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Abstract

Differential privacy (DP) is widely employed to provide privacy
protection for individuals by limiting information leakage from
the aggregated data. Two well-known models of DP are the cen-
tral model and the local model. The former requires a trustworthy
server for data aggregation, while the latter requires individuals to
add noise, significantly decreasing the utility of aggregated results.
Recently, many studies have proposed to achieve DP with Secure
Multi-party Computation (MPC) in distributed settings, namely,
the distributed model, which has utility comparable to central model
while, under specific security assumptions, preventing parties from
obtaining others’ information. One challenge of realizing DP in
distributed model is efficiently sampling noise with MPC. Although
many secure sampling methods have been proposed, they have dif-
ferent security assumptions and isolated theoretical analyses. There
is a lack of experimental evaluations to measure and compare their
performances. We fill this gap by benchmarking existing sampling
protocols in MPC and performing comprehensive measurements
of their efficiency. First, we present a taxonomy of the underlying
techniques of these sampling protocols. Second, we extend widely
used distributed noise generation protocols to be resilient against
Byzantine attackers. Third, we implement discrete sampling pro-
tocols and align their security settings for a fair comparison. We
then conduct an extensive evaluation to study their efficiency and
utility. Our experiments show that (1) malicious protocols based
on a technique called bitwise sampling are more efficient than
other methods, and using an oblivious data structure can reduce
the circuit size in high-security regimes, (2) the cost of realizing
malicious security is high, under the assumption of semi-honest,
using a method named distributed noise generation is much more
efficient, and (3) the utility loss caused by sampling noise in MPC
is small, which to a certain extent eliminates utility concerns when
using the DDP protocol in practice. We open-source our code at
https://github.com/yuchengxj/Secure-sampling-benchmark.
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1 Introduction

Differential Privacy (DP) is a strong notion of privacy-preserving
algorithms [28]. DP has been widely used in many scenarios, such
as the analysis of personal interest, medical analysis, and machine
learning. The classic definition of DP assumes that a trusted central
server can collect sensitive user information and then add noise to
the results of specific queries, namely, the central model. However,
in situations where the server is not trustworthy, this definition
raises privacy concerns. One possible solution is local model, also
known as Local DP (LDP) [62], where each user perturbs the input
locally and then sends the results to the server. However, the local
model usually requires significantly more samples to achieve the
same utility as the central model.

An alternative is to take advantage of secure multi-party compu-
tation (MPC), which enables users to jointly compute a function
without revealing their inputs. By evaluating the aggregation func-
tion and then adding perturbations to the output in MPC, multiple
users can obtain the final result satisfying DP without a trustworthy
server. This is also called Distributed DP (DDP). The main challenge
to realize DDP is how to produce random noise in MPC. Recent
works have proposed many sampling protocols to efficiently sample
noise from particular distributions [4, 14, 18, 27, 35, 39, 48].

DEFINITION 1.1 (DISTRIBUTED DIFFERENTIAL PRIVACY). A ran-
domized protocol Il implemented among m computing parties p =
{po, --» Pm—1}, satisfies Distributed Differential Privacy w.r.t. a coali-
tion ¢ C p of semi-honest computing parties of size t, if the following
condition holds: for any neighbouring datasets D, D’ differing in a
single entry, and any possible set S of views for protocol 1,

Pr [VIEW’;(D) € S] < ePr [VIEw‘r’[(D’) €S| +8. (1)
where . is a negligible term associated with a security parameter k.

The sampling protocols work as bridges between MPC and
DP, significantly affecting privacy-preserving algorithms’ perfor-
mance in the distributed setting. We give an example in Figure 1
to show the running time of using different sampling protocols
to generate n = 4096 noise variable under security parameters
A € {64,128,256,512}. As we can see, the efficiency of sampling
protocols varies, and an inappropriate choice of protocol can result
in a long execution time in practice. While these sampling proto-
cols can be integrated into similar DDP pipelines, their methods
vary and have different security assumptions. More importantly,
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Figure 1: The running time of sampling protocols for n = 4096
discrete Laplace (ODO-Laplace, Ostack-Laplace) and Gauss-
ian (ODO-Gaussian, Ostack-Gaussian) samples under differ-
ent security parameters 1 € {64, 128, 256,512}.

prior evaluations of these methods were conducted in isolation,
with varying settings. The lack of a consistent evaluation hinders
researchers from understanding and selecting the most efficient
sampling algorithms in diverse settings, which motivates us to
benchmark different sampling protocols and conduct comprehen-
sive evaluations. Our contributions are as follows.

(1) Review and Taxonomy. We first review existing sampling
protocols for DDP and propose a taxonomy to categorize them
based on their sampling techniques into three general approaches:
distributed noise generation, uniform transformations, and bitwise
sampling. We also analyze the security model of these protocols
and identify the gap in the semi-honest distributed noise generation.

(2) Benchmark and Alignment. We implement existing sam-
pling protocols with the MP-SPDZ framework [42]. Our imple-
mentations are versatile and compatible with various underlying
MPC protocols, which also work as a library, enabling practitioners
to realize DDP on their aggregation results in MPC easily. In the
benchmark, we also extend the distributed noise generation with an
additional MPC implementation of a statistical test, which checks
poisoning attacks to partial noise. We also create a framework that
aligns the statistical distances by different sampling protocols. This
guarantees protocols can achieve identical DDP protection, where
we can fairly compare their efficiency.

(3) Experimental Evaluation. With the benchmark, we con-
duct comprehensive experiments, aiming to understand the ques-
tion of which is the most effective sampling protocol under different
scenarios. We vary the targeted number of samples, the security pa-
rameter, the privacy budget, and the number of computing parties to
measure the efficiency of different sampling protocols. Our metric
spans from empirical results like running time and communication
to static indicators like the number of AND gates and random bits
input from parties. We also instantiate the basic counting query on
the real-world dataset to verify secure sampling protocols’ utilities.

(4) Findings. Given the experimental results, we identify two
interesting trends: protocols relying on bitwise sampling tend to
be more efficient than alternative methods, and employing obliv-
ious data structures can reduce the circuit size when heightened
security is required. We give detailed guidelines for choosing the
proper sampling protocol when considering different scenarios.
Additionally, through our empirical study, we demonstrate that
noise sampled in DDP and pure CDP have almost the same utility
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guarantee, which to a certain extent eliminates utility concerns
when using the DDP protocol in practice.

Roadmap. The remainder of this paper is organized as follows.
In Section 2, we introduce related works. Section 3 provides the
preliminary for differential privacy and secure multi-party com-
putation. In Section 4, we review existing sampling protocols. In
Section 5, we analyse and extend widely used distributed noise
generation protocols. In Section 6, we describe our benchmark and
categorize their statistical distance with the same framework. Sec-
tion 7 presents evaluation results. We give some takeaways from
our evaluation in Section 8 and a conclusion in Section 9.

2 Related Work

Differential Privacy. Differential privacy (DP) [28, 29] is a strong
notion preventing individuals from being inferred from the aggre-
gated data. In the central DP (CDP) setting which assumes the data
curator is trusted, many types of data statistics methods with pri-
vacy guarantee have been proposed, including range query [36, 49],
data stream release [19, 56], synthetic dataset generation [54, 65]
and machine learning [1, 60], etc. Moreover, a more stringent def-
inition named local DP (LDP) [40] is widely used when the cura-
tor is untrusted. There are also many works designing LDP algo-
rithms to protect the privacy of users against the adversarial curator
[23, 50, 55, 64]. However, because LDP perturbs each user’s input,
the final aggregated results have poorer utility than CDP. An alter-
native is called the shuffle DP [21, 22], which uses a non-colluding
shuffler to permute LDP random reports from clients. The utility in
the shuffle model can be superior to the LDP setting, but it remains
less optimal than CDP [5].

Distributed Differential Privacy. We focus on another ap-
proach that leverages secure multi-party computation (MPC). It
can achieve the same trust model as shuffle DP (introducing a non-
colluding party) but can be more versatile. It achieves better utility
than shuffle DP, but with a sacrifice on computational cost. We call
this distributed DP (DDP). Several works have proposed practical
MPC protocols to realize different types of DDP statistics, including
median queries [12, 13], heavy hitter [14, 15], graph query [51], and
machine learning [22, 48]. Sampling noise in MPC is the foundation
for achieving DDP. One branch of sampling protocol is distributed
noise generation [4, 14, 35,37, 39]. It lets parties locally sample noise,
which is then summed in MPC. This approach can be easily and
efficiently implemented. However, it can only achieve semi-honest
security, and the byzantine adversaries can use incorrect partial
noise to violate differential privacy [27, 41, 61]. To realize malicious
security, Dwork et al. [27] propose to first securely sample biased
coins and compose them into the sample from the geometric distri-
bution. Subsequently, Champion et al. [18] construct an oblivious
data structure to improve the efficiency of sampling biased coins.
Wei et al. [59] use rejection sampling to convert the discrete Laplace
samples into discrete Gaussian samples, where they use the method
in Dwork et al. [27] as a building block. Other transform-based
protocols [30, 48] require float-point non-linear arithmetic, which
is significantly slower in MPC protocols. Biswas et al. [11] propose
a verifiable mechanism sampling noise from Binomial distribution
to realize DP. Due to the unbiased sampled coin, it can not directly
be applied to sample noise from Laplace distribution.
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While there are different protocols using various approaches,
we identify a lack of comprehensive understanding of their secu-
rity guarantees and performance under different settings. In this
paper, we benchmark widely used sampling protocols to conduct
evaluations.

3 Preliminaries

3.1 Differential Privacy

Differential privacy (DP) is a privacy notion to protect the privacy
of any specific individuals under the aggregate statistics.

DEFINITION 3.1 (DIFFERENTIAL PRIvAcY [28]). A randomized
algorithm M : F — O is (e, §)-differential privacy (DP) if for any
pair of neighbouring datasets D, D’ € F that differ by a single record,
and for any possible subset S of M’s output,

Pr[M(D) € S] < e“Pr [M(D’) € S| +6, 2)

where the parameter € > 0 denotes the privacy budget, and § > 0
denotes the probability that privacy is violated.

When § # 0, the mechanism is approximate DP ((e, §)-DP).
Otherwise, we call it pure DP (e-DP).

Primitives for DP. In order to achieve DP for numerical statistics,
one can add noise to the function output. Let A be the sensitivity of
function f, which is the largest change to the function output after
changing a single record.

A common way to achieve e-DP is adding noise sampled from
the Laplace distribution with parameter A/e (A is measured in [;
distance), i.e., the Laplace mechanism [29].

THEOREM 3.2 (LAPLACE MECHANISM [29]). Given a function f:
F — Ok, and a dataset D € F, the Laplace Mechanism is defined as
Mpap(D, f(-), €) = f(D) + (Lo, ..., L —1), where L; are i.i.d. random

variables sampled from zero-mean Laplace distribution Lap (%)

Another mechanism to achieve DP is the Gaussian Mechanism
My, which adds noise sampled from the zero-mean Gaussian dis-
tribution N (0'2) and the sensitivity A is measured by I, distance.

THEOREM 3.3 (GAUSSIAN MECHANISM [29]). Let € € (0,1). The
Gaussian Mechanism with parameter o = Ay/21n (1.25/8) /€ satisfies
(e,6)-DP.

There are recent improved results [6, 47] about Gaussian mecha-
nism. In this paper, for presentation simplicity, we use the classic
result. There are also discrete versions of these mechanisms with
similar privacy guarantees.

THEOREM 3.4 (DISCRETE LAPLACE MECHANISM). Given a function
f:F— Ok, and a dataset D € F, the discrete Laplace Mechanism
is defined as Map, (D, f(-).€) = f(D) + (Lo, ..., Lx_1), where L;
are i.i.d. random variables sampled from zero-mean discrete Laplace
distribution Lapy (%) And the M| ap,, satisfies e-DP.

THEOREM 3.5 (DISCRETE GAUSSIAN MECHANISM). Given a func-
tion f:F — (O)k, and a dataset D € F, the discrete Gaussian Mecha-
nism is defined as Mn, (D, f(+), €) = f(D) + (Yo, ..., Yk_1), where Y;
are i.i.d. random variables sampled from zero-mean discrete Gauss-
ian distribution Nz (02). And the My, satisfies (e, 8)-DP for § =

Pryc Nz (o2 |Y > %‘2 - %] —e€- Pry Nz (o?) [Y > EALZ + %]
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In this work, we benchmark DP protocols in MPC. We focus on
discrete protocols because those are more naturally supported in
MPC, and most existing work is discrete. That said, our library also
includes continuous protocols. Other primitives, like Exponential
Mechanism, Report Noisy Max, and Sparse Vector Technique, can
be reduced to sampling Laplace or Gaussian noise. We present their
details in Appendix A of our technical report [33].

3.2 Secure Multi-party Computation

Secure Multiparty Computation (MPC) [34, 63] allows a set of par-
ties to jointly compute a function y = f(Dy, ..., Djy—1) without
revealing their inputs D; (0 < i < m — 1). After the computa-
tion, all the parties can only know the result y. Currently, the two
main paradigms to implement MPC are garble circuits [44, 46] and
secret sharing [9, 24]. In this paper, we focus on a secret sharing
scheme, which offers better scalability in the multi-party setting;
our evaluation also involves garbled circuits for two-party settings.

The secret-sharing-based-MPC splits each party’s input d; into
m pieces of shares (d;); (0 < j < m—1) by a Share function. Next,
each party i runs the protocol with m shares (d1);, ..., (dm—1)i and
gets the shares of output (y);, which are used to reconstruct the
plain text output y with a Rec function. In a (¢, m)-secret sharing
protocol, t shares are sufficient to reconstruct the plain text with
Rec. For simplicity, we use (s) to denote shares {(s)1, ..., (S)m—1}
of s among m parties.

The adversary models of MPC protocols can be classified into
the semi-honest model and the malicious model. The former as-
sumes that the adversaries are curious about others’ private data
but still follow the protocol, even if their deviation may not be
detected; the latter assumes that adversaries can deviate from the
protocol arbitrarily, thus some detection/prevention scheme has to
be implemented. For more details, one can refer to [31].

Recently, some frameworks, such as SCALE-MAMBA [2] and
MP-SDPZ [42] have improved the MPC performance. In this paper,
we implement existing solutions in both semi-honest and malicious
settings for realizing DP in MPC using MP-SPDZ [42] framework
and compare their performance. We use MP-SPDZ since it has been
adopted in many MPC applications [14, 25, 38, 59] and supports
various popular underlining protocols in both secret shares and
garbled circuits. The MPC subprotocols mentioned in this paper are
listed in Appendix C of [33]. In most cases, they operate on secret
shares.

3.3 Distributed Differential Privacy

The conventional definition of DP holds against computationally
unbounded adversaries. In this paper, we consider distributed DP
(DDP) against computationally bounded adversaries in the dis-
tributed setting [30].

Specifically, in DDP, we assume there is a set of m computing
parties and m’ input parties (an input party can also serve as a
computing party). Each input party i gives a private input d; to the
computationally bounded, untrusted and non-colluding computing
parties to construct a dataset D. Then, computing parties jointly
compute the final statistic results on D by running the protocol
s Let VIEW‘?I (D) be the view of any computing party p when
executing the protocol IT on dataset D, including all exchanged
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messages and internal state, and x be the view security parameter.
The protocol I satisfies the following definition:

DEFINITION 3.6 (DISTRIBUTED DIFFERENTIAL PRIvAcY [30]). A
randomized protocol Iy implemented among m computing parties
p = {po, ... pm—1}, satisfies Distributed Differential Privacy w.r.t. a
coalition ¢ C p of semi-honest computing parties of size t, if the fol-
lowing condition holds: for any neighbouring datasets D, D’ differing
in a single entry, and any possible set S of views for protocol II,

Pr[VIEWZ (D) € S] < e“Pr [vmwﬁ(D’) esl+se

where 8 is a negligible term associated with a security parameter k.

General Pipeline of DDP. At the high level, the end-to-end
process of a DDP protocol works in four steps. In the process of
aggregation statistic, each input party i sends its d; to the untrusted
but non-colluding computing parties to form a combined dataset
D = {dy, ....dm—1}. Each d; can be a single data point (in the fully
distributed setting) or a collection of samples (the input party al-
ready collects data in raw format). Formally, the pipeline is as
follows.

e Secret Sharing. Each input party i splits its data d; into shares
(di) = Share(d;) and sends them to m computing parties. After
that, the input parties can go offline.

o Statistics Aggregation. The computing parties run secret-sharing-
based protocols I1 of some function f to get the shares of ag-
gregation result (f(D)).

o Noise Sampling. The computing parties run an additional secure
sampling protocol IIs(xo, ..., xm—1) (Where x; is from computing
party i) to get the shares of noises (1).

o Addition and Reconstruction. The computing parties add the noise
to the aggregation result to get shares of the final output (y) =
(f(D))+(n). Then, the reconstruction function is called to reveal
the differential private result Rec((y)). Note that (f) and (5) can
be in vector forms.

4 Overview of Sampling Protocols

Now, we focus on secure sampling protocols I for the Laplace
or Gaussian mechanism proposed by recent studies. According to
their underlying sampling process, we classify these methods into
three main categories: (1) distributed noise generation, (2) uniform
transformation, and (3) bitwise sampling. Table 1 shows a summary
of methods based on this categorization (along with two more
dimensions of what DP mechanism they support and the adversary
model in MPC). In what follows, we review these approaches in
more detail and discuss the limitations of semi-honest protocols.

4.1 Semi-honest Sampling Protocols

Distributed noise generation (DNG) is the simplest way to add DP
noise in MPC. In this approach, each party locally samples partial
noise and sends it to the MPC protocol ITs. These partial noises can
be combined to obtain the required distribution. The combining
process usually requires only ADD operations in MPC, which is
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highly efficient. Below, we briefly review the existing works using
DNG protocols for Laplace and Gaussian noise.

DNG for Gaussian Noise [27, 37, 39]. The distributed sampling
for Gaussian noise is direct since the sum of Gaussian variables
is also a Gaussian variable. Thus the generation of Y ~ N (a?2)
can be achieved by Y = Z;’;gl Y;, where Y; is drawn by party i

with ¥; ~ N (%2) [37, 39]. In our evaluation, we assume that the

summation of discrete Gaussian samples is a Gaussian sample since
they have been proven extremely close [39].

DNG for Laplace Noise [ 14, 35]. Different from Gaussians, Lapla-
cians do not add up to Laplacian. However, distributed parties can
generate other kinds of noise that add up to a Laplace noise. In
particular, partial noises from the Negative Binomial distribution

Y; ~ NB(1/m, e_%) can add up to a geometric noise. Then, an ad-
ditional unbiased bit is used to convert them to discrete Laplace
samples. Goryczka et al. [35] summarized the partial noise to gen-
erate continuous Laplace and geometric samples. Bohler et al.[14]
also apply distributed noise generation to compute heavy hitters.

We summarize the partial noise generated by computing parties
locally and arithmetics/operations to obtain target noise in MPC in
Table 9 in Appendix D of our technical report [33].

There is a privacy risk in DNG protocols, namely, the colluded
attack. The corrupt parties can collude with each other to "subtract
away" their noise samples from the final result and reduce the noise
to below the amount needed for the desired differential privacy
guarantee. Therefore, for example, if 50% parties collude, each party
needs to add additional (twice as much) noise as in the central
model because up to half of the parties may be corrupt and subtract
their portion of the noise. For the original partial Gaussian noise
with variance o2, when there are a proportion of colluded parties,

each party should provide Gaussian noise with variance 42,

2=c%/(1-a)

©

Such additional noise will cause a reduction of utility for the
final results. We measure this impact in Section 7.6.3.

4.2 Poisoning Attacks to Semi-honest Protocols

The most significant limitation of semi-honest protocols is that they
initially provide no guarantee when parties change their input ar-
bitrarily, i.e., poisoning attack. It can result in incorrect aggregated
noise to destroy privacy or utility. As for the computing parties
cooperatively sampling noise, there are two types of attacks in
the presence of malicious computing parties. Also, there is a pos-
sible attack named data poisoning attacks, which is caused by the
malicious input parties.

Zero Noise. Itis possible that an adversarial server keeps providing
0 as the partial noise, which causes the violation of the desired
guarantee for privacy since the protocol eventually adds noises with
smaller variance to the outputs. One possible solution is that each
computing party provide a larger magnitude of noise. Taking the
DNG protocol for the Gaussian mechanism proposed by Dwork as

an example [27], m computing parties can sample partial Gaussian
30?

2m>
setting of at least % honest servers. The required number of honest

noise with variance which can still realize required DP in the
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Table 1: Summary of existing secure sampling methods to achieve DP with MPC.

Sampling Process Mechanism

Adversary Model

Method

Continuous Laplace
Continuous Laplace
Continuous Gaussian
Discrete Gaussian

Distributed Noise Generation

Semi-honest
Semi-honest
Semi-honest
Semi-honest

Summing Gamma Noise [4, 14]
Summing Laplace Noise [35]
Summing Gaussian Noise [37]
Convolution [39]

Continuous Laplace Malicious Inverse Transformation [30]
Uniform Transformation Discrete Laplace Malicious Inverse Transformation [30]
Continuous Gaussian Malicious Box and Muller Transformation [48]
Discrete Laplace Malicious ODO Sampling [27]
Bitwise Sampling Discrete Laplace Malicious Ostack-based Sampling [18]
Discrete Gaussian Malicious Rejection Sampling [59]

computing parties can be reduced to one if each party provides a
noise with variance o%. Although this method provides a privacy
guarantee while resulting in an expected error of ma? [41].

Sampling Larger Amount of Noise. Another poisoning attack is
that the malicious computing party generates a significant amount
of noise as the partial noise input to the MPC protocol. Due to the
property of MPC, this illegal input can not be viewed by other par-
ticipants. Moreover, the numerical noise from parties is unbounded
and directly added to the numerical answer, significantly decreas-
ing the protocol’s utility. Although [61] uses non-MPC methods,
applying statistical tests can check whether inputs from computing
parties fall in some interval and whether they can pass the null hy-
pothesis that they are sampled from the specific distribution, these
methods can not be directly applied to the MPC setting since the
noise are no longer accessible to be tested. Otherwise, the statistical
test in MPC needs to be designed.

Data Poisoning Attack. The data poisoning attack also exists
in the Statistic Aggregation phase of the DDP pipeline. The input
parties can manipulate the inputs to skew the query results be-
fore the Noise Sampling phase, which is out of the scope of secure
sampling protocols. Next, we discuss such malicious settings and
corresponding defense approaches other than secure sampling.

The secure aggregation in federated learning averages gradient
across multiple local models, where the DP sampling can be further
used to provide output protection [61]. However, the malicious
client can input large gradients to skew the aggregated gradients.
To this end, the zero-knowledge proof (ZKP) is often used by the
computing parties, which checks whether the inputs satisfy L1, Ly
and Lo, bounds. One direct solution is the Bulletproof protocol for
bound checking [16]. There is a sequence of studies on checking
gradient bound in federated learning [7, 8, 52]. Such strategies can
also be applied in other scenarios requiring mean statistics.

The adversary in DDP statistics queries is similar to those in
LDP settings, where each input party provides invalid inputs or
dishonest responses. For example, the DDP heavy hitter collects
each user’s binary response [14]. With ZKP, each input is proved
to be in {0, 1}. Thus, a coalition of ¢ malicious parties only changes
each aggregated count of values at most ¢, which can be further mit-
igated by the idea of normalization by observing consistency [58].
Also, in the DDP median, the malicious inconsistency of inputted
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value-rank pairs should be checked [13]. Note that the defense
strategies for the data poisoning attack can only mitigate the effect
of poisoning attacks instead of eliminating them since the inputs
are determined by clients.

There are standard ways to transform semi-honest to malicious
security [31], but they focus on the process of computation rather
than inputs, assuming data is deterministic and cannot test random
variables. We propose a method based on the Kolmogorov-Smirnov
(KS) test later in Section 5. The high level of our KS test is to reject
the hypothesis that the generated samples come from a specific
distribution when the results are poisoned. A common way to
realize malicious for the randomness is using XOR. The secure
sampling protocols for DP with XOR originated from the protocol
proposed by Dwork et al. [27] (we call it the ODO protocol in the
following). The idea is simple: XORing the input bits from each party
can obtain randomness as long as at least one party is inputting a
truly random bit. Compared to previous methods, this is extremely
simple but much more efficient. Still, the drawback is this only gives
a random bitstring, and we need to design sampling protocols to
transform randomness into specific distributions.

4.3 Malicious Sampling Protocols

Uniform transformation. Given the random bitstring, each from
{0, 1}, constructed from XOR described above. Next, the bitstring
can be viewed as a uniformly random number u ~ U(0, 1). Next, the
most straightforward idea is to compare it with a ‘distribution table’
from the target distributions. That is, one can pre-compute the
cumulative density function (CDF) F(x) of the target distribution
and then compare it with a uniformly generated random number
u € U(0,1) converted from the XORed random bitstring. If the
u lies between F(x;) and F(x;j41), the sample corresponds to the
value x;41. However, in MPC, we have to traverse F and perform
comparison to prevent sensitive data leakage, which can be slow,
especially when F is a very detailed CDF. Note that one can also
compute F~1(u) with a logarithm arithmetics to get a Laplace
sample [30], where F~! is the inverted CDF of the exponential
distribution.

Bitwise sampling. Dwork et al. [27] proposed a protocol (we call
it ODO-sampling) based on their observation that each bit in the
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geometric sample can be sampled independently. Based on ODO,
Champion et al. [18] proposed to use an oblivious stack data struc-
ture to obliviously pop and push bits (we call it Ostack-sampling),
which avoids complete iteration over the binary expansion of bias
to hide the access pattern thus improve efficiency. The procedure
of ODO-sampling and Ostack-sampling is shown in Appendix B
in [33]. With many biased coins from B(p) from different biases
p, we can get the geometric distribution by concatenating them.
Then, the two-sided discrete Laplace sample can be obtained by
transforming the one-side geometric sample. Compared to the uni-
form transformation mentioned above, this approach is typically
more efficient but relies on key observations (bits can be sampled
independently). Finally, we can get discrete Gaussian samples by
applying rejection sampling to Laplace samples [59].

4.4 Statistical Distances Caused by MPC

Our benchmark focuses on implementing discrete sampling proto-
cols and aligning their security demand. Sampling from the contin-
uous distribution relies on the fixed point or float point representa-
tion in MPC, and the statistical distance between the actual contin-
uous distribution and that with a finite number representation is
hard to measure. In fact, existing works [14] using continuous noise
in MPC did not formally quantify additional statistical distance. In
this paper, we focus on discrete noise generation in MPC.

The components of statistical distance in discrete sampling proto-
col also vary, and incorrectly setting protocol parameters will result
in a loss of security. Thus, we summarize the allocation of security
parameter J,. The sources of extra statistical distance in sampling
discrete noise are §; caused by truncating ideal distribution from
O €ZtoO € (-N,N) NZ, where N € N control the truncating
range since MPC operates in fixed-length integers, &, caused by
representing the bias p in a finite number when sampling biased
coins, &, from the potential failure of rejection sampling, and &,
from the potential failure of filling the Ostack. Note that existing
works [18, 59] have analysed this for ODO-Gaussian and Ostack-
Laplace, while there is no such theoretical analysis for others. We
expand this landscape for all the protocols in our benchmark. More
details about how to set different security parameters are given in
Section 6.2.

5 Verifying DNG protocol

The poisoning attacks mentioned in Section 4.2 deviate the gen-
erated noise from its original distribution. One way to constrain the
probability distribution deviation is using the Kolmogorov-Smirnov
test (KS test) [3] to check the partial noise from the computing par-
ties or the aggregated noise. The definition of the two-sample KS
test is as follows.

DEFINITION 5.1 (Two-samPLE KS TEST [10]). Given empirical
distribution functions F, and Fy, of samples a and b with length n,
and ny,, Kolmogorov-Smirnov test is defined by

Dgyp = sup |Fa(x) = Fp(x)].
X
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Algorithm 1 Check-Lap,

Input: Length of aggregated sample n, shares of aggregated noise
Y1) - (Yn)-

Output: The shares of Boolean variable specifying whether to
reject the null hypothesis (b).

Precompute: CDF table (F[j])

1,..., 2N — 1, KS distance (p},)
nificance value a.

: Initialize array (obs) of size n.

: Initialize (d) < (0)

: fori < 1tondo

for j «<— 1to 2N —1do
(e) — EQ((yi). (j — NY)
(obs[i]) « MUX((e), (F[Jj]), {obs[i]))

end for

: end for

: SORT({obs))

. fori < 1tondo

(t) « ABS(SUB((i), (obs[i]}))

(d) < MUX(LE({d), (t)), {d), (t))

: end for

: (b) < LE({p"),{d))

: return (b)

<7-_Lap(j = N)-n)forj =

{c(a) n-, In”(JrZZ—A%) of sig-

O 0 N U W

o
[ I T O e S

The null hypothesis that a and b are sampled from the same distribu-
tion is rejected at a significance level a if
ng +ny

Dap > C(Ol) >
? ng - Ny

where c(a) = \[-1In(§ - %) and the significance level « is the prob-
ability of rejecting the null hypothesis when the null hypothesis is

true.

Applying the KS test framework in our setting (assuming dis-
crete Laplace; discrete Gaussian naturally follows), we hold the
null hypothesis that the aggregated noises y = yj, ..., yp—1 are sam-

pled from the discrete Laplace distribution Lap (%) The KS test

computes its empirical Cumulative Distribution Function (eCDF)
by Fops(y') = % Z?:_Ol 1y,<y, which is the number of samples
smaller than y’ in samples y. Next, the KS statistics Dyps Lap =
sup [Fobs (y') — FLap(y')| is computed, where the second sample

Flap is the true CDF of Lap (%) Assuming that the discrete Laplace

samples are truncated into (—N, N) NZ, where N denote the range
of finite representation of integers in DNG protocol, we can precom-
pute a F| 5p of length 2N — 1. Then, fixing the significance level a, if

Dks > c(a), ,;ﬁzz—JI\\Il:})’ we can reject the null hypothesis that the

aggregated samples are not from Lap (%) at the significance level

of a. In this paper, we set « = 0.05, a widely adopted significance
level. Note that a similar method is proposed in [26]. Their check is
applied to the sum of noise and gradient sent by participants, aim-
ing to find whether they are from the same distribution, whereas
we directly check the noises in MPC and find whether they are
from the specific distribution.
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We implement the procedure of the one-sample KS test in MPC
protocol Check, as shown in Algorithm 1. We assume all the partial
noises and generated noise are truncated into (—N, N)NZ. After the
Secure Aggregation, an additional step Check is performed on
the aggregated noise samples. A table F of rank based on the CDF
of each element j € [2N - 1], i.e. FL4p(j — N) - n is precomputed.

The p), = c(a) r:l(‘LZZ—II\}Tll)

precomputed. Here we use F|p(j — N) - n instead of F 4, (j — N)
because the prior can be directly compared to the rank i of the
element, avoiding additional divination in MPC to compute i/n and
compare it with F(x;). For each aggregated sample y;. we iterate
over F to find its rank in a cumulative probability (F[y;]) and
store it in location i of list {obs[i]) (Lines 4-7). Subsequently, we
sort (obs[i]) and compute the (D) = sup;|{i) — (obs[i])|. Finally,
we check the validity of (D). If (D) < (p,,), we reject the null

- n to be used for comparison is also

hypothesis that the aggregated samples are not from Lap (%)

We use the two sample KS test to constraint the KS distance be-
tween the aggregated noise and targeted noise distribution Dypg ) 3p =
sup | Fops (') = Frap(y")]. We can bound Dyps | o With probability
a, the set significance level. We implement the protocol Check in
our benchmark to mitigate the poisoning attacks on DNG-based
protocols. We compare DNG with Check and other malicious sam-
pling protocols in Section 7.2. Note that the KS-test is generic and
can check any distribution. Therefore, it can also be applied to check
the validity of each partial noise and trace back the malicious partic-
ipants. Although this is slower than only checking the aggregated
noise, it is currently not supported by other malicious sampling
protocols. Since Check relies on traversing ordered arrays, its effi-
ciency can also be improved by secure merging protocols [32], i.e.,
the equivalent values in ordered arrays (y1), ...{yn) and 1, ..., 2N — 1
can be grouped together to derive {(obs), thus reduce the complexity
from O(nN) to O(n + N).

6 Benchmark and Parameter Alignment

In this section, we first introduce our benchmark to evaluate the per-
formance of secure sampling protocols. This benchmark includes
eight MPC sampling protocols for generating samples from discrete
Laplace and discrete Gaussian distributions. We focus on the dis-
crete sampling protocols since their samples can be compared with
the ‘perfect’ discrete samples by the statistical distance [18, 59].
Therefore, we can fix the §, and compare their efficiency. Then,
we give details of the relationship of security parameter A other
parameters determining the efficiency of the protocol.

6.1 Benchmark Protocols

We implemented the following eight sampling protocols: the first
six are the bitwise sampling protocols. DNG-Laplace and DNG-
Gaussian are DNG-based methods with Check. The transformation-
Laplace is a uniform-transformation-based protocol.

e ODO-Laplace [27]. It uses the direct ODO-Sampling protocol (see
Appendix B in our technical report for details [33], the proto-
col with the smallest number of AND gates in [27]) to produce
Bernoulli samples and compose them into discrete Laplace sam-
ples. Note that generating biased bits is the basic block for bitwise
sampling.
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o Ostack-Laplace [18]. It generates Bernoulli samples using Ostack-
sampling in Appendix B in our technical report [33], which in-
cludes two types of operation on an oblivious data structure as
stacks. It supports RPOP operation to obliviously produce bits in
the binary expansion of the bias p, and CPUSH to obliviously save
the accepted biased coin.
Ostack-Laplace® [18]. An improved version of Ostack-Laplace
saving the number of AND gates in RPOP [18]. That is, when € is
in the form of 27 In2,i = 0,1,2, ..., one can predefine a periodic
binary sequence to give the bits in p in Ostack-sampling. We
implement this version and always use the largest 2% In 2 that is
smaller than the required € as an approximation to give a slightly
tighter guarantee than e-DP.

ODO-Gaussian [27, 59]. This is the implementation of [59], which

uses rejection sampling to discard a portion of the samples drawn

from the discrete Laplace distribution. The ODO sampling pro-
duces all the biased bits in this protocol.

Ostack-Gaussian [18, 59]. We fill the gap between the Ostack-

sampling and sampling protocol for Gaussian [59] by integrating

Ostack-sampling into all the procedures that generate biased

coins. We also adjust the parameters (see Table 2). We allocate

a fraction of security parameter A to compute the number of

operations in Ostack-sampling, which bounds the probability of

failing to produce the required number of coins.

e DNG-Laplace [35]. We implement the DNG in [35], which first

generates partial noise from negative binomial distribution lo-

cally in input parties to form discrete Laplace noise. Since the
above bitwise sampling method can achieve malicious security,

We perform additional Check with KS tests in MPC to validate

whether the aggregated noise is from the Laplace distribution,

which limits the Byzantine attacks from active adversaries.

DNG-Gaussian [39]. Similarly, we implement the DNG in [39], in

which parties generate partial noises from Gaussian distribution

locally. The noises are then simply summed in the data aggrega-
tion phase. We also perform the KS test in MPC to check whether
the generated noise is from the Gaussian distribution.

o Transformation-Laplace [30]. This protocol is the sampling pro-
tocol for the Geometric distribution in [30], which conducts uni-
form sampling with the XORing technique and then transforms
the uniform variable u € (0, 1] into the inverted CDF F~!(u)
of Exponential distribution. This protocol is clearly suboptimal
since it requires expansive logarithm computation in MPC.

Our benchmark! implemented by MP-SPDZ can also act as a
library for the designers of MPC protocols. With the aggregated
statistics obtained in MPC, say in secret shares, one can call our
library with only one line of code to generate Laplace and Gaussian
noise in MPC and add to the results, which follows the pipeline
mentioned in Section 3.3 to achieve distributed differential privacy.
Our benchmark is compatible with all the underlying target use
case protocols in MP-SPDZ (including binary circuits like BMR,
garbled circuits, and arithmetic circuits SPDZ and Shamir) as long
as they support basic secure bit operations like AND and XOR.

Uhttps://github.com/yuchengxj/Secure-sampling-benchmark
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6.2 Parameter Alignment

We give details about the sources of statistical distance in all the
protocols into four parts, summarized in Table 2. The Statistical
distance is due to imperfect sampling of MPC and must be quantified
(resulting in increased § in DP, as shown in Theorem 6.2. The
statistical distance is defined as follows, which is also called total
variation distance.

DEFINITION 6.1 (STATISTICAL DISTANCE). Let V' and ‘W be the
probability distributions over F. The statistical distance between V
and ‘W is defined by

SD(V,W) = 2 3 1fy () = fap ()

x€eF

Truncation (;). The statistical distance is caused by truncating
the targeted discrete sample into (—N, N) NZ. Since we use a finite
number of bits to represent the generated noise sample, all eight
protocols have J; in their statistical distance. The statistical distance

2
between the truncated discrete Gaussian Nz, (M) and

o N2
is 2ne 40%In(1.25/5)A2 [5

M) 9]. The

discrete Gaussian Nz, (
statistical distance between truncated discrete Laplace Lapy (%)

—e(N-1)/A
eee/lﬂ ! [17]. Note that we

generate samples of length k, thus, we have N = 2 + 1.
Representing Bias (Jp). There is a need to represent the bias
p with a binary expansion of length I when sampling biased coins
in ODO-Sampling, Ostack-Sampling and Transformation-Laplace.
ODO-Laplace, Ostack-Laplace and Ostack-Laplace™ all generate
samples from the geometric distribution of length k to approximate
discrete Laplace, and the total number of samples is n, thus they all
have 8, = n(x + 1)2~!, which have been proven in [59]. Moreover,
the number of additional biased coins for rejection sampling is m,
resulting in §p, = I%(ZK +m+2)2"L, where p* is the acceptance

and discrete Laplace Lapy ( ) is 2

rate in rejection sampling [59]. As for Trans-Laplace transforming
the uniform variable u € (0, 1] into the inverted CDF F~!(u), the
statistical distance between a fix-point number u in MPC protocol
and u € R is 27!, Therefore, sampling n fix-point number u has a
total statistical distance of n2~

Rejection Sampling (5,). [59] proposes to use rejection sam-
pling to convert discrete Laplace samples to discrete Gaussian sam-
ples. Given the targeted number of discrete Gaussian samples n and
actual accept rate p/, the number of required Laplace samples n’
should be set larger than n to constrain the probability of failing to

generate enough Gaussian samples after rejection sampling. The
o p*—m)?
relationship between &, p, n and n’ shouldbe §, = e~

Filling Ostack (Jp). For the protocols using Ostack to sample
biased coins, there is a probability that u times of CPUSH operation
does not fill the Ostack of size g. Formally, this probability is §, =

-2(%-(g-1)?

M-e u , where M is the number of calls to Ostack [18].
For Ostack-Laplace and Ostack-Laplace®, using Ostack of size g
to sample biased coin have M = k[ 2], since we need to generate
n geometric samples, and each sample has a binary expansion of
length x [18]. As for Ostack-Gaussian, we have M = (k + m) [”7’]
because for each Laplace sample, we need to generate k biased coins
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to represent the Geometric sample and m biased coins to perform
rejection sampling.

Our benchmark fixes &; +8p + 6y +8p = 2~% and equally assigns
274 to all the non-zero terms of sampling the protocol (e.g &; + 8, +

O = % for ODO-Gaussian). Then, we derive the parameters in
protocols. As a result, their security guarantees are aligned, and we
can compare their efficiency by running time, communication, and
number of AND gates. Here, we describe the Distributed Differential
Privacy achieved by the benchmarked discrete sampling protocols,
following the definition of DDP (Definition 3.6). The proof can be
found in [59].

THEOREM 6.2. If the targeted discrete mechanism M is (e, 5)-DP,
then this mechanism realized by sampling protocol Il is (€, 5+, )-DP
,where 83 = 2(e€ +1)(8; + 8 + 5 + &p).

7 Experimental Evaluation
7.1 Setup

Using our benchmark, we conduct comprehensive experiments to
compare the efficiency of discrete sampling protocols in various
security and privacy settings, which aims to find which protocol to
use in the specific setting. Moreover, we perform a case study using
the DP counting query to compare their utility with CDP settings.
We implemented the discrete sampling protocols to sample Laplace
and Gaussian noise with MP-SDPZ [42] framework using Shamir-
BMR [43] with honest majority since it supports three or more
computing parties, which enables us to investigate the scalabil-
ity of sampling protocols. Moreover, the BMR is a binary proto-
col that efficiently evaluates our benchmark with a large num-
ber of bit operations. Note that MP-SPDZ supports running the
same implementation with a variety of underlining protocols. With-
out changing the code, our benchmark can also be executed with
other protocols, such as Yao’s protocol and SPDZ. All the results
reported below were run on servers with Intel i7-11700K, Ubuntu
20.04, and 64GB memory. Our settings of range for parameters are
A € {64,128,256,512}, € € {0.001,0.01,0.1, 1,10} and n € [22, 218]
and number of computing parties m € [2, 8], in the setting of m = 2
we uses Yao’s protocol for evaluation. We measure the efficiency
of sampling protocols by the number of AND gates, running time
and communication, which are the widely used metrics in related
works [12, 13, 18, 59].

7.2 Efficiency of Sampling Protocols

In this section, we fix the privacy budget € = 0.1, m = 3 and then
set the numbers of generated samples n and security parameters A
to compare the efficiency of protocols by the number of AND gates,
running time and communication. We also compare the number of
required random bits.

Efficiency Comparison. The number of AND gates of all the
eight sampling protocols in our benchmark are shown in Figure 2a.
As for running time and communication in Figure 2b and Figure 2c,
we do not include the Trans-Laplace since it has a number of AND
gates significantly larger than all the other protocols and it takes
days for a single run. From the experimental results, we have the
following observations. (1) The overall trend for all three metrics
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Table 2: The relationship of statistical distance J; and the parameters of sampling protocols, with §, = 2(e€ +1)(5¢ + & + 6 +6p)
for all the protocols, where §; is caused by truncation, J;, is caused by sampling biased coins, and the potential fail of rejection
sampling and CPUSH cause 6, and §,. We assign J, equally to the non-zero terms for each protocol in our benchmark.

II
N ODO-Laplace  Ostack-Laplace Ostack-Laplace®  DNG-Laplace Trans-Laplace ODO-Gaussian Ostack-Gaussian DNG-Gaussian
A
N2e2 N2e2 N2e2
5 ‘ Zﬂ‘E_E/S\N;UM 2"'8_6/(/\N;1)/A Zﬂ'e_e/(/\N;”/A 2"'9_6/(/\N;1)/A 2"'€_€/;\N;1)/A ‘ 2ne_4crzln(1.§5/5)A2 2ne_4crzln(1.§5/5)A2 2ne_4021n(1.;5/o‘m2
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Figure 2: Overview of sampling protocols’ number of AND gates, running time, communication in Shamir-BMR under different
A € {128,256,512} and n € {24, 26,28, 210 212},

is the same, i.e., protocols with more AND gates also have longer of bits .i.e, x, required to represent the noise samples increase for
runtimes and larger communication in real execution. Thus, we all the protocols. Moreover, for the protocol with rejection sam-
mainly use the number of AND gates to present the efficiency in pling and Ostack-sampling, the higher A requires larger numbers
the following several experiments. (2) The AND gates, running of Laplace samples n’ and CPUSH u are required to reduce the
time, and communication all increase with the number of samples failing rate of generating Laplace samples and biased coins. (3)
n and security parameter A for all the sampling protocols, which The ODO-Laplace is the most efficient among the protocols for
is intuitive mainly because, as the n and A increase, the number Laplace noise when A = 128, while under the large A and n, both
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Table 3: Sampling protocols’ number of random bits under different n and A

Protocol . ] Iqumber of Cl}gnerated Sarlnzples n Y y "
2 2! 2 2 2 2 2 2
ODO-Laplace 63,360 255,360 1,021,440 4,085,760 16,343,040 65,372,160 261,488,640  1,045,954,560
Ostack-Laplace 13,140 18,090 37,050 102,000 336,360 1,213,770 4,438,140 17,319,240
Ostack-Laplace* 13,140 18,090 37,050 102,000 362,370 1,213,770 4,728,390 18,803,850
DNG-Laplace 576 2,304 9,216 36,864 147,456 589,824 2,359,296 9,437,184
Transfrom-Laplace 43,776 177,408 718,848 2,912,256 11,796,480 47,800,000 193,000,000 783,000,000
ODO-Gaussian 1,474,200 2,734,920 7,037,280 22,508,820 80,958,960 309,042,000 1,215,536,400 4,852,593,900
Ostack-Gaussian 74,610 98,460 179,640 420,480 1,314,900 4,960,890 17,555,580 68,887,440
DNG-Gaussian 576 2,304 9,216 36,864 147,456 589,824 2,359,296 9,437,184

the Laplace-Ostack and Laplace-Ostack® can be better. Moreover,
since Laplace-Ostack™ does not require AND get for RPOP, it is al-
ways better than Laplace-Ostack. These results are consistent with
those in [18]. The situation is similar for the Gaussian noise, i.e., the
Ostack-based protocol can be superior to the ODO-based one when
A > 256. The reason is that although the Ostack-based method
theoretically has lower complexity than the ODO-based one, the
CPUSH, and RPOP in Ostack-Sampling [18] have a number of con-
stant operations, which domain the AND gates especially when
A is small. (4) Protocols using DNG with KS testing and uniform
transformation are significantly less efficient than protocols using
bitwise sampling, especially Transfrom-Laplace, which always has
the largest circuit size. That is because Transform-Laplace involves
expensive evaluation of logarithmic arithmetic.

Random Bits. In addition to AND gates, we also evaluate the
number of required random bits from the computing parties for
the eight protocols in Table 3. We observe that Table 3 shows the
number of required random bits under different A. We have the fol-
lowing observations. (1) ODO-Gaussian and ODO-Laplace require
the largest number of random bits on their corresponding mecha-
nisms since they need O([) bits to sample a biased coin, while in the
Ostack-based protocol, this is reduced to O(log!) using the obliv-
ious data structure [18]. (2) The random bits used by DNG-based
methods DNG-Laplace and DNG-Gaussian are the least and the
same since in these two protocols, the inputs from the computing
parties are only partial noise with the same length of k. Therefore,
DNG-based methods have an advantage over other protocols in the
number of random bits required.

Table 4: Running time (S) of DNG protocols DNG-Laplace,
DNG-Gaussian, DNG-Laplace* and DNG-Gaussian®, the lat-
ter two are semi-honest DNG protocols without additional
Check. We set A € {128, 256,512}.

II
N Laplace Gaussian Laplace® Gaussian”
128 1619.07 1599.98 5.92 3.30
256 3239.51 1617.30 6.20 3.32
512 6533.12  3219.33 6.44 3.38

Cost of Malicious Security. We also compare the running
time of semi-honest DNG protocols with only Aggregation and
the Byzantine-resilient DNG protocols, adding Check in Algorithm
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1. We examine both the DNG-Laplace and DNG-Gaussian, setting
A € {128,256,512}. The result is presented in Table 4. We observe
that the running time of semi-honest DNG-Laplace* and DNG-
Gaussian® are both significantly lower than that of DNG-Laplace
and DNG-Gaussian with additional checks because the semi-honest
protocol contains only ADD operations while Check requires itera-
tion over all the samples and for each sample, iterating over the CDF
table (F). Compared to the results in Figure 2, directly aggregating
partial noise is markedly more efficient. It takes only seconds to
generate 4096 samples even under high security demand. Therefore,
in applications requiring only semi-honest security, employing the
naive DNG approach that only aggregates partial noise is advisable.

7.3 Trade-off between Efficiency and Security of
Bitwise Sampling
Since Bitwise sampling protocols have the least AND gates in all
the parameter settings, we conduct further evaluations to give more
details by increasing the range of security parameter A to conduct
evaluations. We compare the number of AND gates and random
bits of all the bitwise sampling protocols using ODO and Ostack.
Figure 3 shows the number of AND gates. For all protocols, the
AND gates increase with A. Specifically, for the Laplace noise, the cir-
cuit size of ODO-based methods is smaller than Ostack-based ones
when n < 28. And when n > 28, the Ostack-Laplace* has fewer AND
gates than ODO-Laplace after A is large enough. Moreover, when
n > 28, the Ostack-Laplace is also more efficient than OOD-Laplace.
On the other hand, the sampling protocols for Gaussian noise also
benefit from using Ostack, i.e., the Ostack-Gaussian can have a
smaller number of AND gates when n > 28. We also can clearly see
the cross-over points of ODO-based and Ostack-based methods. For
the Laplace noise, when A is very small, i.e., 64, the ODO-Laplace
always has the fewest AND gates. Furthermore, when n is larger
than n10, the cross-over point for ODO-Laplace and Ostack-Laplace
lays in 256 and that for ODO-Laplace and Ostack-Laplace* lays in a
smaller number, i.e., 192. As for Gaussian noise, when n is small,
the ODO-Gaussian has fewer AND gates than Ostack-Gaussian for
all A, and when n is large enough, say, larger than 210 the cross-
over point of ODO-Gaussian and Ostack-Gaussian is also fixed at
A = 256. It demonstrates that when A and n are small, it is more ef-
ficient to use OOD-based sampling methods, while in the situation
with high demand for security and a number of noise samples, the
Ostack-based methods are more suitable. Figure 4 presents the ran-
dom bits input by computing parties. In line with our expectations,
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Figure 3: Sampling protocols’ trade-off between efficiency and security, measured by security parameter 1 and AND gates.
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Figure 4: Sampling protocols’ trade-off between efficiency and security, measured by security parameter A and random bits.

the number of random bits required by the ODO-based method is
significantly larger than that of the Ostack-based method in all the
settings of A and n for both the Laplace and the Gaussian noise.

7.4 Efficiency under Various Privacy Demands

Recall that at larger variances, in order to get the desired statistical
distance d;, we need to set a larger N in the truncated distribution,
which means that the length k of binary expansion used to represent
the variable needs to be larger. Therefore, the privacy budget € can
affect all of the eight sampling protocols. This section explores the
impact of privacy budget € on sampling efficiency.

Figure 5 presents the number of AND gates in eight sampling

protocols with € € {0.001,0.01,0.1,1,10} and A € {64, 128,192, 256}.

We have the following observations. 1) Circuit size increases for
all of the eight protocols as e decreases, which is typical for all
the security parameters A. 2) The circuit size of Transform-Laplace
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has the smallest change with € and stays at a significantly high
level. This is because the decimal part domains the length of the
fixed-point number used for logarithm arithmetic, and changing
the integer part has little impact on the number of AND gates. 3)
Moreover, the circuit size of DNG-based protocols has the largest
change with € since the KS-test requires scanning a table of length
N to check each sample, resulting in a complexity of O(N).

7.5 Varying the Number of Computing Parties

In this section, we set different numbers of computing parties. We
measure the running time and the communication of seven proto-
cols except Transform-Laplace. The results are shown in Figure 6.
We use Yao’s protocol to run our code in the two-party setting, and
for other m, the Shamir-BMR is used. We observe that both run-
ning time and communication increase linearly with the increase
of computing party number m. This demonstrates that the running
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Figure 6: The time and communication of protocols under
different numbers of parties, where Yao’s protocol is used
for a two-party setting, and Shamir-BMR is used for others.

time of secure sampling protocols is still acceptable in a practical
setting with multiple computing parties. Moreover, Yao’s protocol
has significantly lower communication and running time since all
the protocols can be finished within 100 seconds. Since the main
computations in sampling protocols are AND operations of secret
bits, the

7.6 Utility of Distributed DP: Case Study

In this section, we validate the utilities of sampling protocols in
our benchmark and compare them with center DP, local DP, and
shuffle DP under different A and e.
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7.6.1 Setup. We query the differentially private frequency on the
Kosarak dataset? . Kosarak is the click record of the Hungarian news
website, which contains about 8 million clicks for n = 41, 270 differ-
ent web pages. Specifically, we estimate each web page’s clicked
times. Then, the noise generated in the central model (continuous
Laplace and Gaussian) and distributed model (discrete Laplace and
Gaussian) were added to numbers’ frequency f(D). We also use
OLH [55] and its shuffle DP version, SOLH [57], to construct re-
sponses on each number (representing single users) to satisfy LDP
and shuffle DP. We use MSE to measure and compare the utility
of noisy frequency. The Mean Squared Errors is defined as: MSE =
% Yie[n [f(D) - y]%. We also show the results in Mean Absolute
Error (MAE) and Relative Error (RE) in Appendix E of the technical
report [33].

7.6.2  Comparison Result. Table 5 shows the MSE in € € [0.1,0.5]
of eight sampling protocols as well as two baseline methods, CDP-
Laplace and CDP-Gaussian sampling continuous noise on one
server. The results on LDP and shuffle DP are also reported. First,
we can see that in all €, LDP and shuffle DP have significantly
higher MSEs than those of DDP, although they all do not assume a
trusted server. Such a large utility gap is due to the random report
of the 8 million click records acting as users. Third, the utilities of
DDP protocols are close to those of CDP protocols for both Laplace
and Gaussian mechanisms, which matches the expectation for the
utility of secure sampling protocols. Second, the utility (MSE) of
continuous CDP-Laplace and Laplace in the DDP model is similar
for all €. The only exception is that the Ostack-Laplace™ has a larger
MSE than other methods because it uses an approximated €, which
is the largest number in the form of 27 In 2, (i € N) smaller than
the required one. We also fix € = 0.1 and set A = {1,2,4, 8,16} to
measure only the MSE for DDP and CDP protocols in Table 6. We
observe that the utilities of DDP Laplace protocols under different A

ZKosarak. http://fimi.ua.ac.be/data
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Table 5: The MSE of frequency on Kosarak with protocols II; under different privacy budgets ¢ and security parameter 1 = 128.

IIs | CDP CDP ODO  Ostack  Ostack DNG ODO Ostack DNG LDP Shuffle

€ Laplace Gaussian | Laplace Laplace Laplace® Laplace Gaussian Gaussian Gaussian OLH SOLH
0.1 200.03 2408.16 203.49 204.06 271.65 203.15 2380.93 2380.93 2385.65 | 1.45x 1013  6.51 x 108
0.2 48.53 584.16 49.64 51.08 66.36 49.72 576.65 576.65 573.34 130 X 103 4.46 x 107
03 2175 266.42 2126  22.88 61.43 2190 272.52 272.52 279.68 | 1.16 x 101*  1.24x 107
0.4 12.36 147.62 11.77 12.35 17.47 12.24 146.48 146.48 151.42 1.04x 1013 7.12 x 10°
0.5 7.91 95.16 7.31 7.85 16.13 8.16 94.89 94.89 95.89 9.16 x 1012 5.72 x 10°

Table 6: The MSE of frequency on Kosarak with protocols II; under privacy budget ¢ = 0.1 and different security parameter A.

Ils | CDP ODO  Ostack  Ostack DNG CDP ODO Ostack DNG
A Laplace | Laplace Laplace Laplace® Laplace | Gaussian | Gaussian Gaussian Gaussian
2 195.24 178.07 198.85 204.37 2355.68 2355.68 2323.40
4 191.42 192.88 198.85 205.96 2323.81 2323.81 2350.15
8 200.03 204.35 198.85 265.94 194.98 2408.16 2332.28 2332.28 2350.15
16 203.06 190.69 266.95 217.22 2312.47 2312.47 2286.67
32 189.71 193.03 260.05 196.97 2369.28 2369.28 2401.93

are similar. By comparing the experimental results of CDP-Laplace,
CDP-Gaussian, and the secure sampling protocols, we can see that
the statistical distance caused by MPC in Section 6.2 does not intro-
duce additional errors to the answers of the counting query (even
when A is very small).

7.6.3  Utility under Colluded Adversaries and Zero Noise Attack. As
discussed in Section 4.1, when the parties providing partial noise in
DNG collude with each other, by subtracting their noise samples,
they may reduce the noise in the final output, which breaks the
claimed DP protection of DDP protocols. The impact is identical
to the zero noise attacks in Section 4.2, where these parties always
provide 0 as their partial noise. To this end, we must ask each party
to provide noise with a larger variance.

Assuming different ratios of collusion @ € [0%, 90%] (a = 0% also
represents the utility in CDP Gaussian), we use Equation (4) to re-
calculate the variance of partial Gaussian noise in DNG-Gaussian.
The generation is repeated on € € [0.2,1.0]. We add the generated
noise to frequencies on Kosarak and show the MSE in Figure 7.
We observe that the impact of colluded attacks is large. Under 90%
collusion, the MSE is nearly 100X compared to the non-collusion
one (also the utility of CDP Gaussian). Even under the honest
majority setting (1/3 collusion), the MSE also increases 5 times.
Therefore, for DNG, additional post-processing must be applied to
the results (for example, securely shuffling [20] the noisy results
before revealing them).

8 Takeaways

This section summarizes the key findings and guidelines consider-
ing different factors from our evaluations.

Threat Model. We first discuss the trade-off on threat models.

o Semi-honest vs Malicious. To realize malicious security, the
bitwise sampling-based methods are the most effective, while
for the semi-honest setting, DNG-based protocols using only
Aggregation are the best. That is because the semi-honest DNG-
Gaussian involves only ADD operations to sum the partial noises.
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Figure 7: The MSE of frequency on Kosarak using noise from
DNG-Gaussian, assuming ratios of collusion a € [0%, 90%]
and privacy budgets € € [0.2, 1.0].

As for the semi-honest DNG-Laplace, it requires additional oper-
ations to convert Geometric samples to discrete Laplace samples
[59]. Thus, the number of AND gates for each sample in these two
distributions is O(1). For malicious settings, the minimum num-
ber of AND gates can be found in Ostack-based bitwise sampling
for Laplace distribution, which is O(log?(A + logn)) [18].
Number of Colluded Parties. The fraction of corrupt parties
affects the utility of DNG protocols for the Gaussian mechanism
since each party should sample Gaussian with additional vari-
ances 62 = 62 /(1—-a), where o2 is the original variance of partial
noise and « is the proportion of colluded parties (discussed in
Section 4.1). Thus, the final Gaussian noise also has a variance
of ﬁ times compared to the situation without colluded parties.
Note that the bitwise sampling protocols can maintain the same
utility because the XOR results of input bits are not revealed.
Data Poisoning Attack. The malicious behavior also exists in
the input parties. They can change the local data to skew the final
aggregation results in MPC before sampling DDP noise, which is
out of the scope of sampling protocols. The data poisoning attack
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can not be completely addressed. Instead, a promising way is
leveraging zero-knowledge proof depending on the specific use
case, which ensures the validity of inputs [7, 8, 12, 13, 52], thus
limiting the malicious parties’ manipulation of the results.

Deployment Model. We then discuss the deployment models.

e Statistical Security Parameter 1. Now we consider n > 21°.
To generate Laplace samples with A < 256, we suggest using
ODO-Laplace. Otherwise, Ostack-Laplace is more efficient. For
the user accepting approximation, with A > 196, a more effi-
cient version, i.e., Ostack-Laplapce* can be chosen. However,
Ostack-Laplapce® essentially uses smaller €, which has worse
utility. As for generating Gaussian samples, with 1 < 256, the
ODO-Gaussian is suggested, and Ostack-Gaussian for A > 256.
The suggestion above is from results in Figure 3. Note that one
can use the predicate function in [18] to improve the Ostack-
based methods. However, the predicate needs to be hard-coded
previously and is hard to re-implement when € changes.

o Number of Samples n. In general, the computation overhead
and number of input bits are linear in the number of required
samples. For example, it needs about 0.2 seconds to generate
one discrete Gaussian sample in the malicious setting (Ostack-
Gaussian). In machine learning, hundreds of thousands of sec-
onds are needed to generate millions of noise samples, which is
not practical. Thus, DNG in the semi-honest setting is usually
considered [53]. When generating a small number of samples
(when n < 28), using ODO sampling is more efficient. However,
when implementing mechanisms with a large demand of Laplace
or Gaussian samples like the Noisy Max Mechanism [45] (see
Appendix A in [33]), it is more suitable to use Ostack-sampling.

o Number of Parties m. From the experimental results, the run-
ning time is linear in the number of computing parties m. How-
ever, in practice, the computing parties are usually servers with
high computing ability, and the number is usually small [12, 59]
(two or three non-colluded servers). As for the input parties, they
only need to secret-share their local data and do not participate
in the computation. For n input parties splitting shares to m
computing parties, the communication complexity is O(nm).

e Privacy Budget €. The privacy budget € can also affect the
efficiency of protocols. Specifically, smaller e means larger binary
expansion length k of generated samples is required to achieve
the truncated statistical distance J;. As a result, the number of
AND gates increases (See Figure 5). However, the overall ranking
of AND gates is consistent across all protocols, so the choice of
protocols is usually determined by A and n rather than e.

Utility. The utility of the counting query in DDP is close to that of
CDP if the mechanism is realized by discrete Laplace and Gaussian
noise, even when setting different security parameters A and privacy
budget € (results in Table 5 and Table 6).

9 Conclusion

This paper presents a benchmark to study the efficiency and utility
of various secure sampling protocols to realize differential privacy
in the distributed model. We first review the existing sampling
protocols and present a taxonomy for them. Then, we give further
analysis to discuss the security of distributed noise generation
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and present the relationship of various parameters in the bitwise
sampling methods. We conducted experiments and found that the
bitwise bampling-based methods are most efficient under various
settings since they have the least number of AND gates to evaluate
in the binary circuits. Moreover, we also estimate the utility of the
DDP counting query on real-world datasets.
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