

1
2
3
4
5 **Epitaxy of emerging materials and advanced heterostructures for**
6
7 **microelectronics and quantum sciences**
8
9

10
11
12 Yeonjoo Lee¹, Soo Ho Choi^{2,3}, Hyunseok Kim^{2,3*}, Jinkyung Yoo^{1,*}
13
14

15 ¹Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM
16
17 87545, United States of America
18
19

20
21 ²Department of Electrical and Computer Engineering, University of Illinois Urbana–Champaign,
22
23 Urbana, IL 61801, United States of America
24
25

26
27 ³Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana–
28
29 Champaign, Urbana, IL 61801, United States of America
30
31

32
33 Keywords: Epitaxy, Semiconductors, heavy fermion materials, low-dimensional materials,
34
35 microelectronics, quantum materials
36
37

38
39 *Corresponding authors: jyoo@lanl.gov, hyunseok@illinois.edu
40
41

42 **Abstract**
43

44
45 Epitaxy, a process to prepare crystalline materials in nanostructures and thin films, is the core
46
47 technology for preparing high-quality materials as a key enabler of next-generation
48
49 microelectronics and quantum information system. Progress in epitaxy has been expanding the
50
51 choice of materials and their heterostructures beyond the combinations limited by materials
52
53 compatibility. However, the improvement of material quality, physical implementation of materials
54
55 with unique properties, and integration of incommensurate materials in an architecture have been
56
57 the challenging issues. Emerging materials, including two-dimensional materials and quantum
58
59
60

1
2
3
4 materials, have opened opportunities to study epitaxy mechanisms and realize various functional
5 devices. Acceleration of discovery and progress in epitaxy research should be accomplished by
6 ‘understanding of epitaxy under various circumstances at multiple length scales’ and ‘integration
7 of experiments and models.’ In the perspective, a basic summary of the status of epitaxially grown
8 materials, the challenges in epitaxy research, and integration of modeling epitaxy and ultimate
9 control of the epitaxy process with advanced characterization techniques are discussed.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5
6
7
8 **1. Introduction**

9
10 High-quality materials are a key enabler pushing the boundaries of basic science and
11 engineering, as manifested in the modern backbone of semiconductors-based transistors and low-
12 dimensional carrier gas channels.^[1, 2] Epitaxy, a process to form crystalline materials on crystalline
13 substrates, has been the core technology for such materials development. In microelectronics, for
14 example, homoepitaxy of silicon (Si) is the first step of front-end-of-line (FEOL) processes, and
15 heteroepitaxy of silicon-germanium alloys on Si was successfully adopted in early 2000s. Since
16 then, various homo- and heteroepitaxy techniques have been developed and optimized for pushing
17 the limits of integrated circuit (IC) scaling further by shifting the paradigm from two-dimensional
18 (2D) to three-dimensional (3D) transistors, such as Fin field-effect transistors (FETs) and gate-all-
19 around FETs.^[3] In quantum materials research, it is the key to implementing diverse degrees of
20 freedom of charge, spin, orbital, and lattices in solid states. A physical implementation involves
21 strong correlation and innately exotic electronic band structure. Unconventional superconductivity,
22 heavy fermions, volume collapse transitions, Kondo insulator, hidden order, and quantum
23 criticality are representative phenomena manifested in quantum materials.^[4-6] Over decades,
24 interest in thin films and heterostructures of quantum materials has been growing because those
25 can immediately open new domains for quantum materials design, which is not available in bulk
26 materials.^[7, 8]

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 Despite remarkable breakthroughs in microelectronics during the past few decades, the
51 surging need for computing power makes it more challenging than ever before for technological
52 advancement to keep up with the demands of the market. As a radically new approach for next-
53 generation microelectronics, monolithic 3D heterogeneous integration (3DHI) is proposed to allow
54 integration of devices on top of each other.^[9] In 3DHI, device layers are either directly grown on
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 or transferred onto device substrates, realizing vertical arrangement of multiple ultrathin device
5 layers without wafers between them. 3DHI enables the interconnection of devices in each tier
6 directly without the need for through-silicon-vias, which not only substantially increases the
7 density of vertical interconnects and bandwidth but also greatly reduces the ohmic loss and RC
8 delay. 3DHI technology is thus regarded as a promising pathway for high-performance computing
9 and for enabling new schemes like process-in-memory architecture. Furthermore, the integration
10 of photonic, optoelectronic, and sensory devices with electronics via novel epitaxy and 3DHI
11 approaches can enable new form factors, which can substantially enhance the performance of those
12 devices, and more importantly, can achieve versatile platforms such as complementary metal-oxide
13 semiconductor (CMOS) with emerging technologies (X) (CMOS+X), multi-modal sensors, and
14 edge computing for internet-of-things.^[10]
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

It is important to note that the development of new materials and their integration are crucial for realizing 3DHI. Most importantly, crystalline thin films are one of the key building blocks that constitute device layers for 3DHI, yet the integration processes for crystalline materials are not fully established. Figures 1(a) and (b) show a representative scheme of 3DHI system (a) and the relevant materials issues (b). The crystalline materials to be integrated and the materials underlying are both vastly different from those used in FEOL processes, which necessitate novel approaches for the integration of crystalline thin films in 3DHI. To address these issues, various crystalline materials and their integration techniques are being developed for 3DHI and advanced microelectronics. A representative example is van der Waals (vdW) materials, such as transition metal dichalcogenides (TMDs).^[11] These materials are regarded as a promising candidate for crystalline channels in future transistors, because they exhibit high mobility even when they are atomically thin, which is in stark contrast to Si-based channels with their mobility substantially

dropping at the thickness below a few nanometers.^[12] VdW materials also work as a unique template to allow novel epitaxy mechanisms on them, which could enable the synthesis of unprecedented crystalline materials and their heterostructures. However, there remain challenges for these crystalline materials and processes to be adopted for real-world applications, such as the material quality, uniformity, process compatibility, and mechanical/thermal stability. Holistic co-design approaches combining theory, growth, fabrication, and characterization are necessary to advance the technology.

Quantum information systems (QISs) are attracting tremendous interest to open new applications, such as spintronics based on control of spin texture transport, quantum computing hardware enabled by unconventional superconductivity and control of quasiparticles, low power switches realized by quantum anomalous Hall effect, and size-independent interconnects as depicted in Figure 1(c). Figure 1(d) shows the materials issues to realize the QISs in Figure 1(c), explorable in thin films of quantum materials. In other words, the quantum materials community is seeing opportunities to accomplish progress and breakthroughs, such as the integer and fractional quantum Hall effect, obtained in semiconductor heterostructures.^[1, 2] Nevertheless, studies of quantum materials have mainly been limited to bulk crystals. The category of quantum materials encompasses a broad range of materials, such as 2D TMDs, Rare-earth (RE)-pnictides, and semi-metallic compounds. Stoichiometry of quantum materials is usually complicated as 115-type (e.g., CeCoIn₅), 122-type (e.g., $AEAFe_4As_4$ ($AE=Ca, Sr, Ba, Eu$ / $A=Na, K, Rb$)) and others.^[5, 8, 13-17] The high-purity precursors and sources of REs and chalcogens are not readily available. Moreover, there are no suitable substrates for various quantum materials. While transition metal oxides are being used as the substrates, their quality is not comparable to that of Si and III-V wafers. The relatively poor substrates/source materials and unestablished growth conditions result

1
2
3
4 in significant impurity and defect scattering of charge/energy carriers in quantum materials.
5
6 Progress in epitaxy of quantum material thin films is required to deliver the expected broad and
7
8 in-depth impacts described at the beginning of this section.
9
10
11
12

13 In this perspective, we discuss recent breakthroughs in epitaxy techniques and integration
14 processes for developing crystalline materials for microelectronics and QISs. Chapter 2 describes
15 representative epitaxial and non-epitaxial mechanisms for synthesizing crystalline materials.
16 Chapter 3 introduces recent breakthroughs demonstrating novel crystalline materials and their
17 heterostructures, which are unique and can be applied to developing other impactful material
18 systems. Chapter 4 discusses current challenges in materials development and share our
19 perspective for future directions.
20
21
22
23
24
25
26
27
28
29
30
31

2. General categories of epitaxy and deposition

32
33
34 Epitaxy process is commonly described as a combination of precursor adsorption, adatom
35 migration, nucleation, and propagation of the adsorbed constituent atoms. Several epitaxy
36 mechanisms are classified along interactions between substrates and overgrown layers. The initial
37 interactions can occur either at dangling bonds of substrates (conventional way) or through vdW
38 gap in case of layered materials (unconventional way). In addition to these epitaxial growth
39 mechanisms, it is important to note that crystalline materials can also be deposited by non-epitaxial
40 approaches. Such non-epitaxial approaches, although less explored, have substantial impact on
41 heterogeneous integration, because amorphous or polycrystalline substrates can be utilized for
42 growing single-crystalline thin films. Therefore, epitaxial and non-epitaxial growth techniques
43 complement each other and expand the 3DHI technology. Here is a summary of the epitaxy
44 mechanisms and status of epitaxy techniques.
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 **2.1. Conventional epitaxy: Dangling bonds-based**
5
6
7

8 Conventional epitaxy mechanisms are based on formation of bonds between substrate and
9 overgrown layer and subsequent procedures to relax strain along the interfacial region. Dangling
10 bonds are preferential sites for formation of the bonds and nucleation of structural defects.
11 Conventional epitaxy techniques have developed strain relaxation mechanisms along routes
12 minimizing structural defect formation. The main drivers of conventional epitaxy techniques are
13 III–V on Si and oxides on Si because of demands in scalable manufacturing of compound
14 semiconductors and oxides-based devices. Several representative strategies of conventional
15 epitaxy techniques are ‘introducing buffer layer,’ ‘epitaxial lateral overgrowth (ELO),’ ‘aspect ratio
16 trapping (ART),’ and ‘growing on miscut and/or patterned substrates’ as summarized in Figure 2.
17 Often, multiple strategies are utilized to obtain high-quality epitaxial layers.
18
19

20 A classic example of conventional epitaxy governed by material compatibility is GaAs
21 growth on Si for optoelectronic IC applications. Although molecular beam epitaxy growths of
22 GaAs on Si were demonstrated in the 1980s,^[18-20] the mismatch of lattice constants (~4% between
23 GaAs and Si) and thermal expansion coefficients hinder obtaining high-quality GaAs layers on Si.
24 A typical threading dislocation density (TDD) in GaAs on Si was $\sim 10^9/\text{cm}^2$ with introducing a
25 simple buffer layer. After decadal efforts of defect reduction via the strategies described in Figure
26 2, recently, a typical TDD in GaAs on Si is in the range of low- $10^6/\text{cm}^2$ and low- $10^7/\text{cm}^2$.^[21-23] The
27 current record-low TDD is $< 10^6/\text{cm}^2$ ($9.3 \times 10^5/\text{cm}^2$).^[24]
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57 **2.2. Non-dangling bonds-based: Van der Waals epitaxy, QvdW, Remote epitaxy**
58
59
60
61
62
63
64
65

1
2
3
4 While conventional epitaxy forms covalent or ionic bonds between substrates and epilayers,
5 growing epilayers on layered materials, such as 2D materials, with weak vdW interactions and the
6 absence of surface dangling bonds have been studied.^[25] These methods are categorized into vdW
7 epitaxy, Quasi-vdW (QvdW) epitaxy, and remote epitaxy, depending on the materials and epitaxy
8 mechanism. VdW epitaxy, where a dangling-bond-free epilayer is grown on a similarly bond-free
9 surface as shown in Figure 3(a), was reported with the growth of a 2D Se layer on a 2D Te layer.^[26]
10 Since the discoveries and rediscoveries of 2D materials, such as graphene and TMDs, vdW epitaxy
11 has been extensively studied for various 2D materials and their heterostructures. VdW epitaxy
12 forms a vdW gap between the epilayer and the substrate through dipole interactions rather than
13 ionic or covalent bonding. In vdW epitaxy, nucleation on the surface of the layered substrate is
14 suppressed, and nucleation at the edges or grain boundaries of the 2D materials is preferred.^[27-30]
15 VdW epitaxy has expanded beyond 2D heterostructures to include the epitaxial growth of one-
16 dimensional (1D)/2D mixed-dimensional heterostructures and 1D vdW heterostructures.^[31-34]
17
18

19 Extension of vdW epitaxy onto and of 3D materials with surface dangling bonds has led
20 the development of QvdW epitaxy, as shown in Figure 3(b). 3D materials (i.e., AlN, GaN, GaAs,
21 etc.) contain dangling bonds on their surfaces, allowing nucleation via chemical bonding at the
22 step edges or defects of the 2D substrates. However, other regions formed through lateral growth
23 are bound by vdW interactions. The QvdW epitaxial behavior was reported in the growth of GaN
24 on epitaxial graphene(EG)/SiC substrate.^[35] However, it was difficult to prove the origin of GaN
25 lattice orientation, as the orientations of EG, SiC, and the GaN epilayers were identical. Liu *et al.*
26 observed the epitaxial relationship between AlN epilayer and transferred tri-layer graphene sheets
27 at different angles onto an AlN (0001) wafer.^[36] Various III-V compound semiconductors have
28 been successfully grown on graphene and hexagonal boron nitride (hBN) via QvdW epitaxy.^[37-39]
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 While both vdW epitaxy and QvdW epitaxy involve the growth of the epilayer influenced
5 by the lattice orientation of layered and 2D materials as substrates, remote epitaxy allows growth
6 of epilayer following the orientation of the underlying substrate beneath a 2D material between
7 the epilayer and the substrate, as shown in Figure 3(c). The remote epitaxy in GaAs
8 epilayer/monolayer graphene/GaAs substrate was reported in 2017.^[40] Through in-depth studies
9 of the remote epitaxy mechanisms by multiple groups, the current understanding of the governing
10 factors of remote epitaxy are the following:^[41-43] (1) ionicity of substrate and epilayer, (2) thickness
11 of the 2D layer, (3) polarity of 2D layer, and (4) charge transfer mediated through the 2D layer. As
12 the ionicity of the substrate increases, the potential fluctuations of the substrate become more
13 pronounced, making it more likely for these fluctuations to penetrate the 2D layer. Additionally,
14 lower polarity and thinner 2D layers result in less effective potential screening. Consequently,
15 while the 2D material screens potential fluctuations from the substrate, remote interactions with
16 adatoms on the surface are still possible, allowing the epilayer to grow following the orientation
17 of the substrate beneath the 2D layer.

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

2.3. Growth of crystalline 2D materials via non-epitaxial techniques

40
41
42
43 Unlike epitaxial growths, non-epitaxially grown materials do not exhibit crystallographic
44 relationship with underlying substrates. Nevertheless, single-crystalline materials can still be
45 formed via non-epitaxial techniques. Non-epitaxial technique expands available choice of
46 substrates for single-crystal material deposition from crystalline substrates to amorphous and
47 polycrystalline substrates. Non-epitaxial growth techniques can thus be an impactful approach for
48 3DHI.
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 The majority of 2D material thin film growth studies have been conducted on amorphous
5 substrates due to difficulties of controlling the growth of 2D materials on crystalline substrates.<sup>[44-
6
7 46]</sup> SiO₂/Si substrates are widely used in growth of 2D materials because they offer advantages in
8 estimating the thickness of 2D materials due to their refractive index contrast.^[47] Therefore, the
9 growth of 2D materials has important sub-topics of the preparation of crystalline materials via non-
10
11 epitaxial techniques. Since 2D materials lack surface dangling bonds, growth is favored in the in-
12 plane direction once a nucleus forms. This tendency, general on amorphous substrates, has led the
13 growth of triangular or hexagonal single-crystal TMD grains on the amorphous SiO₂ layer.^[48] In
14 non-epitaxial techniques, aligning grains in a single direction is challenging, prompting the
15 proposal of various methods to enlarge single 2D grains. For graphene, strategies like oxidizing
16 the surface of Cu foil to suppress nucleation or local feeding of methane precursors have enabled
17 the growth of graphene grains up to 1 inch in size.^[49, 50] In contrast, for TMDs, seeding promoters
18 containing aromatic molecules or alkali metal ions has been reported to suppress precursor
19 desorption, allowing larger grain growth.^[51-53] Similar to graphene, limiting precursor supply has
20 led to the successful growth of millimeter-sized TMD grains.^[54] However, as the grain size
21 increases, these methods require more atoms, consequently slowing down the growth rate and
22 limiting the scalability.

23
24
25 Recrystallization is a thermal treatment at temperatures below the melting point of the
26 material to guide unstable atoms into a more energetically favorable state. This method has recently
27 been employed to prepare catalytic metal substrates to grow single crystalline 2D materials.
28 Prolonged contact-free annealing process promote grain growth of energetically stable grain,^[55]
29 recrystallization of oxidized polycrystalline Cu foils,^[56] recrystallization of polycrystalline Cu
30 foils on a graphite susceptor,^[57] all of which can produce single-crystal Cu foils. A simple melting-

solidification process was proposed as an alternative method to create single-crystal metals on polycrystalline metal foils. These single-crystal (111) and high-index Cu foils are now utilized as substrates for the epitaxial growth of coherently aligned graphene, hBN, and TMDs in a large area.^[57] Recently, the recrystallization method was directly applied to grow crystalline 2D materials in wafer scale. In 2021, Xu *et al.* deposited a polycrystalline 1T'-MoTe₂ film on an amorphous SiO₂/Si wafer followed by the attachment of a single-crystal 2H-MoTe₂ crystal on top. After that, the entire surface was encapsulated with an Al₂O₃ layer, and they created a small hole through both the 2H-MoTe₂ crystal and the 1T'-MoTe₂ film. The recrystallization of 1T'-MoTe₂ was activated by thermal annealing under Te atmosphere. The recrystallization was guided by the orientation of the attached 2H-MoTe₂ crystal, as Te was introduced only through the hole, resulting in the successful growth of a wafer-scale single-crystal 2H-MoTe₂ film (Figure 4(a)).^[58] In addition, Lee *et al.* demonstrated the growth of circular hBN grains on a liquid Au surface. The B and N atoms at the edges of these circular grains were self-collimated through Coulomb interactions, and the merging of these grains eventually led to the formation of a single-crystal monolayer hBN film (Figure 4(b)).^[59]

3. Recent progress in epitaxy and deposition

Recently, the development of new epitaxy and deposition mechanisms, as well as the utilization of layered materials not only enabled the growth of new types of crystalline materials, but also brought new insights into materials engineering to form heterostructures made of incommensurate materials. Such expansion of the choice of materials and heterostructures represents great promise for future microelectronics and QISs. This chapter introduces recent

advancements in epitaxial and non-epitaxial growth processes, enabling the improvement of material quality, the synthesis of materials with unique properties, and the formation of heterostructures that are incommensurate.

3.1. Engineering crystallinity

3.1.1. Minimization of unintentional interfacial reaction

Reactions at the interfaces between a substrate and an epilayer form an interfacial layer. A prominent example showing the effects of interfacial reactions is epitaxy of oxides on Si. Oxide electronics fabricated on Si has attracted much attention due to scalable manufacturing of oxide devices utilizing the functionalities, such as ferroelectricity, piezoelectricity, magnetism, and multiferroics.^[60] However, the reactivity of the Si surface is the obstacle to the epitaxial growth of functional oxides on Si substrates. A metal surface phase has been typically formed to saturate dangling bonds on Si surface and protect the surface from oxidation. For instance, the formation of Sr–Si bonds enables the growth of SrTiO₃ (STO) on Si (100).^[61, 62] In contrast to the elimination of interfacial oxide, utilization of an interfacial layer for the epitaxy of oxides on Si has also been explored. For instance, the polarization of BaTiO₃ on Si can be controlled by the MgO buffer layer generating tensile strain by large lattice mismatch.^[63] The single-crystalline EuO films were achieved by the optimal oxidation of Si (001).^[64]

3.1.2. Composition engineering by strain management

Various strategies have been proposed to address challenges such as strain and high dislocation density arising from conventional epitaxy. In 2019, Pasayat *et al.* demonstrated that introducing porosity into the GaN layer beneath the InGaN epilayer reduced the mechanical

1
2
3
4 stiffness and subsequently, accomplished effective strain relaxation in the InGaN epilayer (Figure
5
5(a)).^[65] Another notable approach involves remote epitaxy and QvdW epitaxy on 2D materials.
6
7 When epilayers are grown on a dangling-bond-free 2D substrate, only weak vdW interactions
8 occur between the epilayer and the 2D substrate.^[66] The vdW interactions reduce strain issues
9 typically associated with strong covalent or ionic bonds in conventional epitaxy and lowers
10 dislocation density (Figure 5(b)). Additionally, epitaxial growth on 2D materials has been reported
11 to result in a lower migration barrier, leading to relatively reduced nucleation density and
12 consequently lower dislocation density (Figure 5(c)).^[42] Various research groups have successfully
13 replicated the growth of strain-relaxed, high-quality epilayers on 2D materials. This has enabled
14 the demonstration of high-performance light-emitting devices (LEDs) with uniform wavelength
15 and enhanced emission intensity. This strategy is not limited to III–V semiconductors. Jiang *et al.*
16 reported that halide perovskite grown via remote epitaxy on 2D materials exhibited lower TDD
17 than those grown through ionic epitaxy (Figure 5(d)).^[67] As a result, they observed a threefold
18 increase in photoluminescence intensity and a four-fold enhancement in carrier lifetime.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

3.2. Synthesizing unconventional crystals

In epitaxy, both thermodynamic and kinetic mechanisms influence the formation of crystalline thin films. Thermodynamically, the stable phase of materials is determined by growth temperature and pressure given by a phase diagram. For instance, various polytypes of SiC can be formed by tuning the growth conditions (e.g., 4H-SiC and 6H-SiC) and then cooling them down to room temperature, resulting in a metastable phase, where 3C-SiC is the stable phase at room temperature.

1
2
3
4 However, kinetic factors, such as formation energy, diffusion, and adsorption/desorption,
5 also play critical roles. Substrate is also important because surface free energy of the substrate and
6 interfacial strain affect nucleation and growth of the grown layer. Changing the material or the
7 orientation of the substrate for epitaxy can yield the formation of completely different
8 crystallographic orientations of the grown layers.^[68] The kinetic factor offers opportunities to
9 control crystal structures by employing ‘non-standard’ epitaxy environment, which enables the
10 formation of crystalline thin films that are not thermodynamically favored at room temperature or
11 under growth environment but are promising for microelectronic and QISs.
12
13
14
15
16
17
18
19
20
21
22
23
24

25 A well-known example dating back to 1980s is the growth of cubic-phase boron nitride
26 (cBN). Although cBN is a favored phase at very high pressures, necessitating high-pressure high-
27 temperature methods for the growth, ion beam-assisted deposition has enabled the growth of
28 single-crystal cBN at low pressures and moderate temperatures.^[69, 70] Providing excess kinetic
29 energy by ion beam allows overcoming the energy barrier and removing unwanted phases of BN.
30 Because cBN exhibits ultrawide-bandgap properties and can be doped to both *n*-type and *p*-type,
31 ion beam-assisted deposition provides opportunities for high-power electronics based on cBN.
32
33
34
35
36
37
38
39
40
41
42

43 Recently, novel approaches to substrate and interface engineering have been proposed to
44 synthesize materials with unprecedented phases. Intercalation-based formation of crystalline
45 layers is a promising path for synthesizing atomically thin forms of traditionally bulk materials
46 and harnessing exotic properties for various device applications. When materials are formed by
47 intercalation, both the top and bottom sides of intercalated materials are interfaced with the
48 surroundings, which is in stark contrast to typical epitaxy environment where only the bottom side
49 (i.e., substrates) formed interfaces with as-grown materials. This provides opportunities to promote
50 layer-by-layer growth, instead of Volmer-Weber type growth, to passivate sites of high surface
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 energy. Figure 6(a) shows that atomically thin and buckled 2D GaN can be formed by intercalation
5 at the interface of EG/SiC, termed migration-enhanced encapsulated growth.^[71] Similarly, various
6 metals, such as Ga, In, and Sn, can be intercalated to form atomically thin and half-vdW metals at
7 the EG/SiC interface.^[72] The intercalated layers exhibit an epitaxial relationship with the substrate.
8
9 Modified electronic band structures and superconductivity were experimentally observed from
10 these 2D materials. Interstitial intercalation of Mg atoms into bulk GaN can form Mg/GaN
11 superlattices exhibiting monolayer Mg epitaxially aligned with and sandwiched between a few-
12 layer-thick GaN, as shown in Figure 6(b).^[73] Huge uniaxial strain induced by the superlattice
13 formation greatly enhances hole transport and reduces contact resistance.
14
15
16

17 Synthesis of thermodynamically unfavored materials by interface engineering can also be
18 achieved by employing unconventional substrates. GaN, with its stable form being a hexagonal
19 (i.e., wurtzite) phase, for instance, can be grown into a cubic (i.e., zinc-blende) phase by substrate
20 engineering. A straightforward approach is to employ cubic substrates, such as SiC or GaAs,^[74, 75]
21 but lattice mismatch induces high density of dislocations and even the evolution of hexagonal GaN.
22
23 A unique approach to resolve the challenge is to conduct selective-area epitaxy on V-grooved Si
24 (100), where cubic GaN evolves from the interface of hexagonal GaN nuclei in the V-groove, as
25 shown in Figure 6(c).^[76, 77] Cubic GaN is polarization-free and exhibits smaller bandgap than
26 hexagonal GaN, and such unique properties make cubic GaN a promising material for
27 optoelectronic devices with high quantum efficiency and longer operation wavelengths.^[78]
28 Lonsdaleite (hexagonal) Ge is another example of the growth of unconventional phases on 2D
29 materials. Growth of Si and Ge on wurtzite GaP nanowire can induce the formation of the
30 hexagonal phase of group-IV semiconductors with direct band gap via structure transfer.^[79] The
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 structure transfer-induced hexagonal Ge growth was also observed on sulfur-deficient monolayer
5
6 MoS₂, of which in-plane crystal structure is hexagonal, as shown in Figure 6(d).^[80]
7
8
9
10
11
12
13

14 **3.3. Forming advanced heterostructures**

15
16

17 Functional units in devices are interfacing different materials to form heterostructures. In
18 the context of emerging 3DHI technology in microelectronics, developing adequate integration
19 processes is also paramount. Recent breakthroughs in deposition and integration techniques
20 enabled the formation of novel heterostructures in which the materials are incommensurate. This
21 includes, but not limited to, single-crystalline materials formed on polycrystalline or amorphous
22 templates, heterostructuring incommensurate crystalline materials (i.e. interfacing cubic and
23 hexagonal layers), and heterostructuring crystalline materials with incommensurate in-plane
24 alignments (i.e. two hexagonal layers stacked with arbitrary rotation angles other than 0, 30, or
25 60°), with significantly increases the degree of freedom for heterogeneous integration.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

41 Single-crystal materials can be deposited on amorphous or polycrystalline substrates by
42 engineering the nucleation, as briefly discussed in the section 2.3 and depicted in Figure 7(a). A
43 notable example is confined epitaxy for growing 2D materials on amorphous substrates by
44 confining the growth area using trenches and maintaining a single domain within each trench
45 area.^[81] Single-domain TMDs can be grown as arrays in defined areas at a wafer scale by
46 geometrically confining the growth area. Monolayer TMDs as well as bilayer heterostructures of
47 MoS₂/WSe₂ are successfully formed on SiO₂ substrates. Kinetic control of nucleation even enables
48 the TMD domains to be perfectly aligned with each other, resulting in crystallographically aligned
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 TMD arrays on amorphous substrates by engineering the shape of trenches.^[82, 83] Single-crystal
5
6 TMD-based complementary FET architecture is also achieved by utilizing the technique to
7 monolithically stacking pMOS, gate stack, nMOS, and another gate stack, all at BEOL-compatible
8 temperatures,^[82] representing a meaningful breakthrough for future microelectronics based on
9 monolithic 3DHI.
10
11
12
13
14
15
16

17 The approach to forming a crystalline layer by controlling the number of seeds in a grain
18 can also be applied to bulk materials, not only to 2D materials. A liquid-phase epitaxy achieves the
19 orientation-controlled formation of III–V islands on SiO₂, using group III elements patterned and
20 capped by dielectric, followed by transforming the elements into III–V compounds by providing
21 group V precursors.^[84, 85] The capability to form lateral heterojunctions in this approach could be
22 suitable for high-mobility electronics and photonics for both CMOS and non-CMOS platforms.
23
24
25

26 Epitaxial growth for integrating materials with incommensurate crystal phases or in-plane
27 orientation is also explored. In remote epitaxy, the 2D materials, typically graphene, exhibit no
28 epitaxial relationships with the crystalline materials grown atop, as the nucleation occurs by
29 interaction with underlying substrates through 2D layers.^[40, 86, 87] This allows the formation of thin
30 films with arbitrary phases on hexagonal 2D materials. The recent development on amorphous 2D
31 materials-based remote epitaxy also expands the choice of materials to form incommensurate
32 3D/2D/3D heterostructures.^[88]
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51 Nucleation by vdW interaction also enables the formation of incommensurate 3D/2D/3D
52 heterostructures. In QvdW epitaxy, crystalline films are epitaxially aligned with underlying 2D
53 materials, whereas the 2D materials and the substrate do not necessarily possess epitaxial
54 relationship. This provides opportunities to integrate thin films on incommensurate substrates, as
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 well as to tune the in-plane arrangement between them by engineering 2D materials.^[36, 89] A novel
5 approach to form 2D/3D/2D heterostructures with exotic in-plane arrangements is demonstrated
6 by recrystallization of bulk materials sandwiched between 2D materials.^[90] When gold
7 nanoparticles between MoS₂ layers are annealed, twisted epitaxy mechanisms evolve to
8 recrystallize nanoparticles and orient the Au (111) to the angle not commensurate with either the
9 top or bottom MoS₂ as shown in Figure 7(b). The unique Moiré structure with periodic strain alters
10 the electronic and optical properties of 2D/3D/2D heterostructures.
11
12
13
14
15
16
17
18
19
20
21

22 2D materials-based layer transfer processes can expand 3DHI technology further when
23 combined with emerging epitaxy techniques. Thin films, which are grown on 2D materials by
24 remote epitaxy or QvdW epitaxy, can be exfoliated from the substrate by mechanical exfoliation
25 with atomic precision, thanks to the weak atomic bonding at the interface. The exfoliated
26 crystalline layers can be transferred and bonded onto foreign templates for wafer-free 3DHI. This
27 has enabled various novel electronic platforms, such as transferrable high-electron mobility
28 transistors,^[91] vertically stacking of LEDs with thin films transistors^[92] and on flexible
29 substrates,^[93] and flexible electronics and sensors.^[94, 95] For TMD channel-based microelectronics,
30 forming gate stacks and metal contacts are a big challenge, and layer transfer techniques can
31 contribute to forming ideal metal contacts^[96] and gate stacks as depicted in Figure 7(c).^[97] In
32 summary, incommensurate heterostructures, enabled by purely growth-based approaches or by
33 combining novel growth and transfer techniques, can serve as technologies for advanced 3DHI.
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 **4. Challenges and Perspectives**
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4. Challenges and Perspectives

The crucial future epitaxy research goals are ‘high-quality materials’ and ‘improved process control.’ Accomplishments of the goals are enabled by ‘understanding of epitaxy under various circumstances at multiple length scales’ and ‘integration of experiments and models.’ The two knobs have been evolutionary topics in epitaxy research. However, progress in modeling, characterization, and epitaxy techniques has turned the evolutionary topics into revolutionary and broadly impactful ones. In this chapter, modeling epitaxy, ultimate control of the nascent stage of epitaxy process, and integration of growth and characterization techniques are discussed as the key challenges in epitaxy research.

4.1. Materials design: Multi-scale modeling

Understanding and designing epitaxy process is an innate multi-scale problem. Epitaxy is formally described by four categories extending atomic scale to mesoscale and macroscale:^[98] Thermodynamics of phase transition and interface formation, fluid dynamics of mass transport, statistical mechanics of crystal growth processes, and quantum mechanics of bond formation. Studying the physics of epitaxy has devised several crucial concepts of nucleation and growth models. However, there have been noticeable discrepancies between theoretical prediction and experiments over decades. For instance, in the 1980s, experiments on heteroepitaxy of device-quality GaAs on Si (211) and (100) substrates were contrary to then-theoretical expectations.^[99] Recent progress in non-dangling bonds-based epitaxy techniques, such as vdW, QvdW, and remote epitaxy, has brought novel questions to understanding of epitaxy. Epitaxial growth of and on 2D materials including vdW gap has been understood by trend to accomplish highest possible symmetry between a 2D material and a substrate through aligned nucleation and subsequent

1
2
3
4 propagation of the growth front along atomic steps.^[100-102] The initial model of non-dangling
5 bonds-based epitaxy is being challenged by a very narrow experimental window enabling epitaxy
6 of non-centrosymmetric 2D materials due to experimental observations showing that the atomic
7 steps do not guide epitaxial growth.^[103] Additionally, a recent study of vdW epitaxy elucidated
8 strong correlation between in-plane and out-of-plane growth of layered materials, which was not
9 considered in the previous models.^[104] The history of epitaxy research shows that modeling and
10 experiments are not integrated into an established framework. In most cases epitaxy models have
11 been utilized to explain experimental observations rather than to predict and design of epitaxial
12 growth processes.
13
14

15 A key challenge of modeling epitaxy is coupling atomistic and continuum length scales. In
16 epitaxy, capturing long-range stress fields in bulk (substrate and overgrown layer), interface
17 (substrate/overgrown layer), and surface (overgrown layer) is important to understand strain
18 relaxation resulting in structural defects formation and morphological evolution in the epitaxial
19 process. However, the long-range stress fields, calculated by continuum model, are governed by
20 the atomic structure of the interface between the substrate and the overgrown layer. Therefore, a
21 multi-scale model of epitaxy should couple atomic scale and macroscale which are calculated by
22 different methods. Moreover, nucleation and morphology of epitaxial layer evolves over time. The
23 time-dependent behaviors make modeling epitaxy more complicated. A recent demand for
24 heteroepitaxy model of 2D/2D growth pushes limits of the complexity. Experimental results show
25 that growths of graphene on hBN and of TMD on SiO₂ or Al₂O₃ take several hours.^[105, 106] The
26 combination of extended growth, the low adsorption coefficient of precursor molecules of a 2D
27 material, and the rapid surface diffusion of precursor molecules and adatoms overwhelms
28 calculations based on conventional models.^[107]
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 To tackle the challenge of multi-scale modeling, several approaches, such as molecular
5 dynamics/kinetic Monte Carlo–finite element method coupling, and phase-field method, have been
6 devised.^[107, 108] Figure 8 shows the bridging approach across atomistic scale to macroscale. A
7 critical issue of multi-scale modeling is the required computing resources. Compared to first-
8 principles calculation (e.g., density-functional-theory) and continuum model for macroscale
9 calculation, mesoscale calculation requires tremendous computing capacity. Overcoming the
10 resource issues requires developing novel algorithms, building of libraries of possible models, and
11 fast feedback from databases of experimental results.^[109, 110] Database and library construction
12 were deemed expensive and time-consuming. However, advances in machine learning for
13 materials science have brought the task into accomplishable domain.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

30 Since the beginning of the 21st century, the utilization of neural networks to construct
31 materials growth models has been explored.^[111] In recent years, the automated and statistical
32 analyses of growth process parameters have adopted machine learning.^[112, 113] Epitaxy is
33 considered as a highly complicated process due to the complexity of growth mechanisms and the
34 large number of conditions affecting the grown material’s quality, although a few parameters are
35 controlled by human input. Nevertheless, machine learning has been successfully utilized to
36 optimize growth parameters of various materials.^[113-115] However, the current methodology in
37 epitaxy monitoring obtains limited information. Moreover, most epitaxy studies generate a small
38 number of limited parameters (temperature, pressure, precursor flows) because the results of
39 epitaxy studies are obtained from human-conducted experiments and non-automated data
40 collection except in manufacturing plants. The loss of critical data for epitaxy studies has been
41 unavoidable. In the machine learning field, the issue is called a ‘small data’ problem. Available
42 data are unbalanced and small size. The ‘small data machine learning’ problem is being overcome
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4 by the development of algorithms including imbalanced learning cases.^[116] There are various
5 algorithms for small data machine learning: Support vector machine,^[117] Gaussian process
6 regression,^[118] random forest,^[119] gradient boosting decision tree,^[120] XGBoost,^[121] and symbolic
7 regression.^[121] Moreover, active learning and transfer learning are under development for handling
8 small data obtained from material synthesis.^[122, 123]
9
10
11
12
13
14
15
16
17
18
19
20

21 **4.2. Nucleation control**

22
23

24 The deposition and integration techniques described in previous sections represent
25 promising candidates for future microelectronics and quantum applications. These techniques are
26 still in their infancy, however, and there are several critical challenges that need to be addressed in
27 nucleation and growth of crystalline materials.
28
29
30
31
32
33
34

35 It is crucial to develop growth processes that can enable reliable, controllable, and scalable
36 nucleation. This is especially critical for the material systems involving 2D materials. When
37 growing 2D materials, controlling the thickness and crystallinity is crucial to ensure uniform and
38 high-performance devices. This is yet a challenging task, because the nucleation and growth
39 mechanisms on microelectronic platforms are usually not self-limited. Wafer-scale growth of TMD
40 layers with uniform thicknesses and crystallinity is challenging because of the sensitivity of
41 adsorption, desorption, lateral overgrowth, and additional nucleation to the growth environment.
42 Utilizing step edges and locally modifying surface properties are proposed as solutions for
43 controllable nucleation of TMDs on conventional substrates^[124] and 2D materials,^[125] respectively.
44 Non-epitaxial confined growth mechanisms are also proposed as a universal approach on arbitrary
45 substrates, with the capability for deterministic nucleation.^[82, 83] These studies strongly suggest
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 that engineering the substrate, either locally or as a whole, is as important as optimizing the growth
5 parameters. Also, although these techniques have huge potential for bringing 2D materials into the
6 mainstream of microelectronics, many of these methods are currently not compatible with
7 industrial processes in terms of the substrate materials,^[124, 126-128] processing temperature,^[129-131]
8 and the precursors used for the processes.^[51-53] Theoretical understanding of the nucleation
9 mechanisms with realistic considerations is the key for overcoming the challenges, and the multi-
10 scale modeling and in-fab monitoring discussed in this section can contribute to tackling the issues.
11
12
13
14
15
16
17
18
19
20
21

22 Next, when using 2D materials as growth templates, such as in the case of remote epitaxy
23 and QvdW epitaxy, preserving the 2D materials are another challenge because a high-temperature
24 and reactive epitaxy environment can damage underlying 2D materials.^[132-134] This can complicate
25 the growth by inducing more than one growth mechanisms during the growth^[86, 135] and, more
26 importantly, negatively affect the quality of crystalline films grown by remote or QvdW epitaxy
27 as demonstrated in Figure 9(a). Once 2D materials are damaged, the exfoliation of thin films
28 becomes unreliable due to the direct bonding formed between epilayers and substrates through
29 damaged areas of the 2D materials.^[40] Therefore, it is crucial to investigate the possible damage to
30 2D materials at the nucleation stage.
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45 Another challenge for nucleation on 2D materials stems from the extremely low surface
46 free energy. Because of chemical inertness, the wetting on 2D materials is much poorer than that
47 of conventional substrates. This can lead to the formation of crystalline defects and rough surfaces
48 of thin films, thus undermining the usefulness and functionality of the technique. Such challenges
49 in remote epitaxy and QvdW epitaxy can be addressed by various approaches; first, 2D materials
50 with various properties need to be investigated, considering the type of thin films to be grown, to
51 secure compatibility between the growth process and the materials, as well as to achieve the desired
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 nucleation. Second, engineering the properties of 2D materials can promote various nucleation
5 mechanisms to ensure the formation of high-quality materials.^[36, 136] Third, instead of adopting the
6 nucleation conditions that have been optimized for conventional substrates, the nucleation
7 conditions concerning the unique surface properties of 2D materials require investigation as
8 illustrated in Figure 9(b).^[137]
9
10
11
12
13
14
15
16

17 For other deposition techniques introduced in this perspective, such as utilizing unique
18 substrate textures or employing intercalation/recrystallization mechanisms, similar challenges
19 need to be addressed, such as the quality and uniformity of synthesized materials, as well as the
20 repeatability, scalability, and compatibility of processes. Especially ensuring the uniformity and
21 scalability of crystalline materials is critical for microelectronics, and the importance of growth
22 template preparation cannot be overstated. Once the template is prepared, subsequent nucleation
23 requires investigation, taking into account not only the unique surface properties of the template
24 but also its dynamic nature, as the properties of the template materials may change under
25 nucleation environments. This underscores the importance of growth monitoring and
26 characterization, which will be discussed in the subsequent section.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

4.3. Monitoring epitaxy process

47
48 Most epitaxial growth studies rely on ex-situ characterizations to analyze the grown
49 epilayers or intermediate states to identify the underlying mechanisms. However, despite these *ex*
50 *situ* techniques, there remain many challenges in fully elucidating the properties of various
51 materials and understanding epitaxial growth mechanisms. Most of all, the analysis methods and
52 procedures must be standardized. Currently, multiple techniques, such as X-ray diffraction (XRD),
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 electron backscatter diffraction, and Raman spectroscopy, are widely employed to analyze the
5 crystallinity of epilayers. However, the measurement equipment and conditions significantly affect
6 results, making it difficult to compare data across studies. Additionally, some conclusions are
7 drawn based on only one or two types of data, leading to misunderstanding. This issue is
8 particularly pronounced in the analysis of nanomaterials and their heterostructures, which have
9 seen significant attention recently. The analysis techniques used in different studies often vary, and
10 even when similar results are obtained, disparate interpretations and expressions make it
11 challenging to reach clear conclusions. Therefore, standardizing measurement conditions for
12 materials and equipment or developing models to convert data into comparable formats when
13 conditions are recorded, could lead to a robust database enabling quantitative comparisons.
14 Furthermore, cross-verifying results through at least three types of analysis would help eliminate
15 erroneous conclusions and greatly assist in building a reliable database.
16
17

18 Relying on *ex situ* analyses, which are conducted after the growth process is completed,
19 limits the ability to elucidate the nucleation and growth mechanisms as well as to control the
20 growth process in real time. Additionally, there is a risk of altering the sample during transportation
21 or in additional steps for analysis. Since these methods do not capture the intermediate states over
22 very short time scales, there are inherent limitations in accurately determining the growth
23 mechanisms. As a result, many studies on growth processes are increasingly using in-situ
24 monitoring techniques, with efforts focused on developing better methods to overcome these
25 challenges.
26
27

28 Over the past several decades, the most widely used technique for real-time monitoring of
29 epilayer growth has been reflection high-energy electron diffraction (RHEED). Because RHEED
30 allows for real-time surface structure analysis, it can be recorded to track the overall growth
31
32

1
2
3
4 process.^[138] However, it is limited in providing structural information in the vertical direction and
5 is highly sensitive to surface roughness. In addition, optical measurement techniques such as laser
6 reflectometry have also been employed to analyze the thickness of epilayer, but they face
7 challenges in determining the orientation relationship between the epilayer and the substrate.^[139]
8
9 While RHEED and optical measurement methods are predominantly used to observe the growth
10 from a macroscopic perspective, real-time observation of the nucleation and phase transformation
11 process at the atomic scale has also been actively conducted using *in situ* TEM techniques.^[140, 141]
12
13 Although *in situ* TEM offers such advantages, it can be challenging to replicate the exact
14 environment of the growth chamber, which may lead to discrepancies between the observed
15 processes and actual growth conditions. Recently, techniques such as *in situ* AFM applied to
16 solution-based growth, as well as the integration of optical microscopy, Raman spectroscopy, and
17 XRD within chambers or custom mini-chambers, have been reported.^[142-145] These advancements
18 allow for real-time observation of the actual growth modes and kinetics. Thus, various *in situ*
19 growth monitoring techniques have been proposed to date, and they can be employed depending
20 on the specific purpose. Developing equipment designs to accommodate these monitoring
21 capabilities without altering growth environment is a holy grail for exploring materials growth.
22
23

24 Another issue in in-situ monitoring is time delays caused by the computing time needed to
25 interpret measured data and by sensor response times. To address this, developing machine
26 learning models capable of analyzing the monitoring results in real time (or predictively) and
27 providing feedback to the process are essential. Furthermore, in large-area growth methods, such
28 as chemical vapor deposition (CVD) and metalorganic CVD, *in situ* monitoring is typically limited
29 to small, specific areas. Therefore, the development of a real time technique is highly desired to
30 monitor the growth process across the entire surface.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 *In situ* monitoring of epitaxial process of emerging materials has also been limited to
5 characterization of structures. However, *in situ* analysis of growth process is being performed to
6 elucidate the species impinged onto growth front and mass transport of the species as well.
7
8 Therefore, monitoring capabilities identifying chemical species, such as mass spectrometry,
9 absorption spectroscopy, fluorescence spectroscopy, and anti-stokes Raman scattering, are being
10 required to be integrated into in-situ monitoring suite. Additionally, mass transport velocities of
11 the species into the growth chamber and reactor can be monitored by laser Doppler anemometry.
12
13 Quantitative information of reactants and precursor fluxes can be data to establish a framework to
14 elucidate the whole epitaxy process of emerging materials.
15
16
17
18
19
20
21
22
23
24
25
26

27 While various ex-situ and in-situ techniques are being used, many research groups tend to
28 focus on their specific areas of expertise, leading to research biased toward one approach.
29
30 Therefore, cross-validation of *in situ* and *ex situ* results, analyzed in different environments, is
31 necessary to understand the materials' intrinsic properties and the growth mechanisms. Moreover,
32 the development of an integrated hybrid system capable of applying current *ex situ* techniques in
33 *in situ* environments would advance the material growth and process control from the nanoscale
34 to the macroscale.
35
36
37
38
39
40
41
42
43
44

45 **4.4. Structure-property-performance correlation: Materials Science's tetrahedron** 46 47

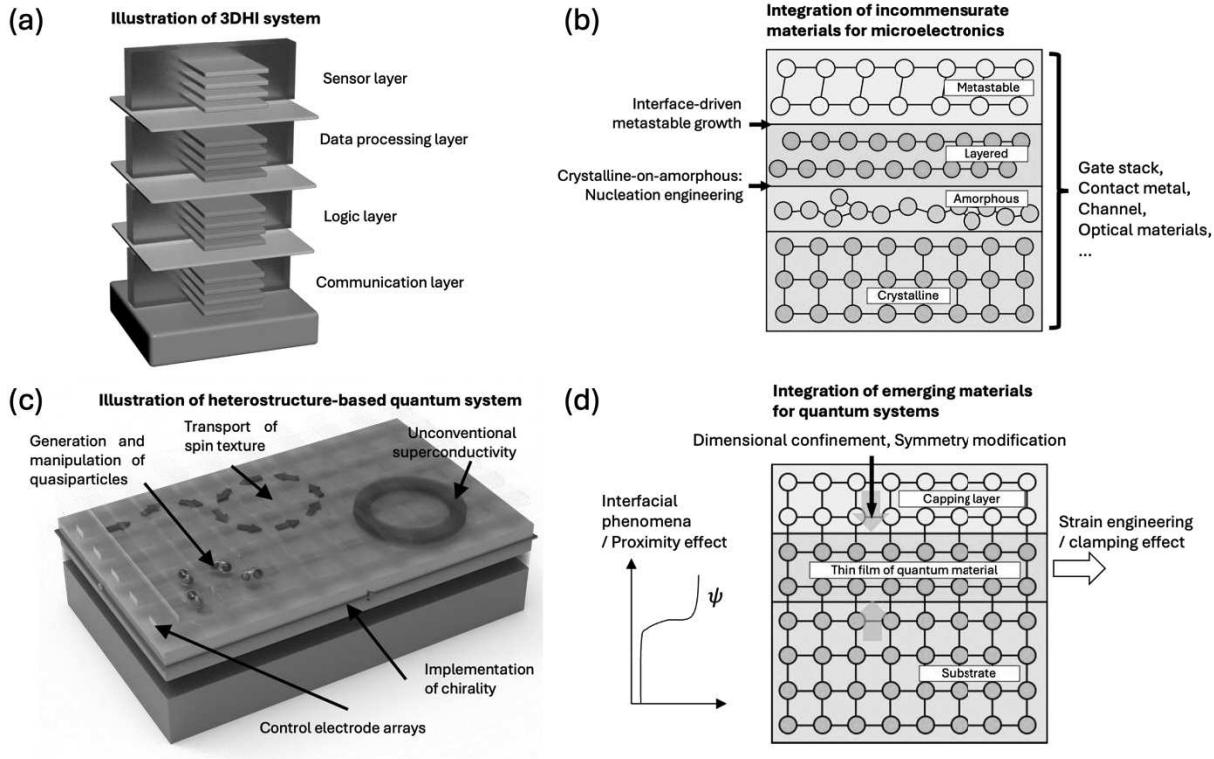
48 Structure–Property–Processing–Performance relation, known as ‘Materials Science
49 Tetrahedron’, is an essential guide to study materials and their processing. The majority of epitaxy
50 studies show the ‘Processing–Structure’ relationship, represented by TEM and XRD results, or the
51 ‘Structure–(Device)Performance’ relationship, represented by TEM and device characterization.
52
53 However, structural characteristics cannot be one outstanding descriptor to evaluate the quality of
54
55
56
57
58
59
60
61
62
63
64
65

an epitaxial layer. For instance, a typical TDD of GaN heteroepitaxial thin film (10^9 – $10^{10}/\text{cm}^2$) is several orders higher than that of GaAs thin film (10^7 – $10^8/\text{cm}^2$). Nevertheless, the photoluminescence efficiency of GaN thin film is high enough to be utilized for commercialized light-emitting device applications because excited carriers and excitons in GaN are radiatively recombined prior to non-radiative recombination at defect sites due to the short exciton diffusion length in GaN (60–80 nm).^[146] Reported carrier mobility–TDD relations also show non-linear trends and significant discrepancies between the experiments and theoretical calculations.^[147–152] The dominant factor limiting carrier mobility depends on the material dimensions and the conditions of device operation and characterization. Different structural characteristics exhibit discordant trends as well. The study of epitaxial STO (001) film on Si (100) revealed that the full-width-at half-maximum of STO (002) rocking curve is insensitive to TDD.^[153] The discrepancies described above indicate that crucial material parameters for evaluating the quality of epitaxially grown materials need to be specific to the materials of interest. For instance, epitaxy research of crystalline membranes prepared by vdW, QvdW, and remote epitaxy techniques for next-generation microelectronics should provide information on defect characteristics, such as doping concentration, defect states, and the properties at the interfaces between the 2D material as substrates and the overgrown layer. Although the electrical properties are imperative for designing devices, unconventional epitaxy research has mainly been focused on crystallinity. Developments in material and device characterization techniques over decades enable multi-modal characterization with high sensitivity and spatiotemporal resolution. Nevertheless, the characterization of emerging materials, including 2D materials with reasonably high throughput, is still challenging. For instance, applying deep level transient spectroscopy, a conventional and powerful technique providing quantitative information on defect levels and concentrations, is not

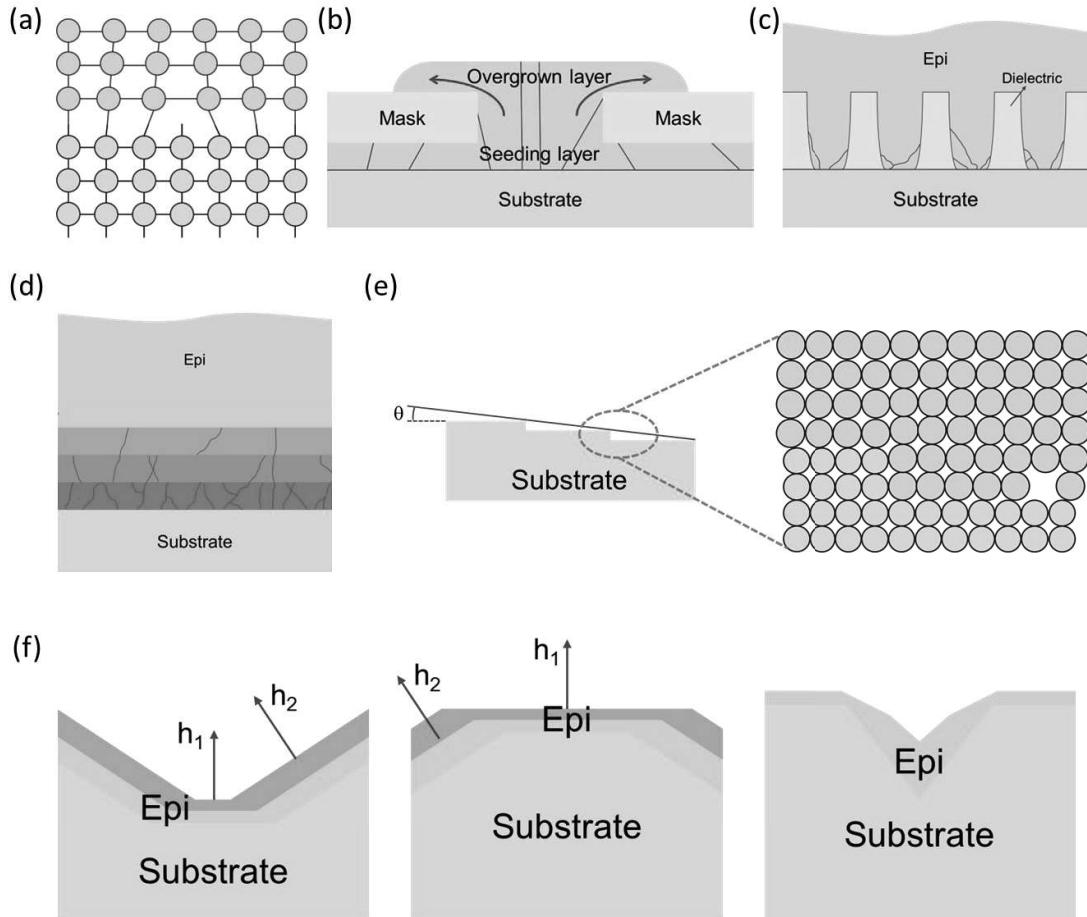
1
2
3
4 feasible for 2D materials and semi-metallic topological materials. To overcome the limitation,
5 workflows integrating and orchestrating machine learning, multi-scale modeling, and multi-modal
6 characterization are being developed.^[154, 155]
7
8
9
10
11
12
13
14
15

16 **5. Conclusion**

17
18
19


20 Epitaxy will enable another leap in microelectronics and quantum materials research field,
21 ardently waiting for high-quality, reproducible, and scalable materials. The modern epitaxy
22 techniques have already led us to the realms of material combinations and quality, in which the
23 conventional material compatibility issues of lattice mismatch and thermal expansion coefficients
24 are overcome. However, discoveries of emerging materials and understandings of epitaxy
25 mechanisms keep bringing demands on the developments of epitaxy techniques. Since most of the
26 demands are for deliverables not available through conventional approaches, the demands should
27 be fulfilled by integrating progresses in epitaxy techniques and models with assistances of learning
28 and prediction algorithms, rather than developing individual components of epitaxy research.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

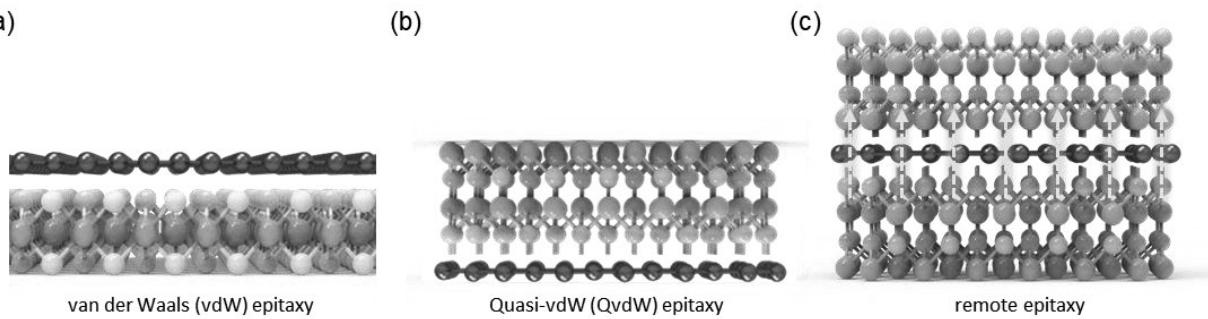
44 **Acknowledgment**

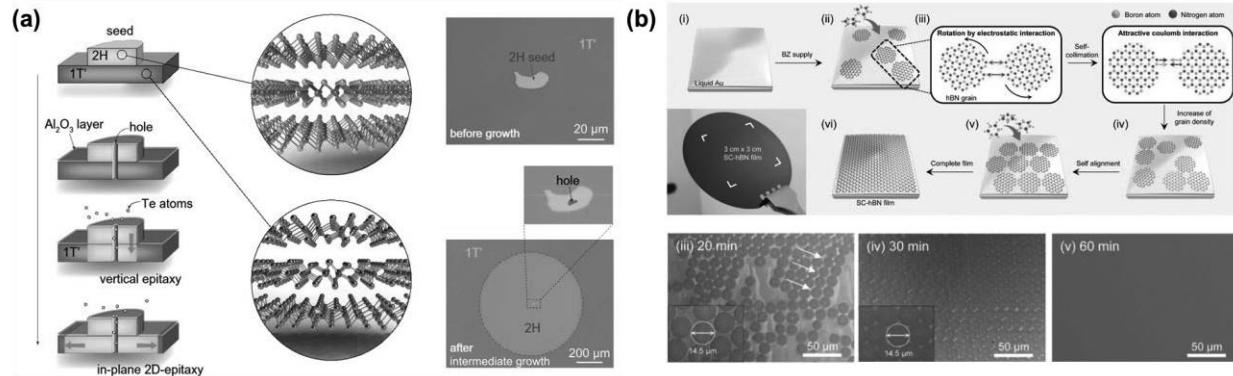


45

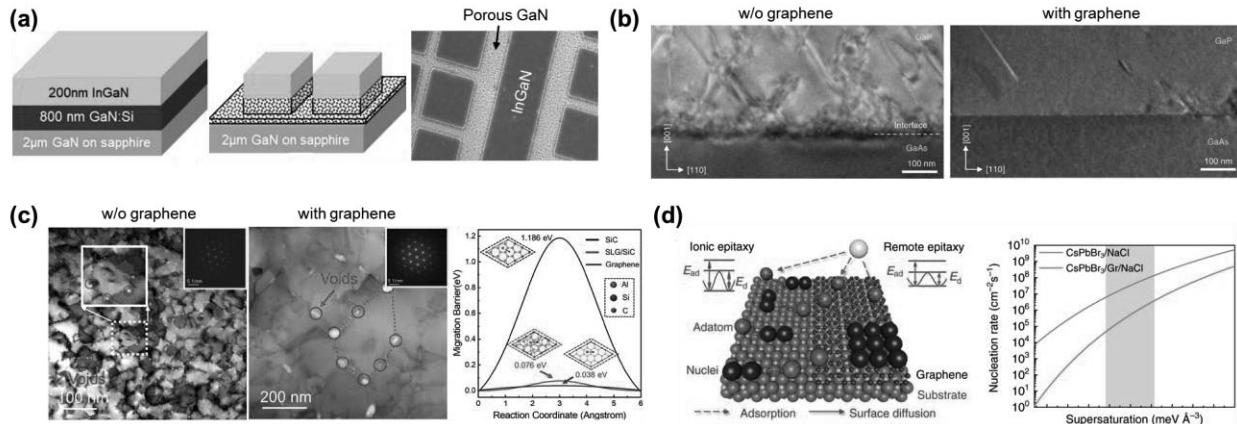
46 This work was partly supported at CINT, a U.S. Department of Energy, office of Basic Energy
47 Sciences User Facility at Los Alamos National Laboratory (Contract 89233218CNA000001) and
48 Sandia National Laboratories (Contract DE-NA-0003525). Y. Lee and J. Yoo acknowledge support
49 by the Laboratory Directed Research and Development program of Los Alamos National
50 Laboratory (20230256ER). H. Kim acknowledges support by the National Science Foundation
51 (ECCS-2328839) and the National Research Foundation of Korea (NRF) grant funded by the
52
53
54
55
56
57
58
59
60
61
62
63
64
65

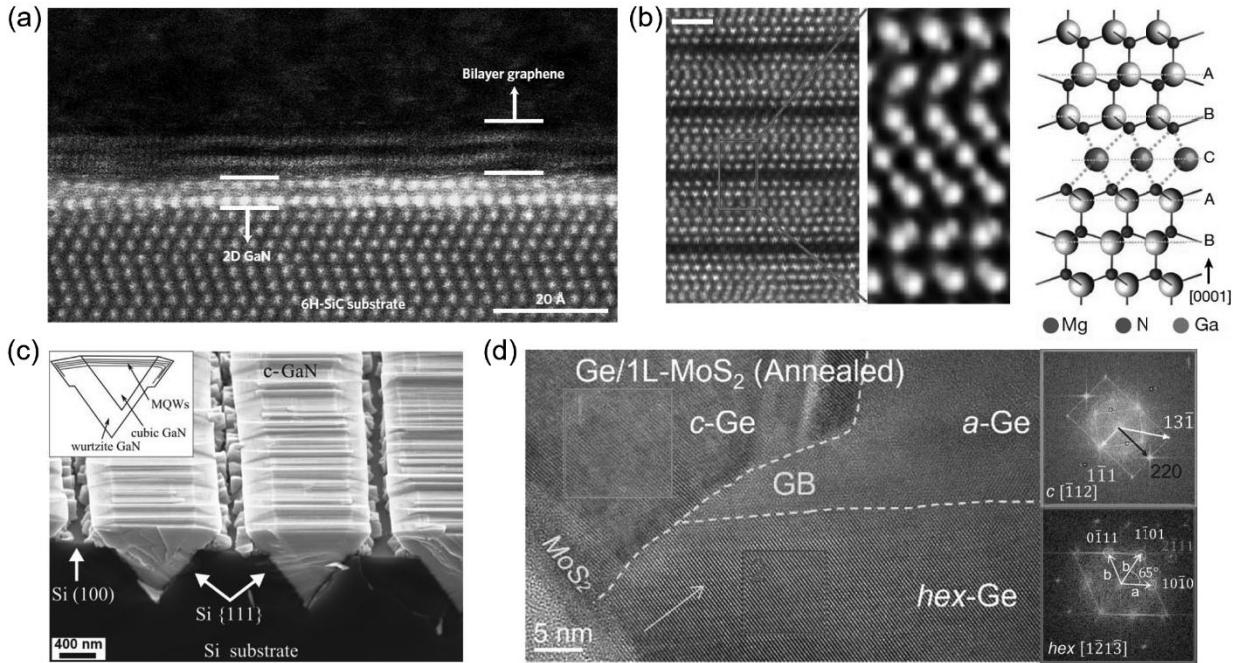
1
2
3
4 Korea government (MSIT) (RS-2024-00445081 and RS-2024-00451173). S. H. Choi
5
6 acknowledges support by the National Research Foundation of Korea funded by Ministry of
7
8 Science and ICT (RS-2024-00339626).
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

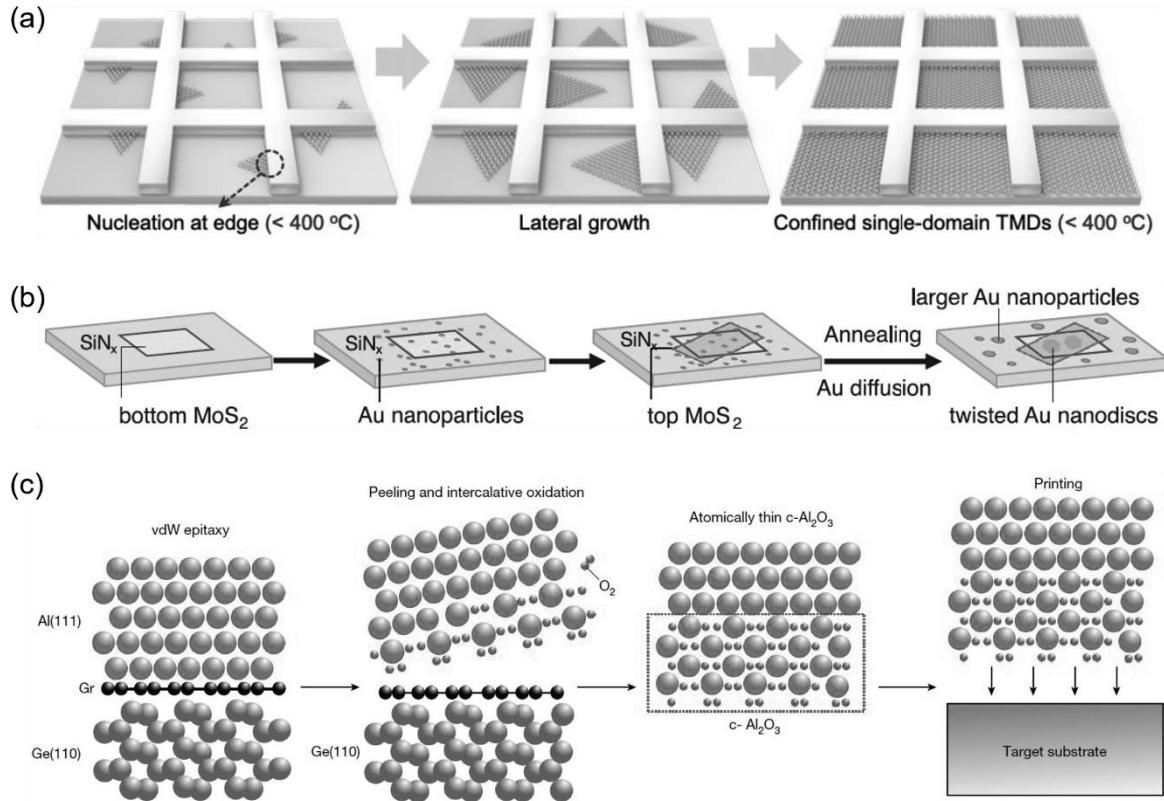

Figure 1. Scientific and technological opportunities enabled by epitaxy of microelectronics (a, b) and quantum materials (c, d).

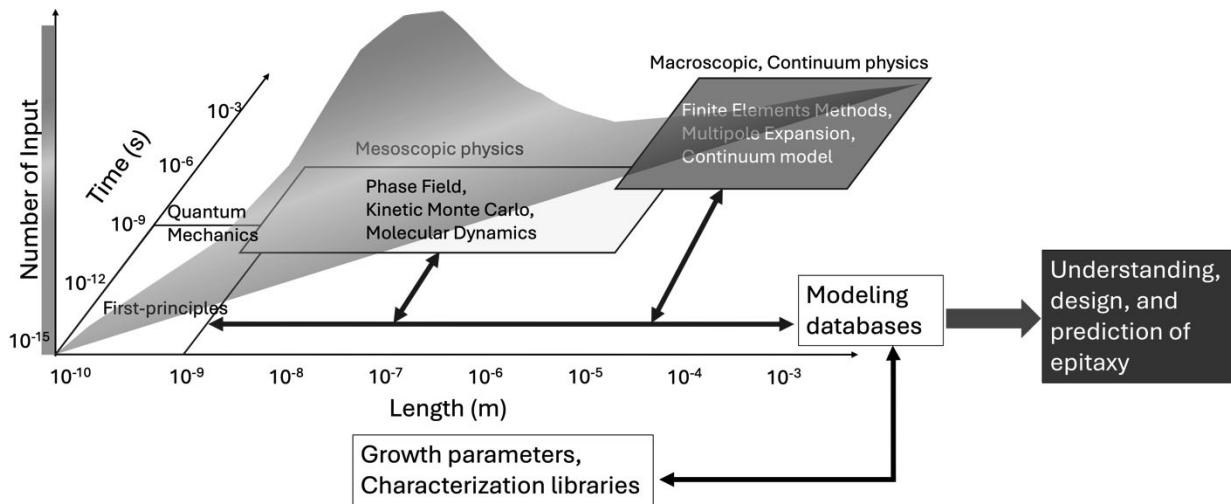

Figure 2. (a) The schematic of conventional epitaxy shows heteroepitaxy, which consists of the substrate and the epilayer in different materials. The dangling bond in the middle indicates misfit dislocation caused by lattice mismatch between two materials. (b) ELO improves the crystallographic quality of epitaxial layers by using a thin layer on a substrate as a starting point and introducing dielectric masks to prohibit the propagation of defects. The epitaxial layer continues to grow selectively in the mask's opening, where the seeding layer is exposed. The laterally grown layer is called ELO layer and exhibits lower defect density because dielectric masks can prohibit the defect propagation. (c) ART technique is a selective epitaxial growth to reduce defects by using a patterned substrate with vertical dielectric grooves with an aspect ratio greater than 2.

1
2
3
4 The defects are trapped at the bottom region of the grooves. (d) The buffer layer is introduced
5 between a substrate and an epilayer to control and reduce the number of dislocation densities in
6 the epilayer. It plays a role in relaxing stress caused by the mismatch of lattice constant or thermal
7 expansion to improve the quality of epilayer. Structural defects such as TDs can be bent in a strain
8 field in buffer layers and be prevented from penetrating into the epilayer. Two-step growth has
9 been most widely used to heteroepitaxy; a buffer layer is grown at low temperature followed by
10 high-temperature growth of an epilayer. (e) Miscut substrates have been employed to suppress the
11 formation of APBs. For III–V layer growth on Si (001) bi-atomic steps on the Si surfaces suppress
12 APBs. h_1 and h_2 indicate the growth rates on different crystal planes. (f) Patterned substrates are
13 used to reduce TDD for heteroepitaxy. TDs can be confined in certain crystallographic planes when
14 the epi-layer is grown on a patterned substrate.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65


Figure 3. Non-dangling bonds-based epitaxy. Schematics of (a) vdW epitaxy, (b) QvdW epitaxy, and (c) remote epitaxy.


Figure 4. Novel approaches for the growth of single-crystalline 2D materials. (a) A schematic and optical images of recrystallizing polycrystalline 1T'-MoTe₂ into single-crystal 2H-MoTe₂ using a seed crystal. Te atoms are injected through a hole in the seed crystal, initiating recrystallization from the seed and allowing the growth of a single-crystal 2H-MoTe₂ film. Reproduced with permission.^[58] Copyright 2021, The American Association for the Advancement of Science. (b) A schematic of the single-crystal hBN growth on a liquid Au surface, demonstrating how the circular hBN grains align to form a single-crystal hBN film, along with SEM images and photographs of the hBN grains and films. Circular hBN grains grown on liquid Au can move and rotate freely like icebergs on water, enabling alignment and coalescence into a single-crystal film. Reproduced with permission.^[59] Copyright 2018, The American Association for the Advancement of Science.


Figure 5. Strain engineering and quality improvement strategies. (a) A schematic and SEM image demonstrating strain relaxation using a porous structure. The strain in the InGaN layer is relaxed by making the underlying GaN layer porous. Reproduced with permission.^[65] Copyright 2019, IOP Publishing Ltd. (b) Cross-sectional TEM images of GaP layer grown on bare GaAs and graphene-coated GaAs substrates. The GaP grown on the graphene-coated GaAs substrate shows significantly fewer dislocations. Reproduced with permission.^[66] Copyright 2020, Springer Nature. (c) Plan-view BF-scanning transmission electron microscopy (STEM) images of AlN layers grown on SiC and single-layer graphene (SLG)/SiC substrates, along with the calculated migration barrier of Al atoms. Black, red, and blue lines represent the calculated migration barriers of Al atom on SiC, SLG/SiC, and graphene surfaces, respectively. The migration barrier on the dangling-bond-free graphene surface is lower, resulting in suppressed nucleation and the growth of a high-quality AlN layer. Reproduced with permission.^[42] Copyright 2023, American Chemical Society. (d) A schematic of the nucleation process in ionic and remote epitaxy, and a plot showing the nucleation rates as a function of supersaturation for both ionic epitaxy (CsPbBr₃/NaCl) and remote epitaxy (CsPbBr₃/Gr/NaCl). Reproduced with permission.^[67] Copyright 2019, Springer Nature.

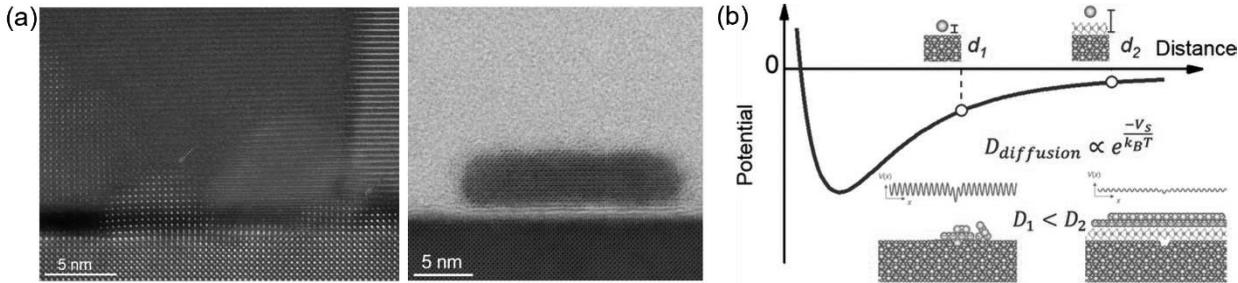

Figure 6. Realization of unconventional crystal structure. (a) Cross-sectional STEM image of 2D GaN formed at the interface between EG and SiC substrate by intercalation. Reproduced with permission.^[71] Copyright 2016, Springer Nature. (b) Cross-sectional STEM image of 2D Mg intercalated GaN superlattices. Reproduced with permission.^[73] Copyright 2024, Springer Nature. (c) Cross-sectional SEM of c-GaN with quantum wells grown on a V-grooved Si (100). Reproduced with permission.^[76] Copyright 2013, AIP Publishing. (d) Cross-sectional TEM image of a mixture of hexagonal and cubic Ge phases grown on sulfur-deficient monolayer MoS₂. Reproduced with permission.^[80] Copyright 2023, Elsevier.

Figure 7. Novel heterostructure formation processes. (a) Process schematic of single-crystal TMD arrays growth on amorphous substrates with in-plane orientation control by pattern edges. Reproduced with permission.^[82] Copyright 2023, arXiv. (b) Process schematic of crystalline Au nanodisc synthesis by twisted epitaxy. Reproduced with permission.^[90] Copyright 2024, The American Association for the Advancement of Science. (c) Process schematic of forming crystalline $\text{Al}_2\text{O}_3/\text{Al}$ gate stack by exfoliation from 2D materials followed by intercalative oxidation. Reproduced with permission.^[97] Copyright 2024, Springer Nature.

Figure 8. Domains and scheme of components of multi-scale modeling and the corresponding ‘number of inputs.’

Figure 9. Controlling the nucleation. (a) STEM image showing direct growth through pinholes in damaged 2D materials (left). Remote epitaxial growth without pinholes, confirmed by imaging the entire island at nucleation stages (right). Reproduced with permission.^[86] Copyright 2023, The American Association for the Advancement of Science. (b) Schematic illustrating lower potential barrier for adatom diffusion on 2D materials, enabling high-quality thin film growth at lower temperatures. Reproduced with permission.^[137] Copyright 2022, American Chemical Society.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

References

1. Klitzing, K. v.; Dorda, G.; Pepper, M., *Phys. Rev. Lett.* **1980**, *45* (6), 494.
2. Tsui, D. C.; Stormer, H. L.; Gossard, A. C., *Phys. Rev. Lett.* **1982**, *48* (22), 1559.
3. IEEE International Roadmap for Devices and Systems, "Beyond CMOS and Emerging Materials Integration". 2023.
4. Ronning, F.; Zhu, J.-X.; Das, T.; Graf, M.; Albers, R.; Rhee, H.; Pickett, W., *J. Phys. Condensed Matter* **2012**, *24* (29), 294206.
5. Herrera, E.; Guillamón, I.; Barrena, V.; Herrera, W. J.; Galvis, J. A.; Yeyati, A. L.; Rusz, J.; Oppeneer, P. M.; Knebel, G.; Brison, J. P., *Nature* **2023**, *616* (7957), 465-469.
6. Pfleiderer, C., *Rev. Mod. Phys.* **2009**, *81* (4), 1551-1624.
7. Chatterjee, S., *Electron. Struct.* **2021**, *3* (4), 043001.
8. Chatterjee, S.; Khalid, S.; Inbar, H. S.; Goswami, A.; Guo, T.; Chang, Y.-H.; Young, E.; Fedorov, A. V.; Read, D.; Janotti, A., *Sci. Adv.* **2021**, *7* (16), eabe8971.
9. IEEE International Roadmap for Devices and Systems - More Moore. 2023.
10. van Deurzen, L.; Kim, E.; Pieczulewski, N.; Zhang, Z.; Feduniewicz-Zmuda, A.; Chlipala, M.; Siekacz, M.; Muller, D.; Xing, H. G.; Jena, D.; Turski, H., *Nature* **2024**, *634* (8033), 334-340.
11. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A., *Nat. Nanotechnol.* **2011**, *6* (3), 147-150.
12. Uchida, K.; Watanabe, H.; Kinoshita, A.; Koga, J.; Numata, T.; Takagi, S. In *Experimental study on carrier transport mechanism in ultrathin-body SOI nand p-MOSFETs with SOI thickness less than 5 nm*, Digest. International Electron Devices Meeting, IEEE: **2002**; pp 47-50.
13. Izaki, M.; Shishido, H.; Kato, T.; Shibauchi, T.; Matsuda, Y.; Terashima, T., *Appl. Phys. Lett.* **2007**, *91* (12), 122507.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14. Kim, J.; Lee, H.; Lee, S.; Park, S.; Park, T.; Cho, Y.; Lee, H.; Kang, W. N.; Choi, W. S., *Curr. Appl. Phys.* **2019**, *19* (12), 1338-1342.
15. Inbar, H. S.; Ho, D. Q.; Chatterjee, S.; Pendharkar, M.; Engel, A. N.; Dong, J. T.; Khalid, S.; Chang, Y. H.; Guo, T.; Fedorov, A. V., *Phys. Rev. Mater.* **2022**, *6* (12), L121201.
16. Kölsch, S.; Schuck, A.; Huth, M.; Fedchenko, O.; Vasilyev, D.; Chernov, S.; Tkach, O.; Elmers, H.-J.; Schönhense, G.; Schlüter, C., *Phys. Rev. Mater.* **2022**, *6* (11), 115003.
17. Kawashima, K.; Ishida, S.; Fujihisa, H.; Gotoh, Y.; Yoshida, Y.; Eisaki, H.; Ogino, H.; Iyo, A., *Sci. Rep.* **2018**, *8* (1), 16827.
18. Wang, W., *Appl. Phys. Lett.* **1984**, *44* (12), 1149-1151.
19. Masselink, W.; Henderson, T.; Klem, J.; Fischer, R.; Pearah, P.; Morkoc, H.; Hafich, M.; Wang, P.; Robinson, G., *Appl. Phys. Lett.* **1984**, *45* (12), 1309-1311.
20. Uppal, P. N.; Kroemer, H., *J. Appl. Phys.* **1985**, *58* (6), 2195-2203.
21. Henriques, J.; Ilahi, B.; Heintz, A.; Morris, D.; Arès, R.; Boucherif, A., *J. Cryst. Growth* **2023**, *624*, 127433.
22. Yang, J.; Li, K.; Jia, H.; Deng, H.; Yu, X.; Jurczak, P.; Park, J.-S.; Pan, S.; Li, W.; Chen, S., *Nanoscale* **2022**, *14* (46), 17247-17253.
23. Jiang, C.; Liu, H.; Liu, Z.; Ye, J.; Zhai, H.; Liu, S.; Lin, J.; Wang, Q.; Ren, X., *Appl. Phys. A* **2024**, *130* (1), 5.
24. Shang, C.; Norman, J.; Gossard, A. C.; Bowers, J. E. In *GaAs Epitaxy on (001) Si: below $1 \times 10^6 \text{ cm}^{-2}$ Dislocation Density with 2.4 μm Buffer Thickness*, 2020 Conference on Lasers and Electro-Optics (CLEO), IEEE: **2020**; pp 1-2.
25. Koma, A.; Ueno, K.; Saiki, K., *J. Cryst. Growth* **1991**, *111* (1), 1029-1032.
26. Koma, A.; Sunouchi, K.; Miyajima, T., *J. Vac. Sci. Technol. B* **1985**, *3* (2), 724-724.

1
2
3
4 27. Li, X.; Wu, G.; Zhang, L.; Huang, D.; Li, Y.; Zhang, R.; Li, M.; Zhu, L.; Guo, J.; Huang,
5 T.; Shen, J.; Wei, X.; Yu, K. M.; Dong, J.; Altman, M. S.; Ruoff, R. S.; Duan, Y.; Yu, J.; Wang, Z.;
6 Huang, X.; Ding, F.; Shi, H.; Tang, W., *Nat. Commun.* **2022**, *13* (1), 1773.
7
8 28. Zhou, X.; Liang, Y.; Fu, H.; Zhu, R.; Wang, J.; Cong, X.; Tan, C.; Zhang, C.; Zhang, Y.;
9 Wang, Y.; Xu, Q.; Gao, P.; Peng, H., *Adv. Mater.* **2022**, *34* (42), 2202754.
10
11 29. Gao, W.; Dou, W.; Zhou, D.; Song, B.; Niu, T.; Hua, C.; Wee, A. T. S.; Zhou, M., *Small
12 Methods* **2024**, *8* (10), 2301512.
13
14 30. Liu, L.; Ji, Y.; Bianchi, M.; Hus, S. M.; Li, Z.; Balog, R.; Miwa, J. A.; Hofmann, P.; Li, A.-
15 P.; Zemlyanov, D. Y.; Li, Y.; Chen, Y. P., *Nat. Mater.* **2024**, *23* (10), 1339-1346.
16
17 31. Hong, Y. J.; Fukui, T., *ACS Nano* **2011**, *5* (9), 7576–7584.
18
19 32. Kim, Y.; Watt, J.; Ma, X.; Ahmed, T.; Kim, S.; Kang, K.; Luk, T. S.; Hong, Y. J.; Yoo, J.,
20 *ACS Nano* **2022**, *16* (2), 2399-2406.
21
22 33. Xiang, R.; Inoue, T.; Zheng, Y.; Kumamoto, A.; Qian, Y.; Sato, Y.; Liu, M.; Tang, D.;
23 Gokhale, D.; Guo, J.; Hisama, K.; Yotsumoto, S.; Ogamoto, T.; Arai, H.; Kobayashi, Y.; Zhang,
24 H.; Hou, B.; Anisimov, A.; Maruyama, M.; Miyata, Y.; Okada, S.; Chiashi, S.; Li, Y.; Kong, J.;
25 Kauppinen, E. I.; Ikuhara, Y.; Suenaga, K.; Maruyama, S., *Science* **2020**, *367* (6477), 537-542.
26
27 34. Guo, J.; Xiang, R.; Cheng, T.; Maruyama, S.; Li, Y., *ACS Nanosci. Au* **2022**, *2* (1), 3-11.
28
29 35. Kim, J.; Bayram, C.; Park, H.; Cheng, C.-W.; Dimitrakopoulos, C.; Ott, J. A.; Reuter, K.
30 B.; Bedell, S. W.; Sadana, D. K., *Nat. Commun.* **2014**, *5* (1), 4836.
31
32 36. Liu, F.; Wang, T.; Gao, X.; Yang, H.; Zhang, Z.; Guo, Y.; Yuan, Y.; Huang, Z.; Tang, J.;
33 Sheng, B., *Sci. Adv.* **2023**, *9* (31), eadf8484.
34
35 37. Chen, Z.; Liu, Z.; Wei, T.; Yang, S.; Dou, Z.; Wang, Y.; Ci, H.; Chang, H.; Qi, Y.; Yan, J.;
36 Wang, J.; Zhang, Y.; Gao, P.; Li, J.; Liu, Z., *Adv. Mater.* **2019**, *31* (23), 1807345.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 38. Liang, D.; Wei, T.; Wang, J.; Li, J., *Nano Energy* **2020**, *69*, 104463.
5
6 39. Liu, F.; Wang, T.; Zhang, Z.; Shen, T.; Rong, X.; Sheng, B.; Yang, L.; Li, D.; Wei, J.; Sheng,
7 S.; Li, X.; Chen, Z.; Tao, R.; Yuan, Y.; Yang, X.; Xu, F.; Zhang, J.; Liu, K.; Li, X.-Z.; Shen, B.;
8 Wang, X., *Adv. Mater.* **2022**, *34* (5), 2106814.
9
10 40. Kim, Y.; Cruz, S. S.; Lee, K.; Alawode, B. O.; Choi, C.; Song, Y.; Johnson, J. M.;
11 Heidelberger, C.; Kong, W.; Choi, S., *Nature* **2017**, *544* (7650), 340-343.
12
13 41. Kong, W.; Li, H.; Qiao, K.; Kim, Y.; Lee, K.; Nie, Y.; Lee, D.; Osadchy, T.; Molnar, R. J.;
14 Gaskill, D. K., *Nat. Mater.* **2018**, *17* (11), 999-1004.
15
16 42. Wang, Y.; Qu, Y.; Xu, Y.; Li, D.; Lu, Z.; Li, J.; Su, X.; Wang, G.; Shi, L.; Zeng, X., *ACS*
17 *Nano* **2023**, *17* (4), 4023-4033.
18
19 43. Wang, X.; Choi, J.; Yoo, J.; Hong, Y. J., *Nano Converg.* **2023**, *10* (1), 40.
20
21 44. Da, Y.; Zhou, Y.; Zhang, S.; Li, Y.; Jiang, T.; Zhu, W.; Chu, P. K.; Yu, X.-F.; Chen, X.; Wang,
22 J., *Small* **2024**, *20* (30), 2310276.
23
24 45. Huangfu, Y.; Qin, B.; Lu, P.; Zhang, Q.; Li, W.; Liang, J.; Liang, Z.; Liu, J.; Liu, M.; Lin,
25 X.; Li, X.; Saeed, M. Z.; Zhang, Z.; Li, J.; Li, B.; Duan, X., *Small* **2024**, *20* (28), 2309620.
26
27 46. Ma, Y.; Deng, Z.; Liang, H.; Guan, X.; Zheng, Z.; Yao, J.; Yang, G., *Laser & Photonics*
28 *Rev.* **2024**, *18* (12), 2400669.
29
30 47. Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X.,
31 *Nano Lett.* **2007**, *7* (9), 2758-2763.
32
33 48. Wang, H.; Zhu, X.; Zhao, Z.; Wang, X.; Qian, Z.; Jiao, L.; Wang, K.; Li, Y.; Qi, J.-j.; Asif,
34 M., *Nano Lett.* **2024**, *24* (18), 5498-5505.
35
36 49. Hao, Y.; Bharathi, M.; Wang, L.; Liu, Y.; Chen, H.; Nie, S.; Wang, X.; Chou, H.; Tan, C.;
37 Fallahazad, B., *Science* **2013**, *342* (6159), 720-723.
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 50. Wu, T.; Zhang, X.; Yuan, Q.; Xue, J.; Lu, G.; Liu, Z.; Wang, H.; Wang, H.; Ding, F.; Yu,
6 Q., *Nat. Mater.* **2016**, *15* (1), 43-47.
7
8 51. Ling, X.; Lee, Y.-H.; Lin, Y.; Fang, W.; Yu, L.; Dresselhaus, M. S.; Kong, J., *Nano Lett.*
9 **2014**, *14* (2), 464-472.
10
11
12 52. Suleman, M.; Lee, S.; Kim, M.; Nguyen, V. H.; Riaz, M.; Nasir, N.; Kumar, S.; Park, H.
13 M.; Jung, J.; Seo, Y., *ACS Omega* **2022**, *7* (34), 30074-30086.
14
15
16 53. Choi, S. H.; Kim, Y. J.; Yang, W.; Kim, K. K., *J. Kor. Phys. Soc.* **2019**, *74*, 1032-1038.
17
18
19 54. Gong, Y.; Ye, G.; Lei, S.; Shi, G.; He, Y.; Lin, J.; Zhang, X.; Vajtai, R.; Pantelides, S. T.;
20 Zhou, W., *Adv. Funct. Mater.* **2016**, *26* (12), 2009-2015.
21
22
23
24 55. Jin, S.; Huang, M.; Kwon, Y.; Zhang, L.; Li, B.-W.; Oh, S.; Dong, J.; Luo, D.; Biswal, M.;
25 Cunning, B. V., *Science* **2018**, *362* (6418), 1021-1025.
26
27
28
29
30 56. Li, Y.; Sun, L.; Chang, Z.; Liu, H.; Wang, Y.; Liang, Y.; Chen, B.; Ding, Q.; Zhao, Z.; Wang,
31 R., *Adv. Mater.* **2020**, *32* (29), 2002034.
32
33
34
35 57. Wu, M.; Zhang, Z.; Xu, X.; Zhang, Z.; Duan, Y.; Dong, J.; Qiao, R.; You, S.; Wang, L.; Qi,
36 J., *Nature* **2020**, *581* (7809), 406-410.
37
38
39
40 58. Xu, X.; Pan, Y.; Liu, S.; Han, B.; Gu, P.; Li, S.; Xu, W.; Peng, Y.; Han, Z.; Chen, J., *Science*
41 **2021**, *372* (6538), 195-200.
42
43
44
45 59. Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandooh, S.; Park, J.-H.; Shin, B. G.; Ko, H.;
46 Lee, S. H.; Kim, Y.-M., *Science* **2018**, *362* (6416), 817-821.
47
48
49
50 60. Kumah, D. P.; Ngai, J. H.; Kornblum, L., *Adv. Funct. Mater.* **2020**, *30* (18), 1901597.
51
52
53
54 61. Tatsuyama, T. T., *Jpn. J. Appl. Phys.* **1998**, *37* (8R), 4454.
55
56
57
58 62. Spreitzer, M.; Klement, D.; Parkelj Potočnik, T.; Trstenjak, U.; Jovanović, Z.; Nguyen, M.
59 D.; Yuan, H.; Ten Elshof, J. E.; Houwman, E.; Koster, G., *APL Mater.* **2021**, *9* (4), 040701.
60
61
62
63
64
65

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

63. Reynaud, M.; Huyan, H.; Du, C.; Li, W.; Posadas, A. B.; Pan, X.; Demkov, A. A., *ACS Appl. Electron. Mater.* **2023**, *5* (8), 4605-4614.

64. Averyanov, D. V.; Sokolov, I. S.; Taldenkov, A. N.; Kondratev, O. A.; Parfenov, O. E.; Tokmachev, A. M.; Storchak, V. G., *J. Mater. Chem. C* **2023**, *11* (16), 5481-5489.

65. Pasayat, S. S.; Gupta, C.; Acker-James, D.; Cohen, D. A.; DenBaars, S. P.; Nakamura, S.; Keller, S.; Mishra, U. K., *Semicond. Sci. Technol.* **2019**, *34* (11), 115020.

66. Bae, S.-H.; Lu, K.; Han, Y.; Kim, S.; Qiao, K.; Choi, C.; Nie, Y.; Kim, H.; Kum, H. S.; Chen, P., *Nat. Nanotechnol.* **2020**, *15* (4), 272-276.

67. Jiang, J.; Sun, X.; Chen, X.; Wang, B.; Chen, Z.; Hu, Y.; Guo, Y.; Zhang, L.; Ma, Y.; Gao, L., *Nat. Commun.* **2019**, *10* (1), 4145.

68. Nair, S.; Yang, Z.; Lee, D.; Guo, S.; Sadowski, J. T.; Johnson, S.; Saboor, A.; Li, Y.; Zhou, H.; Comes, R. B., *Nat. Nanotechnol.* **2023**, *18* (9), 1005-1011.

69. Inagawa, K.; Watanabe, K.; Saitoh, K.; Yuchi, Y.; Itoh, A., *Surf. Coat. Technol.* **1989**, *39*, 253-264.

70. Zhang, X.; Boyen, H.-G.; Deyneka, N.; Ziemann, P.; Banhart, F.; Schreck, M., *Nat. Mater.* **2003**, *2* (5), 312-315.

71. Al Balushi, Z. Y.; Wang, K.; Ghosh, R. K.; Vilá, R. A.; Eichfeld, S. M.; Caldwell, J. D.; Qin, X.; Lin, Y.-C.; DeSario, P. A.; Stone, G., *Nat. Mater.* **2016**, *15* (11), 1166-1171.

72. Briggs, N.; Bersch, B.; Wang, Y.; Jiang, J.; Koch, R. J.; Nayir, N.; Wang, K.; Kolmer, M.; Ko, W.; De La Fuente Duran, A., *Nat. Mater.* **2020**, *19* (6), 637-643.

73. Wang, J.; Cai, W.; Lu, W.; Lu, S.; Kano, E.; Agulto, V. C.; Sarkar, B.; Watanabe, H.; Ikarashi, N.; Iwamoto, T., *Nature* **2024**, *631*, 67-72.

74. Wei, C.; Xie, Z.; Li, L.; Yu, Q.; Edgar, J., *J. Electron. Mater.* **2000**, *29*, 317-321.

1
2
3
4 75. Nakadaira, A.; Tanaka, H., *J. Electron. Mater.* **1997**, *26*, 320-324.
5
6 76. Stark, C. J.; Detchprohm, T.; Lee, S.; Jiang, Y.-B.; Brueck, S.; Wetzel, C., *Appl. Phys. Lett.*
7
8 **2013**, *103* (23), 232107.
9
10
11 77. Bayram, C.; Ott, J. A.; Shiu, K. T.; Cheng, C. W.; Zhu, Y.; Kim, J.; Razeghi, M.; Sadana,
12
13 D. K., *Adv. Funct. Mater.* **2014**, *24* (28), 4492-4496.
14
15
16 78. Leszczynski, M.; Teisseire, H.; Suski, T.; Grzegory, I.; Bockowski, M.; Jun, J.; Porowski,
17
18 S.; Pakula, K.; Baranowski, J.; Foxon, C., *Appl. Phys. Lett.* **1996**, *69* (1), 73-75.
19
20
21 79. Hauge, H. I. T.; Verheijen, M. A.; Conesa-Boj, S.; Etzelstorfer, T.; Watzinger, M.; Kriegner,
22
23 D.; Zardo, I.; Fasolato, C.; Capitani, F.; Postorino, P.; Kölling, S.; Li, A.; Assali, S.; Stangl, J.;
24
25 Bakkers, E. P. A. M., *Nano Lett.* **2015**, *15* (9), 5855-5860.
26
27
28 80. Wang, X.; Kaufmann, R.; Jones, A. C.; Chen, R.; Ahmed, T.; Pettes, M. T.; Kotula, P. G.;
29
30 Bilgin, I.; Wang, Y.; Kar, S., *Mater. Today Adv.* **2023**, *19*, 100401.
31
32
33 81. Kim, K. S.; Lee, D.; Chang, C. S.; Seo, S.; Hu, Y.; Cha, S.; Kim, H.; Shin, J.; Lee, J.-H.;
34
35 Lee, S., *Nature* **2023**, *614* (7946), 88-94.
36
37
38 82. Kim, K. S.; Seo, S.; Kwon, J.; Lee, D.; Kim, C.; Ryu, J.-E.; Kim, J.; Song, M.-K.; Suh, J.
39
40 M.; Jung, H.-G., *arXiv preprint arXiv:2312.03206* **2023**.
41
42
43 83. Groven, B.; Kandybka, I.; Voronenkov, V.; Vranckx, D.; Medina, H.; Nijs, S.; Kumar, P.;
44
45 Moussa, A.; Saib, M.; Beggato, M., **2024**. DOI 10.21203/rs.3.rs-4504047/v1.
46
47
48 84. Sarkar, D.; Wang, W.; Mecklenburg, M.; Clough, A. J.; Yeung, M.; Ren, C.; Lin, Q.;
49
50 Blankemeier, L.; Niu, S.; Zhao, H., *ACS Nano* **2018**, *12* (6), 5158-5167.
51
52
53 85. Sarkar, D.; Tao, J.; Ahsan, R.; Yang, D.; Orvis, T.; Weng, S.; Greer, F.; Ravichandran, J.;
54
55 Sideris, C.; Kapadia, R., *ACS Appl. Electron. Mater.* **2020**, *2* (7), 1997-2002.
56
57
58
59
60
61
62
63
64
65

1
2
3
4 86. Chang, C. S.; Kim, K. S.; Park, B.-I.; Choi, J.; Kim, H.; Jeong, J.; Barone, M.; Parker, N.;
5 Lee, S.; Zhang, X., *Sci. Adv.* **2023**, *9* (42), eadj5379.
6
7 87. Chen, Q.; Yang, K.; Shi, B.; Yi, X.; Wang, J.; Li, J.; Liu, Z., *Adv. Mater.* **2023**, *35* (18),
8 2211075.
9
10 88. Kim, H.; Liu, Y.; Lu, K.; Chang, C. S.; Sung, D.; Akl, M.; Qiao, K.; Kim, K. S.; Park, B.-
11 I.; Zhu, M., *Nat. Nanotechnol.* **2023**, *18* (5), 464-470.
12
13 89. Yin, Y.; Liu, B.; Chen, Q.; Chen, Z.; Ren, F.; Zhang, S.; Liu, Z.; Wang, R.; Liang, M.; Yan,
14 J., *Small* **2022**, *18* (41), 2202529.
15
16 90. Cui, Y.; Wang, J.; Li, Y.; Wu, Y.; Been, E.; Zhang, Z.; Zhou, J.; Zhang, W.; Hwang, H. Y.;
17 Sinclair, R., *Science* **2024**, *383* (6679), 212-219.
18
19 91. Glavin, N. R.; Chabak, K. D.; Heller, E. R.; Moore, E. A.; Prusnick, T. A.; Maruyama, B.;
20 Walker Jr, D. E.; Dorsey, D. L.; Paduano, Q.; Snure, M., *Adv. Mater.* **2017**, *29* (47), 1701838.
21
22 92. Shin, J.; Kim, H.; Sundaram, S.; Jeong, J.; Park, B.-I.; Chang, C. S.; Choi, J.; Kim, T.;
23 Saravanapavanantham, M.; Lu, K., *Nature* **2023**, *614* (7946), 81-87.
24
25 93. Jeong, J.; Wang, Q.; Cha, J.; Jin, D. K.; Shin, D. H.; Kwon, S.; Kang, B. K.; Jang, J. H.;
26 Yang, W. S.; Choi, Y. S., *Sci. Adv.* **2020**, *6* (23), eaaz5180.
27
28 94. Kim, Y.; Suh, J. M.; Shin, J.; Liu, Y.; Yeon, H.; Qiao, K.; Kum, H. S.; Kim, C.; Lee, H. E.;
29 Choi, C., *Science* **2022**, *377* (6608), 859-864.
30
31 95. Wang, D.; Lu, Y.; Meng, J.; Zhang, X.; Yin, Z.; Gao, M.; Wang, Y.; Cheng, L.; You, J.;
32 Zhang, J., *Nanoscale* **2019**, *11* (19), 9310-9318.
33
34 96. Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.;
35 Duan, X., *Nature* **2018**, *557* (7707), 696-700.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 97. Zeng, D.; Zhang, Z.; Xue, Z.; Zhang, M.; Chu, P. K.; Mei, Y.; Tian, Z.; Di, Z., *Nature* **2024**,
5 1-7.
6
7
8 98. Herman, M. A.; Richter, W.; Sitter, H., *Epitaxy: physical principles and technical*
9 *implementation*. Springer Science & Business Media: **2013**; Vol. 62.
10
11
12
13
14 99. Kroemer, H., *J. Cryst. Growth* **1987**, *81* (1-4), 193-204.
15
16
17 100. Arciprete, F.; Boschker, J. E.; Cecchi, S.; Zallo, E.; Bragaglia, V.; Calarco, R., *Adv. Mater.*
18 *Interfaces* **2022**, *9* (9), 2101556.
19
20
21 101. Dong, J.; Zhang, L.; Dai, X.; Ding, F., *Nat. Commun.* **2020**, *11* (1), 5862.
22
23
24 102. Reidy, K.; Thomsen, J. D.; Lee, H. Y.; Zarubin, V.; Yu, Y.; Wang, B.; Pham, T.; Periwal, P.;
25 Ross, F. M., *Nano Lett.* **2022**, *22* (14), 5849-5858.
26
27
28 103. Zheng, P.; Wei, W.; Liang, Z.; Qin, B.; Tian, J.; Wang, J.; Qiao, R.; Ren, Y.; Chen, J.; Huang,
29 C., *Nat. Commun.* **2023**, *14* (1), 1-7.
30
31
32
33 104. Hu, L.; Liu, D.; Zheng, F.; Yang, X.; Yao, Y.; Shen, B.; Huang, B., *Phys. Rev. Lett.* **2024**,
34 *133* (4), 046102.
35
36
37
38 105. Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.;
39 Duan, X., *Nat. Commun.* **2013**, *4* (1), 2096.
40
41
42
43 106. Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C.-J.; Muller, D.;
44 Park, J., *Nature* **2015**, *520* (7549), 656-660.
45
46
47
48 107. Posthuma de Boer, J.; Ford, I. J.; Kantorovich, L.; Vvedensky, D. D., *J. Chem. Phys.* **2018**,
49 *149* (19), 194107.
50
51
52
53 108. Lidorikis, E.; Bachlechner, M. E.; Kalia, R. K.; Nakano, A.; Vashishta, P., *Phys. Rev. B*
54 **2005**, *72* (11), 115338.
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4 109. Van Der Giessen, E.; Schultz, P. A.; Bertin, N.; Bulatov, V. V.; Cai, W.; Csányi, G.; Foiles,
5 S. M.; Geers, M. G.; González, C.; Hüttler, M., *Model. Simul. Mater. Sci. Eng.* **2020**, 28 (4), 043001.
6
7
8 110. Capone, M.; Romanelli, M.; Castaldo, D.; Parolin, G.; Bello, A.; Gil, G.; Vanzan, M., *ACS
9 Phys. Chem. Au* **2024**, 4 (3), 202-225.
10
11
12
13
14 111. Lee, K. K.; Brown, T.; Dagnall, G.; Bicknell-Tassius, R.; Brown, A.; May, G. S., *IEEE
15 Transac. Semicond. Manuf.* **2000**, 13 (1), 34-45.
16
17
18
19 112. Harris, S. B.; Rouleau, C. M.; Xiao, K.; Vasudevan, R. K., *npj Comput. Mater.* **2024**, 10
20 (1), 105.
21
22
23
24 113. Shen, C.; Zhan, W.; Xin, K.; Li, M.; Sun, Z.; Cong, H.; Xu, C.; Tang, J.; Wu, Z.; Xu, B.,
25 *Nat. Commun.* **2024**, 15 (1), 2724.
26
27
28 114. Wakabayashi, Y. K.; Otsuka, T.; Krockenberger, Y.; Sawada, H.; Taniyasu, Y.; Yamamoto,
29 H., *APL Mater.* **2019**, 7 (10), 101114.
30
31
32
33 115. Ohkubo, I.; Hou, Z.; Lee, J. N.; Aizawa, T.; Lippmaa, M.; Chikyow, T.; Tsuda, K.; Mori,
34 T., *Mater. Today Phys.* **2021**, 16, 100296.
35
36
37
38 116. Xu, P.; Ji, X.; Li, M.; Lu, W., *npj Comput. Mater.* **2023**, 9 (1), 42.
39
40
41 117. Smola, A. J.; Schölkopf, B., *Stat. Comput.* **2004**, 14, 199-222.
42
43
44 118. Deringer, V. L.; Bartók, A. P.; Bernstein, N.; Wilkins, D. M.; Ceriotti, M.; Csányi, G., *Chem.
45 Rev.* **2021**, 121 (16), 10073-10141.
46
47
48 119. Talekar, B.; Agrawal, S., *Biosci. Biotechnol. Res. Commun.* **2020**, 13 (14), 245-248.
49
50
51 120. Biau, G.; Cadre, B.; Rouvière, L., *Mach. Learn.* **2019**, 108, 971-992.
52
53
54 121. Duan, J.; Asteris, P. G.; Nguyen, H.; Bui, X.-N.; Moayedi, H., *Eng. Comput.* **2021**, 37,
55 3329-3346.
56
57
58 122. Lookman, T.; Balachandran, P. V.; Xue, D.; Yuan, R., *npj Comput. Mater.* **2019**, 5 (1), 21.
59
60
61
62
63
64
65

123. Ranaweera, M.; Mahmoud, Q. H., *Electronics* **2021**, *10* (12), 1491.

124. Li, T.; Guo, W.; Ma, L.; Li, W.; Yu, Z.; Han, Z.; Gao, S.; Liu, L.; Fan, D.; Wang, Z., *Nat. Nanotechnol.* **2021**, *16* (11), 1201-1207.

125. Li, J.; Yang, X.; Liu, Y.; Huang, B.; Wu, R.; Zhang, Z.; Zhao, B.; Ma, H.; Dang, W.; Wei, Z., *Nature* **2020**, *579* (7799), 368-374.

126. Chen, L.; Liu, B.; Ge, M.; Ma, Y.; Abbas, A. N.; Zhou, C., *ACS Nano* **2015**, *9* (8), 8368-8375.

127. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazic, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y.-C.; Krasnozhon, D.; Chen, M.-W., *ACS Nano* **2015**, *9* (4), 4611-4620.

128. Krishna, S.; Choi, S. H.; Kim, S. M.; Kim, K. K., *Curr. Appl. Phys.* **2024**, *59*, 208-213.

129. Boando, S.; Choi, S. H.; Park, J. H.; Park, S. Y.; Bang, S.; Jeong, M. S.; Lee, J. S.; Kim, H. J.; Yang, W.; Choi, J. Y., *Small* **2017**, *13* (39), 1701306.

130. Choi, S. H.; Kim, H. J.; Song, B.; Kim, Y. I.; Han, G.; Nguyen, H. T. T.; Ko, H.; Boando, S.; Choi, J. H.; Oh, C. S., *Adv. Mater.* **2021**, *33* (15), 2006601.

131. Zhang, Z.; Chen, P.; Duan, X.; Zang, K.; Luo, J.; Duan, X., *Science* **2017**, *357* (6353), 788-792.

132. Kim, H.; Lu, K.; Liu, Y.; Kum, H. S.; Kim, K. S.; Qiao, K.; Bae, S.-H.; Lee, S.; Ji, Y. J.; Kim, K. H., *ACS Nano* **2021**, *15* (6), 10587-10596.

133. Han, X.; Yu, J.; Li, Z.; Wang, X.; Hao, Z.; Luo, Y.; Sun, C.; Han, Y.; Xiong, B.; Wang, J., *ACS Appl. Electron. Mater.* **2022**, *4* (11), 5326-5332.

134. Sangiovanni, D. G.; Gueorguiev, G.; Kakanakova-Georgieva, A., *Phys. Chem. Chem. Phys.* **2018**, *20* (26), 17751-17761.

1
2
3
4 135. Manzo, S.; Strohbeen, P. J.; Lim, Z. H.; Saraswat, V.; Du, D.; Xu, S.; Pokharel, N.; Mawst,
5 L. J.; Arnold, M. S.; Kawasaki, J. K., *Nat. Commun.* **2022**, *13* (1), 4014.
6
7
8 136. Kim, H.; Lee, S.; Shin, J.; Zhu, M.; Akl, M.; Lu, K.; Han, N. M.; Baek, Y.; Chang, C. S.;
9 Suh, J. M., *Nat. Nanotechnol.* **2022**, *17* (10), 1054-1059.
10
11
12 137. Zhou, G.; Younas, R.; Sun, T.; Harden, G.; Li, Y.; Hoffman, A. J.; Hinkle, C. L., *ACS Nano*
13
14 **2022**, *16* (11), 19385-19392.
15
16
17 138. Hasegawa, S.; Ino, S.; Yamamoto, Y.; Daimon, H., *Jpn. J. Appl. Phys.* **1985**, *24* (6A), L387.
18
19 DOI 10.1143/JJAP.24.L387.
20
21
22 139. Trevor, F.; Weightman, P. In *Laser reflectometry for in-situ monitoring of the epitaxial*
23
24 *growth of thin films*, Proc. SPIE, **1995**; pp 106-115.
25
26
27 140. Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M. C.; Lehmann, S.; Hofmann, S.; Dick, K.
28
29 A.; Ross, F. M., *Nature* **2016**, *531* (7594), 317-322. DOI 10.1038/nature17148.
30
31
32 141. Diallo, T. M.; Aziziyan, M. R.; Arvinte, R.; Harmand, J.-C.; Patriarche, G.; Renard, C.;
33
34 Fafard, S.; Arès, R.; Boucherif, A., *Small* **2022**, *18* (5), 2101890.
35
36
37 142. Chen, J.; Zhu, E.; Liu, J.; Zhang, S.; Lin, Z.; Duan, X.; Heinz, H.; Huang, Y.; De Yoreo, J.
38
39 J., *Science* **2018**, *362* (6419), 1135-1139.
40
41
42 143. Qiang, X.; Iwamoto, Y.; Watanabe, A.; Kameyama, T.; He, X.; Kaneko, T.; Shibuta, Y.;
43
44 Kato, T., *Sci. Rep.* **2021**, *11* (1), 22285.
45
46
47 144. Zhang, K.; Ding, C.; Pan, B.; Wu, Z.; Marga, A.; Zhang, L.; Zeng, H.; Huang, S., *Adv.*
48
49 *Mater.* **2021**, *33* (45), 2105079.
50
51
52 145. Reinhold-López, K.; Braeuer, A.; Romann, B.; Popovska-Leipertz, N.; Leipertz, A.,
53
54 *Procedia Eng.* **2015**, *102*, 190-200.
55
56
57 146. Pauc, N.; Phillips, M.; Aimez, V.; Drouin, D., *Appl. Phys. Lett.* **2006**, *89* (16), 161905.
58
59
60
61
62
63
64
65

1
2
3
4 147. Li, Q.; Zhang, J.; Meng, L.; Chong, J.; Hou, X., *J. Nanomater.* **2015**, *2015* (1), 903098.
5
6
7 148. Lohstroh, A.; Sellin, P.; Wang, S.; Davies, A.; Parkin, J.; Martin, R.; Edwards, P., *Appl.*
8 *Phys. Lett.* **2007**, *90* (10), 102111.
9
10
11 149. Donmez, O.; Gunes, M.; Erol, A.; Arikhan, C. M.; Balkan, N.; Schaff, W. J., *Nanoscale Res.*
12 *Lett.* **2012**, *7*, 490.
13
14
15 150. Pandey, S.; Cavalcoli, D.; Minj, A.; Fraboni, B.; Cavallini, A.; Skuridina, D.; Vogt, P.;
16 Kneissl, M., *Acta Mater.* **2012**, *60* (6-7), 3176-3180.
17
18
19 151. Kaun, S. W.; Burke, P. G.; Hoi Wong, M.; Kyle, E. C.; Mishra, U. K.; Speck, J. S., *Appl.*
20 *Phys. Lett.* **2012**, *101* (26), 262102.
21
22
23 152. Hite, J.; Gaddipati, P.; Meyer, D.; Mastro, M.; Eddy Jr, C., *Electron. Lett.* **2014**, *50* (23),
24 1722-1724.
25
26
27 153. Wang, Z.; Goodge, B.; Baek, D.; Zachman, M.; Huang, X.; Bai, X.; Brooks, C.; Paik, H.;
28 Mei, A.; Brock, J., *Phys. Rev. Mater.* **2019**, *3* (7), 073403.
29
30
31 154. Kalinin, S. V.; Ziatdinov, M.; Ahmadi, M.; Ghosh, A.; Roccapriore, K.; Liu, Y.; Vasudevan,
32 R. K., *Appl. Phys. Rev.* **2024**, *11* (1), 011314.
33
34
35 155. Torrisi, S. B.; Bazant, M. Z.; Cohen, A. E.; Cho, M. G.; Hummelshøj, J. S.; Hung, L.;
36 Kamat, G.; Khajeh, A.; Kolluru, A.; Lei, X.; Ling, H.; Montoya, J. H.; Mueller, T.; Palizhati, A.;
37 Paren, B. A.; Phan, B.; Pietryga, J.; Sandraz, E.; Schweigert, D.; Shao-Horn, Y.; Trewartha, A.;
38 Zhu, R.; Zhuang, D.; Sun, S., *APL Mach. Learn.* **2023**, *1* (2), 020901.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Click here to access/download
Production Data
Copyright Permissions.pdf

