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Current quantum computers suffer from noise that stems from interactions between the quantum sys-
tem that constitutes the quantum device and its environment. These interactions can be suppressed through
dynamical decoupling to reduce computational errors. However, the performance of dynamical decoupling
depends on the type of system-environment interactions that are present, which often lack an accurate
model in quantum devices. We show that the performance of dynamical decoupling can be improved by
optimizing its rotational gates to tailor them to the quantum hardware. We find that, compared to canoni-
cal decoupling sequences, such as CPMG, XY4, and UR6, the optimized dynamical decoupling sequences
yield the best performance in suppressing noise in superconducting qubits. Our work thus enhances exist-
ing error suppression methods, which helps increase the circuit depth and result quality on noisy hardware.
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I. INTRODUCTION

Noise currently limits quantum computers from harness-
ing their full potential. In the long term, quantum error
correction is expected to overcome this issue [1]. In the
short term, noise mitigation and suppression techniques are
critical to improve quantum device performance [2]. Error
mitigation is designed to reduce noise, typically, in expec-
tation values [2,3]. The computation is executed on the
noisy quantum computer multiple times to either extrap-
olate to a zero-noise limit [4], or to cancel the noise on
average [5]. By contrast, error suppression methods, such
as dynamical decoupling [6] and pulse-efficient transpi-
lation [7], reduce the presence of noise directly in the
quantum circuits.

In this work we focus on the well-established noise and
error suppression technique dynamical decoupling (DD).
Inspired by nuclear magnetic resonance spectroscopy
(NMR) [8], the theory of DD was first developed by
Lorenza Viola, Emanuel Knill, and Seth Lloyd in 1998 [6]
as an open-loop control technique. DD suppresses errors
by decoupling the system from its environment through
the application of a sequence of pulses that, in the ideal
case, compose to the identity. The utility of DD has been
demonstrated in a wide range of quantum systems, such as
coupled nuclear and electron spins [9], trapped ions [10],
electron spins [11], and superconducting qubits [12]. Since
the introduction of the DD framework in the 1990s, DD
has also become a viable method to suppress noise and
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errors in quantum computing [13]. For example, DD can
suppress crosstalk [14,15] and improve the performance of
superconducting qubit-based quantum devices [12,16] in
general. DD sequences can be designed from first princi-
ples [17] or with numerical simulations, leveraging tools
such as genetic algorithms [18] and machine learning [19].

In recent years, DD has become a major error suppres-
sion method for noisy superconducting quantum comput-
ers [16]. Indeed, the method is easy to apply as a simple
transpilation pass that inserts delays and pulses into a
quantum circuit. Furthermore, simple sequences such as
X -X already yield excellent results [20]. More elaborate
sequences, such as staggered X -X [21] and staggered XY4,
improve, for instance, the execution of dynamic circuits
by canceling crosstalk [22]. Here X and Y are π rotations
around the qubit’s x and y axes, respectively. Crucially,
the performance of a DD sequence depends on the interac-
tions present in the quantum hardware. In superconducting
qubits [23], a good model of these interactions is typically
not known, a case familiar to optimal control [24–27] that
can be overcome with closed-loop optimization [28,29].
Similarly, it is possible to tailor DD sequences to the quan-
tum hardware at hand by learning them through genetic
algorithms [30]. However, in hardware, DD pulses are not
perfect, potentially introducing additional noise and errors
through the controls that implement the DD pulses, thereby
diminishing the quality of the designed DD sequence.
While control noise-robust DD sequences exist [13], e.g.,
suppressing errors in rotational angles of the DD gates,
such sequences typically require knowledge of the type of
control error that is introduced.
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FIG. 1. Illustration of LDD. The left and right blocks indicate
a quantum device and a classical computer, respectively, work-
ing in tandem. A DD sequence parameterized by !x is added to
idling qubits in a given quantum circuit, here exemplified by a
SWAP gate on (q1, q2) followed by a CNOT gate on (q0, q1). The
arbitrary single-qubit rotations R!x in the DD sequence are real-
ized by three parameterized virtual Z gates (circular arrows) and
two

√
X gates (pulse with in-phase and quadrature shown in light

and dark blue, respectively). The noisy output state ρ(!x) is com-
pared to the expected ideal state ρideal through the cost function
J (!x). A classical optimization algorithm minimizes J (!x) to find
the parameters of the gates in the DD sequence that best fit the
circuit.

To overcome these limitations, in this work we tailor
the DD sequences to the hardware and quantum circuits
to execute. The goal is to design DD sequences that sup-
press potentially unknown pulse imperfections and noise.
This is achieved by optimizing the rotational angles of the
gates in the DD sequence in a closed loop with the quan-
tum hardware. A classical optimizer is fed the cost function
value that is reconstructed from quantum samples and that
is sensitive to the quality of the DD pulses; see Fig. 1.

This manuscript is structured as follows. We introduce
in Sec. II the three commonly employed DD sequences
CPMG, XY4, and UR6. Next, in Sec. III we develop
the theoretical framework of how optimal parameters in
DD sequences are found on quantum hardware, which
we refer to as learning dynamical decoupling (LDD). We
demonstrate in Sec. III B the utility of LDD on IBM Quan-
tum hardware by comparing the performance of LDD to
CPMG, XY4, and UR6 sequences to suppress noise in
two experiments. We show that LDD outperforms CPMG,
XY4, and UR6 sequences for suppressing noise present
during midcircuit measurements and noise resulting from
increasing the depth of a quantum circuit. We conclude in
Sec. IV.

II. BACKGROUND: DYNAMICAL DECOUPLING

DD is a well-known strategy that reduces noise by sup-
pressing unwanted interactions with the environment or
undesired couplings of the controls with the system. For an
overview of DD strategies, we refer the reader to Ref. [13].
DD can in general suppress generic interactions through

pulses that rotate around multiple axes [31]. However,
DD is most resource efficient when tailored to the specific
type of interactions at hand [32,33]. Furthermore, the most
effective DD sequence depends on the noise type present
in the physical system.

The spin echo [34] in NMR can be seen as a DD
experiment where a single Pauli-X gate refocuses coher-
ent errors. The “Carr-Purcell-Meiboom-Gill” (CPMG) DD
sequence is an extension of the spin echo with two sym-
metric insertions of an X gate [35,36]. The resulting pulse
sequence is

CPMG ≡ τ/2 − X − τ − X − τ/2. (1)

Here, the total duration of the free evolution is 2τ and
–τ– indicates an idle period of duration τ . Multiple CPMG
sequences can be concatenated one after another; see
Fig. 2(a). While the CPMG sequence can suppress homo-
geneous dephasing along one axis, it cannot suppress noise
stemming from generic system-environment interactions.
By contrast, the XY4 DD sequence [37], defined by

XY4 ≡ Y − τ/2 − X − τ/2 − Y − τ/2 − X − τ/2, (2)

is a universal DD sequence that can suppress generic
system-environment interactions. Two concatenated XY4
sequences are shown in Fig. 2(b). Both the CPMG and
XY4 sequences are sensitive to pulse imperfections [38].
Such errors can be suppressed with a universal rephasing
(UR) DD sequence by inserting properly tailored phase
gates into, e.g., a CPMG sequence to obtain the symmetric
UR6 DD sequence [39]

UR6 ≡ 2τ/7 − X − 2τ/7 − X ′ − 2τ/7 − X − 2τ/7

− X − 2τ/7 − X ′ − 2τ/7 − X − 2τ/7. (3)

The UR6 sequence has four X gates and two phased
X gates denoted by X ′ = Rz(−2π/3)XRz(2π/3), where
Rz(θ) is a rotation around the qubit’s z axis by an angle θ .

DD sequences with higher-order protection can be built
with additional single-qubit pulses, for example, by con-
catenating existing sequences [40] or considering semi-
classical noise models [39]. However, the effectiveness
of DD sequences critically depends on the type of noise,
i.e., resulting from the detrimental interactions that are
present in the system, which is often challenging to infer
in superconducting quantum devices [23]. For example,
Ezzell et al. [12] showed that the performance of differ-
ent DD sequences is device dependent even though the
devices all leverage the cross-resonance interaction [41].
Furthermore, pulse imperfections, such as a detuning in
frequency or amplitude, degrade the performance of a DD
sequence [39]. As such, the performance of a DD sequence
can vary substantially across different devices and even
time, if hardware parameters drift.
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FIG. 2. Schematic diagram of DD sequences. (a) Two concate-
nated CPMG sequences. (b) Two concatenated XY4 sequences.
(c) One UR6 sequence. (d) Two concatenated LDD sequences.
All sequences are depicted for an idle period of 2τ , while the
gate implementation time is not shown. When running on hard-
ware, the idle times are reduced to account for the duration of the
physical pulses of the DD gate. The CPMG sequence uses only
X gates (blue rectangle), whereas the XY4 sequence uses both
X and Y gates (green rectangles). Here X and Y are π rotations
around the qubit’s x axis and y axis, respectively. Sequence UR6
uses X ′ gates that consist of two phase gates with angles 2π/3
(shown as blue pulses) with opposite rotational directions that
are inserted before and after an X gate; see Eq. (3). LDD uses
parameterized gates, R!x∗ (purple rectangles), where the optimal
rotation angles !x∗ are found by classical optimization routines
performed in tandem with a quantum device.

III. LEARNING HOW TO SUPPRESS NOISE

We use tools from closed-loop optimal control [24] and
optimization [28–30,42] to learn optimal DD sequences
without precise knowledge of a noise model. Tong et al.
[30] demonstrated the usefulness of this approach by opti-
mizing with a genetic algorithm the placement of DD
gates on idling qubits in a quantum circuit to achieve,
for instance, a higher success probability in the Bernstein-
Vazirani algorithm compared to canonical DD sequences.
In their approach, they chose DD gates from the fixed
set {I±, X±, Y±, Z±}, where I+, X+, Y+, Z+ are the Pauli
matrices and the minus subscript indicates an added phase
of π .

DD gates themselves are prone to errors, such as errors
in the rotation angles. Furthermore, the optimal rotation
axis of the gates in the DD sequence may depend on
the type of noise in the system. We address these issues
by adopting a different optimization approach from Tong

et al. [30]. Instead of fixing a set of DD gates and opti-
mizing over the DD sequence structure to find the best
DD sequence [30], we optimize the rotational parameters
entering in the chosen DD sequence to improve perfor-
mance. This approach is similar to finding noise-resilient
quantum circuits through machine learning [43]. After
introducing the theory behind such a learning approach
to dynamical decoupling, we demonstrate on IBM Quan-
tum hardware in two experiments that the optimized LDD
sequences are better at suppressing errors than the CPMG,
XY4, and UR6 sequences.

A. Theory
We consider a quantum circuit described by the ideal

quantum channels Uj applied in sequence,

ρideal =
∏

j

Uj (ρ0), (4)

to an initial state ρ0 = |ψ0〉〈ψ0|, which we assume is
pure, to create a desired target state ρideal = |ψideal〉〈ψideal|.
The quantum channels Uj may correspond to the ideal
gates in a circuit. Here, we concern ourselves with noise
described by a collection of typically unknown quantum
channels Mj , in which we include potential midcircuit
measurements, that act between the unitary channels Uj
when qubits are idling. The noisy quantum circuit then
takes the form

∏
j MjUj . Each noise channel Mj can

describe unitary and nonunitary errors. To suppress noise
induced by Mj , we divide Mj into N + 1 channels Mj ,k

so that
∏N+1

k=1 Mj ,k = Mj , and insert an LDD sequence
of the form shown in Fig. 2(c). The LDD sequence
is described by parameterized unitary quantum channels
R!x(·) = R!x(·)R†

!x that are applied between the Mk where
the LDD gates R!x are parameterized by !x ∈ RM . For sim-
plicity, we assume that the LDD parameters !x are the same
for each LDD gate R!x. If we include N/2 LDD gates
between the noise channels Mj ,k, followed by implement-
ing N/2 times the corresponding inverse R†

!x to insure that
the total LDD sequence composes to the identity in the
absence of noise, as depicted in Fig. 2, the noise channel
Mj becomes

Mj ,!x := Mj ,N+1

N∏

k=N/2+1

R†
!xMj ,k

N/2∏

k=1

R!xMj ,k. (5)

The state resulting from the noisy circuit with LDD is then
given by

ρ(!x) =
∏

j

Mj ,!xUj (ρ0). (6)

To optimize the parameters !x, we need a cost function J (!x)
that is sensitive to the quality of the circuits in Eq. (4). For
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small circuits, a natural choice for a figure of merit or cost
function is the fidelity error

J (!x) = 1 − 〈ψideal|ρ(!x)|ψideal〉. (7)

Here, F = 〈ψideal|ρ(!x)|ψideal〉 is the fidelity with respect to
the ideal state. However, state tomography scales exponen-
tially with system size. For large circuits, a scalable cost
function can be built in multiple ways. As done in Refs.
[30,44], we can invert the circuit with mirroring in which
each U†

j is applied in reverse such that ρideal = ρ0. Alter-
natively, one can reduce the original quantum circuit to a
Clifford circuit as done, for instance, in Refs. [45,46]. Here,
the single-qubit gates in a circuit [with the controlled-NOT
(CNOT) gate as the two-qubit gate] are replaced by Clifford
gates such that the whole circuit is a Clifford gate. In hard-
ware where parameters are encoded in virtual-Z gates [47],
this will preserve the structure and timing of the underly-
ing pulses, thereby leaving most noise sources such as T1,
T2 and crosstalk unchanged at the pulse level. We can then
compute ρideal with efficient Clifford-based simulators.

Solving the optimization problem

min
!x∈RM

J (!x) (8)

yields the optimal parameter values !x∗ of the LDD
sequence that minimize J (!x). Since we do not know the
noise processes described by Mj , we minimize J in an
iterative, variational quantum algorithm–type fashion by
using quantum and classical computing resources in tan-
dem [27,48]. By measuring the output at the end of the
quantum circuit we estimate J , while a classical search
routine is employed to update the parameters.

B. Case studies on IBM hardware
We study the performance of LDD in two different

experiments carried out on IBM Quantum hardware with
Bell pairs, a valuable resource. For instance, Bell pairs
enable quantum gate teleportation [49] and similar known
states generated in a factory of resources enable circuit
cutting [22]. In the first experiment we suppress noise dur-
ing midcircuit measurements. In the second experiment we
suppress noise resulting from an increasing circuit depth.
In both cases we minimize fidelity loss due to noise by
increasing the fidelity of preparing the Bell state |ψideal〉 =
|&+〉 = (|00〉 + |11〉)/

√
2, on two qubits qi and qj within

an n > 2 qubit system, starting from ρ0 = |0〉〈0|⊗n. To
infer the value of J (!x) in Eq. (7) for the Bell state, it
suffices to measure the expectation values of the XiXj ,
YiYj , and ZiZj Pauli operators with respect to ρ(!x), rather
than performing full state tomography [50–56]. The cost

function is thus

J (!x) = 1 − 1
4
〈1 + XiXj − YiYj + ZiZj 〉ρ(!x). (9)

The three correlators are each estimated with a quan-
tum circuit executed with 400 shots in each evaluation.
We employ parameterized decoupling operations given by
arbitrary single-qubit rotations

R!x = R(θ ,φ, () = e−iθZ/2e−iφY/2e−i(Z/2, (10)

where in both experiments we repeat R(θ ,φ, () and its
inverse in total N = 4 times, described by Eq. (5). Here,
we only consider three angles !x = (θ ,φ, () to parameterize
the full LDD sequence. All qubits with an LDD sequence
thus share the same parameter values. This limits the size
of the search space. On IBM Quantum hardware, these
single-qubit rotations are implemented by three parame-
terized virtual-Z rotations [47] and two

√
X pulses. There-

fore, in LDD we optimize the angles in these virtual-Z
rotations. We pick the simultaneous perturbation stochas-
tic approximation (SPSA) gradient descent method [57,58]
to solve the optimization problem in Eq. (8), starting with
(θ ,φ, () = (0, 0, 0). We allow the SPSA a total of 100
iterations. At each iteration the SPSA requires only two
estimations of the objective function, regardless of the
number of optimization parameters. The hyperparameter
“perturbation” in the SPSA is set to the default values
and the hyperparameter “learning rate” is calibrated by the
optimizer [59].

Below we compare LDD with the CPMG, XY4, and
UR6 sequences where DD sequences are inserted when
qubits are idling. Throughout the two experiments, we con-
catenate two LDD, CPMG, and XY4 sequences, as shown
in Fig. 2, and adjust the duration τ to match the idling times
of the qubits. Therefore, the LDD sequence is built from
two R!x gates and two R†

!x gates. At the hardware level, each
R!x gate is implemented by three virtual-Z rotations and two√

X gates. The X and Y gates are implemented by a single
pulse with the same duration as a

√
X gate. An example of

the transpiled DD sequences is shown in Appendix D.

1. Suppressing noise during midcircuit measurements
A midcircuit measurement (MCM) involves measur-

ing qubits at intermediate stages within a quantum cir-
cuit. MCMs have various applications, including quantum
error correction [60], quantum teleportation [61], reducing
the depth of a quantum circuit [62], circuit cutting [22],
and analyzing complex quantum behaviour [63]. Unfortu-
nately, MCMs may introduce noise on neighboring qubits
of the physical device [64].

As depicted in Fig. 3, we consider the task of prepar-
ing the Bell state |&+〉 between qubit q0 and qubit q2,
while qubit q1 is subject to r repeated MCMs. Here,
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FIG. 3. Suppressing noise during MCMs through DD. A Bell
state is prepared on qubits q0 and q2. The magenta block on
qubit q1 is an MCM that is repeated r times. The purple blocks
on qubits q0 and q2 indicate DD sequences inserted during the
MCMs to mitigate noise on q0 and q2. We vary r and study the
performance of different DD sequences on a 127-qubit Eagle
device (ibm_kyiv) and a 27-qubit Falcon device (ibm_hanoi)
reported in Appendix B. The corresponding experimental results
are shown in Figs. 4 and 7(a).

varying r ∈ {1, . . . , 15} allows us to amplify the amount
of noise introduced in the quantum circuit. To study the
effect of DD during noisy measurements, we first identify
a measurement that introduces noise on its neighboring
qubits (see Appendix A), and thus map (q0, q1, q2) +
(q120, q121, q122).

First, we compute F without any DD, once with r
MCMs and once with a delay equivalent to r MCMs.
The experimental result are shown in Fig. 4 (red and pur-
ple curves) where we report the median and the lower
and upper quartiles of ten measurements. In the presence
of MCMs we observe a large drop in F at r = 5 from
0.813+0.016

−0.01 to 0.396+0.061
−0.096. This implies that an MCM on

q121 strongly impacts q120 and q122 aside from adding
a 1244-ns delay. Crucially, the fidelity decrease due to
the long delays and measurement-induced noise of the r
MCMs on q121 can be mitigated by DD sequences inserted
on neighboring qubits q120 and q122 during the MCM mea-
surement; see Fig. 3. In Fig. 4 we compare the performance
of the LDD (blue), CPMG (green), XY4 (orange), and
UR6 (magenta) sequences. The LDD sequence yields the
best performance, resulting in, e.g., a fidelity of 0.631+0.007

−0.007
at r = 15, while the CPMG, XY4, and UR6 sequences
result in 0.625+0.019

−0.045, 0.499+0.010
−0.021, and 0.521 +0.08

−0.054, respec-
tively. To evaluate the reliability of the LDD sequence,
we compute F(!x∗) 10 times after the learning and report
the lower quartile, median, and upper quartile of these ten
runs. Because of queuing, these circuits were executed on
the hardware two days after the optimal parameters !x∗ were
learnt. This indicates that the learned parameters !x∗ are
stable in time. We attribute the residual decay in part to
T1, T2, and state preparation and measurement (SPAM)
errors, shown for comparison in Fig. 4 as a solid black,
a solid gray, and a dashed gray curve, respectively. The
T1 curve is computed as e−t/T1 , where t is the idling time
and T1 = 245 µs is the average T1 time of qubits q120
and q122 of ibm_kyiv. Similarly, the T2 curve is computed
as e−t/T2 , where T2 = 175 µs is the average T2 time of
qubits q120 and q122 of ibm_kyiv. The dashed gray line is

FIG. 4. DD noise suppression during MCMs. Fidelity of a Bell
state between two qubits as a function of the number of MCMs
performed on another qubit; see Fig. 3. The dashed red curve
shows the fidelity with MCMs but without DD and the dash-
dot purple curve shows the fidelity with a delay equivalent to
MCMs. DD sequences are inserted when the qubits are idling.
The dashed green curve corresponds to the CPMG sequence,
the dash-dot orange curve corresponds to the XY4 sequence, the
dashed magenta curve corresponds to the UR6 sequence, and the
solid blue curve corresponds to the optimized LDD sequence.
For comparison, the solid black curve, the solid gray curve, and
the dashed gray curve show the effect of T1 decay, T2 decay, and
decay due to SPAM errors, respectively. The error bars show the
interquartile range.

0.987e−t/T2e−t/T1 , where 0.987 is the product of the read-
out assignment fidelity of qubits q120 and q122, as reported
by the backend.

2. Suppressing deep circuit noise
Next, we consider suppressing noise through LDD that

is introduced due to increasing the depth of a quantum cir-
cuit. In particular, we consider the task of preparing the
Bell state |&+〉 between two qubits located at the edges of
a qubit chain with nearest-neighbor interactions.

The corresponding coupling graph of the IBM Quantum
device is shown in Fig. 5(a) where the considered qubit
chain is highlighted in the dashed gray box. In Fig. 5(b)
we show the quantum circuit that prepares a Bell state
between qubits q0 and q5 by bringing them into proxim-
ity with a ladder of SWAP gates. Since the ancilla qubits are
in their ground state |0〉, we can implement each SWAP gate
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FIG. 5. Suppressing deep circuit noise through DD. (a) A part of the qubit coupling graph of the 127-qubit IBM Eagle device
ibm_strasbourg. Qubits are shown as circles labeled by numbers. The green circles highlight the qubits in the quantum circuit in (b).
The gray dashed box shows the chain of qubits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 used in the experiment. (b) Quantum circuit to prepare a
Bell state between qubit q0 (one edge of the chain) and qubit qi (here shown for i = 5) using a ladder of CNOT gates. The insertion of
DD sequences is shown as purple boxes. (c) Fidelity of preparing a Bell state between qubits q0 and qi in the chain in the coupling
graph (a) as a function of the number of intermediate qubits. The dashed red curve shows the fidelity without DD, the dash-dot orange
curve corresponds to the XY4 sequence, the dash-dot green curve corresponds to the CPMG sequence, the dashed magenta curve
corresponds to the UR6 sequence, and the solid blue curve corresponds to the optimized LDD sequence. The error bars show the
interquartile range.

with two CNOT gates instead of three. Similar gate ladders
with a single CNOT gate at each rung often occur in quan-
tum simulation algorithms to create unitaries generated by
Pauli strings [65,66]. In Fig. 5(c) we plot the fidelity F
for preparing the Bell state between the two edge qubits
of the chain in Fig. 5(a) as a function of the intermedi-
ate qubits (IQs) shown by the dashed red curve. We see
a decrease in fidelity as the number of qubits in the chain
increases, ranging from two qubits (zero IQs) to ten qubits
(eight IQs).

To mitigate the Bell state fidelity decrease, as depicted
in Fig. 5(b), we insert DD sequences on idling qubits
and compare their performance. The results shown in
Fig. 5(c) for the CPMG sequence (green), the XY4
sequence (orange), the UR6 sequence (magenta), and the
LDD sequence (blue) suggest that the best performance is
obtained for LDD.

In fact, since the fidelity obtained through inserting
XY4 and CPMG sequences can even be below the fidelity
obtained without DD, we conclude that DD can increase
the noise instead of suppressing it. This situation is avoided
by LDD as the DD sequence is tailored to the device.

IV. CONCLUSION

Dynamical decoupling is a powerful noise suppres-
sion strategy that averages out detrimental processes by
applying properly designed pulses to the system. We intro-
duced the framework of “learning dynamical decoupling.”
Instead of considering a DD sequence with fixed rotational
gates, LDD optimizes directly on quantum hardware the

rotational parameters in the DD gates. We compared the
performance of such optimized DD sequences with the
known DD sequences CPMG, XY4, and UR6 on IBM
Quantum hardware. We found that LDD outperforms all
three sequences in suppressing noise that occurs dur-
ing midcircuit measurements and noise that stems from
increasing the depth of a quantum circuit. We believe that
this is because the optimal angles in LDD are tailored to
the noise of the device. We expect that this performance
can be further improved by also optimizing over the DD
gate spacings and the number of parameterized gates used.
Furthermore, the spacing between the DD gates and the
way in which they are compiled into RZ , X , and

√
X gates

may also impact performance [67].
The LDD sequences that we studied have by design

a small number of single-qubit gates and a fixed num-
ber of rotational parameters. Appendix C shows that the
optimized LDD parameters are robust against perturba-
tions. While we believe that performance can be increased
even further by adding more optimization parameters, the
results shown in Fig. 5 for different system sizes (i.e., a
different number of intermediate qubits) suggest that the
number of LDD parameters can remain constant while
achieving a similar performance when the system is scaled.
As such, the classical optimization overhead does not need
to increase when the system size increases. Therefore, the
LDD approach considered here is scalable by design. Fur-
thermore, inserting only a small number of single-qubit
gates in LDD or DD on idling qubits to suppress noise is
important for current quantum devices. Idle times in quan-
tum circuits typically occur when a subset of all qubits
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undergo two-qubit gates. Therefore, the shorter the two-
qubit gate duration is on a device, the more compact
the DD sequence needs to be. To illustrate this, consider
ibm_torino and ibm_sherbrooke that have a median two-
qubit gate duration of 84 and 533 ns, respectively [68].
The durations of the single-qubit X and

√
X gates are

32 and 57 ns for ibm_torino and ibm_sherbrooke, respec-
tively. As such, on ibm_torino we can insert up to two
X or Y gates or one arbitrary single-qubit rotation dur-
ing the median two-qubit gate duration. By contrast, on
ibm_sherbrooke these numbers become eight and four,
respectively. Consequently, as the two-qubit gate duration
becomes comparable with the single-qubit gate duration,
short DD sequences become more important.

In summary, DD is crucial to suppressing errors in
noisy hardware. As DD sequences improve—becoming
more tailored to the hardware—so do the hardware results.
This motivates the strong interest in DD. Future work
may include optimizing the spacing of the DD pulses
in LDD. Furthermore, one could explore how to protect
circuit cutting resources, consumed in teleportation cir-
cuits as demonstrated in Ref. [22]. Indeed, these resources
are less costly to generate simultaneously. However, this
has the drawback that they idle until they are consumed.
Finally, we optimized virtual-Z rotations that sandwich√

X gates. Future work may thus elect to directly optimize
the pulses that implement the DD sequence, e.g., similar to
pulse-level variational quantum algorithms [27,69].
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APPENDIX A: IDENTIFYING QUBITS WITH THE
MOST MCM-INDUCED NOISE

The amount of noise an MCM introduces depends on the
qubit on which the MCM is performed. To demonstrate
that LDD can suppress noise introduced through MCMs,
we identify qubits in the device where MCMs have a large
effect on the fidelity of a Bell state. This is achieved by
identifying qubits on the 127-qubit IBM device (ibm_kyiv)
for which repeated MCMs significantly introduce more
noise than letting the qubit idle for the corresponding
amount of time. These qubits were found by preparing a
Bell state between two qubits, followed by applying an
MCM (r = 1) or the delay equivalent to an MCM (r = 0)

MCM delay

FIG. 6. Noisy MCM identification experiment. Bell state
fidelity between qubits q0 and q2 as a function of the index of
qubit q1 in Fig. 3 of the main text. The green ellipse shows qubit
121 for which the state fidelity with an MCM (red curve) is sig-
nificantly lower than when there is a delay equivalent to an MCM
(blue curve).

on another qubit, as shown in Fig. 3. In the experiment,
we choose the indices of the three qubits such that their
corresponding physical qubits are adjacent to each other.
This ensures that the noise in the circuit is introduced by
the MCM rather than by the circuit transpilation. The Bell
state fidelity is shown as a function of the qubit index on
which the MCM or delay is applied in Fig. 6. The indices
of the qubits with MCM that we consider in ibm_kyiv are
1, 4, 7, 10, 19, 22, 25, 28, 31, 40, 43, 46, 49, 58, 61, 64, 67,
76, 79, 82, 85, 88, 97, 100, 103, 106, 115, 118, 121, and 124.
These choices ensure that the total three-qubit system
forms a chain with nearest-neighbor interactions in the
coupling map of the device to avoid any additional SWAP
gates that may introduce more noise.

The red curve in Fig. 6 shows the state fidelity in the
presence of an MCM, while the blue curve corresponds
to the same circuit without an MCM, i.e., the MCM is
replaced by a delay with the same duration. The qubit
candidate (index 121) chosen for the MCM experiments
whose results are shown in Fig. 4 in the main text is
highlighted by a green ellipse.

APPENDIX B: ADDITIONAL DATA

1. MCM noise
In addition to the data presented in the main text

obtained from the 127-qubit Eagle device ibm_kyiv, we
also gathered data from the 27-qubit Falcon device
ibm_hanoi for the LDD, CPMG, and XY4 sequences.
Here, we prepared the Bell state between qubits q0 and
q2, and applied an MCM on qubit q1. The results for
the effect of an MCM on qubits q0 and q2 are shown in
Fig. 7(a). We report the median and the lower and upper
quartiles of ten measurements. In the presence of MCMs
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(a) (b)

FIG. 7. DD noise suppression during MCMs and deep circuit noise suppression using ibm_hanoi and ibm_cairo, respectively.
(a) Fidelity as a function of the number of MCMs performed. The dashed red curve shows the fidelity with MCMs but without
DD and the dash-dot purple curve shows the fidelity with a delay equivalent to MCMs. The dashed green curve corresponds to the
CPMG sequence, the dash-dot orange curve corresponds to the XY4 sequence, and the solid blue curve corresponds to the optimized
LDD sequence. The optimal LDD parameters are shown in Table I. For comparison, the solid black curve shows the T1 decay. The
error bars show the interquartile range. (b) Fidelity of preparing a Bell state between two qubits in the chain in the coupling graph
as a function of the number of intermediate qubits. The dashed red curve shows the fidelity without DD, the dash-dot orange curve
corresponds to the XY4 sequence, the dash-dot green curve corresponds to the CPMG sequence, and the solid blue curve corresponds
to the optimized LDD sequence. The optimal LDD parameters are shown in Table II. The error bars show the interquartile range.

(red curve), we observe a large drop in F from 0.916+0.004
−0.026

at r = 1 to 0.521+0.052
−0.178 at r = 15. Without MCMs (purple

curve) F drops from 0.905+0.015
−0.075 at r = 1 to 0.374+0.033

−0.016
at r = 15. This implies that on ibm_hanoi an MCM on a
single qubit does not have a large impact on the adjacent
qubits aside from adding a 820-ns delay. These qubits were
not selected using the procedure used to identify noisy
MCMs on ibm_kyiv.

In Fig. 7(a), we compare the performance of the LDD
(blue), CPMG (green), and XY4 (orange) sequences. The
LDD sequence, whose corresponding optimal parameters

TABLE I. Optimal LDD parameters to suppress noise dur-
ing MCMs. The angles in the LDD gate given in Eq. (10) are
optimized to find the optimal rotational (Euler) angles !x∗ =
(θ∗,φ∗, (∗). The optimal angles are shown for different numbers
of MCMs applied on q1 that correspond to the idling times of
qubits q0 and q2. For reference, the Euler angles for the Pauli-
X and Pauli-Y gates used in the XY4 sequence are (π ,π , 0) and
(π , 0, 0), respectively.

Optimal LDD parameters

# MCMs Idle time (µs) θ∗ φ∗ (∗

1 0.82 0.37π 0.22π 0.05π
3 2.45 −0.32π −0.35π 0.13π
5 4.09 −0.66π 0.74π −0.66π
7 5.72 −0.67π 0.40π −0.54π
9 7.35 −0.28π −0.53π −0.29π

11 8.99 −1.13π 1.49π −1.34π
13 10.62 0.95π −1.07π −0.68π
15 12.26 −0.99π −0.79π 0.50π

are shown in Table I, yields the best performance, resulting
in, e.g., a fidelity of 0.855+0.012

−0.007 at r = 15, while the CPMG
and XY4 sequences result in 0.811+0.012

−0.005 and 0.782+0.007
−0.021,

respectively. We attribute the residual decay to T1, shown
for comparison in Fig. 7(a) as a solid black curve, where
T1 = 167 µs is the average T1 time of qubits q0 and q2 of
ibm_hanoi.

2. Deep circuit noise
In addition to the data presented in the main text on

the 127-qubit Eagle device ibm_strasbourg, we also gath-
ered data on the 27-qubit Falcon device ibm_cairo for the
LDD, CPMG, and XY4 sequences; see Fig. 7(b). We plot

TABLE II. Optimal LDD parameters for suppressing deep cir-
cuit noise. The angles in the LDD gate given in Eq. (10) are opti-
mized to find the optimal rotational (Euler) angles (θ∗,φ∗, (∗).
The optimal !x∗ = (θ∗,φ∗, (∗) are shown for different numbers of
IQs.

Optimal LDD parameters

# IQs θ∗ φ∗ (∗

1 −0.41π 0.47π −0.28π
2 −0.03π 0.72π 0.03π
3 −0.02π −0.45π 0.02π
4 −0.07π −0.47π −0.25π
5 −0.03π −0.48π −0.17π
6 −0.02π 0.24π 1.02π
7 1.94π 0.85π −0.42π
8 −0.01π 1.85π −0.33π
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FIG. 8. Robustness of the optimal angles to perturbations. The
Bell state fidelity between qubits q120 and q122 as a function of the
strength of perturbation ); see Eqs. (C1) and (C2). The fidelity
corresponding to the optimal angles () = 0) is shown as a gray
line.

the fidelity F for preparing the Bell state between the two
edge qubits of the qubit chain in ibm_cairo as a function of
the IQs shown by the dashed red curve. We see a fidelity
decrease from 0.948+0.002

−0.002 for a chain consisting of two
qubits (i.e., zero IQs) to 0.720+0.024

−0.013 for a chain consisting
of ten qubits (i.e., eight IQs).

To mitigate the Bell state fidelity decrease, we insert DD
sequences on idling qubits and compare their performance.
The results shown in Fig. 7(b) for the CPMG sequence

(green), the XY4 sequence (orange), and the LDD
sequence (blue) suggest that the best performance is
obtained for LDD where the corresponding optimal param-
eters are given in Table II.

APPENDIX C: ROBUSTNESS OF THE OPTIMAL
ANGLES TO PERTURBATIONS

To study the robustness of the optimized angles, we per-
form additional MCM experiments on ibm_kyiv. We first
optimize the angles θ ,φ, ( in an LDD sequence for r = 1
as in Fig. 3. Next, we investigate the robustness by perturb-
ing the angles in R!x = R(θ ,φ, () and reporting the effect on
the fidelity.

In particular, we uniformly sample three parameters*θ ,
*φ, and *( from the interval [−2π , 2π ]. We normalize
the resulting vector !δ = [*θ ,*φ,*(] to have a norm of )
that controls the magnitude of the perturbation, i.e.,

!* = )
!δ

||!δ||
= [*θ ′,*φ′,*(′]. (C1)

We perform experiments for the perturbed LDD gates,

R!x+ !* = R(θ +*θ ′,φ +*φ′, (+*(′), (C2)

as a function of the perturbation strength ). The results are
shown in Fig. 8 where each data point corresponds to the
median of ten samples and the error bars show the upper
and lower quartile range. For comparison, we show the
fidelity found without perturbing the optimized angles as
a gray line.

Delay
800[dt]

Delay
752[dt]

Delay
752[dt]

Delay
752[dt]

Delay
752[dt]

Delay
672[dt]

Delay
1152[dt]

Delay
1152[dt]

Delay
1152[dt]

Delay
576[dt]

Delay
480[dt]

Delay
416[dt]

Delay
416[dt]

Delay
416[dt]

Delay
416[dt]

Delay
544[dt]

Delay
544[dt]

Delay
544[dt]

Delay
544[dt]

Delay
544[dt]

Delay
544[dt]

Delay
544[dt]

Delay
416[dt]

Delay
416[dt]

Delay
416[dt]

Delay
416[dt]

(a)

(b)

(c)

(d)

FIG. 9. Transpiled DD sequences. (a) CPMG, (b) XY4, (c) UR6, and (d) LDD sequences applied in an idle time of the same
duration as a midcircuit measurement of duration of 1244 ns, i.e., 5600[dt], where dt = 0.22 ns. The hardware native gates are X ,

√
X ,

and RZ(θ).
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(a)

(b)

(c)

(d)

FIG. 10. Timeline drawing of the transpiled DD sequences. The (a) CPMG, (b) XY4, (c) UR6, and (d) LDD sequences are the same
as those in Fig. 9 and plotted as a function of time in units of dt on the x axis. Here, the widths of the X and

√
X gates, shown in green

and red, respectively, match their durations. The RZ(θ) gates, shown as curved arrows, are virtual and thus have a duration of zero.

APPENDIX D: DD TRANSPILED CIRCUITS

The circuits in this work are transpiled to the qubit cou-
pling map and the hardware native gates of the quantum
device. To insert a DD sequence in a circuit, we first sched-
ule the circuit. That is, we attach to the hardware native
circuit instructions for their corresponding durations and
schedule them as late as possible. Next, idling times on the
qubits that are long enough are replaced by delays and DD
gates. The durations of the delays are determined by the
total idle time and the DD sequence. In this appendix we
exemplify the gate sequences resulting from this transpila-
tion process for a delay of 1244 ns, which corresponds to
the duration of a midcircuit measurement on ibm_kyiv; see
also Sec. III B 1. We implement CPMG, XY4, UR6, and
LDD sequences to fit this idling time. Figure 9 shows the
transpiled circuits and Fig. 10 shows their timeline diagram
with time measured in units of the system cycle time.
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