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Abstract: We propose a method of performing variational inference using high speed
photonic neural accelerators. This method incurs no slowdown compared to deterministic
photonic inference, affecting only the power consumption of existing accelerator architec-

tures. © 2024 The Author(s)
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1. Introduction

Bayesian Neural Networks (BNNs) are a powerful type of model in deep learning due to their ability to estimate
epistemic uncertainty. Through the training process described in [1], they learn to minimize predictive variance on
in-distribution samples, leaving anomalous samples measurably more uncertain. Unfortunately, this technique is
limited in usability due to the time needed to approximate the mean and variance integrals of a Gaussian distribu-
tion. Novel methods of performing this approximation, called Variational Density Propagation (VDP) methods,
can reduce time complexity [2], but BNN forward passes remain slower than deterministic inference.

Photonic neural network accelerators are an emerging technology that increases the throughput and decreases
the latency and power consumption of neural inference over digital computers [3]. These advantages come at
the cost of a lower computational precision [4], which is seen as an acceptable trade-off when working with
approximation models. That said, with weight uncertainty being desirable for BNNs, photonic neural accelerators
show promise for implementing them in continuous time. Previous works have explored this [5], but was only able
to propagate uncertainty through matrix multiplications as the computations were done on separate circuits.

Here we propose a method of performing VDP in the continuous time domain with circuits made to perform
deterministic photonic neural inference. This method leverages unused bandwidth above the 3dB cutoff of the
sampling circuitry of the system to convey noise at frequencies that would accumulate statistical significance over
the course of a single inference step. The central tendency and variability are measured using frequency domain
operations, with high frequency noise adding uncertainty to low frequency mean signals. This method allows
for propagation through analog activation functions before sampling, and considers inherent circuit noises in the
measurement of signal variability. The system used to perform the proposed operation is shown in Fig. la.
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Fig. 1. a) Block diagram of the proposed photonic BNN b) Schematic of the simulated photonic
circuit, adapted with permission from [6]
2. System Setup
The simulated circuit used to validate this method is shown in Fig. 1b. It uses two PIN junction ring modulators
feeding constant weight through-drop resonators to form a two-quadrant multiplier. The electrical transfer func-
tions for these modulators were fitted to match those measured in [6]. Excitatory and inhibitory inputs are fed
through separate wavelengths, modulated off-chip and constrained to be positive by the use of ReLLU activations
in the implemented neural network. The signal means were transmitted at a rate of 5GBd, consistent with [3].
Additive Gaussian noise was conveyed using the frequency range from 7GHz to 20GHz, with the signal power
below 7GHz removed to ensure a cleanly transmitted signal mean, save for inherent circuit noises. The resulting
output noise was removed using a low-pass filter to recover the mean, and measured using a high-pass filter and
magnitude detector to approximate the variance, as illustrated in Fig. la.

To verify the proposed method, the proposed stochastic multiplication method was simulated with direct digital
synthesis (DDS) implementing a fully connected neural network using the PyTorch machine learning library [7].
This model was trained, along with a control model using digital extended VDP [2], to classify samples from the
MNIST handwritten digits dataset [8]. Both models were trained using the same hyperparameters for 25 epochs,
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and the weight tensors that performed best on the validation dataset were saved for evaluation. The models’
anomaly detection behavior was then examined by perturbing the test dataset with additive white Gaussian noise
at various signal-to-noise ratios and computing the average predictive variance for each severity.
3. Results and Analysis
Photonic VDP was trained to optimality after 14 epochs, reaching a validation accuracy of 95.70% on unperturbed
handwritten digits. ExVDP was trained to optimality after 15 epochs, reaching a validation accuracy of 96.41%.
The results of the Gaussian perturbation experiment are shown in Fig. 2. As these figures show, the models per-
formed near identically, with slightly less severe change as signal-to-noise ratio increases for Photonic VDP. This
behavior can be improved by increasing the electrical bandwidth of the noise, and thus the statistical significance
of the approximation. This experiment was limited by the sample rate of the simulated DDS system.
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Fig. 2. Average predictive variance for all predicted samples (blue), correctly classified samples
(orange) and misclassified samples (green) versus signal-to-noise ratio for a) Extended VDP, as
proposed by [2]. b) The proposed photonic VDP method.

This method is theoretically just as fast as deterministic photonic neural acceleration, which has been shown to
outperform early GPU architectures on deterministic convolution by speedup ratios from 1.4x to 7x [3]. The added
benefit of uncertainty estimation comes at the cost of power consumption, as the proposed method effectively
doubles the required number of digital-to-analog and analog-to-digital converters. Using the estimation criteria
cited in [3], these additions should increase the power consumption of the circuit by around 1.6x, which is still
below the power consumption of the GPU architectures used to benchmark the original design.

4. Conclusion
We propose a method of implementing BNNs with high speed photonic neural accelerators. This method is just

as fast as deterministic photonic inference, increasing the power consumption by roughly 1.6x while still remain-
ing more energy-efficient than digital inference. The anomaly detection behavior is shown to be near equally as
effective as modern digital BNNs, and can be improved further by way of using programmable analog noises over
DDS. This work was supported by the National Science Foundation (NSF) under Grant ECCS- 2128608.
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