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HERFA: A Homomorphic Encryption-based
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Abstract—Edge-cloud computing architectures are exposed
to significant security challenges. Although general encryption
methods can mitigate some of these concerns, they require
decryption to perform operations on data, exposing the data and
secret keys to potential attacks. Homomorphic encryption (HE),
which allows operations on encrypted data without decryption,
provides an effective solution to this issue. HE-based root-finding
algorithms can expand the use of HE to a wider range of real-
world applications that involve solving equations. This letter
presents an adaptation of the well-known Newton’s method for
use in the HE domain. Specifically, it employs a division-free
approach to remove the division operation, which is not a basic
HE operation. In addition, the proposed method is extended
to handle a polynomial multiplicity greater than one for faster
convergence. Compared to an alternative implementation that
uses a numerical method for division, the proposed HE-based
root-finding algorithm (HERFA) significantly reduces the number
of sequential multiplications, which is a key factor limiting the
feasibility of applications in the HE domain. This reduction allows
HERFA to achieve faster execution speeds or higher accuracy.

Index Terms—Homomorphic encryption, numerical method,
root-finding algorithm, security.

I. INTRODUCTION

T
HE global edge computing market is experiencing rapid
growth, with an expanding array of real-world applica-

tions. However, this decentralized architecture presents sig-
nificant security challenges. For example, data transmitted
between edge devices and the cloud can be vulnerable to
interception by malicious attackers. One effective solution is to
apply encryption to data, and the advanced encryption standard
(AES) has been successful in addressing these concerns.
However, AES requires that encrypted data is decrypted before
any operations are performed on it. If this decryption occurs
on a third-party device, exposing the data and a secret key for
decryption can lead to significant security risks.

Homomorphic encryption (HE) is a technique that enables
computations on ciphertexts directly without decrypting them
first [1]. There is no need to store a secret key and perform
decryption on a third-party server, so HE has been widely
adopted in many privacy-preserving real-world applications.
These applications include machine learning [2], healthcare
data analysis [3], and image/speech processing [4], [5].

Root-finding algorithms are widely used across diverse
fields, such as control systems, computer graphics, and eco-
nomic analysis, but their use in the HE domain remains largely
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unexplored. When implementing root-finding algorithms in
the HE domain, two major limitations arise: 1) the types of
operations permitted (e.g., only addition and multiplication)
and 2) the number of sequential operations, particularly mul-
tiplications. Since root-finding algorithms generally involve
non-polynomial operations, such as division and comparison
operation, and iterative processes, adapting them to the HE
domain presents several challenges.

In this letter, the popular Newton’s method that finds one
root of a real-valued function is moved to the HE domain.
It avoids expensive comparison operations required in certain
root-finding algorithms but does involve division, which is not
a basic operation in HE schemes. To overcome this challenge,
this letter adopts a division-free approach. This method is re-
fined to enhance convergence when a polynomial multiplicity
is known. In addition, the multiplication order is optimized to
minimize overflow, and multithreading is applied to improve
execution time. The proposed HE-based root-finding algorithm
(HERFA) is analyzed against an alternative HE-based imple-
mentation of Newton’s method that uses a numerical method
for division. To the best of the authors’ knowledge, this study
is the first on a root-finding algorithm for homomorphically
encrypted data that avoids non-polynomial operations.

II. BACKGROUND

A. Homomorphic Encryption

HE schemes are categorized into bit-wise and word-wise
schemes [6]. Generally, bit-wise HE schemes provide logical
operations of messages in the HE domain, while word-wise HE
schemes support additions and multiplications of messages. A
word-wise HE scheme, the focus of this letter, involves the
following algorithms:

• KeyGen(params): takes HE parameters and generates
a secret key sk, a public key pk, and an evaluation key
evk.

• Enc(µ, pk): generates a ciphertext ct from a plaintext
message µ using pk.

• Dec(ct, sk): generates a plaintext message µ from a
ciphertext ct using sk.

• HomAdd(ct1, ct2): adds ciphertexts ct1 and ct2 of
plaintext messages µ1 and µ2 and generates a ciphertext
of a message µ1 + µ2.

• HomMul(ct1, ct2, evk): multiplies ciphertexts ct1 and
ct2 of plaintext messages µ1 and µ2 using an evk and
generates a ciphertext of a message µ1 · µ2.

Note that HomSub, which is a variant of HomAdd, is also
commonly supported in word-wise HE schemes.
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Algorithm 1 Inv(x; d) [6]
Input: 0 < x < 2, d ∈ N

Output: an approximate value of 1/x
1: a0 ← 2− x
2: b0 ← 1− x
3: for (i = 0; i < d; i = i+ 1) do

4: bi+1 ← b2i
5: ai+1 ← ai · (1 + bi+1)
6: end for

7: return ad

HE schemes have a constraint known as the (multiplicative)
depth, which refers to the number of sequential HomMuls.
For instance, x1 · x2 + x3 · x4 requires a depth of 1, while
(x1 · x2 + x3) · x4 requires a depth of 2. The maximum depth
represents the highest number of sequential HomMuls allowed,
which ensures that the resulting ciphertext is still correctly
decrypted. This maximum depth is determined based on HE
parameters. All HomMuls must be completed before reaching
the maximum depth. Note that this letter does not consider the
use of bootstrapping, which allows for an unlimited number
of HomMuls through recryption, due to its extremely high
computational complexity.

To enable non-polynomial operations, such as division and
comparison operation, in the HE domain, numerical methods
have been adopted [4], [6], [7]. For example, Cheon et al.

introduced a numerical method that computes the inverse or
reciprocal of x using d iterations, tailored specifically for
the Cheon-Kim-Kim-Song (CKKS) scheme [8], as detailed
in Algorithm 1 [6]. Each iteration involves performing two
HomMuls and one HomAdd in the HE domain. It increases
the total depth by 1 because ai and 1 + bi+1, both having a
depth of i+1 (when i > 0), are multiplied together to compute
ai+1, which increases the total depth to i+ 2.

B. Newton’s Method

Newton’s method, also known as the Newton-Raphson
method, is one of the most widely used algorithms that find
approximations to the roots of real-valued functions [9]. It
is simple to implement and only requires the function along
with its derivative. It begins with an initial guess for the root,
denoted by x0, and iteratively refines this estimate. When a
good initial guess is provided, this method shows quadratic
convergence near the root. The formula for this method, given
an input function f(x), is as follows:

xn+1 = xn −
f(xn)

f ′(xn)
, (1)

where xn stands for the approximation to the root of f after
n iterations, and f ′(xn) must be non-zero.

If the root of a polynomial function has a multiplicity m
greater than one (i.e., f(x) = (x − r)m · g(x), where m > 1
and g(r) ̸= 0), the convergence rate of Newton’s method drops
to linear. However, if m is known, the formula of Newton’s
method can be modified as (2) to improve efficiency [9].

xn+1 = xn −m ·
f(xn)

f ′(xn)
. (2)

Fig. 1. A scenario where HERFA is used as part of a HE-based application.

This modification restores the quadratic convergence rate.

III. NEWTON’S METHOD FOR ENCRYPTED DATA

Applying HE schemes to Newton’s method introduces sev-
eral challenges. These challenges include calculating deriva-
tives and performing division in the HE domain. In this letter,
it is assumed that the input function for Newton’s method is
a polynomial, which simplifies derivative calculations.

To address the issue related to the division in Newton’s
method, this letter adopts the two-step, division-free approach
proposed by Blanchard and Chamberland [10]. The formulas
for this method are as follows:

yn+1 = yn · (2− f ′(xn) · yn), (3)

xn+1 = xn − yn+1 · f(xn). (4)

Equation (3) provides an approximation for 1/f ′(xn) in (1),
and y0 is defined as 1/f ′(x0). For instance, the root of
f(x) = x3−4x2+1 within the interval [0, 2] is 0.537. Using
the standard Newton’s method with an initial guess x0 of 2,
the iterative results are x1 = 0.25, x2 = 0.672, x3 = 0.547,
and x4 = 0.537. In contrast, the division-free method with
the same initial guess produces the following pairs: (y1, x1) =
(−0.25, 0.25), (y2, x2) = (−0.387, 0.546), (y3, x3) = (−0.254,
0.538), and (y4, x4) = (−0.286, 0.537), which shows that the
division-free method finds a comparable root.

To support a polynomial multiplicity greater than 1, this
letter modifies (3) into (5) by combining (2) and the steps
described in [10].

yn+1 = yn · (1 +m− f ′(xn) · yn). (5)

It does not increase the total depth but enables quadratic
convergence when the multiplicity of a root is known.

HERFA is implemented by translating the operations in (4)
and (5) into the basic HE operations introduced in Section
II-A. Fig. 1 shows its possible use case, where "Enc" stands
for encryption. In this scenario, a user’s edge device encrypts
data, which is an input for a real-world application on a cloud
server, using a public key and transmits it. Core homomorphic
operations of the application process this encrypted data
without decryption, and a polynomial function is generated
for a specific purpose, such as modeling and optimization,
in the application. A generated function is represented by a
polynomial degree p, encrypted coefficients ci (0 f i f p),
and a polynomial multiplicity m. These components, along
with an encrypted initial guess x0 and an encrypted y0 for (5),
are sent to HERFA. The calculated root x̂ through n iterations,
which is still encrypted, is then used in the application to
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TABLE I
TOTAL DEPTH OF HE-ALTERNATIVE

Stage Additional Depth
f ′(xn) calculation +log2p,
s · (f ′(xn))2 calculation 2
Inv calculation d+ 1
Remainder 1
Total (n iterations) n · (+log2p,+ d+ 4)

TABLE II
TOTAL DEPTH OF HERFA

Stage Additional Depth
f ′(xn) calculation +log2p,
yn+1 calculation 1
xn+1 calculation 1
Total (n iterations) n · (+log2p,+ 2)

fulfill its intended purpose. The final result of the application
is sent back to the user, who decrypts it using a secret key.
Throughout the entire process, the cloud server remains unable
to obtain any information about the user’s input.

IV. DEPTH ANALYSIS

This section analyzes the total depth of HERFA. To demon-
strate the effectiveness of HERFA, an alternative HE-based
implementation of Newton’s method using a numerical method
for division is first introduced. It is denoted by HE-Alternative
in the rest of this letter. In HE-Alternative, f(xn)/f

′(xn) in
(2) is approximated to f(xn) · Inv(f

′(xn); d). However, this
approximation has challenges due to the input constraints of
Algorithm 1. Specifically, f ′(xn) must be 1) a positive real
number and 2) less than 2. To address these challenges, (2) is
modified as (6) in HE-Alternative.

xn+1 = xn −m · s ·
f(xn) · f

′(xn)

s · (f ′(xn))2
, (6)

where s is a constant in the interval (0, 1). The denominator
s · (f ′(xn))

2 is used as an input of Inv.
Table I shows the total depth of HE-Alternative, where Inv

uses d iterations and Newton’s method itself uses n iterations
(a total of d×n iterations). In calculating f ′(xn), (cp ·p)·xp−1

is computed using a balanced binary tree approach, adding
a depth of +log2p,. The subsequent stage, which computes
s · f ′(xn) · f

′(xn), contributes an additional depth of 2. Each
iteration of Inv increases the total depth by 1, except for the
first iteration that increases the total depth by 2. Therefore,
Inv adds an additional depth of d + 1. In the rest of each
iteration of Newton’s method, the multiplication between m ·
s · f(xn) · f

′(xn) and the Inv result increases the total depth
by 1. The total depth increases proportionally to n.

The total depth of HERFA is shown in Table II. Unlike HE-
Alternative, which requires the computation of s · (f ′(xn))

2

and Inv, HERFA calculates yn+1 as described in Section III.
It requires the depth of +log2p, + 1 due to a multiplication
between y2n and f ′(xn). The calculation of xn+1 adds another
depth of 1 due to yn+1 · f(xn). After n iterations, the total
depth is n · (+log2p, + 2), which is reduced by n · (d + 2)
compared to HE-Alternative.

TABLE III
TEST PROBLEMS USING HERMITE POLYNOMIALS

No Polynomial Root (near x0)
P1 x2 − 1 1.00000
P2 x3 − 3x 1.73205
P3 x4 − 6x2 + 3 2.33441
P4 x5 − 10x3 + 15x 2.85697
P5 x6 − 15x4 + 45x2 − 15 3.32426
P6 x7 − 21x5 + 105x3 − 105x 3.75044

V. OPTIMIZATIONS

This letter presents two optimizations for HERFA. First,
we optimize the multiplication order to minimize overflow
when working with high-degree polynomials, based on the
fact that yn+1 approximates 1/f ′(xn). For example, when yn
is multiplied by f ′(xn) = 4 ·x3

n for the computation in (5), we
choose the order ((4 ·yn) ·(xn ·xn)) ·xn instead of yn· ((4 ·xn)
· (xn · xn)), which does not increase the total depth. Second,
we apply multithreading to HERFA. The most time-consuming
component of HERFA is the computation of f ′(xn) and f(xn)
in the HE domain, which are independent of each other.
Therefore, different threads are used for these computations.
In addition, we exploit parallelism between calculations of
terms of f ′(xn) and f(xn) and within the calculation of each
individual term.

VI. EVALUATION

This section evaluates HERFA in terms of accuracy, total
depth, and execution time. To implement HERFA, Microsoft
SEAL version 3.6 is used [11]. Specifically, the functions for
the CKKS scheme [8] are used to support real number roots
of a function. The HE parameters used are as follows:

• Security level: 128 bits
• Polynomial degree: 215

Bits for primes are configured to support a maximum depth
of 20, with the first and last primes using relatively more bits.

A. Accuracy

To evaluate the accuracy, six probabilist’s Hermite polyno-
mials [12], which are widely used in probability theory and
systems theory, are employed as test polynomials. They are
shown in Table III. The value of x0 is set to 5, which is greater
than the roots of all the test polynomials. The roots nearest to
x0, which are the targets, are listed in the last column.

To the best of the authors’ knowledge, no previous work
has been presented on root-finding algorithms for homo-
morphically encrypted data. Therefore, the standard non-HE-
based Newton’s method and HE-Alternative, which combines
the standard Newton’s method with Algorithm 1 in the HE
domain, are used for comparison. The number of iterations n
for Newton’s method changes from 2 to 4, and the number of
iterations d for Inv of HE-Alternative is fixed at 2.

Table IV shows the relative errors to the target roots (%). As
the test polynomials progress from P1 to P6, the relative errors
tend to decrease because the target roots are nearer to x0.
Compared to the standard non-HE-based Newton’s method,
HERFA results in larger errors. These errors are caused by
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TABLE IV
RELATIVE ERRORS (%)

Non-HE-based HE-based

No Standard Newton HE-Alternative HERFA
n=2 n=3 n=4 n=2 n=3 n=4 n=2 n=3 n=4

P1 49.2 8.1 0.3 58.1 31.1 19.2 74.8 29.7 8.3

P2 45.7 15.2 2.6 53.2 38.9 31.2 61.7 35.5 18.0

P3 35.3 14.6 3.7 41.5 33.1 28.3 45.5 29.4 17.3

P4 25.5 11.2 3.2 28.7 23.1 19.9 32.4 21.7 13.5

P5 17.3 7.5 2.0 20.7 17.0 14.9 22.0 14.7 9.1

P6 10.6 4.1 0.9 11.7 9.0 7.5 13.8 8.9 5.1

Fig. 2. Total depth and execution time (seconds) of HERFA depending on
the number of iterations of Newton’s method.

the use of the division-free approach. The transition to the HE
domain introduces negligible errors.

Compared to HE-Alternative, HERFA has three key ad-
vantages. First, in this experiment, the value of s for HE-
Alternative is empirically chosen to meet the input constraints
of Inv(s · (f ′(xn))

2; d). However, in practice, this is not
feasible because (f ′(xn))

2 is encrypted and unknown, so the
s value must be set sufficiently small. This underlines the
advantage of HERFA, which does not require s.

Second, as n increases, the efficiency of HE-Alternative de-
creases due to errors from Inv. Specifically, HE-Alternative,
which is basically based on the standard Newton’s method,
produces lower errors than HERFA when n is 2. However, as n
exceeds 2, the input value of Inv becomes almost 0 due to the
multiplication with s, leading to an increase in approximation
errors of Inv. Consequently, HERFA yields smaller errors
than HE-Alternative, as emphasized by the bold fonts.

Third, HE-Alternative becomes infeasible for n values of
3 and 4 under the HE parameter set used in this experiment
because the total depth exceeds the maximum allowed. For
instance, when n is 3 and p is 2, the total depth reaches 21
(= 3 · (+log22,+ 2 + 4)). In contrast, HERFA supports these
n values. For example, when n is 4 and p is 7, the total depth
is 20 (= 4 · (+log27,+ 2)), which meets the depth constraint.

B. Total Depth and Execution Time

The implemented HERFA software runs on a workstation
with an Intel Xeon W-2255 processor and 64GB of RAM.
We configured this software to use up to 8 threads. Fig. 2
shows the total depth and execution time results of HERFA
based on the number of iterations in Newton’s method. Time-
S and Time-M represent execution times for single-threaded
and multi-threaded operations, respectively. Note that HE-
Alternative, which is used for accuracy comparison, is not

included in this experiment because it is infeasible for n = 3
and n = 4 under the HE parameters.

As the test polynomials progress from P1 to P6, the exe-
cution time increases. In particular, a slightly steeper slope is
observed when the total depth changes, particularly between
P3 and P4. As n increases, the operations in (4) and (5)
are performed more, leading to longer execution times. The
application of multithreading reduces the average execution
time by 32%. When the number of threads is limited to 2,
the improvement becomes 27%. Notably, P6, which has the
highest levels of parallelism, achieves an improvement of over
48% with more than two threads and 38% with two threads.

VII. CONCLUSION

In this letter, we adapt Newton’s method to the HE domain
to find the roots of encrypted polynomial functions. The
division-free approach used is well-suited for the HE domain
as it removes division. The depth analysis and experimental
results demonstrate that the proposed method significantly
reduces total depth–and consequently execution time–while
reducing errors of an alternative implementation where a
numerical method for division generates additional errors. For
future work, we plan to adopt a hybrid approach, which uses
different types of root-finding algorithms together, to mitigate
sensitivity to the initial guess of Newton’s method.
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