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Data-driven batch detection enhances
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In single-cell omics studies, data are typically collected across multiple batches, resulting in batch effects:
technical confounders that introduce noise and distort data distribution. Correcting these effects is chal-
lenging due to their unknown sources, nonlinear distortions, and the difficulty of accurately assigning data
to batches that are optimal for integration methods.

In recent years, an increasing number
of single-cell sequencing datasets have
been made available by labs and organiza-
tions worldwide, enabling large-scale bio-
logical studies using data atlases.’
Furthermore, some datasets are multi-
omic, where more than one modality of
cells is measured, e.g., the transcriptome
and chromatin accessibility, while single-
omic datasets measure one of the two mo-
dalities. However, integrating datasets
from different sequencing batches is
not straightforward. This is because
different batches are often collected under
different experimental environments (e.g.,
sequencing platforms, harvest time points,
handling personnel, etc.), which introduce
technical confounders, also known as
batch effects.” Batch effects cause the
distortion of data distributions between
sequencing batches, where even cells of
the same cell type can have different
gene expression behaviors across
batches (Figure 1A). Therefore, the pres-
ence of batch effects renders data from
different batches difficult to compare.
Computational methods have been pro-
posed for batch effect removal, which en-
ables the integration of datasets into a
common space to obtain a large cell atlas
and downstream exploratory analysis on
the integrated dataset, including joint
cell-type identification, marker gene
detection, and gene module detection
(Figure 1B). These methods either model
multi-batch datasets through traditional
machine learning algorithms (e.g., canoni-
cal correlation analysis and matrix factor-
ization) for better stability*™® or cling to
deep neural networks to model nonline-
arity.>” Regardless of different modeling
strategies, most existing methods assume
that batch effects always and only exist

between experimental batches. However,
this assumption is problematic in multi-
ple ways.

First, when the datasets include sam-
ples under different conditions, e.g.,
when the donors are at different stages
of a disease, the differences between
data of different batches can be
caused by both technical confounders
and biological factors associated with
disease progression. For such scenarios,
methods have been recently proposed
to consider the existence of biological
factors across batches.®® These methods
aim to remove batch effects while preser-
ving the differences between batches
caused by biological factors.

Second, batch effects observed in data
do not always reflect the recorded exper-
imental batches: batch effects can exist
between samples within the same exper-
imental batch, and different experimental
batches may not show clear batch
effects in data. These issues can cause
“over-correction” or “under-correction”
of batch effects when applying batch
removal or integration algorithms. To
tackle this problem, a recent work pub-
lished in Cell Systems explores a data-
driven approach to infer batches, such
that batch effects can be observed be-
tween inferred batches from data.'®

In their work, Wang et al. defined two
batch concepts: experimentally recorded
batches and data-defined batches. While
experimentally recorded batches are the
batches recorded during experiments,
data-defined batches are the batches be-
tween which the batch effect exists
(Figure 1C). Different from experimentally
recorded batches, the information from
data-defined batches is not directly pro-
vided with the experiment and does not al-
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ways align with the experimental batches.
Wang et al. proposed a batch identification
algorithm to infer the data-defined batches
from data. The algorithm first separates alll
cells from all batches into low-resolution
clusters, then locally assigns batches for
cells within each cluster according to anin-
formation-theory-based metric and com-
bines local batch assignment into globally
data-defined batches for the dataset. In
principle, using the inferred data-defined
batches should improve the performance
of all existing batch effect removal algo-
rithms since it is consistent with observed
variation across samples. Wang et al. con-
ducted tests by running several batch ef-
fect removal methods using the inferred
batches and observed consistent perfor-
mance improvement compared to using
experimentally recorded batches.

Another major contribution of the
work by Wang et al. is that they built an
end-to-end pipeline, from data pre-pro-
cessing to downstream analysis, to facili-
tate single-cell omics data analysis. The
proposed batch inference method is
included in the pipeline before applying
data integration methods. The pipeline is
named SPEEDI (single-cell pipeline for
end-to-end data integration) (Figure 1C),
and the goal of SPEEDI is to streamline
steps in data analysis, which are other-
wise performed separately. Particularly,
in SPEEDI, the authors introduced an
automated parameter selection strategy,
which significantly reduced the burden
of parameter tuning for users. The pipe-
line is broadly applicable to single-
cell RNA sequencing, single-cell assay
for transposase-accessible chromatin
sequencing, and single-cell multi-omic
datasets. It is available as a web portal
for user convenience.
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Figure 1. Data integration on single-cell sequencing datasets

(A) Batch effects cause distortion of data distributions across cell batches.
(B) Data integration algorithms integrate multiple batches of single-cell sequencing datasets from (1) the same modality or (2) multiple modalities to learn the
unified representation of cells for batch effect removal and cell-type identification.

(C) SPEEDI pipeline includes data pre-processing, batch inference, data integration, and downstream analysis.

Unlike other batch removal methods,
which focus on improving the algorithms
for higher integration accuracy using pro-
vided experimental batch assignment,
SPEEDI considers a fundamental ques-
tion, which is how to define a batch for
batch removal methods. Wang et al.
showed improved performance with
data-defined batches. In the meantime,
the challenge of data integration is still
far from being solved, as the sources of
variations between samples can come
from a complex mix of batch effects and
biological effects. While Wang et al. used
the variation between samples to define
data-driven batches, future work should
continue to study the decomposition of
different sources, which can enhance un-
derstanding in disease research and clin-
ical studies. Biological effects can be
associated with different characteristics
of donors in disease studies, including
age, gender, disease severity, drug treat-
ment, and others. Therefore, such studies
can also benefit from appropriate wet-lab
experimental design when selecting do-
nors and organizing samples into experi-
mental batches. While the batch inference
method proposed in SPEEDI can be used
in future studies, researchers can also
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consider developing data-driven ap-
proaches to label biological conditions
for samples in cases where different bio-
logical conditions do not lead to even vari-
ation in data.
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