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We explore a nonvariational quantum state preparation approach combined with the ADAPT operator selection
strategy in the application of preparing the ground state of a desired target Hamiltonian. In this algorithm, energy
gradient measurements determine both the operators and the gate parameters in the quantum circuit construction.
We compare this nonvariational algorithm with ADAPT-VQE and with feedback-based quantum algorithms in
terms of the rate of energy reduction, the circuit depth, and the measurement cost in molecular simulation. We
find that, despite using deeper circuits, this new algorithm reaches chemical accuracy at a similar measurement
cost to ADAPT-VQE. Since it does not rely on a classical optimization subroutine, it may provide robustness
against circuit parameter errors due to imperfect control or gate synthesis.
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I. INTRODUCTION

Preparing the ground state of many-body Hamiltonians
and finding the corresponding ground state energy is an im-
portant and challenging problem in physics and chemistry.
Classical simulation of such systems can require enormous
computational resources due to the exponential scaling of the
Hilbert space. A potential alternative approach is to simu-
late the target problem using a quantum processor [1]. Here,
the quantum phase estimation algorithm [2,3] is a promising
candidate for estimating ground state energies on quantum
computers [4,5]. However, to solve problems of a nontrivial
size, its implementation requires deep quantum circuits and is
expected to need fault-tolerant quantum computers [6]. In the
Noisy-Intermediate-Scale-Quantum (NISQ) [6] era, quantum-
classical hybrid algorithms provide a promising way to utilize
more limited quantum computing resources, enabled by the
power of classical computing [7–11]. One family of such al-
gorithms is the variational quantum eigensolver (VQE) [7,12],
which targets the problem of preparing the ground state of a
desired Hamiltonian. VQEs operate by preparing an ansatz
state on a quantum device using a parameterized quantum
circuit. Then, measurements of this state allow for estimating
the expectation of the Hamiltonian under consideration. A
classical computer is then used to variationally find the values
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of the quantum circuit parameters in order to minimize this
Hamiltonian expectation value. Various VQE algorithms have
been demonstrated in experiments [7,13–16].

The performance of VQE algorithms relies on the quality
of the variational ansatz. An ideal ansatz can explore the
Hilbert space containing the ground state with a minimal
number of variational parameters and quantum gates. The
Adaptive Derivative-Assembled Problem-Tailored Variational
Quantum Eigensolver (ADAPT-VQE) [17] was introduced to
construct ansätze with this property. Instead of using a fixed
ansatz, ADAPT-VQE grows the ansatz iteratively by adding
the most effective operators. In various numerical simula-
tions, it has demonstrated promising improvement compared
to fixed-circuit VQEs in terms of the number of variational pa-
rameters, the circuit depth, and the measurement cost [17–19].

Despite such efforts, the energy landscape for physical
systems is typically complicated [20], containing sub-optimal
solutions due to the nonconvex nature of the optimization
problem, which hinders the classical search for the global
optimum. Although there exist many well-developed clas-
sical optimization algorithms, the optimization complexity
inevitably increases with the system size and the number
of variational parameters, and hence becomes a potential
bottleneck of VQEs [21]. This bottleneck can manifest as
the need for a large number of function evaluations in the
classical optimization procedure, which amounts to a large
number of quantum circuits to be run. Furthermore, the ac-
curacy of Hamiltonian expectation value estimates, limited
by the inherent noise in quantum devices, has a significant
impact on the classical optimization. For VQEs to offer
practical utility, the classical and quantum resources asso-
ciated with the variational procedure have to be kept at a
reasonable level.
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In this work, we introduce an adaptive quantum algorithm,
referred to as the Non-Variational ADAPT (NoVa-ADAPT)
algorithm, for preparing the ground state of a target Hamil-
tonian that does not require classical optimization, Here, the
name refers to the fact that within each adaptive step, for the
state that takes a certain set of generators in the unitary circuit,
we do not vary the parameters in front of those generators.
We update the state once rather than carrying out a variational
procedure at each step. The overall procedure of finding the
final state still follows the variational principle. In the ansatz
construction procedure of ADAPT-VQE, the energy deriva-
tives with respect to a set of operators are measured, based on
which the optimal operator is selected to be a generator of the
ansatz. In our NoVa-ADAPT algorithm, we select operators in
the same way but do not optimize over the previous parame-
ters that enter the state. Instead, we estimate the coefficient
associated with the selected generator using the measured
information from the operator selection process. This allows
us to save the measurement cost associated with the classical
optimization process, and can potentially reduce the impact
of erroneous measurement results. At the same time, selecting
operators based on the energy gradient information allows us
to save quantum and classical resources.

Previous work has considered the prospect of an
optimization-free approach in both classical and quantum al-
gorithms for quantum state preparation. Among them, the
Anti-Hermitian Contracted Schrödinger Equation (ACSE)
method uses pre-determined operators to iterate the state in a
classical algorithm [22]. Another example is feedback-based
quantum algorithms (FQAs), such as the Feedback-based
ALgorithm for Quantum OptimizatioN (FALQON) [23] and
related works [23–33], which utilize a fixed, repeating
quantum circuit structure and operate without any classical
optimization subroutine. Optimization-free quantum algo-
rithms for ground state preparation have also been developed
using the theory of Riemannian gradient flows [34–36]. These
latter strategies aim to minimize a cost function by moving in
each adaptive step into the direction of the Riemannian gra-
dient. Efficient implementation of this approach on quantum
computers can be obtained by approximating the Riemannian
gradient through 1- and 2-local Pauli operators [35], or pro-
jecting the Riemannian gradient into a random direction [36].
In fact, moving in each step into a random direction provably
gives convergence to the ground state (almost surely) despite
the existence of sub-optimal solutions [37] (i.e., in the form of
saddle points). In the present work, we draw on these previous
results and compare our algorithm’s performance against this
prior art.

In Sec. II we briefly review ADAPT-VQE and its operator
selection criterion, before describing the NoVa-ADAPT algo-
rithm in Sec. III. We then review the feedback-based quantum
algorithms that are most closely related in Sec. IV. In Sec. V,
we demonstrate NoVa-ADAPT with numerical simulations,
and compare it to ADAPT-VQE and the previous feedback-
based algorithms. We also investigate multiple approaches for
estimating the coefficients in the nonvariational approach and
compare their performances in terms of the number of oper-
ators required in the state construction and the measurement
cost. Then in Sec. VI, we explore the impact of the rotational
error and the gradient measurement error on the performance,

which are expected to be dominant in our algorithm. Finally,
we propose a hybrid algorithm of ADAPT-VQE and the non-
variational ADAPT method in Sec. VII for practical use in the
near future.

II. ADAPT-VQE

ADAPT-VQE was introduced to dynamically construct a
variational ansatz according to the problem Hamiltonian. It
starts with an initial reference state and a predetermined op-
erator pool {Ai} consisting of a set of Hermitian operators Ai.
At the beginning of the n-th iteration, if the exponential of
the operator Ai is added to the ansatz, the energy expectation
value will have the form

EAi (θ ) = 〈ψ (n−1)|e−iθAi HeiθAi |ψ (n−1)〉, (1)

where |ψ (n−1)〉 is the estimated ground state from the (n − 1)-
th optimization. ADAPT-VQE measures the first derivative of
the energy with respect to the variational parameter associated
with each candidate operator Ai in the pool

∂EAi

∂θ

∣∣∣∣
θ=0

= i〈ψ (n−1)|[H, Ai]|ψ (n−1)〉. (2)

The exponential of the operator A(n) with the largest derivative
magnitude will be added to the previous ansatz |ψ (n−1)〉 and
form a new ansatz,

|ψ (n)(θn, . . . , θ1)〉 = eiθnA(n) |ψ (n−1)(θn−1, . . . , θ1)〉. (3)

All the variational parameters {θn, . . . , θ1} in the updated
ansatz are then varied to minimize the energy E (θn, . . . , θ1)
by a classical computer with a chosen optimization algorithm.
Starting this optimization from the previous optimized state
|ψ (n−1)〉 corresponds to initializing the newly added parameter
θn from 0. This iteration is repeated until the norm of the
measured gradient is smaller than a user-specified threshold.

The ADAPT-VQE algorithm has been studied exten-
sively in numerical simulations [17–19,38–47]. It has shown
promising performance in finding the ground state with high
accuracy and leads to much shallower quantum circuits than
VQEs with a fixed ansatz. This is because the operator se-
lection procedure adds the locally optimal operator to the
ansatz at each iteration, which allows us to explore the Hilbert
space efficiently. One can also incorporate symmetries of the
Hamiltonian into the operators in the pool, further restricting
the Hilbert space for the optimization procedure. Even for
such favorable ansätze, classically optimizing the variational
parameters remains a challenge in the implementation of the
algorithm, due to the large number of measurements required
and the errors in the measurement results. In the next sec-
tion, we investigate the strategy of abandoning the variational
procedure and updating the state based on the information
obtained in the operator selection procedure.

III. NOVA-ADAPT ALGORITHM

Here, we introduce the NoVa-ADAPT algorithm. Simi-
lar to the original ADAPT-VQE algorithm, NoVa-ADAPT
starts with a reference state and selects operators from a pre-
determined operator pool based on the energy derivative. We
still denote the state obtained from the (n − 1)-th iteration
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as |ψ (n−1)〉, although no optimization is involved here. The
energy derivatives will be of the same form as in Eq. (2). At
the n-th iteration, the operator A(n) with the largest derivative
magnitude is used to update the state from |ψ (n−1)〉 to

|ψ (n)〉 = eiηnA(n) |ψ (n−1)〉, (4)

where ηn is given by

ηn = −γ
∂EA(n)

∂θ

∣∣∣∣
θ=0

(5)

= −γ
∂

∂θ
〈ψ (n−1)|e−iθA(n)

HeiθA(n) |ψ (n−1)|θ=0. (6)

The factor γ is a real number controlling the magnitude of
the update. Although it may look similar to the ADAPT-VQE
ansatz, here |ψ (n)〉 is not a variational ansatz since ηn has
a fixed value. We now denote the energy expectation value
obtained after the n-th iteration as E (n) ≡ 〈ψ (n)|H |ψ (n)〉 for
convenience.

As the gradient is evaluated at zero parameter value, a
sufficiently small γ can ensure that the energy is lowered,
i.e., E (n) − E (n−1) ! 0. More specifically, based on a descent
lemma for first-order optimization algorithms [36,48], it was
shown that the energy reduction can be lower bounded by

E (n−1) − E (n) " 1
8‖H‖2‖A(n)‖2

2

(
∂EA(n)

∂θ

∣∣∣∣
θ=0

)2

(7)

by choosing

γn = 1
4‖H‖2‖A(n)‖2

2
, (8)

where ‖M‖2 is the spectral norm of operator M and A(n) is the
operator added to the state at this iteration [36]. Although this
choice ensures a nonzero energy reduction given a nonzero
energy derivative, it limits the effect of each operator added to
the state, thus increasing the number of operators required to
reach the ground state.

To estimate the optimal value of γ to minimize the energy,
we expand the energy reduction to the second order,

E (n) − E (n−1) ≈ ηn
∂E (n)

∂ηn

∣∣∣∣
ηn=0

+ η2
n

2
∂2E (n)

∂η2
n

∣∣∣∣
ηn=0

, (9)

and find the stationary point,

γ ∗ = −
(

∂2E (n)

∂η2
n

∣∣∣∣
ηn=0

)−1

. (10)

In practice, this requires additional measurements for the sec-
ond derivative according to

∂2E (n)

∂η2
n

∣∣∣∣
ηn=0

= −〈ψ (n−1)|[A(n), [A(n), H]]|ψ (n−1)〉. (11)

At each iteration we only need to evaluate it for the selected
operator A(n) so the cost does not grow with the size of the
operator pool. Choosing γ ∗ is similar to applying Newton’s
method in optimizing one parameter, which leads to much
faster update than the choice in Eq. (8) but there is no guaran-
tee of energy reduction.

Alternatively, we can set γ to a constant value and treat
it as a hyperparameter. This is similar to the learning rate in
gradient descent optimization methods. We would like a high
value to speed up convergence to a local minimum, but in
general the optimization landscape is nonconvex and if γ is
too high, the energy may oscillate or diverge. Between γ ∗ and
a constant γ , it is unclear which one produces better results,
since neither guarantees convergence. When they both lead to
local minima, they may lead to different ones. Our state update
rule is inspired by gradient descent optimization methods,
which also face this issue. A line search may be adopted to
avoid energy divergence in our algorithm at the cost of more
measurements. We leave it to future work.

The nonvariational approach saves the sampling cost as-
sociated with the optimization process. On one hand, this
can potentially reduce the number of measurement samples
required by the algorithm as the measurement cost in ADAPT-
VQE is dominated by the optimization process. On the other
hand, to generate each measurement sample, each quantum
circuit evaluation is subject to noise, and eliminating the opti-
mization based on noisy measurements may reduce the impact
of errors. We remark that the noise may have different effects
on the operator selection process and the optimization process
of ADAPT-VQE, which requires further studies in the future.

IV. GRADIENT-BASED FEEDBACK

The strategy of preparing the ground state based on the
gradient estimate in an optimization-free way serves as the
basis of FQAs [23,33] and the randomized adaptive quantum
state preparation algorithm [36]. While the NoVa-ADAPT
algorithm updates the parameter in the same way, it differs
from the previous algorithms in the operator selection. FQAs
were inspired by quantum control protocols and use the terms
in the Hamiltonian as generators for each iteration in the
circuit, whereas the randomized adaptive algorithm gains ro-
bustness from random operators as generators. A classical
algorithm for calculating reduced density matrices in chem-
istry adopted a similar way of iterating the state, with a linear
combination of fermionic operators as the generator [22].
A quantum-classical hybrid version of this algorithm turns
the transformation on the state into a quantum circuit with
Trotterization [49]. We briefly review these closely related
approaches and compare the simulated performances in order
to study the importance of operators.

A. Feedback-based quantum algorithms

The FQA procedure for preparing molecular ground states
starts with separating the Hamiltonian into two parts,

H = H1 + H2, (12)

where the first part

H1 =
∑

pq

hpqa†
paq, (13)

collects the single-body operators, and the second part

H2 = 1
2

∑

pqrs

a†
pa†

qaras. (14)
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includes all the two-body operators in the Hamiltonian.
The FQA circuit of n layers can be written as

U (n)
FQA((β ) = Ũ1(βn't )Ũ ('t ) · · · Ũ1(β1't )Ũ ('t ), (15)

where Ũ ('t ) and Ũ1(βk't ) are the Trotterized versions of
e−iH't and e−iβk H1't , respectively. The parameter βn is evalu-
ated with the state obtained in the last iteration,

βn = −i〈ψ (n−1)|[H1, H2]|ψ (n−1)〉, (16)

where |ψ (n−1)〉 = U (n−1)
FQA ((β )|ψ (0)〉. Conventionally, |ψ (0)〉 is

taken to be the ground state of H1 in FQAs. In the material
below, we deviate from this convention. We also remark that
the time step 't has to be chosen separately, which plays the
same role as the γ parameter in Eq. (6). One option is to use
the lower bounding value introduced in Eq. (8), substituting
H1 for A(n).

B. Randomized adaptive quantum algorithm

The randomized adaptive quantum algorithm [36] dy-
namically constructs the quantum circuit through randomly
selecting an operator in each adaptive step, thereby achieving
convergence to the ground state almost surely [37]. We con-
sider here randomization by constructing the operators {A(n)}
in two different ways:

Sampling a random operator from a pool of operators and
measuring the gradient of the cost function. The sampled
operator is added to the state as long as it gives a nonzero
gradient.

Conjugating a fixed traceless operator A by a random uni-
tary transformation Vn as

A(n) = V †
n AVn. (17)

The random unitary transformation Vn can be sampled from
a unitary 2-design that can be efficiently approximated by the
construction in Ref. [50]. It has been shown that sampling
from a 2-design, instead of the full Haar distribution, achieves
convergence almost surely [37]. This is independent of the set
of unitaries forming the 2-design.

C. Anti-Hermitian Contracted Schrödinger Equation

The ACSE method [22] approaches the ground state of a
molecular Hamiltonian H iteratively, acting on the previous
state |ψ〉 with eεS , where ε is an infinitesimal step size and the
anti-Hermitian operator S contains up to two-body fermionic
operators

S =
∑

p,r

1S
p
r a†

par +
∑

p,q,r,s

2S
p,q
r,s a†

pa†
qaras. (18)

The matrix elements
1S

p
r = 〈ψ |[a†

par, H]|ψ〉,
2S

p,q
r,s = 〈ψ |[a†

pa†
qaras, H]|ψ〉 (19)

are selected to reduce the energy expectation value using
the Euler’s method. By Trotterizing eεS , one can compile it
as a quantum circuit and turn this classical algorithm into a
quantum-classical hybrid algorithm, the quantum contracted-
eigenvalue-equation solver [49,51]. This may produce a
similar circuit structure to the NoVa-ADAPT algorithm with

a pool containing 1-body and 2-body fermionic operators, as
the matrix elements of S are the same as the energy gradients
(up to a factor of i) and ε plays the same role as γ in the NoVa-
ADAPT algorithm. However, the states constructed by the two
algorithms are very different. In this algorithm, a sequence
of exponentials

∏
k eiαk Ok of all 1-body and 2-body fermionic

operators {Ok} is appended to the state at each iteration, with
{αk} calculated for this iteration. The effect depends on the
choice of ordering in the Trotterization. In contrast, the NoVa-
ADAPT approach only selects the one term with the largest
magnitude of the coefficient. The difference between the cir-
cuit structures is analogous to the difference between the
unitary coupled-cluster single and double (UCCSD) ansatz [7]
and the ADAPT-VQE ansatz [17]. Moreover, even if the se-
lected operators coincide with the ordered sequence {Ok}, the
update parameters are calculated from many iterations of the
state and will be different from {αk}. Because each iteration of
the quantum contracted-eigenvalue-equation solver involves a
sequence of terms, we expect the NoVa-ADAPT algorithm to
lead to more compact quantum circuits.

V. RESULTS

We simulate the performance of the proposed algorithm for
finding the ground state of molecular Hamiltonians, with the
Hartree-Fock state as the reference state. The Hartree-Fock
state is a product state calculated with a mean-field theory
approach to approximate the ground state. In our simula-
tions, we take the linear H4 molecule in the STO-3G basis
with a bond distance of 1.5 Å as our main example. The
Hamiltonian consists of fermionic creation and annihilation
operators,

H =
∑

pq

hpqa†
paq + 1

2

∑

pqrs

hpqrsa†
pa†

qaras, (20)

where {p, q, r, s} index the 8 spin-orbitals we consider. For
ADAPT algorithms, we start from the restricted Hartree-Fock
state and use an operator pool containing the spin-adapted
fermionic operators, which preserve the number of electrons,
spin polarization Sz, and total spin S2 [17]. They consist of
single excitation operators:

τ1 ∝ |↑〉i〈↑| j + |+〉i〈+| j − H.c., (21)

and double excitation operators:

τ2,T ∝ |T, 1〉i j〈T, 1|kl + |T,−1〉i j〈T,−1|kl

+ |T, 0〉i j〈T, 0|kl − H.c.

τ2,S ∝ |S, 0〉i j〈S, 0|kl − H.c., (22)

where {i, j, k, l} are spatial orbitals and T and S refer to triplet
and singlet states formed by (i, j) or (k, l ). We write these
operators in terms of wavefunctions on 1 or 2 particles to
explicitly show that S2 and Sz are conserved. They can also
be expressed in terms of annihilation and creation operators.

In our simulations, we map these operators to Pauli oper-
ators using the Jordan-Wigner transformation, where 8 qubits
are required. The expression of the Hamiltonian in terms of
Pauli operators is given in Appendix B. Using the pool of
spin-adapted fermionic operators, as both the Hamiltonian
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and the state are represented using fermionic operators, the
algorithm and our simulation results are independent of the
qubit encoding.

We use the energy error, which is the difference be-
tween the energy produced by the algorithms and the energy
from exact diagonalization, to measure the quality of the
ground state. For resource costs, we consider the number
of operators added to the circuit and the measurement bud-
get. The number of operators is chosen because it directly
affects the circuit complexity. Although 2-body fermionic
operators generally lead to more complex 1-body fermionic
operators, we do not examine the circuit depth or the num-
ber of entangling gates as the NoVa-ADAPT algorithm and
ADAPT-VQE are not observed to choose predominantly
one type of operators. Since measuring an observable in
practice consists of measuring the Pauli terms in the ob-
servable, which generally do not all commute, the number
of measurements required depends on how to group these
Pauli terms into commuting sets [52]. Therefore, we use
the number of function evaluations in each algorithm as a
proxy for the measurement budget, where estimating either
the energy or the gradient counts as one function evalua-
tion. This allows us to examine the algorithmic performance
without the effect of different strategies of grouping Pauli
terms. The classical optimization in ADAPT-VQE simulations
are carried out with the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm and the Hessian approximated by BFGS is
recycled for the next ADAPT iteration; this Hessian recycling
scheme introduced in [45] can reduce the measurement cost in
ADAPT-VQE.

A. Comparison to ADAPT-VQE and random operators

Figure 1 compares the NoVa-ADAPT algorithm with
ADAPT-VQE and the randomized adaptive algorithm. For
values of γ , we take three possibilities: the lower bounding
value provided in Eq. (8) (magenta), γ ∗ as in Eq. (10) (red),
and a constant value (blue). The constant γ = 1 is selected
from a range of values to provide relatively fast energy reduc-
tion without oscillatory behavior. We include the simulated
performances with different contant γ ’s in Appendix A. Note
that for the randomized adaptive algorithm (green), we take
the average of energy errors in 100 runs to show the per-
formance in the upper panel, since different operators are
selected at each run. In the lower panel, however, we show the
100 runs as individual curves because the numbers of function
evaluations across different runs are generally different. At
each iteration the algorithm randomly selects an operator from
the pool, which may produce a zero-energy gradient. In this
case, another operator is randomly selected until the gradient
is nonzero. Consequently, for a given iteration, each run is
associated with a different number of function evaluations and
a different energy error.

The randomized adaptive algorithm (green), where the
state is constructed with operators randomly selected from the
pool, needs the largest number of operators to reach a given
energy accuracy. This is expected since the operators are not
selected based on the energy gradient information. In terms
of the measurement cost, it performs better than the NoVa-
ADAPT algorithm with the lower-bounding γ (magenta),

FIG. 1. Results for H4 molecule of bond length 1.5 Å with the
spin-adapted fermionic operator pool [17]. Energy error is plotted
as a function of the number of operators added to the state (upper
panel), and as a function of the number of function evaluations
needed (lower panel). Blue curves show the results of the NoVa-
ADAPT algorithm with constant γ = 1. Green curves show the
results of constructing the state with operators randomly picked
from the pool with γ calculated from the second derivative using
Eq. (10), sampled from 100 runs. Magenta curves show the results
of the NoVa-ADAPT algorithm with lower bounding γ from Eq. (8).
Red curves show the results of the NoVa-ADAPT algorithm with γ

calculated from the second derivative using Eq. (10). Black curves
show the results of ADAPT-VQE, where classical optimization is
implemented.

which provides the lowest update rate for the nonvariational
state construction. The NoVa-ADAPT algorithm exhibits sim-
ilar behaviors at early stages with constant γ = 1 (blue) and
with γ = γ ∗, as in Eqs. (10) and (11) (red). Eventually,
estimating the value of γ based on the second derivative
leads to a better energy accuracy, as this provides more
information about the optimization landscape. The ADAPT-
VQE simulation finds the ground state with 11 operators,
which is much lower than the NoVa-ADAPT algorithm.
However, if we compare the number of function evaluations
required in the algorithm [Fig. 1(b)], the ADAPT-VQE per-
formance is comparable to the NoVa-ADAPT algorithm with
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FIG. 2. Results for H4 molecule of bond length 3 Å with the
qubit operator pool [18]. Energy error as a function of the number
of operators added to the state. The black curve shows the result of
qubit-ADAPT-VQE, the green curve shows the result of the NoVa-
ADAPT algorithm with constant γ = 0.75, and the red curve shows
the result of the NoVa-ADAPT algorithm with γ calculated with the
second derivative of energy using Eq. (10).

constant γ = 1 and with γ = γ ∗ until both algorithms reach
chemical accuracy (≈0.0016 Hartree). In Appendix C, we
include a comparison between the NoVa-ADAPT algorithm
and ADAPT-VQE for the LiH moledule of bond length 1.5 Å,
which is slightly larger than the H4 molecule and contains 12
spin orbitals. We observe qualitatively similar performances
there, although more comprehensive studies are required for
the scaling behavior.

On the other hand, ADAPT-VQE can terminate prema-
turely after converging to a local minimum in the energy
landscape, in which case the NoVa-ADAPT algorithm may
provide an alternative approach to avoid this situation. We
pick one such case in Fig. 2, the H4 molecule with bond
distance 3 Å which is a strongly correlated Hamiltonian as
the electrons are highly nonlocal. Using the qubit operator
pool [18], which consists of the simplified individual Pauli
operators in the Jordan-Wigner mapping of one-body and
two-body fermionic operators, ADAPT-VQE finds a local
minimum after adding the second operator. For this Hamilto-
nian, the NoVa-ADAPT algorithm with γ based on the second
derivative also reaches a region where the energy reduction
slows down exponentially. With a constant γ = 0.75, how-
ever, the NoVa-ADAPT algorithm can lower the energy down
to chemical accuracy, beyond the point where ADAPT-VQE
was trapped. In this particular problem, the fact that ADAPT-
VQE quickly converges to a sub-optimal trap suggests that the
reference state is close to the trap. The NoVa-ADAPT algo-
rithm with γ based on the second derivative likely converges
to another sub-optimal trap. With a constant γ , the NoVa-
ADAPT algorithm can overshoot past these two local minima,
allowing it to avoid getting trapped there, despite converging
more slowly. We remark that this is problem-dependent. In
general it is unclear whether γ based on the second derivative
or a constant value will lead to a lower minimum. For the rest

of this work, the pool of spin-adapted fermionic operators is
used in the NoVa-ADAPT algorithm and ADAPT-VQE.

B. Random initial states

The performance of classical optimization subroutine can
strongly depend on the initial parameter values. For some
Hamiltonians, the classically calculated reference state has
a very small overlap with the ground state, which may hin-
der VQE’s performance, requiring many more iterations to
achieve convergence. In this case, state preparation with ran-
domly selected operators may be favorable as the initial
state cannot introduce bias in this case. Here, we compare
ADAPT-VQE, the NoVa-ADAPT algorithm, and the random-
ized adaptive algorithm, as reviewed in Sec. IV B on the same
H4 molecule with a bond distance of 1.5 Å and a spin-adapted
fermionic operator pool, but from randomly sampled initial
states. In the problem of finding the molecular ground state
and energy, the Hartree-Fock state usually serves as a good
reference state with the correct symmetries. We use the simu-
lation with randomly sampled initial states to imitate problems
where no such good reference states are known and probe the
performance of the algorithms.

The random initial states are obtained by sampling from a
unitary V from a 2-design and applying V to the Hartree-Fock
state. We adopt the method in Ref. [50] and approximate the
2-design using random unitaries diagonal in the Pauli bases.
For all the methods except the original ADAPT-VQE, the
parameters are estimated using the second derivative with
Eq. (10). We remark that in the lower panel of Fig. 3 we show
individual curves corresponding to different initial states for
both ADAPT-VQE (black) and the algorithm with operators
randomly selected from the pool (green). This is because the
numbers of function evaluations across runs differ from each
other in these two algorithms. For the algorithm randomly
selecting operators, the reason is explained in Sec. V A. In
contrast, the random adaptive algorithm that constructs gen-
erators with 2-design (blue), the selected generators generally
do not lead to a zero energy gradient so the number of function
evaluations at each step is the same across runs. For ADAPT-
VQE, the selected operator for each run may be different,
so the number of function evaluations in the optimization
subroutine can be drastically different.

From Fig. 3, we see that none of the methods can reach the
ground state within a reasonable number of function evalua-
tions. For ADAPT-VQE (black), even if the simulation stops
at the 30th iteration, the number of function evaluations has
already exceeded that for the NoVa-ADAPT algorithm (red),
which contains 500 operators. Using randomized operators
as generators to update the state (blue and green) lowers the
energy by a smaller amount for a given number of operators,
but the number of measurements associated with a given en-
ergy reduction for some initial states can be lower than that
for ADAPT-VQE and the NoVa-ADAPT algorithm. In this
case, the random initial state breaks the symmetries in the
problem, whereas the operators in the ADAPT pool preserve
the symmetries, which are therefore inefficient in approaching
the symmetric ground state.
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FIG. 3. Results for H4 molecule of bond length 1.5 Å with 100
random initial states, obtained by ADAPT-VQE (black), the NoVa-
ADAPT algorithm (red), randomly sampling operators from the pool
(green), and the 2-design randomized adaptive method (blue). In the
latter three nonvariational approaches, γ is computed with the second
derivative using Eq. (10). (Upper panel) Energy error is plotted as
a function of the number of operators added to the state, averaged
over random initial states. (Lower panel) Energy is plotted as a func-
tion of the number of function evaluations. Black curves and green
curves show the results of 100 random initial states. Green curves
include the measurements associated with the operators rejected
by the algorithm (i.e., with zero energy derivative). The red curve
shows the average over 100 random initial states. The blue curve
shows the average of 100 samples for different initial states and
different random 2-design circuits.

C. Comparison to FQA and the quantum ACSE method

In Fig. 4, we see the NoVa-ADAPT algorithm with γ
computed from the 2nd-derivative performs substantially bet-
ter than an FQA with various values of 't in terms of the
number of iterations. It is worth noting that in the FQA,
each layer consists of two unitaries, Ũ1(βk't ) and Ũ ('t ).
Each unitary is a product of a series of terms, since both H1
and H contain multiple single-body or two-body operators.
Therefore, even with the same number of iterations, the circuit
depth of FQA exceeds that of the NoVa-ADAPT algorithm.
For the FQA, the energy reduction rate increases with 't for

FIG. 4. Results for H4 molecule of bond length 1.5 Å using the
NoVa-ADAPT algorithm and FQA. Energy error as a function of
the number of iterations/layers in the state (upper panel) and as
a function of the number of function evaluations needed (lower
panel). In each iteration/layer, the NoVa-ADAPT algorithm adds
one operator, while FQA adds two unitaries containing multiple
operators. The red curve shows the result of the NoVa-ADAPT
algorithm with γ computed with second derivative using Eq. (10).
The blue, green, and pink curves show the results of FQA with the
lower-bounding 't , 't = 1, and 't = 2, respectively. For FQA,
each layer in the state consists of two unitaries, i.e., Ũ1(βk't )
and Ũ ('t ).

't = 1 and below, with 't = 2 falling outside the range of
energy reduction.

In Fig. 5, we compare the NoVa-ADAPT algorithm and the
quantum ACSE method, where all the operators in the pool of
the former appear in one iteration of the latter. In the quantum
ACSE method, the value of ε is optimized at each iteration and
the optimized value is fixed for subsequent iterations [49]. We
use BFGS for this optimization, although in principle any op-
timizer can be used. Different choices of ordering can be made
for the operators in each Trotter step. We show the results of
an ordering following an arbitrary labeling of the operators
(green), and of an ordering according to the magnitudes of
the energy gradients, from the largest to the smallest (blue).
The two ordering lead to similar performances in terms of

023275-7



HO LUN TANG et al. PHYSICAL REVIEW RESEARCH 7, 023275 (2025)

FIG. 5. Results for H4 molecule of bond length 1.5 Å using the
NoVa-ADAPT algorithm and the quantum ACSE method. Energy
error is plotted as a function of the number of operators added to
the state (upper panel) and as a function of the number of function
evaluations needed (lower panel). The red curve shows the result of
the NoVa-ADAPT algorithm with γ computed with second deriva-
tive using Eq. (10). The green and blue curves show the results
of the quantum ACSE method with an arbitrary Trotter ordering
and a Trotter ordering according to the energy gradient ranking,
respectively.

the energy accuracy and the measurement budget. Since the
NoVa-ADAPT algorithm adds only the most relevant operator
at each iteration, it reaches chemical accuracy with a smaller
number of operators than the quantum ACSE method, lead-
ing to more compact quantum circuits. The quantum ACSE
method is more economical in the number of measurements
required to reach the chemical accuracy, as all the operators in
the pool are added in each iteration and therefore fewer itera-
tions are needed. For the small-scale problem studied here, the
quantum ACSE method gets below chemical accuracy after
two iterations.

From the comparison to FQA and the quantum ACSE
method, we show that selecting the most energy-relevant op-
erators improves the circuit depth of the feedback-based state
preparation, starting from the Hartree-Fock state.

VI. NOISE ROBUSTNESS

In practice, quantum devices are subject to errors due to
imperfect control as well as interactions with the environment.
To study the algorithmic performance, we directly model
the impact of errors on the algorithms studied in this work,
instead of modeling physical errors for a given platform.
Possible sources of such effective errors are given following
each type of error. In both the NoVa-ADAPT algorithm and
ADAPT-VQE, the quantum circuit used for state preparation
is determined by the selected operators and the variational or
update parameters. Therefore, we model the dominant impact
of errors in two ways: errors in the variational or update
parameters, which we refer to as rotational errors, and errors
in the gradient measurements, which affect operator selection.
In the near term, without the protection of error correction,
the rotational error stems mainly from the imprecise control
of gate parameters. Even in the fault-tolerant regime, the im-
plementation of the algorithm is not completely free of the
rotational error. At the logical level, the actual gate parameter
can still deviate from the desired value due to fault-tolerant
gate synthesis with a finite overhead [53–55]. Since the update
parameter does not have to be a precise value for the energy
to decrease, we anticipate the NoVa-ADAPT algorithm to be
more robust to the rotational error than ADAPT-VQE. On
the other hand, both the variational and the nonvariational
algorithms in this work select operators based on gradient
estimates, which suffer from statistical uncertainty as well
as decoherence. The nonvariational approach also relies on
these estimates to provide update parameters. Consequently,
gradient measurement errors may have a larger impact on
its performance. To investigate the robustness to these two
error types, we perform simulations with modeled effective
errors. The largest number of operators selected by a given
algorithm is set to be 200, beyond which the simulation is
terminated by hand. In the lower panels of Figs. 6 and 7,
different circuit realizations are shown as individual curves
for both ADAPT-VQE (blue) and the algorithm with opera-
tors randomly selected from the pool (green), for the reasons
explained in Secs. V A and V B.

The rotational error is simulated by adding a random
value to the optimized parameters at the end of each ADAPT
iteration,

(θ → (θ + (δθ , (23)

where (δθ is a vector of random values sampled from a Gaus-
sian distribution with zero mean and standard deviation , =
0.01 or 0.001. It imitates the effect of the over/under-rotations
occurring in the circuit preparation. This random deviation
is not added for each iteration in the classical optimization
part of ADAPT-VQE to keep the simulation fast. This leads to
an underestimate of the error impact on ADAPT-VQE. From
Fig. 6, we see that the NoVa-ADAPT algorithm suffers mod-
erately from the rotational error, while ADAPT-VQE shows
a high sensitivity to the rotational error where the energy
starts to increase after a certain number of iterations. This
is because the parameters in ADAPT-VQE are first tightly
optimized to an optimal point, and the energy is sensitive
to any perturbation from the optimal point. Since ADAPT-
VQE goes through the VQE subroutine at every adaptive step,
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FIG. 6. Results for H4 molecule of bond length 1.5 Å with rota-
tional errors. Energy error is plotted as a function of the number of
operators added to the state (upper panel), and as a function of the
number of function evaluations (lower panel). Blue curves show the
results of ADAPT-VQE. Red curves show the results of the NoVa-
ADAPT algorithm with γ computed from the second derivative using
Eq. (10). In the upper panel, the two red curves representing different
nonzero error strengths coincide. Green curves show the results of
randomly picked operators from the pool with γ computed from the
second derivative. In the upper panel, all three green curves coincide.
All results shown here are based on 100 circuit realizations, either as
individual realizations or as the average.

each from the optimized parameters from the last step, the
rotational error leads to a worse initial point for the next
round of classical optimization. In contrast, perturbations in
the update parameters have less impact in the nonvariational
approach since a range of parameter values can lead to energy
reduction. The number of function evaluations required by
noisy simulations of ADAPT-VQE to reach the same energy
accuracy is thus larger than the NoVa-ADAPT algorithm.
Finally, the randomized adaptive method is almost unchanged
under the same level of rotation error, because the energy
error it can attain is already larger than the noise level in
the simulation.

The gradient measurement error is inserted into the simula-
tion by adding a random value to the calculated first derivative
of the pool operators during the operator selection procedure,

FIG. 7. Results for H4 molecule of bond length 1.5 Å with gra-
dient measurement errors. Energy error is plotted as a function of
the number of operators added to the state (upper panel), and as a
function of the number of function evaluations (lower panel). Blue
curves show the results of ADAPT-VQE. Red curves show the results
of the NoVa-ADAPT algorithm with γ computed from the second
derivative using Eq. (10). Green curves show the results of randomly
picked operators from the pool with γ computed from the second
derivative. In the upper panel, both green curves coincide. All results
shown here are based on 100 circuit realizations, either as individual
realizations or as the average.

as follows:

∂EAi

∂θ

∣∣∣∣
θ=0

→ ∂EAi

∂θ

∣∣∣∣
θ=0

+ δi, (24)

where δi is a random value sampled from Gaussian distribu-
tion with zero mean and standard deviation , . This form of
error captures the effect of statistical uncertainty associated
with repeated measurements. It will affect the choice of op-
erators for ADAPT-VQE and the NoVa-ADAPT algorithm.
Since the NoVa-ADAPT algorithm and the randomized algo-
rithm also use the measured gradient to estimate the update
parameter, they are affected by the gradient error in two ways.
From Fig. 7, we see that the NoVa-ADAPT algorithm is af-
fected moderately by the gradient error, while ADAPT-VQE
is robust against the gradient error, since a less-than-optimal
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choice of operator can still produce a decent variational
ansatz. Strategies of operator selection based on perturbation
theory have been designed to reduce or avoid the impact of
measurement noise on variational ansatz construction [56,57].
We remark that gradient errors are not introduced in the
gradient-based classical optimization part of ADAPT-VQE,
so the energy error in the noisy ADAPT-VQE simulation is
underestimated. Meanwhile, the randomized adaptive method
is also unchanged under the same level of gradient error.

VII. ADAPT-VQE—NOVA-ADAPT HYBRID APPROACH

While the NoVa-ADAPT algorithm can potentially lower
the measurement cost, it adds more operators to the state
and leads to a deeper quantum circuit. To compensate for
this drawback on the circuit depth and leverage the desired
features of each algorithm, we explore the strategy of com-
bining ADAPT-VQE and the NoVa-ADAPT algorithm. In
Fig. 1(b), we observe that the NoVa-ADAPT algorithm per-
forms better at the early stage of the algorithm, offering an
energy reduction comparable to that of ADAPT-VQE. Based
on this observation, we start with the NoVa-ADAPT algorithm
and then switch to ADAPT-VQE after a certain number of
iterations. In Fig. 8(b), we see that for the H4 Hamiltonian
with a bond distance of 1.5 Å, switching at the 5th iteration
(blue) can slightly reduce the number of function evalua-
tions required to reach chemical accuracy. This simulation
demonstrates that the hybrid approach can perform similarly
to both algorithms. In terms of potential advantages, a hybrid
approach starting from the nonvariational approach can be
seen as a pre-optimization technique that can lead to dif-
ferent initial states for ADAPT-VQE. Applied to problems
where ADAPT-VQE converges to a local minimum prema-
turely, it may produce similar effects as the basin-hopping
approach, from which the lowest can be selected. Further
work is required to study whether this hybrid approach can
save quantum resources for larger-scale problems.

VIII. CONCLUSIONS

We introduce the NoVa-ADAPT algorithm for preparing
ground states, which both selects the operators and estimates
the coefficients for updating the state based on the energy gra-
dient information, without performing optimization. Through
numerical simulation, we show that the NoVa-ADAPT al-
gorithm performs comparably to ADAPT-VQE for a small
molecular Hamiltonian in terms of measurement cost at
the early stage of the algorithm, but has more operators
in the circuit. By getting rid of the classical optimization,
the NoVa-ADAPT algorithm may provide more robustness
against errors in circuit parameters due to imperfect control
or gate synthesis. It appears more prone to gradient mea-
surement errors than ADAPT-VQE, although the impact of
gradient measurement errors in the latter is underestimated
in our simulation. Further work is required to determine
whether noisy measurement favors the variational approach,
and whether the level of noise plays a role. By choosing the
most energy-relevant operators, the NoVa-ADAPT algorithm
saves quantum and classical resources compared to previous
feedback-based quantum algorithms that either include all

FIG. 8. Results for H4 molecule of bond length 1.5 Å using
the NoVa-ADAPT algorithm (red), ADAPT-VQE (black), and pro-
cedures starting with the nonvariational update and switching to
ADAPT-VQE at the 5, 10, 15, 20, 25, 30, 35, 40, 45-th iteration
(see legend). Energy error is plotted as a function of the number of
operators in the state (upper panel), and as a function of the number
of function evaluations (lower panel).

operators in the Hamiltonian or use random operators. In
the case of a sub-optimal initial state, we find that both the
nonvariational ADAPT approach and the approach of adding
randomized operators perform better than ADAPT-VQE in
terms of measurement cost. We also explore the strategy of
combining ADAPT-VQE and the nonvariational approach,
which may provide a realistic way to construct the ground
state using limited resources.

Due to limitation in classical computational power, our
simulation is carried out only for small-scale problems. We
would like to stress that simulation for larger-scale problems
(e.g., with techniques in Ref. [58]) is needed to infer whether
the NoVa-ADAPT algorithm can outperform ADAPT-VQE
either in the ideal situation or with errors for problems be-
yond classical simulability. More generally, one can adjust
the extent of optimization in the ground-state-finding algo-
rithm and explore the resource costs required for a given
energy accuracy, a point alluded to in Sec. VII. Other than
the hybrid approach in Sec. VII, the extent of optimization

023275-10



NONVARIATIONAL ADAPT ALGORITHM FOR QUANTUM … PHYSICAL REVIEW RESEARCH 7, 023275 (2025)

FIG. 9. Results for H4 molecule of bond length 1.5 Å produced
by the NoVa-ADAPT algorithm with the spin-adapted fermionic
operator pool (upper panel) and FQA (lower panel), where en-
ergy error is plotted as a function of the number of operators
added to the state. Different curves show the results with different
constant γ values. The red curve is the result from the NoVa-
ADAPT algorithm with γ calculated from the second derivative
using Eq. (10).

can also be engineered within each adaptive step, by including
optimization of only the new parameter (like in Ref. [49]) or
the last few added parameters. The accuracy of this optimiza-
tion procedure can be further relaxed to save resource cost
by limiting the number of iterations in the optimization, i.e.,
terminating without convergence. Furthermore, measurement
cost associated with the VQE subroutine in ADAPT-VQE
can be reduced by leveraging classical simulation techniques
for pre-optimization [58,59]. We expect this pre-optimization
strategy to also benefit the NoVa-ADAPT algorithm, as it
can be applied to the gradient measurement procedure in the
NoVa-ADAPT algorithm. It would be interesting to compare
the improvements provided by such approaches in the NoVa-
ADAPT algorithm and in ADAPT-VQE.

Our results suggest that algorithms for finding the ground
state can benefit from combining the adaptive operator se-
lection strategy and techniques in classical optimization
algorithms. The update rule in the NoVa-ADAPT algorithm

is inspired by first-order methods. In a similar way, one
can design an update rule according to techniques based on
higher-order derivatives. We have observed that partial infor-
mation about second-order derivatives, as in Eq. (8), can speed
up energy reduction in the NoVa-ADAPT algorithm. More
complete information about the Hessian may bring further im-
provement, as shown in Ref. [60], where quasi-second-order
techniques can accelerate the quantum contracted-eigenvalue-
equation solver.
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APPENDIX A: CONSTANT γ VALUES

If γ is set to be a constant in the nonvariational state
update approach, it is then a hyperparameter in the algo-
rithm. A suitable value can lead to fast convergence to a local
minimum without oscillatory or divergent behavior. Figure 9
shows the performance of the NoVa-ADAPT algorithm and
FQA with different values of a constant γ . In the lower panel
of Fig. 9, we see that with different constant γ ’s, the FQA

FIG. 10. Results for LiH molecule of bond length 1.5 Å with the
spin-adapted fermionic operator pool. Energy error is plotted as a
function of the number of operators added to the state. Red curve
shows the result of the NoVa-ADAPT algorithm with γ calculated
from the second derivative using Eq. (10). Black curve shows the
result of ADAPT-VQE, where classical optimization is implemented.
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lowers the energy at different rates. Note that the energy
will increase with the number of layers when γ = 2.0. We
display the case with γ = 1 for these two algorithms in the
main text, as an empirical choice leading to reasonably fast
energy reduction.

APPENDIX B: SIMULATED HAMILTONIAN
IN QUBIT OPERATIONS

We use Jordan-Wigner transformation to map the Hamil-
tonian for the H4 molecule in the STO-3G basis with a bond
distance of 1.5 Å to the following:

H = − 0.92094 − 0.03974X0X1Y2Y3 − 0.00906X0X1Y2Z3Z4Z5Z6Y7 − 0.00906X0X1X3Z4Z5X6 − 0.02877X0X1Y4Y5

− 0.02749X0X1Y6Y7 + 0.03974X0Y1Y2X3 + 0.00906X0Y1Y2Z3Z4Z5Z6X7 − 0.00906X0Y1Y3Z4Z5X6

+ 0.02877X0Y1Y4X5 + 0.02749X0Y1Y6X7 + 0.02080X0Z1X2X3Z4X5 + 0.02080X0Z1X2Y3Z4Y5

− 0.01998X0Z1X2X4Z5X6 − 0.01161X0Z1X2Y4Z5Y6 − 0.04000X0Z1X2X5Z6X7 − 0.04000X0Z1X2Y5Z6Y7

− 0.00837X0Z1Y2Y4Z5X6 + 0.02839X0Z1Z2X3Y4Z5Z6Y7 + 0.02001X0Z1Z2X3X5X6 − 0.02839X0Z1Z2Y3Y4Z5Z6X7

+ 0.02001X0Z1Z2Y3Y5X6 + 0.00650X0Z1Z2Z3X4 − 0.00297X0Z1Z2Z3X4Z5 + 0.00860X0Z1Z2Z3X4Z6

+ 0.01748X0Z1Z2Z3X4Z7 + 0.00888X0Z1Z2Z3Z4X5Y6Y7 − 0.00888X0Z1Z2Z3Z4Y5Y6X7 − 0.00402X0Z1Z2X4

+ 0.01678X0Z1Z3X4 + 0.01684X0Z2Z3X4 + 0.03974Y0X1X2Y3 + 0.00906Y0X1X2Z3Z4Z5Z6Y7

− 0.00906Y0X1X3Z4Z5Y6 + 0.02877Y0X1X4Y5 + 0.02749Y0X1X6Y7 − 0.03974Y0Y1X2X3

− 0.00906Y0Y1X2Z3Z4Z5Z6X7 − 0.00906Y0Y1Y3Z4Z5Y6 − 0.02877Y0Y1X4X5 − 0.02749Y0Y1X6X7

− 0.00837Y0Z1X2X4Z5Y6 + 0.02080Y0Z1Y2X3Z4X5 + 0.02080Y0Z1Y2Y3Z4Y5 − 0.01161Y0Z1Y2X4Z5X6

− 0.01998Y0Z1Y2Y4Z5Y6 − 0.04000Y0Z1Y2X5Z6X7 − 0.04000Y0Z1Y2Y5Z6Y7 − 0.02839Y0Z1Z2X3X4Z5Z6Y7

+ 0.02001Y0Z1Z2X3X5Y6 + 0.02839Y0Z1Z2Y3X4Z5Z6X7 + 0.02001Y0Z1Z2Y3Y5Y6 + 0.00650Y0Z1Z2Z3Y4

− 0.00297Y0Z1Z2Z3Y4Z5 + 0.00860Y0Z1Z2Z3Y4Z6 + 0.01748Y0Z1Z2Z3Y4Z7 − 0.00888Y0Z1Z2Z3Z4X5X6Y7

+ 0.00888Y0Z1Z2Z3Z4Y5X6X7 − 0.00402Y0Z1Z2Y4 + 0.01678Y0Z1Z3Y4 + 0.01684Y0Z2Z3Y4

+ 0.11933Z0 + 0.01684Z0X1Z2Z3Z4X5 + 0.01684Z0Y1Z2Z3Z4Y5 + 0.10125Z0Z1

− 0.00839Z0X2Z3Z4Z5X6 − 0.00839Z0Y2Z3Z4Z5Y6 + 0.05022Z0Z2 − 0.01746Z0X3Z4Z5Z6X7

− 0.01746Z0Y3Z4Z5Z6Y7 + 0.08996Z0Z3 + 0.06236Z0Z4 + 0.09114Z0Z5

+ 0.07784Z0Z6 + 0.10533Z0Z7 − 0.02080X1X2Y3Y4 + 0.02001X1X2X4Z5Z6X7

+ 0.02839X1X2Y5Y6 + 0.02080X1Y2Y3X4 + 0.02001X1Y2Y4Z5Z6X7 − 0.02839X1Y2Y5X6

− 0.04000X1Z2X3X4Z5X6 − 0.04000X1Z2X3Y4Z5Y6 − 0.01998X1Z2X3X5Z6X7 − 0.01161X1Z2X3Y5Z6Y7

− 0.00837X1Z2Y3Y5Z6X7 + 0.00888X1Z2Z3X4X6X7 + 0.00888X1Z2Z3Y4Y6X7 + 0.00650X1Z2Z3Z4X5

+ 0.01748X1Z2Z3Z4X5Z6 + 0.00860X1Z2Z3Z4X5Z7 − 0.00297X1Z2Z3X5 + 0.01678X1Z2Z4X5

− 0.00402X1Z3Z4X5 + 0.02080Y1X2X3Y4 + 0.02001Y1X2X4Z5Z6Y7 − 0.02839Y1X2X5Y6

− 0.02080Y1Y2X3X4 + 0.02001Y1Y2Y4Z5Z6Y7 + 0.02839Y1Y2X5X6 − 0.00837Y1Z2X3X5Z6Y7

− 0.04000Y1Z2Y3X4Z5X6 − 0.04000Y1Z2Y3Y4Z5Y6 − 0.01161Y1Z2Y3X5Z6X7 − 0.01998Y1Z2Y3Y5Z6Y7

+ 0.00888Y1Z2Z3X4X6Y7 + 0.00888Y1Z2Z3Y4Y6Y7 + 0.00650Y1Z2Z3Z4Y5 + 0.01748Y1Z2Z3Z4Y5Z6

+ 0.00860Y1Z2Z3Z4Y5Z7 − 0.00297Y1Z2Z3Y5 + 0.01678Y1Z2Z4Y5 − 0.00402Y1Z3Z4Y5

+ 0.11933Z1 − 0.01746Z1X2Z3Z4Z5X6 − 0.01746Z1Y2Z3Z4Z5Y6 + 0.08996Z1Z2

− 0.00839Z1X3Z4Z5Z6X7 − 0.00839Z1Y3Z4Z5Z6Y7 + 0.05022Z1Z3 + 0.09114Z1Z4

+ 0.06236Z1Z5 + 0.10533Z1Z6 + 0.07784Z1Z7 − 0.03517X2X3Y4Y5

− 0.02944X2X3Y6Y7 + 0.03517X2Y3Y4X5 + 0.02944X2Y3Y6X7 − 0.02174X2Z3X4X5Z6X7

− 0.02174X2Z3X4Y5Z6Y7 + 0.01055X2Z3Z4Z5X6 − 0.01865X2Z3Z4Z5X6Z7 + 0.00330X2Z3Z4X6

− 0.01844X2Z3Z5X6 + 0.00261X2Z4Z5X6 + 0.03517Y2X3X4Y5 + 0.02944Y2X3X6Y7

− 0.03517Y2Y3X4X5 − 0.02944Y2Y3X6X7 − 0.02174Y2Z3Y4X5Z6X7 − 0.02174Y2Z3Y4Y5Z6Y7

+ 0.01055Y2Z3Z4Z5Y6 − 0.01865Y2Z3Z4Z5Y6Z7 + 0.00330Y2Z3Z4Y6 − 0.01844Y2Z3Z5Y6
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+ 0.00261Y2Z4Z5Y6 + 0.07128Z2 + 0.00261Z2X3Z4Z5Z6X7 + 0.00261Z2Y3Z4Z5Z6Y7

+ 0.09406Z2Z3 + 0.05893Z2Z4 + 0.09410Z2Z5 + 0.06483Z2Z6

+ 0.09428Z2Z7 + 0.02174X3X4Y5Y6 − 0.02174X3Y4Y5X6 + 0.01055X3Z4Z5Z6X7

− 0.01865X3Z4Z5X7 − 0.01844X3Z4Z6X7 + 0.00330X3Z5Z6X7 − 0.02174Y3X4X5Y6

+ 0.02174Y3Y4X5X6 + 0.01055Y3Z4Z5Z6Y7 − 0.01865Y3Z4Z5Y7 − 0.01844Y3Z4Z6Y7

+ 0.00330Y3Z5Z6Y7 + 0.07128Z3 + 0.09410Z3Z4 + 0.05893Z3Z5

+ 0.09428Z3Z6 + 0.06483Z3Z7 − 0.04234X4X5Y6Y7 + 0.04234X4Y5Y6X7

+ 0.04234Y4X5X6Y7 − 0.04234Y4Y5X6X7 − 0.00689Z4 + 0.09690Z4Z5

+ 0.05391Z4Z6 + 0.09626Z4Z7 − 0.00689Z5 + 0.09626Z5Z6

+ 0.05391Z5Z7 − 0.10062Z6 + 0.11281Z6Z7 − 0.10062Z7 (B1)

APPENDIX C: SIMULATION FOR LiH MOLECULE

In Fig. 10, we show the performances of the NoVa-
ADAPT algorithm and ADAPT-VQE in the simulation for
LiH molecule of bond length 1.5 Å with 12 qubits. Both

algorithms require similar numbers of operators to reach
chemical accuracy. Beyond that, the NoVa-ADAPT algorithm
requires more operators to reach the same energy accuracy,
similar to the case of H4 in the main text.
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