifying emotions expressed by partici-
pants in a conversation. ERC can improve human-computer
interaction, enhance customer service, and support mental
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health initiatives, especially in real time. However, ERC is
susceptible to several challenges that make it difficult for the
process to achieve a strong performance. Emotion can be
expressed in different categories and is highly subjective,
varying from person to person. Situational, social, and
cultural factors also influence the complex and dynamic
nature of emotions. Furthermore, human evaluation cannot
accurately predict expressed emotions. Small utterances in
a conversation, like ‘Yeah!!’, can signify various different
possible emotions. The presence of sarcasm, emotional
shift, and context can influence a conversation at any given
moment. For example, the IEMOCAP dataset [S] has been
annotated by six annotators. However, there have been dis-
crepancies among different annotators in emotion category
labeling, which illustrates the complexity of identifying
human emotion. Accuracy is also a point of concern when
it comes to ERC, especially in text and audio. These
challenges not only make it difficult to build an ERC-based
deep-learning model, but they also raise questions about the
predicted category of emotion and its accuracy.

Identifying emotions using a dimensional model [6] that
maps emotions to the nearest emotional categories is a
possible technique. However, an issue arises with regard
to the dataset. A dataset with proper dimensional labels is
not readily available. Although IEMOCAP provides dimen-
sional mappings ranging from 1 to 6, this is insufficient to
fully explore the dataset’s potential. The extraction of mean-
ingful features plays a crucial role in emotion classification,
as it directly impacts the performance of the models trained
on the data. Effective features from text and audio can
enhance a model’s ability to distinguish between different
emotional states. Once the features are extracted, various
models can be employed for training. Features like Mel-
Frequency Spectral Coefficients (MFCCs), chroma, pitch,
and loudness have been widely used to predict emotion from
audio samples. Prior studies have demonstrated that these
acoustic features can effectively model perceived emotions
in sound events [7]-[9]. These works show that both di-
mensional attributes (arousal and valence) and categorical
emotion labels can be predicted from sound using machine
learning approaches, with strong performances achieved
by incorporating polarity and feature importance analysis.
Building on this foundation, our work combines both textual
and audio modalities to improve emotion recognition in
conversational settings.

In this work, we explored Long Short-Term Memory
(LSTM), a type of Recurrent Neural Network (RNN), for
its ability to capture complex patterns and dependencies in
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conversational data. In addition, we utilized Large Language
Models (LLMs), namely BERT (Bidirectional Encoder Rep-
resentations from Transformers) [10] and RoBERTa (Ro-
bustly Optimized BERT Pretraining Approach) [11], as well
as the transformer models Audio Spectogram Transformer
(AST) [12] and Wav2Vec2 [13], which have demonstrated
remarkable performance in various Natural Language Pro-
cessing (NLP) tasks. We also employed a categorical emo-
tion framework with labels such as happy, sad, angry, and
neutral. Although dimensional models that involve valence
and arousal could offer more nuanced psychological per-
spectives, our focus is on practical model development and
benchmarking. We chose the categorical setup to remain
consistent with the IEMOCAP dataset and to ensure our re-
sults are directly comparable with prior work in multimodal
emotion recognition.

The remainder of this paper is structured as follows:
the subsequent Section II provides an overview of existing
research in emotion recognition and highlights relevant
methodologies and findings. Following that, Section III
discusses the datasets used in this study, including their
characteristics and limitations. Section IV outlines the ap-
proaches employed in this study, detailing the feature ex-
traction and model training processes. Section V presents
the experimental setup, including the evaluation metrics,
and summarizes the key findings from the experiments
to provide insight into the effectiveness of the proposed
methods. Finally, Section VI explains possible areas of
future research in emotion recognition.

II. RELATED WORK

Our literature review primarily focuses on different tech-
niques for automated emotion recognition, existing chal-
lenges, and approaches adopted for ERC, using categorical
models to detect emotion specifically from conversational
and dialogue data, and different implementations with multi-
modal data. Survey papers, peer-reviewed journals, research
projects, and published papers in this field have been used
to address these objectives. Section II-A represents an
overview of current emotion modeling and emotion datasets.
Section II-B describes different methods by which emotion
can be detected and dives deeper into each technique.

A. Emotion Models and Classification

1) Emotion models: Emotion is generally defined using
two types of models: categorical and dimensional. The
emotion labeling in the categorical model is fixed, dis-
tinct, and recognized by its respective class tags. Each
category has unique characteristics and individuals can only
experience one emotion at a time. On the other hand, for
dimensional emotion modeling, labeling is performed on a
multi-dimensional space rather than in distinct categories.
Ekman et al. [14] proposed six basic emotion categories:
anger, enjoyment, fear, sadness, disgust, and surprise, and
this framework is the most widely used and well-known
model for categorical emotion classification. In contrast, the
dimensional model views emotions as positions in a space
defined by dimensions such as valence (positive/negative),
arousal (calm/excited), and dominance (controlled/submis-
sive). Different models like Russell’s circumplex [15],
Thayer’s energy-stress model [16], and Plutchik’s “emotion

wheel” [17] represent emotions within this dimensional
space in different ways. Thayer’s energy-stress model uti-
lizes the two dimensions of energy and stress. Plutchik’s
wheel of emotions is a circular model which displays eight
primary emotions and their close secondary emotions in
a two-dimensional space, each pointing to its respective
emotion class. Russell’s circumplex model maps emotions
onto a circle (circumplex shape), where opposite points
represent contrasting feelings [6]. A dimensional model
enables the user to choose a point in a two- or three-
dimensional model, and represents a wide range of emotions
in a point space.

2) Emotion datasets: Traditionally, emotion datasets fo-
cus on textual modalities, with most research centering
around annotated tweets, forum posts, and movie reviews.
Recently, there has been an increase in research on mul-
timodal datasets due to their numerous use cases, espe-
cially conversational data. One of the most prominent and
widely used datasets in emotion recognition research is
the IEMOCAP [5] dataset. IEMOCAP (Interactive Emo-
tional Dyadic Motion Capture), a classic multimodal dataset
focusing on acted dyadic conversations, is labeled with
categorical and dimensional values. Although the samples
are labeled, the dimensional annotations by the evalua-
tors are not completely accurate and there are observable
discrepancies. Another dataset designed for research in
emotion recognition, particularly in the context of con-
versations, is MELD (Multimodal EmotionLines Dataset)
[18], an extension of the EmotionLines dataset featuring
all textual, audio, and visual modalities from the Friends
television series. Recently, Google has launched a large-
scale dataset, GoEmotions [19], which represents more fine-
grained emotions. Even though the dataset is not completely
conversational, the dataset features comments extracted
from Reddit conversations. These three datasets, IEMOCAP,
MELD, and GoEmotions, all focus on multimodal conver-
sational data. Other non-conversational datasets that involve
basic emotions include EMOV_DB [20], EmoDB [21],
RAVEDESS(Ryerson Audio-Visual Database of Emotional
Expressions) [22], and CMU [23]. This literature review
currently focuses primarily on conversational datasets, such
as IEMOCAP, and partially on non-conversation datasets,
such as EMOV, to study emotion detection.

B. Classification Approaches for Emotion Detection

1) Lexical & rule-based approach: Lexical approaches
focus on analyzing a text’s emotional content by examining
words and phrases associated with specific emotions. On
the other hand, rule-based approaches rely on predefined
sets of rules and linguistic patterns to identify and clas-
sify emotions. When combined, they focus on syntactic
structures, semantic relationships, and linguistic features to
identify the context and classify emotion from the text.
Hardik et al. [24] and Gaind et al. [25] both used a lexical
and rule-based approach to identify Ekman’s basic emotions
in text. In [24], Hardik er al. identified keywords, applied
rules to exclude unnecessary sentences, and considered
negation words to classify the emotion class for the text.
Gaind et al. [25] used a lexical approach with a slightly
deeper analysis of textual features. They created a bag of
words known as the EmotionWords Set (EWS) for Ekman’s
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standard emotion categories, where each word is associated
with corresponding intensity levels. The authors then scored
the emotions based on the degree of intensity in the text.
Although approaches such as these are able to use simple
NLP and syntactical rules to identify emotion labels, they
struggle to classify conversational emotion, especially in
utterances with fewer words.

2) Machine learning: The following section will review
different implementations for emotion detection in con-
versation using machine learning techniques. Adopting or
implementing a machine learning model involves a series
of steps that include determining the dataset, selecting the
model based on the target class or values to be predicted,
and performing feature extraction from the dataset.

To detect emotions such as fear, nervousness, calmness,
confidence, and more from text and speech using machine
learning models, a comprehensive and systematic approach
is followed. Firstly, publicly available annotated datasets
with target emotions, such as IEMOCAP [5], are carefully
selected based on their relevance, diversity, and size. This
preprocessing includes removing duplicates, handling miss-
ing values, and standardizing the format of the annotations.
Next, feature extraction is performed to represent emotional
content in both text and speech data. For text data, a com-
bination of lexical, syntactic, and semantic features can be
considered. Lexical features involve extracting word-level
statistics like term frequencies, Term Frequency-Inverse
Document Frequency (TF-IDF), and n-grams to capture
essential words and phrases related to emotions. Syntactic
features, such as part-of-speech tags, dependency parse
trees, and sentiment scores, provide information about the
sentence structure and sentiment expressions. Additionally,
semantic features can be derived from pre-trained word
embeddings like Word2Vec, GloVe, or FastText to capture
contextual meanings.

For speech data, acoustic features are extracted to capture
prosodic and spectral characteristics of emotions. Common
acoustic features such as Mel-Frequency Cepstral Coeffi-
cients (MFCCs), pitch, energy, and formants can be ex-
tracted from speech signals. These features are analyzed
over small windows of audio to capture temporal variations
in emotional expression. Once the relevant features are
extracted, different machine learning models are explored,
including both simple and deep learning approaches. Simple
models like Support Vector Machines (SVM), Naive Bayes,
and Decision Trees serve as the baseline models due to
their interpretability and ease of training. Meanwhile, deep
learning models such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Long
Short-Term Memory (LSTM) networks are explored for
their ability to capture complex patterns and dependencies
in the data. In addition, LLMs such as BERT, GPT-3, or
RoBERTa, which demonstrate better performance for NLP
tasks, can also be incorporated. These models can be fine-
tuned using the emotion datasets to become specialized
in detecting emotions from the text. During the model
training process, hyperparameter tuning and cross-validation
are implemented to make the model reliable. The best-
performing models are selected based on evaluation metrics
like accuracy, precision, recall, F1-Score, and confusion ma-
trix results. The most informative features can be identified
using techniques like Recursive Feature Elimination (RFE)

or feature importance analysis from tree-based models.

Traditional methods often struggle to capture dialogue
context and conversational dynamics, where emotions can
shift subtly with each turn of phrase. However, recurrence-
based models, particularly LSTM, Bidirectional LSTM
(BiLSTM), and Gated Recurrent Unit (GRU) can offer a
deeper understanding of emotional expression in dialogue
by capturing context and temporal variations within the
conversation. RNNs excel at capturing the dependencies
between the between words that shape emotional meaning.

Recurrence-based models, such as LSTM networks and
BiLSTMs, have become widely popular for emotion detec-
tion in conversations due to their ability to capture temporal
dependencies, handle sequential data, and model long-range
dependencies in text. LSTM is a type of RNN designed
to address the problem of vanishing gradient associated
with traditional RNNs, and it excels at capturing sequential
dependencies and context over extended distances. On the
other hand, BiLSTM enhances the capabilities of LSTMs
by processing sentences in both directions, left-to-right and
right-to-left. This approach allows the model to capture both
past and future context for each time step, thereby providing
a more comprehensive understanding of the conversation.
Refs. [26]-[28] worked on the dataset provided by Task
3 of the International Workshop on Semantic Evaluation
(SemEval-2019), which consists of 15k tweet conversa-
tional pairs. Chandra er al. [26] chose to employ GloVe
Twitter embedding with LSTM, Naive Bayes, and SVM
classifiers to detect emotions in textual conversations, and
reported an accuracy of 85%. On the same dataset, Rashid
et al. [27] experimented with 3 embedding approaches,
including Word2Vec, FastText, and GloVe (Global Vectors
for Word Representation) with a BiLSTM network. This
author achieved the highest F1 score of 69.63% with Glove
Embeddings. In contrast, Ragheb et al. [28] applied of-
fensive filtering, PII filtering, and language filtering on the
dialogue dataset to ensure quality and relevance. The authors
used a combination of lexical features, neural models, and
ensembling architectures with fine-tuned BERT and LSTM.
Chatterjee et al. [29] compared all the models used on the
Task 3 dataset, and concluded that BILSTMs/LSTMs were
the most frequent models, and that GRU and CNN models
were used in other implementations. Attention mechanisms,
ensemble approaches, and transfer learning using BERT,
ELMo (Embeddings from Language Models), and ULM-
FiT (Universal Language Model Fine-tuning) were popular
among most implementations.

The SemEval dataset is a textual conversational pair
with three to four dialogues. In order to perform ERC, a
more detailed conversational dataset is necessary, such as
MELD [30] or IEMOCAP [5]. Farooq et al. [31] proposed
a novel method combining the ROBERTa model with a BiL-
STM network for ERC on the MELD textual dataset. Their
model achieved a weighted average F1-Score of 60.12%.
Ando et al. [32] applied a different approach to detect emo-
tion from speech using two datasets, namely MSP-Podcast
and IEMOCAP, to implement a Listener-Adaptive (LA)
model that addresses listener-dependent emotion perception.
This architecture consists of an encoder, a decoder, a listener
embedding layer, and adaptation layers like Adaptive Fully-
Connected (AFC), Adaptive LSTM (ALSTM), and Adap-
tive CNN (ACNN). The author achieved a slightly higher
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accuracy of 63.2% compared to [31].

All of the above implementations and research perform
categorical classification for detecting emotion. Although
this worked for their application, they only used a few
class labels. With this method, as the number of classes
increases, there will be a negative effect on accuracy.
Instead of predicting the category of emotion class, Yang
and Hirschberg [33], Atmaja and Akagi [34] worked on
applying dimension prediction. Yang and Hirschberg [33]
introduced a deep neural network model designed to track
continuous changes in emotion, particularly in terms of
arousal and valence. Their architecture includes CNN BiL-
STM layers to handle temporal and spectral variations on the
SEMAINE [35] and RECOLA [36] databases. It achieved
a Concordance Correlation Coefficient (CCC) of 0.680 and
0.506 on arousal and valence, respectively. To prevent the
performance of valence prediction from being affected in di-
mensional space, Atmaja and Akagi [34] proposed a method
that integrates acoustic features with text features, thereby
converting words into vectors. This approach significantly
improved the prediction accuracy for valence in single-
task learning. Continuous dimension prediction of arousal,
valence, and dominance allows for the description of a wide
range of emotion results with intensities.

GRUs are a type of RNN architecture used in deep
learning. They are designed to solve the vanishing gradient
problem that can occur in standard RNNs, which makes
it hard for RNNs to learn and retain information over
long sequences. Huddar et al. [37] focused on sentiment
and emotion detection in conversation using multimodal
data (IEMOCAP, CMU-MOSE [38]). Zadeh et al. [38]
proposed using GRU and an attention mechanism to capture
the interlocutor state and contextual information between
utterances. The paper also discusses different fusion strate-
gies, such as early fusion, model-based fusion, and late fu-
sion. The attention-based model generally outperformed the
standard baselines across different modalities and datasets.
Arumugam et al. [39] utilized GRU to monitor a speaker’s
evolving mental state through their conversation, and Huang
et al. [40] fed input features to GRU to extract global
contextual information. Zhang and Xue [41] proposed a
novel architecture using an autoencoder on IEMOCAP and
EMODB [42] datasets to extract deep emotional features
from speech. The autoencoder consists of convolution parts,
instance normalization, dropout layers, and a GRU.

CNNs can be a powerful tool for emotion detection in
conversations by understanding the context and capturing
sequential patterns from large datasets. 1-D CNNs, Recur-
rent CNNs (RCNNs), and Graph CNNs (GCNNs) offer
unique advantages for extracting features and predicting
the target emotion. Izadkhah [43] explored the detection
of multiple emotions in text data. The authors highlighted
the presence of multiple emotions within conversational
data and introduced a custom-built CNN architecture for
this purpose. A combination of two datasets, CBET and
SemEval 18, both of which contain instances with more than
one emotion per sample, is used as input to the model. The
combination of CNN with GloVe embedding outperformed
other combinations with a Jaccard Index of 0.6463.

Nie et al. [44] constructed an utterance-level Graph
Convolutional Network (U-GCN) with a focus on semantic
correlations among utterances, and a Speaker-level GCN

(S-GCN) to capture correlations between new utterances
and speaker emotions. The author performed feature extrac-
tion using RoBERTa, and the S-GCN model outperformed
baseline models with an F1-Score of 65.4%. Jiang et al.
[45] performed a comparative study of CNNs and CRNNs
for emotion recognition in speech. Two kinds of speech
features, MFCC and GFCC, were used as input to the neural
networks. CRNN uses an additional recurrent layer (GRU)
to extract temporal information. After training the model,
CRNN had a higher fitting degree and accuracy when
compared to CNN. CRNN achieved a testing accuracy of
77.20% on MFCC features and 73.40% on GFCC features.
Ghosal et al. [46] introduced the Dialogue Graph Convolu-
tional Network (DialogueGCN), a graph-based approach for
ERC. This method overcame the limitations of RNN-based
models by using a directed graph to represent conversa-
tions, effectively capturing both sequential and speaker-level
contexts. When evaluated on benchmark datasets such as
IEMOCAP, AVEC, and MELD, DialogueGCN achieved an
accuracy of 64.18%.

In the case of dimensional space, Li and Akagi [47]
introduced a three-layer model with fuzzy inference systems
for estimating these dimensions by utilizing speech features
from prosodic, and spectral, and glottal waveform sources.
This architecture achieved a smaller mean absolute error and
a higher correlation with human evaluators. Parthasarathy
and Busso [48] proposed a framework that uses Multi-Task
Learning (MTL) with deep neural networks and shared hid-
den layers to capture the interrelation between these emo-
tional attributes. MTL achieved significant improvements
over single-task learning with a Concordance Correlation
Coefficient (CCC) of 0.7635, 0.2894, and 0.7130 on arousal,
valence, and dominance, respectively.

3) Other models: Along with deep Learning methods
like LSTMs and CNNs, which have gained prominence
in emotion detection from conversations, simple baseline
machine learning models still hold value under certain cir-
cumstances, especially when the data is simple text instead
of conversations. Along with Natural Language Processing
(NLP), Gaind et al. [25] used standard classifiers such as
SMO (Sequential Minimal Optimization) and J48 (a Java
implementation of the C4.5 decision tree algorithm) for
tweets classification, and Suhasini and Srinivasu [54] imple-
mented classical machine learning models like Naive Bayes
and K-Nearest Neighbors (KNN) on the Twitter dataset
using a rule-based approach based on Russell’s Circumplex
model. Although simple models stand out in classifying text
data, they do not perform well on conversational or multi-
modal data. Taking a different approach, [40] proposed
an Emotion Detection Reinforcement Learning Framework
(EDRLF) to detect emotions in conversations by considering
both the influence of preceding Emotional States (ES) and
the contextual information from previous utterances in the
MELD dataset. The authors extracted textual and acoustic
features separately from the dataset by utilizing GRUs, and
combined them with a reinforcement learning agent (D-Q
network) to perform sequential emotion detection decisions.
EDRLF produced the highest w-average F1 of 60.2% on
multi-modal data.
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TABLE I: Model Performances for Categorical Classification Across Different Modalities: T = Text, A = Audio, V =

Video
Paper  Dataset ML Model Modal Metrics Classes  Results

[26] SemEval GloVe+LSTM T Accuracy 5 85
[27] SemEval (Word2Vec,FastText)+BiLSTM T F1 Score 4 69.63
[28] SemEval Embeddings+BiLSTM T Micro F1 3 75.8
[31] MELD RoBERTa+BiLSTM T F1 Score 6 60.12
[32] IEMOCAP ALSTM & ACNN A W.Accuracy 4 61.6
[39] IEMOCAP VGG+GRU A+T+V  Fl-Score 5 65.4
[41] IEMOCAP CNN+GRU A UnW.Accuracy 4 71.2
[37] IEMOCAP  (GloVe,openSmile)+GRU A+T+V  F1-Score 5 73.3
[46] IEMOCAP CNN+GCN A+V F1-Score 6 64.18
[44] IEMOCAP  RoBERTa+GCN A+V F1-Score 6 65.4
[49] IEMOCAP LSTM-Attn T F1-Score 4 63.3
[49] IEMOCAP  AttnFusion A+T W.Accuracy 4 70.4
[50] IEMOCAP MFGCN A+T W.Accuracy 4 78.3
[51] IEMOCAP  Attn+CNN A+T F1-Score 4 66.1
[52] IEMOCAP  Transformer-Fusion A+T+V  F1-Score 4 84.1
[52] MELD Transformer-Fusion A+T+V  F1-Score 7 63.9
[53] IEMOCAP  Gated-Fusion A+T+V  W.Accuracy 4 72.39

TABLE II: Model Performances for Dimensional Prediction Across Different Modalities: T = Text, A = Audio, V = Video

Paper Dataset ML Modal Metrics Results

Yang et al. [33] SEMAINE CNN+BiLSTM A CCC (A,V)=0.68,0.50
Dim. et al. [34] IEMOCAP LSTM A+T Mean CCC 0.48

Li et al. [47] Fujistu(1),Berlin(2)  3-Layer A MAE (.16,.12)(1),(.37,.18)(2)

C. Hybrid Approach

The hybrid approach follows a combination of both lexi-
cal and machine learning approaches. Gaind et al. [25] com-
bined an Emotion-Word set with SMO and J48 classifiers
to achieve an accuracy of 91.7% and 85.4%, respectively.
Mahima et al. [55] also proposed a hybrid approach for
detecting multiple emotions in text and conversations from
the combination of four datasets: ISEARs, MELD, EmoDB,
and GoEmotions. Their hybrid model consists of manually
written rules and a pre-trained model, Sentence-BERT, to
identify the best emotions for each dialogue and generate
multiple emotion tags. The addition of machine learning to
the lexical approaches can help achieve better results when
analyzing conversational data as compared to the lexical
approach alone, as in Section II-B1.

A comprehensive summary of the reviewed works, for
both categorical classification and dimensional prediction,
is presented in Tables I and II.

III. DATASETS

In this study, we used two primary datasets: IEMO-
CAP [5] and EMOV [20]. This work focuses on conver-
sational emotion detection, with primary utilization of the
IEMOCAP dataset. EMOV is used as an additional dataset
for speech emotion recognition.

A. IEMOCAP

The IEMOCAP (Interactive Emotional Dyadic Motion
Capture) dataset consists of approximately 12 hours of
audio-visual data from 10 actors (five male and five female)
who were recorded while performing scripted dialogues
with a wide range of emotions, including happiness, sad-
ness, anger, frustration, surprise, and neutral. The dataset
includes both audio and visual data, as well as dialogue
transcriptions. The dataset annotations include both discrete
emotion labels (e.g., “happy”, ’sad”, etc.) and dimensional
emotion values like arousal, valence, and dominance. These
annotations correspond to each point in the dialogue and

were performed by a total of six evaluators. Each dialogue
itself was labeled by three evaluators. The dataset is spread
across five sessions, totaling 150 conversations and 9953
dialogues. In this work, we focus only on textual and audio
data for predicting categorical labels.

There are a few challenges associated with using the
IEMOCAP dataset for emotion recognition in conversations.
One challenge is the large size of the dataset and the
presence of noise in the audio data, which can affect the
performance of the models. Additionally, the annotations
provided by the evaluators may not be fully reliable, as
annotations are widely mismatched when evaluated by
more than one evaluator. This indicates the complexity of
labeling categories for conversational data. To address these
challenges, we adopt several preprocessing steps for sample
selection, feature extraction, and model training.

B. EMOV

The Emotional Voices (EMOV) dataset is a collection
of emotional speech recordings that can be used for train-
ing and evaluating speech models. The dataset includes
recordings of four speakers (two males and two females)
expressing different emotions, including neutral, sleepiness,
anger, disgust, and amusement. The dataset includes 6,893
audio files with varying durations ranging from 1 to 10 s.
Fig. 1 shows the distribution of emotion categories across
the dataset.

IV. METHODOLOGY

In this research, we focus on textual and audio modalities
for emotion detection. Separate models are trained on tex-
tual transcripts, audio, and fusions of both text and audio
datasets, with key preprocessing steps and techniques for
each model.

A. Dataset Preparation

The IEMOCAP dataset was first preprocessed to gather
all the textual transcripts and audio dialogues from each
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Fig. 1: Category-wise distribution of emotions
in the EMOV dataset.

conversation. The final dataframe includes valuable infor-
mation such as the emotion labels assigned by the three
annotators, the time frame of each dialogue, audio dialogue,
speaker IDs, session IDs, and conversation ID for each
sample. Since each dialogue has been labeled by three
different annotators, we selected the samples in which at
least two annotators agreed on the annotated categorical
emotion [56]. The final preprocessed dataset contains 7766
samples.

The IEMOCAP dataset provides textual transcripts for
each conversation, and we aim to classify emotions using a
deep learning model with this text data. We utilize multiple
transformer-based models, such as BERT and RoBERTa,
which possess unique features that are useful for extracting
contextual embeddings.

1) Data collection and preprocessing: The dataset was
preprocessed as follows:

1) Label Selection and Mapping: Initially, the dataset
had 10 categories of emotion labels. However, labels
like surprise, fear, other, and disgust were dropped
due to the class size being comparatively low. To
simplify classification and create a balanced dataset,
some categories were merged based on similarity:

o “Frustration” was mapped to “anger”
« “Excited” and “happiness” were mapped to “happy”

This label mapping strategy follows the methodology
used in Yoon et al. [56], where similar emotional
expressions were grouped to increase classification
robustness and consistency.

2) Text Cleaning: The text data was preprocessed to
remove punctuation, convert all text to lowercase, and
tokenize the text using NLTK’s word tokenizer.

3) Token Filtering: To improve the reliability of emotion
classification, only sentences with 10 or more tokens
were considered, and short and ambiguous sentences
were left out. Many of these short samples lack clear
emotional cues in both text and audio modalities.
They also often consist of filler or neutral responses
(e.g., “yeah,” “okay,” “I see”) that do not contribute
meaningfully to model training. Given the size of our
dataset, this filtering step does not negatively impact
performance and instead helps improve training stabil-
ity and interpretability by increasing the signal-to-noise

ratio.

4) Label Encoding: Labels were converted to a numer-
ical format using LabelEncoder from scikit-learn,
which enables compatibility with the model’s output
layer.

Fig. 2 shows the distribution of samples in IEMOCAP
across four emotion categories after preprocessing.
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Fig. 2: Category-wise distribution of emotions in the
IEMOCAP dataset after preprocessing.

2) Acoustic feature extraction: In this step, we focus
on extracting a comprehensive set of acoustic features
from the audio conversations from IEMOCAP and EMOV,
then training the model with the extracted features. These
features include:

o Mel-Frequency Cepstral Coefficients (MFCCs):
These coefficients represent the short-term power spec-
trum of sound and are widely used in speech and
audio processing. Specifically, we extract 45 MFCCs
and calculate their mean values.

« Pitch: This feature captures the perceived frequency of
sound and is essential for detecting tonal variations in
speech. We compute the mean and standard deviation
of the pitch values.

« Energy: The Eoot Mean Square Energy (RMSE) mea-
sures the audio signal’s amplitude and helps in under-
standing the intensity of the spoken words. Both the
mean and standard deviation of RMSE are calculated.

o Spectral Centroid: This feature indicates the center
of mass of the spectrum and measures the brightness
of the sound. We compute both the mean and standard
deviation of the spectral centroid.

« Spectral Rolloff: This feature represents the frequency
below which a specified percentage of the total spectral
energy lies. We calculate the mean spectral roll-off.

o Spectral Bandwidth: This feature measures the width
of the spectral band and helps identify the spectrum’s
spread. We calculate the mean spectral bandwidth.

o Chroma Features: These features represent the 12
different pitch classes and provide a harmonic audio
signal representation. We calculate the mean values for
each of the 12 chroma features.

o Zero-Crossing Rate (ZCR): ZCR tracks the rate at
which the audio signal changes from positive to nega-
tive or vice versa, thereby providing insights into the
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noisiness and percussiveness of the sound. We compute
both the mean and standard deviation of ZCR.

We implemented our audio feature extraction pipeline
using the Librosa library in Python. The audio was resam-
pled to 16kHz and converted to mono. We extracted a total
of 45 MFCCs, pitch (mean and standard deviation), Root
Mean Square (RMS) energy, spectral centroid and band-
width, spectral rolloff, chroma features (12), zero-crossing
rate (mean and std), loudness (via decibel-scaled RMS),
and mel-spectrogram energy. Additionally, we computed 10
Linear Predictive Coding (LPC) coefficients. All statistical
features were aggregated using mean or standard deviation
across the full utterance duration. This extended set of low-
level descriptors provides a comprehensive representation
of prosodic, spectral, and energy-related patterns relevant
to emotional expression in speech.

The extracted features with and without the noise filter
were then used to train with various deep learning models.
Models including BiLSTM, transformer-based models, and
simple neural networks are used, all implemented using the
Keras library in Python. The following sections include a
detailed description of each model, including its respective
architectures and hyperparameters. These models are all
capable of capturing temporal dependencies in the audio
data, making them suitable for this task. Different models
are used for audio-based, text-based, and fusion-based ap-
proaches.

B. Audio-Based Approaches

For audio-based emotion classification, three different
models are used: BiLSTM, AST, and Wav2Vec2.

1) Bidirectional LSTM: Features extracted from sec-
tion IV-B are used to train a BILSTM model. The BiLSTM
model consists of two didirectional LSTM layers with 128
and 64 units, respectively. LSTM is a type of RNN used to
capture sequential data dependencies and reduce problems
like vanishing gradients. The cells maintain information
across long sequences and gates are used to control the flow,
thereby maintaining a focus on context.

We added dropout layers with a rate of 0.2 after each layer
in order to prevent overfitting. Our BiLSTM model also
includes an Adam optimizer with a learning rate of 0.001,
categorical cross-entropy as the loss function, and accuracy
as the evaluation metric. Keras-Tuner is used to search for
optimal configurations of LSTM units and dropout rates.
Attention is used to enhance the focus on significant parts
of the audio sequence.

The steps involved in training BiLSTM are as follows:

« Data Preprocessing: We load the audio files with a
sample rate of 16 kHz and convert them to a mono
channel using the Librosa library to extract relevant
segments and convert them into a suitable format for
feature extraction.

« Feature Extraction: The acoustic features are ex-
tracted using the Librosa library.

o Model Training: The extracted features are used to
train the BILSTM model. The model is trained to clas-
sify the emotions present in the audio conversations.

« Evaluation: The trained model is evaluated on a test
set to determine its accuracy and F1 score. Confusion
matrices are generated to visualize the model’s perfor-
mance across different emotions.

2) Audio Spectrogram Transformer (AST): The Audio
Spectrogram Transformer (AST) [12] is a deep learning
model that utilizes the transformer architecture to analyze
audio data. AST applies this architecture to audio signals
by converting them into spectrograms, which are visual
representations of the frequency spectrum over time.

The steps involved in training AST are as follows:

o Spectrogram Generation: The raw audio waveform is
transformed into a spectrogram.

o Patch Embeddings: The spectrogram is divided into
smaller patches, which are then embedded into a lower-
dimensional space.

o Transformer Encoder: These embedded patches are
fed into a transformer encoder, which processes the
sequence using self-attention to capture long-range
dependencies.

o Classification Head: The output from the transformer
encoder is passed through a classification head to
predict emotion labels.

Fig. 3 shows the architecture of the AST model used in
this experiment.
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Fig. 3: Architecture of the AST model
for audio classification [12].

3) Wav2Vec2: Wav2Vec2 [13] is a self-supervised learn-
ing model designed for learning speech representations from
raw audio waveforms. Wav2Vec2 can be fine-tuned for
specific tasks such as emotion classification. The model
architecture consists of a convolutional feature encoder and
a transformer context network.

The steps involved in Wav2Vec2 processing are as fol-
lows:

o Feature Encoder: The raw audio waveform is passed
through convolutional layers to extract low-level fea-
tures.

o Context Network: These features are processed by a
transformer network to capture context and dependen-
cies within the audio signal.

« Quantization: A quantization step discretizes the con-
tinuous speech representations.

« Fine-Tuning: The pre-trained Wav2Vec2 model is fine-
tuned on labeled emotion datasets to adapt the repre-
sentations for emotion classification.
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Fig. 4 shows the architecture of the Wav2Vec2 model
used in this experiment.
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Fig. 4: Architecture of the Wav2Vec2 model
for audio classification [13].

C. Text-Based Approaches

For text-based emotion classification, two different mod-
els are used: BERT and RoBERTa. These models lever-
age a pre-trained transformer model for feature extraction,
followed by a classification layer, which is well-suited for
capturing contextual information in text. Transformer-based
models are selected primarily due to this ability to capture
contextual information as well as semantic relationships
with the help of an attention mechanism [57]. The attention
mechanism not only understands individual words, but also
captures their meaning by assigning different levels of
importance to different words with its Query, Key, and Value
mechanisms.

1) BERT (bert-base-uncased): Introduced by Google, the
BERT model is well known for capturing bidirectional
context in language, and can be used to achieve fine-grained
emotion detection. BERT is pretrained using Next Sentence
Prediction (NSP), which promotes flow between sentences,
and Masked Language Modeling (MLM), which predicts
the masked words in a sentence and the next sentence.

2) RoBERTa (roberta-base): RoBERTa, a robustly opti-
mized version of BERT developed by Facebook, provides
stronger contextual embeddings and effectively captures
larger language patterns in emotions than BERT. RoBERTa
removes NSP, which gives it the ability to focus only on
MLM for better token representations.

3) Training process: Both BERT and RoBERTa are
trained using two classifiers:

1) A fully connected layer is added at the end to map hid-

den states to the number of target classes (emotions).

2) A BiLSTM model processes the data sequence in both

directions

The models are also implemented with the following
techniques:

o Learning Rate: The models are fine-tuned on the
emotion classification task with a small learning rate
to avoid disrupting pretrained weights.

« Optimizer and Loss Function: The AdamW (Adap-
tive Moment Estimation with Weight Decay) optimizer
is used with a learning rate of 2 x 10~ for all models,
providing stable convergence. Cross-entropy loss is
used to compute the error during training.

We split the textual dataset into an 80:20 ratio for training
and testing. For each model, the text samples are tokenized
using the respective model tokenizers with padding and
truncation to a maximum length of 128 tokens. The text is
then converted into PyTorch tensors for compatibility with
the models.

« Batching: Mini-batches with a batch size of 4 are used
to balance computational efficiency and memory usage.

o Training Loop: Each model is trained for five epochs,
with the following steps repeated in each epoch:

¢ 5-Fold Cross-Validation is performed, which divides
data into five subsets (folds) to train and validate the
model across all subsets, improving reliability.

o Training Process:

— The model predicts the labels for the training data.
— The loss and accuracy are calculated for each batch,
and gradients are computed and backpropagated.

— Model weights are updated to minimize the training

loss.

D. Fusion-Based Approaches

Fusion-based models combine multiple modalities to
form a multimodal understanding of data. For IEMOCAP,
audio and text features are combined at a particular stage
in the fusion model pipeline. The stage at which we com-
bine the features decides the kind of fusion. A pretrained
RoBERTa model is used to extract the text embeddings,
which will be used as text features, similar to what was
performed in Section IV-C. Features extracted from Sec-
tion IV-B are used as the audio features. Both of these
features are combined in a fusion to predict the target
categorical emotion.

We explore four fusion-based multimodal models: Late
Fusion, Hierarchical Attention Fusion, Cross-Modal Trans-
former Fusion, and Gated Multimodal Fusion. Each model
incorporates, encodes, and combines text and audio features
in a unique way for emotion classification.

1) Late fusion: The Late Fusion model is one of the
most popular forms of the fusion-based approach. In this
technique, we process text and audio independently and
combine their outputs later to make the final prediction. The
independent processing of each modality allows each one to
become specialized, and the logits are averaged to form the
final classification. This is a simple and effective technique,
especially when the modalities are loosely coupled, as in
there is limited interaction between modalities.

The steps involved in Late Fusion are as follows:

o Text Processing: Contextual embeddings are extracted
from textual transcripts using a pretrained RoBERTa
transformer, and a dedicated text classifier is imple-
mented as a feed-forward neural network to process
the text feature.

o Audio Processing: Audio features are passed through
an audio encoder, and a separate audio classifier pro-
cesses the encoded audio features.

« Late Fusion: Outputs from both the text classifier and
the audio classifier are combined at the logit level using
a simple averaging mechanism. Then, the combined
logits are used to predict the final class probabilities
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Fig. 5 shows the architecture of the Late Fusion model
used in this experiment.
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Fig. 5: Architecture of the late fusion model
for audio and text classification.
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2) Hierarchical attention fusion: The Hierarchical Atten-
tion Fusion model applies attention mechanisms to prioritize
certain features of high importance from both modalities.
Text and audio are encoded separately, and attention weights
focus on important regions before concatenating the features
for final classification. This method effectively captures
modality-specific and cross-modal interactions and is suited
for tasks where specific text phrases or audio signals dom-
inate.

The steps involved in Hierarchical Attention Fusion are
as follows:

« Text Processing: Contextual embeddings are extracted
from textual transcripts using a pretrained RoBERTa
transformer. A learnable attention mechanism assigns
weights to the contextual embeddings, and attention
scores are computed using a feed-forward neural net-
work.

« Audio Processing: Audio features are processed in a
similar way using an attention layer.

« Fusion and Classification: Both text and audio fea-
tures are concatenated into a single multimodal repre-
sentation and passed through a feed-forward classifier
with ReLLU activation and dropout for regularization.

Fig. 6 shows the architecture of the Hierarchical Attention
Fusion model used in this experiment.
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Fig. 6: Architecture of the hierarchical attention fusion
model for audio and text classification.

3) Cross-modal transformer fusion: The Cross-Modal
Transformer Fusion model uses a transformer encoder to
fuse text and audio features. This model combines em-
beddings from both modalities with self-attention layers to
capture complex relationships. This architecture specializes
in capturing long-range dependencies and interactions [58].

The steps involved in Cross-Modal Transformer Fusion

are as follows:

o Text Processing: Contextual embeddings are extracted
from textual transcripts using a pretrained RoBERTa
transformer.

e Audio Processing: Audio features are processed
through an encoder layer.

« Fusion and Classification: Text and audio embeddings
are concatenated and passed through the transformer
encoder. A transformer encoder with eight attention
heads and two layers models interactions between text
and audio features. The pooled features are fused and
classified into emotion categories.

Fig. 7 shows the architecture of the Cross-Modal Trans-

former Fusion model used in this experiment.
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Fig. 7: Architecture of the cross-modal transformer
fusionmodel for audio and text classification.

4) Gated multimodal fusion: The Gated Multimodal
Fusion model employs gating mechanisms to dynamically
assign weights to text and audio features. The gates decide
the contribution of each modality to the final prediction.
This mechanism ensures robust integration of modalities,
even when one may be noisy or unreliable. This approach
has been shown to improve multimodal robustness and
flexibility in prior work [59].

The steps involved in Gated Multimodal Fusion are as
follows:

o Text Processing: Contextual embeddings are extracted
from textual transcripts using a pretrained RoBERTa
transformer.

e Audio Processing: Audio features are processed
through an encoder layer.

¢ Gating Mechanism: Two gating networks are used to
learn the importance of both text and audio modality.
Gated features are computed by element-wise multipli-
cation of the gate values and their respective features.

e Fusion and Classification: The fused features are
passed through a fully connected network with dropout
and ReLU activation and classified into emotion cate-
gories.

Fig. 8 shows the architecture of the Gated Multimodal

Fusion model used in this experiment.

V. EXPERIMENTS AND RESULTS

In this section, we present the results of our experiments
with various models for the task of emotion classifica-
tion. Our experiments try to improve emotion classification
scores compared to models mentioned in Table I.
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Fig. 8: Architecture of the gated multimodal fusion
model for audio and text classification.

A. Evaluation Metrics

For each model, the model is evaluated using the test set
after training is performed. To evaluate the performance of
each model, we consider its confusion matrix and F1-Score.
For our best-performing model, we report classification
metrics including weighted precision, recall, and F1-Score,
as well as per-class results.

1) Confusion matrix: A confusion matrix is a table used
to evaluate the performance of a classification model by
comparing its predicted labels with the actual labels of the
samples. It is especially useful in both binary and multi-
class classification tasks. Each cell in the matrix shows the
number of predictions for each actual vs. predicted class
combination.

For each class in a multi-class setting, the matrix allows
us to define:

o True Positive (TP): Correctly predicted instances of
the target class.

« True Negative (TN): Correctly predicted instances that
do not belong to the target class.

« False Positive (FP): Instances incorrectly predicted as
the target class.

« False Negative (FN): Instances of the target class
incorrectly predicted as another class.

These values form the basis for calculating evaluation
metrics such as accuracy, precision, recall, and F1-Score
for each class.

2) Classification metrics: Classification metrics provide
key performance indications for models’ performances on
predicting each emotion class in the dataset. Classification
metrics include precision, recall, F1-Score, and weighted
average F1-Score.

o Precision: Measures the accuracy of positive predic-
tions. It is the ratio of true positives to the total
predicted positives:

TP

P .. _
recision TP+ FP

« Recall: Measures the model’s ability to identify all
positive instances correctly. It is the ratio of true
positives to the total actual positives:

TP

Recall = —
T TP YN

e F1-Score: F1-Score is the harmonic mean of precision
and recall. This balances both precision and recall, and
it is useful when class distribution is imbalanced:

Precision x Recall

F1-Score = 2 x —
Precision + Recall

o The weighted average F1-Score: Instead of calculat-
ing the F1-Score for each class and averaging them
equally, the weighted average F1-Score gives more
weight to classes with more samples.

ZiC:l(SupportZ- x F1-Score;)
3>i_y Support,

The performance of the models on the IEMOCAP dataset
is evaluated based on four emotional categories: “happy”,
“sad”, “neutral”, and “angry”. Since the IEMOCAP dataset
is not balanced, we used the weighted average F1-Score as
the primary metric for evaluation. The weighted average F1-
Score is particularly useful in situations where the classes

are imbalanced, as it ensures that each model’s performance
on each class is appropriately reflected in the final score.

W. A. F1-Score =

B. Text-Based Models

For the text-based models in this study, the pretrained
transformer models RoOBERTa and BERT are utilized, along
with a BILSTM model. Each model is fine-tuned on the
IEMOCAP dataset for the task of emotion detection using
text data.

1) BERT (bert-base-uncased): BERT is known for its
ability to capture bidirectional context in a language, as it
performs excellently compared to many baseline models for
emotion classification in text. Our BERT model was trained
with the following hyperparameters and achieved a weighted
F1-Score of 69.92%.

o batch_size: 5

« learning_rate: 2 x 107°

o dropout: 0.3

o optimizer: Adam

« loss_function: CrossEntropyLoss

2) RoBERTa (roberta-base): RoBERTa, a robustly opti-
mized version of BERT, is known for its ability to capture
contextual information and offer improved performance
compared to BERT. Our RoBERTa model was trained with
the following hyperparameters and achieved a weighted F1-
Score of 72.37%.

o batch_size: 4

o learning_rate: 2 x 10~°

o optimizer: AdamW

e dropout: 0.3

o loss_function: CrossEntropyLoss

3) BILSTM: BiLSTM networks are widely used for
sequential data processing tasks because they can capture
long-term dependencies in both directions. Our BiLSTM
model was trained with the following hyperparameters and
was evaluated using S-fold cross-validation.

o batch_size: 16

o learning_rate: 2 x 10~°

o optimizer: AdamW

o loss_function: CrossEntropyLoss
o dropout: 0.2
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RoBERTa with BiLSTM outperformed all the other models
with a weighted F1-Score of 73.33%, and BERT with
BiLSTM achieves a weighted F1-Score of 72.75%. Fig. 9
shows the confusion matrix for the BiLSTM classification
of the test data with RoBERTa.
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Fig. 9: Confusion matrix for BILSTM with RoBERTa
evaluated using the IEMOCAP dataset for
emotion classification.

C. Audio-Based Models

For the audio-based models in this study, BiLSTM, AST,
and Wav2Vec2 are trained to identify acoustic features
for emotion classification. For all three models, sample
utterances with a minimum token size of 10 are considered.
There are a total of 4471 utterances that meet these criteria.

1) BiLSTM: All 81 acoustic features were standardized
with a train and test split of 80:20. The feature vectors were
then reshaped to fit the input requirements of the BiLSTM
model architecture below:

« Layers:

Bi-directional LSTM: 128 units,

Dropout Rate: 0.2

Bi-directional LSTM: 64 units

Dropout Rate: 0.2

Dense: Softmax activation

Output Size: number of emotion categories

o Loss Function: Categorical cross-entropy

« Optimizer: Adam optimizer with default learning rate

« Batch Size: 32

« Epochs: 15

Our BiLSTM model achieved a weighted F1-Score of
62.08% on IEMOCAP and 97% on EMOV.

2) Audio  Spectrogram  Transformer  (AST):
The AST model was  fine-tuned on  the
IEMOCAP dataset wusing the pre-trained model

MIT/ast-finetuned-audioset-10-10-0.4593.
The dataset was split into training and testing sets in an
80:20 ratio. We extracted audio features using the AST
feature extractor and truncated audio clips or padded them
to a maximum length of 10 seconds.

a) Model architecture and initialization:

o Pretrained Model: MIT/ast-finetuned-audioset-10-10-
0.4593

o Number of Trainable Parameters: ~5.3 million.

o Output Layer: Configured for N-class emotion clas-
sification with a softmax activation function.
b) Training configuration:

« Batch Size: 16

o Number of Epochs: 10

o Learning Rate: 5 x 1076

o Weight Decay: 0.2

o Gradient Accumulation: 1 step

o Checkpointing: Enabled for gradient optimization and
best model selection

Our AST model achieved a weighted F1-Score of 64.99%
on IEMOCAP, which is better than BiLSTM, and 98.96%
on EMOV.

3) Wav2Vec2 Model: The Wav2Vec2 model is fine-
tuned on the IEMOCAP dataset using the pre-trained
facebook/wav2vec2-base-960h model. We split the
dataset into training and testing sets with an 80:20 ratio.
We extracted audio features using the Wav2Vec2 feature
extractor and truncated the audio clips or padded them to a
maximum length of 10 seconds.

a) Model architecture and initialization:

o Pretrained Model: facebook/wav2vec2-base-960h

o Number of Trainable Parameters: ~95 million

o Output Layer: Configured for N-class emotion clas-
sification with a softmax activation function
b) Training configuration:

« Batch Size: 16

o Number of Epochs: 30

o Learning Rate: 1 x 107°

o Warm-up Steps: 50

o Weight Decay: 0.02

¢ Gradient Accumulation: 1 step

« Early Stopping: Enabled with a patience of 3 epochs

o Checkpointing: Enabled for gradient optimization and
best model selection

Our Wav2Vec2 model achieved a weighted F1-Score of
66.81% on IEMOCAP and 99.48% on EMOV. The high
performance on the EMOV dataset is likely due to its
cleaner audio, less speaker variability, and smaller label set
when compared to IEMOCAP. Fig. 10 shows the confusion
matrix for Wav2Vec?2 classification of test data.

4) Comparison: The performances of the audio-based
models are shown in Table III for the EMOV dataset and
the upper section of Table IV for the IEMOCAP dataset.

TABLE III: Comparison of Audio-Based Model
Performances on EMOV for 5 Classes: Amused, Angry,
Disgusted, Neutral, and Sleepy

ML Model Modal Classes W.F1(%)
BiLSTM Audio 5 96.8

AST Audio 5 98.96
Wav2Vec2 Audio 5 99.48

D. Fusion-Based Models

Our fusion-based models perform the best compared to
other models in the Text and Audio modals. We used 81-
dimensional acoustic features, extracted as explained in
Section IV-B. Four fusion-based models are implemented
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Fig. 10: Confusion matrix for Wav2Vec2 evaluated using
the IEMOCAP dataset for emotion classification.

and compared: Late Fusion, Hierarchical Attention, Cross-
Modal Transformer, and Gated Multimodal Fusion. Each
model is trained using the following configuration:

« Batch Size: 16

o Number of Epochs: 25

« Learning Rate: 2 x 107°

« Early Stopping: Enabled with patience of 3 epochs.

1) Late fusion: The Late Fusion model integrates audio
and text at the decision level by averaging the logits of both
classifiers for each modality.

Our Late Fusion model achieved a weighted F1-Score of
77.90% on IEMOCAP. Fig. 11 shows the confusion matrix
for its classification on test data.
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Fig. 11: Confusion matrix for late fusion evaluated using
the IEMOCAP dataset for emotion classification.

2) Hierarchical attention: The Hierarchical Attention
Fusion model uses attention mechanisms to process text
and audio features individually, and combines them for
classification.

Our Hierarchical Attention Fusion model achieved a
weighted F1-Score of 75.57% on IEMOCAP.

3) Cross-modal transformer: The Cross-Modal Trans-
former Fusion model combines audio and text embeddings
using a transformer-based architecture.

Our Cross-Modal Transformer Fusion model achieved a
weighted F1-Score of 75.37% on IEMOCAP.

4) Gated multimodal: The Gated Multimodal Fusion
model utilizes a gating mechanism to dynamically weight
contributions of text and audio features.

Our Gated Multimodal Fusion model achieved a weighted
F1-Score of 76.04% on IEMOCAP.

5) Comparison: The performance of the fusion models
on the IEMOCAP dataset is presented in the lower section
of Table IV. Additionally, the per-class performance of
the Late Fusion model, which was identified as the best-
performing fusion-bsed approach, is detailed in Table V.

6) Discussion: Fig. 12 presents a comparative analysis
of training loss, validation loss, validation accuracy, and
validation F1-Score across epochs for four fusion-based
models: Late Fusion, Hierarchical Attention, Cross-Modal
Transformer, and Gated Multimodal. These curves help
illustrate how model performance evolves over time and
provide insight into generalization behavior and conver-
gence stability.

To further assess the performance of the best-performing
model (Late Fusion), we computed per-class metrics includ-
ing precision, recall, and F1-Score, along with weighted
averages to account for class imbalance. These values are
derived from the confusion matrix and provide a more
detailed understanding of how the model handles each
individual emotion class.

As shown in Table V, the model performs particularly
well on the happy class, with a precision of 81.8% and
a recall of 87.8%, which indicates that the Late Fusion
model not only captures most of the true positives but also
avoids many false positives. The angry class also shows
strong performance with a precision of 82.6% and recall
of 82.9%. In contrast, the model struggles more with the
neutral class, where the precision drops to 62.5% and recall
to 53.4%, likely due to the ambiguous and overlapping
nature of neutral expressions. The sad class maintains a
balanced performance with 67.0% precision and 71.8%
recall. Overall, the model achieves a weighted precision
of 77.3%, recall of 77.0%, and an F1-Score of 77.9%,
reflecting strong and stable performance across all classes.

Table IV compares the weighted F1-Scores across all
evaluated models. Our fusion-based approaches significantly
outperform prior work on the IEMOCAP dataset. For ex-
ample, the best-performing model from previous literature,
Attn+CNN [51], achieves a weighted F1-Score of 66.10%.
In contrast, our Late Fusion model achieves the highest
score of 77.90%. Even our text-only models, such as
RoBERTa+BiLSTM, perform competitively with a score
of 73.33%. These results demonstrate the effectiveness of
our fusion strategies and highlight the value of integrating
transformer-based encoders with sequential learning layers
for emotion recognition in conversations.

VI. CONCLUSION AND FUTURE WORK

This research demonstrates the potential of fusion models
trained on multimodal datasets as compared to individual
modalities. Emotion recognition in conversations is a dif-
ficult task and continues to face long-standing accuracy
challenges. Although text-based models are simple, fast,
and perform reasonably well on the IEMOCAP dataset,
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Fig. 12: Comparison of training and validation performance metrics for four fusion models
evaluated using the IEMOCAP dataset for emotion classification.

TABLE IV: Comparison of Model Performance on the
IEMOCAP Dataset Across Four Emotion Classes: Happy,
Neutral, Angry, and Sad Modalities: A = Audio, T = Text

Model Modalities W.F1 (%)
RoBERTa T 72.37
BERT T 69.92
RoBERTa+BiLSTM T 73.33
BERT+BiLSTM T 72.75
BiLSTM A 62.08
AST A 64.99
Wav2Vec2 A 66.81
Late Fusion T+A 77.90
Hierarchical Attention T+A 75.57
Cross-Modal Transformer T+A 75.37
Gated Multimodal T+A 76.04

TABLE V: Per-Class Performance and Weighted Metrics
for the Best Performing Late Fusion Model Evaluated
using the IEMOCAP Dataset for Emotion Classification

Class Precision (%) Recall (%) F1-Score (%)
Happy 81.8 87.8 84.7
Neutral 62.5 534 57.6
Angry 82.6 82.9 82.7
Sad 67.0 71.8 69.3
Weighted Avg. 71.3 77.0 719

fusion models consistently outperform them. For instance,
models like BERT and RoBERTa with BiLSTM achieve
strong results, but fusion approaches, by effectively combin-
ing information from multiple modalities, improve overall
accuracy and better handle the complexity of emotion recog-

nition. Experimental results show that while text models
such as RoBERTa and BERT achieve promising weighted
F1 (W.F1) scores of 73.37% and 69.92%, respectively,
fusion models like Late Fusion and Gated Multimodal
Fusion reach significantly higher W.F1 scores of 77.90%
and 76.04%, respectively. In contrast, audio-based models
underperform on IEMOCAP but perform exceptionally well
on the EMOV dataset, with Wav2Vec2 reaching a W.F1
score of only 66.81% on IEMOCAP and 99.48% on EMOV.
This highlights the challenges of working with complex,
conversational data like IEMOCAP.

For future work, we plan to include statistical significance
testing to validate performance differences between fusion
models. We also aim to expand this research in several
directions by incorporating additional datasets and modal-
ities. For example, evaluating our models on larger and
more diverse real-world conversational datasets will help
assess generalizability and practical applicability. Cross-
corpus evaluation is another important direction to better
understand model robustness in varied environments. Intro-
ducing visual data, such as facial expressions, may further
enhance multimodal performance. Additionally, exploring
dimensional emotion models (e.g., valence-arousal repre-
sentations) could offer a more nuanced understanding of
emotional states compared to categorical labels. We also
plan to increase the number of emotion classes, fine-tune our
existing fusion models, and experiment with more advanced
architectures, including large-scale pre-trained multimodal
transformers. Furthermore, systematic hyperparameter tun-
ing and ablation studies will be considered to better under-
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stand their impact on model performance. Lastly, integrating
domain-specific knowledge into the modeling process may
further improve classification accuracy and interpretability
in real-world settings.
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