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Highlights

EufoRiA: A new multi-constituent nutrient and harmful algal blooms
model for river networks with online data assimilation

Min-Gyu Kim, Matthew Bartos

• New physics-based nutrients and HABs model for online modeling of
river basins is introduced.

• Support for unsteady hydraulics allows modeling of regulated river sys-
tems.

• Validation on large river basin shows competitive skill with existing
HAB models.

• Online Kalman Filtering scheme improves predictions by fusing obser-
vations into model.

• Kalman Filter greatly improves estimation performance beyond model-
only approaches.
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Abstract

Surface water quality impairment is an increasing challenge for water man-
agers in the face of urbanization and climate change. While contaminant fate
and transport models are essential for addressing water quality threats like
harmful algal blooms, there is a lack of models designed for real-time simu-
lation and decision support in large, regulated river basins. We propose Eu-
foRiA, a new water quality model for river networks incorporating unsteady
hydraulics, contaminant transport, reaction kinetics for 23 eutrophication-
related constituents, and an online data assimilation scheme using Kalman
Filtering that integrates real-time observations to improve model perfor-
mance. Validating against long-term data from South Korea’s Nakdong
River, EufoRiA o!ers competitive performance with existing models in pre-
dicting constituents like nitrogen, phosphorus, and algae. Moreover, data
assimilation significantly improves water quality constituent estimation com-
pared to model-only approaches, particularly at ungaged locations. EufoRiA
will enable enhanced decision-making for public safety and health against
increasing water quality threats.

Keywords: Nutrient and HABs modeling, Watershed water quality
management, River networks model, Kalman filtering, Data assimilation,
Digital twins
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1. Introduction

E!ective management of water quality in surface water systems is crucial
for providing clean and safe water resources to the public. In recent decades,
urbanization and climate change have contributed to a rapid increase of point
source and non-point source pollution from watersheds. These pollutants
have led to high nutrient levels in surface water systems that result in ecosys-
tem degradation and Harmful Algal Blooms (HABs) [1, 2]. Because HABs
produce toxic substances like Microcystin that pose risks to human health
(notably liver cancer [3]), HABs have been a global concern for decades.
For example, Lake Erie in the US experienced an extreme HAB event in
2014 that disrupted the drinking water supply [4], and the Nakdong River in
South Korea has su!ered recurrent HABs during summer due to favorable
environmental drivers, including excessive nutrient levels, high water temper-
atures, intensive solar radiation, and slow river velocity [5, 6]. Furthermore,
climate change is expected to increase the frequency and severity of HABs
because higher temperatures create favorable conditions for phytoplankton
growth, and increased rainfall intensity leads to greater nutrient runo! from
watersheds [7, 8, 9]. To address these challenges, measures to reduce HABs
are essential for ensuring safe drinking water and protecting environmental
health.
Researchers have implemented a variety of strategies to combat HABs that

may be classified into either preventive or adaptive approaches [10]. Preven-
tive measures focus on reducing nutrient loads from point- and nonpoint-
pollution sources, as well as biochemical manipulations to limit HAB out-
breaks. However, reducing pollution sources at the watershed scale typically
requires e!ective regulations and stepwise reduction programs supported by
long-term budgets [11]. Because reducing HABs through preventive methods
is often limited by budgetary and political constraints, adaptive measures are
also necessary to protect public health and ecosystems. These adaptive mea-
sures seek to respond to HABs in real-time, and may include early warning
systems to limit public exposure as well as proactive control of hydraulic in-
frastructure like dams and weirs to minimize HAB proliferation [10, 12, 13].
These adaptative measures require reliable HAB prediction models that in-
tegrate broad-scale monitoring and accurate geographical and biochemical
knowledge of the target river system.
In this study, we focus on the scientific modeling and forecasting of nutri-

ent and algae dynamics at the river network scale as an adaptive measure
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for reducing the adverse impacts of HABs. We begin by reviewing recent
advances in physics-based modeling of nutrients and HABs in surface water
systems, and identify several key knowledge gaps that limit the deployment
of real-time models for watershed-scale nutrient management.

2. Background

Broadly, HABs modeling can be divided into two main approaches: em-
pirical models that are derived from observed data, and physics-based mod-
els that incorporate prior information on contaminant fate and transport
from known physical laws [13]. Although studies in recent decades have in-
troduced novel empirical approaches based on machine learning algorithms
[14, 15], limitations such as a lack of interpretability and transferability pose
challenges for operational adoption [16]. Given these challenges, this study
focuses on physics-based models, which are the most widely-used type of
model in operational use today, and are suitable for scenario-based impact
assessments of reduction measures and long-term planning requiring future
projection capabilities [13].
A variety of physics-based models have been developed to predict HABs in

surface water systems, with applications ranging from high-fidelity simula-
tion of individual waterbodies to base-level assessment of large river sys-
tems [17, 18, 19, 20, 21]. For comprehensive water quality assessments,
three-dimensional models like EFDC and CAEDYM are often chosen for
their ability to simulate both unsteady hydraulics and complex water quality
dynamics involving nutrients, algae and other constituents like epiphyton,
macrophytes, metals, bacteria, and fish [22, 21]. Due to their high compu-
tational demands and input data requirements, these models are generally
reserved for event-based simulation of individual estuaries and reservoirs with
known water quality problems. For management of larger river systems, two-
dimensional models o!er a compromise between model fidelity and practical
utility. Within this vein, CE-QUAL-W2 is a two-dimensional vertical hy-
drodynamics and water quality model that has been applied to rivers and
reservoirs throughout the world, including in Korea where it serves as the
primary water quality model used by the state water utility to simulate ma-
jor rivers and their tributaries [23]. Finally, one-dimensional models o!er
a practical choice for water managers seeking to assess nutrient and HAB
dynamics for large-scale river networks. Among these models, QUAL2E is
one of the most widely used water quality models, owing to its long devel-
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opment history and numerous application cases, with QUAL2K representing
the latest installment in the QUAL series [18]. Likewise, HSPF is a network-
scale one-dimensional watershed model that serves as a popular choice for
nutrient fate and transport modeling in large river basins [24]. Existing one-
dimensional models generally feature simplified hydraulics, with the QUAL
models pertaining to steady-state conditions, and HSPF featuring a unidi-
rectional kinematic wave routing scheme that is best suited for natural river
systems where backwater e!ects are limited.
Apart from the development of physics-based models of nutrient and HAB

dynamics, recent work has shown success in improving HAB forecasts through
the use of data assimilation (DA) techniques that combine physically-based
models together with real-time observational data [25]. In the context of
nutrient and HABs modeling, DA seeks to incorporate water quality obser-
vations (e.g. chlorophyll measurements) into physically-based models of nu-
trient cycling and algal bloom dynamics to generate improved forecasts and
estimate HAB potential in ungaged locations. Studies have explored a vari-
ety of di!erent DA approaches including Extended Kalman Filtering (EKF)
[26, 27, 28, 29], Ensemble Kalman Filtering (EnKF) [30, 31, 32, 33, 34, 35],
Particle Filtering (PF) [36], Maximum Likelihood Estimation [? 37], and
Variational Data Assimilation (3DVAR) [38]. These DA approaches have
been integrated with a host of di!erent water quality models, ranging from
simplified ‘0-dimensional’ tank models [39, 40, 41, 29, 28, 27, 26], to 1D mod-
els like HSPF [? 37], and high-resolution 3D models like EFDC [31, 38, 42].
While most studies focus on assimilation of a single constituent like tempera-
ture [31, 34, 38], sediments [43, 44], chlorophyll [32? , 40], or oxygen demand
[36, 41, 28]; several recent studies have applied DA to multiple interdepen-
dent constituents such as algal biomass, phosphate, nitrate, dissolved oxygen,
temperature, and other quantities relevant to HAB formation [45, 42, 37, 27].
While recent advances have shown promise in improving forecasts of HABs,

challenges remain in applying these results to operational decision-making at
the watershed scale. Existing models are generally either too computationally-
intensive to apply for large river basins in real-time (EFDC, CAEDYM), or
are too simplified to adequately capture the hydraulic behavior of regulated
river networks (QUAL2K, HSPF), meaning that there is currently no suitable
model to inform reservoir operations at the river basin scale. Moreover, a lack
of built-in support for data assimilation means that most existing approaches
largely rely on ensemble-based DA techniques like EnKF or PF, which use
model outputs produced under iterated model runs to generate sample prob-
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ability distributions of the underlying state variables [25]. While easy to
implement, obtaining accurate results from these methods requires a large
number of model runs, which is often more computationally intensive than
direct approaches like EKF. Moreover, due to the lack of built-in DA support,
existing studies mostly focus on assimilating a single constituent, with very
few studies implementing assimilation of multiple reactive species. Given
that algal growth is dependent on interactions between dozens of distinct
reactive species, assimilation of a single constituent is unlikely to produce
physically consistent estimates among water quality constituents, leading to
degraded forecasting skill. In summary, there is a need for an online modeling
system that combines a full-physics contaminant fate and transport model
with built-in multi-constituent data assimilation functionality to better en-
able adaptive management of nutrients and algal blooms at the watershed
scale.
To address these challenges, we introduce EufoRiA (Eutrophication model

for River System Analysis), a new model built specifically for watershed-
scale simulation and management of HABs that integrates unsteady hy-
draulics, multi-constituent contaminant transport and reaction kinetics, and
online multi-constituent DA capabilities via an Extended Kalman Filtering
(EKF) approach. The model is provided as open-source software, enabling
extensions and integrations with existing models and interfaces. This study
presents the detailed model development process and also presents compre-
hensive validation results in a large real-world river network—the Nakdong
river basin in South Korea. Our key contributions are as follows:

• We introduce a new open-source physics-based model for online model-
ing of nutrient and HABs dynamics in large river networks that incorpo-
rates a physically-based hydraulic model and coupled reaction kinetics
between 23 water quality constituents relevant to eutrophication and
HAB formation.

• Validating the new model against long-term observed water quality
data from a large, regulated river network, we find that EufoRiA achieves
accuracy comparable to existing state-of-the-art models in predicting
concentrations of water quality constituents.

• We derive and implement an e”cient method for multi-constituent DA
based on Extended Kalman Filtering (EKF) to assimilate water quality
observations into the model. We show how the proposed DA technique
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can be calibrated to integrate prior information on spatial and inter-
constituent correlations via the Kalman Filter’s process noise model.

• Through a holdout assessment, we show that our DA scheme signifi-
cantly enhances estimation of water quality constituents within a large
river network using real-world water quality observations. We find that
DA performance is further improved through integration of prior infor-
mation into the Kalman Filter’s process noise model.

3. Methods

3.1. Development of new multi-constituent water quality model for large river
networks

The EufoRiA model is a comprehensive physics-based nutrient and HABs
model for river networks released as an open-source modeling toolkit in the
Python programming language. This section describes the model develop-
ment methods and procedure, including (i) model development history and
description, (ii) governing equations and solution methods, (iii) biochemical
reaction dynamics, (iv) simulation procedure at the software implementation
level, (v) input data preparation and conversion, (vi) adaptive time-stepping
method, and (vii) model application and validation.

Pipedream
Hydraulic model

Green Ampt & Saint Vanent (SV)
 equations

Hydraulic states (Q, H)
in the river network

Biochemical reactions
between 23 constituents

Open-Source based
New Harmful Algal Blooms model

for Large River Networks

Pipedream-WQ
Contaminant transport model

Advection-Reaction-Diffusion
Equation

Single constituent transport
&

1st order reaction dynamics

EufoRiA
Eutrophication model for River Analysis

Advection-Reaction-Diffusion
equation

Temperature, DO Nutrients
(C, N, P)

Phytoplankton
groups

Inorganic 
suspended solids

Bartos and Kerkez (2021) Kim and Bartos (2024) This study

Figure 1: Brief model development history for EufoRiA
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3.1.1. Model development history and brief description
The EufoRiA model simulates essential biochemical dynamics related to eu-

trophication in river network systems such as carbon, nitrogen, phosphorus,
heat, dissolved oxygen, phytoplankton growth, and suspended sediments. In
previous work, Kim and Bartos [46] introduced Pipedream-WQ, a new water
quality model for natural and urban drainage networks based on the unsteady
advection-reaction-di!usion (ARD) equation that incorporates real-time data
assimilation using a Kalman Filtering scheme. Designed for real-time appli-
cations in networked drainage systems, this model features a novel implicit
solver scheme based on the SUPERLINK algorithm [47], ensuring numerical
stability and scalability to large networks. However, this earlier Pipedream-
WQ model focused mainly on contaminant transport, and is thus limited to
modeling a single water quality constituent with simple first-order reaction
kinetics. In this study, we enhance the model’s capabilities and develop an
advanced version—EufoRiA—to represent water quality dynamics across 23
constituents related to eutrophication, enabling more e!ective predictions of
nutrient fate and harmful algal blooms in river networks. The present study
also evaluates this new nutrient model using long-term multi-constituent val-
idation data from a large real-world river network. The distinct features of
EufoRiA are summarized as follows:

• EufoRiA simulates nutrient dynamics in complex river networks by
integrating an unsteady hydraulics model based on the Saint-Venant
equations, unsteady transport using the advection-di!usion equation,
and complex biochemical reactions for 23 water quality constituents
into a unified modeling framework.

• Based on these capabilities, the EufoRiA model is suitable for simulat-
ing river networks under the influence of hydraulic infrastructure like
dams and weirs, where contaminant fate and transport are a!ected by
both unsteady hydraulics and backwater e!ects induced by impound-
ments.

• The EufoRiA model simultaneously represents both open channels and
pressurized conduits, enabling simulation of urban stormwater systems
in addition to natural river networks a!ected by built infrastructure.

• As an open-source model, EufoRiA enables extensions and integrations
with other software, allowing for integration with data acquisition sys-
tems, visualization tools, and other process models.
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3.1.2. Governing equations and solution methods
EufoRiA uses two sets of governing equations, corresponding to hydraulics

and contaminant transport, respectively. For hydraulics, the physically-based
Saint-Venant equations are used, consisting of the continuity equation (Equa-
tion 1) and momentum equation (Equation 2):

ωA

ωt
+

ωQ

ωx
= Qs (1)

ωQ

ωt
+

ω

ωx
(Qu) + gA

(
ωh

ωx
→ S0 + Sf + SL

)
= 0 (2)

Where A is the cross-sectional area of the river channel (m2), Q is the
flow rate at the given channel (m3/s), u is the flow velocity (m/s), g is the
gravitational force (m/s2), h is the water depth (m), and S0, Sf , and SL

represent the channel bottom slope, friction slope, and local head loss slope,
respectively. For contaminant transport, the unsteady advection-reaction-
di!usion equation is used (Equation 3) [48]:

ω(Ac)

ωt
= →ω(Qc)

ωx
+

ω

ωx

(
DA

ωc

ωx

)
→ kAc+QsCs (3)

Where, c is the contaminant concentration (g/m3), D is the di!usion coe”-
cient (m2/s), k is the first-order reaction coe”cient (1/s), Qscs is the mass
flow rate of contaminant into or out of the system boundary.

A Superlink

Node (superjunction)

Link (superlink)

Calculate internal links and 
junctions2Solve the solution matrix for 

superjunctions1

Figure 2: A schematic image of the Superlink algorithm applied for numerical solution of
Saint-Venant and advection-reaction-di!usionequations

A staggered-grid implicit finite-di!erence scheme (SUPERLINK) is ap-
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plied to obtain numerical solutions to these governing equations. Details
of the numerical solutions for these equations are presented in previous re-
search [49, 46]. Figure 2 illustrates the concept of the SUPERLINK al-
gorithm. In this algorithm, computational elements are divided into four
types—superjunctions, superlinks, junctions, and links. Superjunctions rep-
resent storage volumes (e.g. reservoirs or confluence points between tribu-
taries) and may also include boundary-forcing inputs. Superlinks consist of
chains of links and junctions connected in series and are used to represent
river reaches and conduits. Within the SUPERLINK method, a sparse ma-
trix equation is first solved to obtain the solutions to the three governing
equations at superjunctions (in terms of hydraulic heads and contaminant
concentrations at these elements); next, recurrence relations are used to cal-
culate the solutions to governing equations at the internal links and junctions.

3.1.3. Biochemical reaction dynamics
EufoRiA provides essential transport and biochemical dynamics models

to simulate harmful algal blooms (HABs) in river networks, including key
constituents such as water temperature, dissolved oxygen (DO), inorganic
and organic nutrients (C, N, P), phytoplankton groups, and suspended sed-
iments. Figure 3 shows a schematic diagram of the water quality reaction
dynamics included in the EufoRiA model. In general, the dynamics for each
constituent are described by coupled ordinary di!erential equations that are
functions of both constituent concentrations, exogenous forcings (e.g. light
and temperature), and species-specific parameters that inform reaction rates.
For example, nitrate (NO3) dynamics are described by the equation:

ωCNO3

ωt
= →

n∑

i=1

(1→ PNH4)Kag,iεn:alg,iCalg,i

︸ ︷︷ ︸
Algal production

+KNH4ϑNH4CNH4︸ ︷︷ ︸
Nitrification

→KNO3ϑNO3CNO3︸ ︷︷ ︸
Denitrification

→ Ks,NO3

H
CNO3

︸ ︷︷ ︸
Settling

(4)

Where CNO3 is the concentration of nitrate; Calg,i is the concentration of
algal species i; CNH4 is the concentration of ammonium; Kag,i, KNH4, KNO3

and Ks,NO3 are growth/decay coe”cients; ϑNH4 and ϑNO3 are temperature
multiplier coe”cients; PNH4 is the ammonium preference factor; εn:alg,i is
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the stoichiometric parameter between CNO3 and Calg,i; and H is the average
hydraulic depth.
Sections S1–S10 in the Supplementary Information (SI) document provide

a full list of all water quality constituents, a review and comparison of the
biochemical dynamics in the existing models and the EufoRiA model, and
the detailed reaction dynamics equations for all constituents.

Riverbed sediment

LPOM
C N P

Phytoplankton1)

C N P

RPOM
C N P

LDOM
C N P

RDOM
C N P

NH4-N

PO4-P

NO3-N

DO

Nitrogen Oxygen Demand
Water column
Atmosphere

Settling

Decomposition Decomposition

Nitrification

Heat exchange

Photosynthesis

UptakeUptake

Uptake

Consumption

Consumption

Sediment
Oxygen
Demand

Respiration

Temperature

Heat exchange

Affects most
reaction rates

Consumption

PIP

Reaeration

Consumption

Settling

Mortality/ Excretion

Adsorption/
Desorption

Denitrification

PIN

Adsorption/
Desorption

Settling Settling

1) Phytoplakton: Represented by biomasses of three phytoplakton groups = Diatom + Green algae + Cyanobacteria
2) TN (Total Nitrogen) = NO3-N + NH4-N + PIN + LPON + LDON + RPON + RDON + Algae-N
3) TP (Total Phosphorus) = PO4-P + PIP + LPOP + LDOP + RPOP + RDOP+ Algae-P
4) TOC (Total Organic Carbon) = LPOC + LDOC + RPOC + RDOC+ Algae-C
5) LPOM (Labile Particulate Organic Matter) = LPOC + LPON + LPOP : Three constituents are individually simulated in the model
6) LDOM (Labile Dissolved Organic Matter) = LDOC + LDON + LDOP
7) RPOM (Refractory Particulate Organic Matter) = RPOC + RPON + RPOP
8) RDOM (Refractory Dissolved Organic Matter) = RDOC + RDON + RDOP

Figure 3: Schematic diagram of the water quality reaction kinetics in EufoRiA

Briefly describing the biochemical dynamics in EufoRiA, the Temperature
model is based on the full heat balance equations between the atmosphere,
water body, and riverbed (SI S4). The DO model includes depletion by
organic and inorganic constituents, re-aeration from the atmosphere, and
photosynthesis by phytoplankton (SI S5). The Nutrients model accounts for
both inorganic and organic constituents of carbon, nitrogen, and phospho-
rus compounds. For inorganic constituents, the model simulates phosphate
(PO4-P), ammonium (NH4-N), nitrate (NO3-N), dissolved inorganic nitro-
gen (DIN), and phosphorus (DIP). Additionally, the organic nutrients (C, N,
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P) are simulated as four di!erent classes: labile dissolved, labile particulate,
refractory dissolved, and refractory particulate (SI S6, S7, S8). The Phyto-
plankton model simulates three algal groups (i.e., Diatoms, Cyanobacteria,
and Green algae) based on growth, respiration, excretion, mortality, and
settling. The algal growth rate is calculated using nutrient-limiting factors,
employing the Monod equation with temperature and light availability (SI
S9). The Suspended sediment model is based on the transport and settling
processes of inorganic suspended sediment (SI S10).
Table 1 compares the considered water quality constituents between ex-

isting models and EufoRiA. Compared to QUAL2K, an alternative river
network-scale model for simulating nutrient dynamics, EufoRiA captures the
major biochemical dynamics related to nutrient cycling and HAB formation
while also accounting for unsteady hydraulics and contaminant transport. It
should be noted that biological constituents not directly related to nutrient
and HAB dynamics (e.g. Epiphyton, Macrophytes, Zooplankton, Bacteria,
Fish) are omitted from the current implementation of EufoRiA. Some inor-
ganic and chemical factors that may indirectly a!ect eutrophication dynamics
(e.g. pH, alkalinity, riverbed sediment kinetics, silica, and metals) are also
currently not included in the model, but are reserved as subjects for future
work.
Oxygen demands used in traditional water quality analysis such as BOD

(Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and CBOD
(Carbonaceous Biochemical Oxygen Demand) are not explicitly modeled in
EufoRiA for several reasons. First, these demands do not correspond to phys-
ical constituents with true masses and so the modeling of these constituents
often relies on empirical formulations that are di”cult to generalize or verify.
In addition, the analytical techniques for BOD and COD do not ensure the
thorough quantification of the existing organic compounds in the sample due
to interfering factors [50]. In this regard, EufoRiA simulates only the TOC
as a sum of the organic carbon constituents—LDOC, LPOC, RDOC, and
RPOC—to represent the existence and reactions of organic carbons. Other
DO demands like nitrification and bottom sediment in river channels are
separately modeled using related equations (see SI Equation S.14). This ap-
proach is justified by the fact that some jurisdictions have recently moved
away from oxygen demands and towards physical constituents as primary
water quality indicators: for instance, in South Korea, the representative
water quality criteria to evaluate the water quality grade of reservoirs and
lakes was changed from COD to TOC after 2016 [51].
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Table 1: Comparison of the considered water quality constituents between widely used
existing models and EufoRiA

State variables
EFDC
(3-D)

CAEDYM
(3-D)

CE-QUAL-W2
(2-D)

QUAL2K
(1-D)

EufoRiA
(1-D)

Hydrodynamics and biochemical capability
Unsteady hydraulics ↭ ↭ ↭ - ↭

Unsteady biochemical reactions ↭ ↭ ↭ - ↭
Basic water quality constituents

Water temperature ↭ ↭ ↭ ↭ ↭
pH, alkalinity - ↭ ↭ ↭ -

Dissolved oxygen and various oxygen demands
DO ↭ ↭ ↭ ↭ ↭
BOD - ↭ - - -
CBOD - - ↭ ↭ -
COD ↭ - - - -

Nutrients: Carbon, Nitrogen, and Phosphorus
DIC (dissolved inorganic carbon) - ↭ ↭ ↭ ↭

LDOCa ↭ ↭ ↭ ↭ ↭
LPOCa ↭ ↭ ↭ ↭ ↭
RDOCa ↭ ↭ ↭ ↭ ↭
RPOCa ↭ ↭ ↭ ↭ ↭

Ammonium (NH4) ↭ ↭ ↭ ↭ ↭
Nitrate (NO3) ↭ ↭ ↭ ↭ ↭

LDONa ↭ ↭ ↭ ↭ ↭
LPONa ↭ ↭ ↭ ↭ ↭
RDONa ↭ ↭ ↭ ↭ ↭
RPONa ↭ ↭ ↭ ↭ ↭

Phosphate (PO4) ↭ ↭ ↭ ↭ ↭
LDOPa ↭ ↭ ↭ ↭ ↭
LPOPa ↭ ↭ ↭ ↭ ↭
RDOPa ↭ ↭ ↭ ↭ ↭
RPOPa ↭ ↭ ↭ ↭ ↭

Ecological constituents
Algae (Phytoplankton) ↭ ↭ ↭ ↭ ↭

Epiphyton ↭ ↭ ↭ ↭ -
Macrophyte and Zooplankton - ↭ ↭ - -

Bacteria and Fish - ↭ - - -
Suspended solids and others
ISS (Inorganic suspended solids) ↭ ↭ ↭ ↭ ↭

Riverbed sediment kinetics ↭ ↭ ↭ ↭ -
Silica ↭ - - ↭ -
Metals ↭ - - ↭ -

a LDO: Labile dissolved organic, LPO: Labile particulate organic, RDO: Refractory dissolved organic, RPO:
Refractory particulate organic, for the last letter, C: Carbon, N: Nitrogen, P: Phosphorus
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3.1.4. Simulation procedure at the software implementation level
The model structure of EufoRiA can be divided into three modules: hy-

draulics, constituent transport, and biochemical reactions between constituents.
For hydraulics, the model uses the full dynamic unsteady Saint-Venant equa-
tion with an implicit upwind scheme for momentum transfer. The water
quality model applies the unsteady advection-di!usion-reaction equation,
also using an implicit upwind scheme for the advection component. For
biochemical reactions, to facilitate the linkage between the transport and
biochemical reaction modules, we use the 4th-order Runge-Kutta method,
ensuring model accuracy with relatively large time steps while maintaining
an explicit scheme. Like all explicit methods, the Runge-Kutta method may
su!er from instability at large temporal step sizes, and thus careful selection
of the time step is necessary. To address this issue, we propose an adaptive
time stepping approach as described in SI S13.
Calculations for these three modules are performed sequentially at each

time step, as described in Figure 4. First, the model simulates the hydraulics,
including the flow rates and water depths across all elements in the river net-
work. Based on the results of the hydraulic model, the model calculates the
constituent transport using the advection-di!usion equation. Finally, the
model simulates the biochemical reactions at each element. Once these steps
are completed, the model proceeds to the next time step. To increase compu-
tational speed, the numba just-in-time compiler is used to accelerate numeric
computations for the hydraulic, contaminant transport and biochemical re-
action modules.

Hydraulic module

Flow rate and water depth
at all spatial elements

(Saint Venant equation)

Concentration of 23 constituents
at all spatial elements

(Advection-Diffusion equation)

Exogenous input forcing into the boundary superjunctions

Transport module

Flow rate, Q Concentrations, Cconstituents

Meteorological impact

Air/dew temp., wind, solar radiation

Reaction between 23 constituents
at all spatial elements

(Heat balance, reaeration, decomposition, 
photosynthesis, growth/death, settling, etc.)

Reaction module

River network model based on the geographic data with controllable hydraulic structures (i.e. weirs)

Figure 4: Brief description of the model simulation process at each time step
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3.1.5. Model application and validation: A case study
As a case study, we apply EufoRiA to a complex real-world river net-

work—the Nakdong River Basin in South Korea—to assess its e!ectiveness
as a physics-based model for nutrients and HABs. This section provides de-
tails on the study area, data collection, river network model construction,
and the calibration and validation processes.

Study area: Nakdong River basin in South Korea
The study area is the Nakdong River Basin, the second-largest watershed in

South Korea, with a drainage area of 23,817 km2 and a mainstem river length
of 525 km [52]. The river basin is highly regulated, with 10 multi-purpose
dams, 2 water supply dams, 8 operational large weirs along the mainstem,
and 1 estuary bank. The river basin also contends with significant point and
non-point pollution sources, including 21 large wastewater treatment plants
(WWTPs) with capacities exceeding 20,000 m3/day, several industrial com-
plexes, and a population of approximately 13 million. Due to high pollutant
loads, this river system experiences periodic HABs during the summer sea-
son. As is widely recognized, regulated river systems significantly impact
algal bloom dynamics, typically in adverse ways [53]. The eight large weirs
constructed along the mainstream between 2009 and 2011 have further exac-
erbated HAB severity and duration by increasing water retention time and
reducing flow velocity. Moreover, as the Nakdong River serves as a drinking
water source for 13 million people, ensuring water quality safety remains a
critical concern. To address these challenges, water managers in South Korea
have been working toward a comprehensive water quality and HABs predic-
tion and forecasting system [54, 55]. In this context, we apply EufoRiA to
this river basin to assess its skill in operational nutrient and HAB modeling.
We focus on the river mainstem and its major tributaries, where the most
validation data are available, and exclude the headwaters located upstream
of the 10 multi-purpose dams (Figure 5).

Geographic and temporal dataset collection
Data required for model construction include geographical data, water

quality measurements, flow rates, and meteorological data. Table 2 provides
details on the datasets used in this research, including data sources and brief
descriptions. In this study, we collect various geological datasets, including a
30↑30 m digital elevation model (DEM), shapefiles of river channel networks
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South Korea

N

Nakdong River Basin

Geumhogang

Wuicheon

Naesungcheon

Gamcheon

Younggang

Hwanggang

Namgang
Milyanggang

Hoicheon

Downstream

SJ

ND

GM

CG

GG

DS

HC

CH

NH

Dam watersheds

Study area

Major tributaries

Dams
Weirs

Figure 5: Study area: Nakdong River basin of South Korea (Where, SJ: Sang-Ju weir,
ND: Nak-Dan weir, GM: Gu-Mi weir, CG: Chil-Gok weir, GG: Gangjeong-Goryung weir,
DS: Dal-Sung weir, HC: Hapcheon-Changnyung weir, CH: Changnyung-Haman weir, NH:
Nakdonggang-Hagoo weir)

and centerlines, and the o”cial government-approved hydrologic unit catch-
ment boundaries (141 catchments). In addition, streamflow data from major
tributaries (8 stations) are obtained from the Water Management Informa-
tion System (WAMIS) of South Korea, and representative meteorological
data (4 stations) in the Nakdong River basin were collected from the Korea
Meteorological Agency (KMA) website, including precipitation, air and dew
point temperatures, wind velocity, and solar radiation.
Furthermore, river water quality data from 95 stations, covering 14 con-

stituents such as temperature, DO, TN, TP, Chl-a, and TOC, are obtained
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Table 2: Description of the spatial and temporal datasets used for the model application
in the Nakdong River basin, South Korea

Data Resolution Description Source

Digital eleva-
tion model

30→ 30m DEM of Nakdong River
basin in Korea (TIFF)

National geographic information insti-
tute of Korea https://www.ngii.go.kr/

Catchment
boundary

141 catchments O!cial Hydrologic Unit
Catchment of Korea
(shape)

Water management information system
of Korea http://www.wamis.go.kr

River channel - Channel boundaries of
the mainstream and
tributaries (shape)

Water management information system
of Korea http://www.wamis.go.kr

Meteorological
data

4 stations/hourly Precipitation, air and dew
point temperatures, wind
velocity, and solar radia-
tion data (time series from
2013 to 2022)

Korea Meteorological Administration
https://data.kma.go.kr

Stream Flow 8 stations/daily Observed flow rates from
tributaries (time series
from 2013 to 2022)

Water Management Information System
of Korea http://www.wamis.go.kr

River water
quality

95 stations/weekly,
monthly

Observed water quality
data from manual sam-
pling stations (time series
from 2013 to 2022)

National Institute of Environmental Re-
search of Korea http://water.nier.go.kr

E”uent flow
rate and water
quality from
WWTPs

21 stations/daily Observed discharge and
water quality data from the
facilities (time series from
2013 to 2022)

National Institute of Environmental Re-
search of Korea http://www.nier.go.kr

Discharging
flow rate and
water level of
dams and weirs

12 dams and 8
weirs /daily

Observed discharge and
water level(EL.m) data of
the facilities (time series
from 2013 to 2022)

Korea Water Resources Corporation
http://www.water.or.kr

from the National Institute of Environmental Research (NIER) of Korea. Ef-
fluent water quality and flow rate data from 23 wastewater treatment plants
(WWTPs) are also collected from NIER. Operational data for multipurpose
dams and weirs, including discharge and water levels, are retrieved from the
MyWater website of Korea Water Resources Corporation (K-water). All
time-series datasets span 10 years, from 2013 to 2022. As mentioned in
Section 3.1.5, the construction of large weirs has altered the environmental
conditions of river channels, making it unreliable to apply water quality data
from before 2012 for model calibration and validation. Figure 6 shows the
locations of the measurement stations for di!erent datasets.
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a) WWTPs b) Tributary stream flow stations

0 10 20 30 40 80km

N

c) Weather stations d) Water quality stations

Downstream

Figure 6: Locations of dataset: Nakdong River Basin in South Korea

Construction of the river network model
We construct a EufoRiA model for the Nakdong river basin using the pre-

pared geographic data and previously constructed river channel section data,
such as HEC-RAS geological data from K-water and other Korean agencies.
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In this process, we assume that all river channels are rectangular for sim-
plicity, deriving the representative cross-sectional shape by considering the
average width and depth of each river channel and section. Figure 7 shows
the developed river network for this study.

0 10 20 30 40 80km

N

Downstream

a) River network model b) Classification of the forcing input (flow & water quality)

Superjunctions
Superlinks

Hydrologic unit Upstream/triburary inputs
WWTPs inputs

SJ

Weirs

Downstream

ND
GM

CG
GG

DS HC
CH NH

Andong Dam

c) Lateral view of Nakdong River: from Andong Dam to Nakdonggan-Hagoo weir (NH) 

Figure 7: River network and classification of the forcing input (flow and water quality)
categories

Within EufoRiA, the ultimate river network model consists of 164 super-
links (representing river reaches and reservoirs) and 174 superjunctions (rep-
resenting confluences, control points, and boundary conditions). The super-
junctions include 41 upstream input boundaries, including 10 multipurpose
dam discharges and 18 WWTP input boundaries for 23 WWTPs facilities.
Additionally, the superlinks contain 3,032 internal links and 3,196 internal
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junctions for total 1,209 km of river network channels. We also represent
eight large controllable weirs in the mainstream of the Nakdong River, which
have a total storage capacity of 533.7 million m3 at normal operation lev-
els. For weir control, the control strategy described in Section S11 is applied
such that the weir outflows produced by the model match the observed weir
outflows over the period of record.

Calibration and validation
To assess the performance of EufoRiA, we calibrate the model to observed

data over a calibration period (2013–2020) and then assess its performance
against observed data over a validation period (2021–2022). The model’s per-
formance during these periods is evaluated based on the metrics described in
Section 3.3 at eight weir locations along the Nakdong River mainstem, repre-
sented by white rectangular boxes (i.e., SJ, ND, GM, CG, GG, DS, HC, and
CH) in Figure 5. Because EufoRiA is a one-dimensional model, we compare
the model results with depth-averaged observed data at each weir location.
We analyze model performance in terms of six key water quality constituents:
water temperature, dissolved oxygen (DO), total nitrogen (TN), total phos-
phorus (TP), chlorophyll-a (Chl-a), and total organic carbon (TOC). Among
these constituents, water temperature and DO are directly simulated in the
model, while TN, TP, Chl-a, and TOC are derived from the modeled labile,
refractory, particulate, and dissolved portions of each constituent based on
the relationships described in Table 3.
Model calibration is achieved via a trial-and-error empirical calibration ap-

proach using visual comparisons and performance metrics, such as RMSE,
NSE, KGE, and PBIAS. This model calibration approach is chosen due to
the inherent challenge in applying optimization methods to calibrate a multi-
constituent model containing over 100 parameters that govern water quality
reaction kinetics. Because calibrating all parameters simultaneously is im-
practical, we prioritize the most influential parameters for more e!ective
calibration, such as the nitrification/denitrification coe”cients of nitrogen
compounds, the maximum growth and mortality rates of algal groups, the
settling rate for particulate constituents, and temperature multiplier-related
coe”cients for most constituents. The key parameter values associated with
major nutrients and HABs applied in this study are presented in SI Tables
S3-S9.
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3.2. Data assimilation

We propose a novel data assimilation (DA) strategy based on Extended
Kalman Filtering (EKF) to assimilate water quality sensor data into the
process model while also incorporating prior knowledge about the system
including observed correlations between water quality constituents. This
section describes the development and evaluation of the DA procedure for
EufoRiA, including (i) EKF scheme for the multi-constituent water quality
model, (ii) observation matrix design, (iii) process noise covariance matrix
design, and (iv) development of hold-out assessment scenarios to evaluate
the performance of the proposed DA method. The distinct features of the
EufoRiA DA scheme are summarized as follows:

• EufoRiA provides built-in data assimilation through an e”cient Ex-
tended Kalman Filtering scheme that simultaneously assimilates water
quality observations for up to 23 water quality constituents.

• We propose an observation model that e!ectively captures the bio-
chemical relationships between common measurable water quality con-
stituents (e.g. chlorophyll-a) and modeled constituents (e.g. algal
biomass).

• We introduce a method for constructing the Extended Kalman Fil-
ter’s process noise covariance matrix that integrates prior knowledge
of spatial and inter-constituent correlations, with the ultimate e!ect of
increasing DA accuracy.

3.2.1. Kalman Filtering scheme
In Kim and Bartos [46], a data assimilation scheme based on Kalman filter-

ing [56] was developed to assimilate water quality observations into a single-
constituent contaminant transport model based on the advection-reaction-
di!usion equation. The present study extends this functionality to enable
multi-constituent data assimilation within the new EufoRiA nutrient and
HABs model. From the implicit numerical solution of the water quality
transport equation (i.e. advection-reaction-di!usion equation), we may ex-
press the evolution of contaminant concentrations over time in terms of a
state equation (Equation 5), along with the observed states in terms of an
observation equation (Equation 6):

xt+#t = Atxt +Btut+#t + yt +wt (5)
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zt = Htxt + vt (6)

Where, xt is the n-dimensional state vector, wt is a p-dimensional stochas-
tic disturbance defined as zero-mean white noise, vt is an m-dimensional
vector of zero-mean white measurement noise, At is an (n↑ n) state transi-
tion matrix, Bt is an (n↑ ϖ) input transition matrix, ut is an (n↑ 1) vector
of input forcing, yt is an (n↑ 1) vector of constants, and Ht is the (m↑ n)
observation matrix that expresses the observation function that maps the
measurement data to the state variables in the model. Here, n represents
number of states, p represents the number of disturbance inputs, and m
represents the number of measurement points.
Based on the above state and observation equations, the Kalman recursion

provides an algorithm to assimilate sensor observations into the model to
yield the minimum mean-squared error estimator of system states [46, 56].

x̂t+#t = Atx̂t +Btut+#t + yt + Lt+#t[zt+#t → ẑt] (7)

ẑt = Ht+#t(Atx̂t +Btut+#t + yt) (8)

Lt = PtH
T
t (HtPtH

T
t + Vt)

↑1 (9)

Pt+#t = At(Pt → PtH
T
t (HtPtH

T
t + Vt)

↑1HtPt)A
T
t +Wt (10)

Where, x̂t is the estimate of the state variable, ẑt is the estimate of the model
output, Lt is the optimal Kalman gain, Vt is the measurement noise covari-
ance matrix, Pt is the estimation error covariance matrix, Wt is the process
noise covariance matrix. The Kalman gain Lt and the error covariance Pt

are calculated at every time step and updated to correct the estimate of the
system states x̂t.
For the multi-constituent system, the matrices and vectors in Equations

7–10 may be augmented to represent all r constituents simultaneously. In
this augmented form, the state transition matrix At will have a dimension of
((nr rows) ↑ (nr columns)); the state vector xt will have a dimension of ((nr
rows) ↑ (1 column)); and the observation matrix Ht will have a dimension
of ((mr rows) ↑ (nr columns)).

3.2.2. Observation matrix design
In the context of Kalman Filtering, the observation matrix represents a

(linear) function that translates measured quantities (e.g. chlorophyll-a) into
modeled quantities (e.g. algal concentrations). This observation model en-
ables data assimilation for all modeling constituents using a smaller number
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of observed constituents. In our model, the observation matrix is used to
update all 23 modeled constituents based on 10 observed quantities that are
commonly measured in surface water systems, including temperature, DO,
TOC, TN, NH4, NO3, TP, PO4, chlorophyll-a, and suspended sediments.
Figure 8 shows the structure of the proposed observation matrix in this
study that represents the following relationships among the water quality
constituents in the model.

Table 3: Derived constituents in EufoRiA

Derived constituent Simulated constituents in EufoRiA

Total organic carbon : TOC =
LDOC + LPOC + RDOC + RPOC

+ c1→ALG1 + c2→ALG2 + c3→ALG3

Total nitrogen : TN =
PIN + NH4-N + NO3-N + LDON + LPON + RDON

+ RPON + n1→ALG1 + n2→ALG2 + n3→ALG3

Total phosphorus : TP =
PIP + PO4-P + LDOP + LPOP + RDOP + RPOP

+ p1→ALG1 + p2→ALG2 + p3→ALG3

Chlorophyll-a : Chl-a = chl1→ALG1 + chl2→ALG1 + chl3→ALG3

* c1-c3, n1-n3, p1-p3, and chl 1-chl 3 are explained in Figure 8. ALG1-ALG3 are biomass of diatom,
green algae, and cyanobacteria, repectively.

𝐻𝑡Observation matrix           (1,740 x 4,002) Modeling
constituents

Observed
constituents

Figure 8: Building the observation matrix for the Kalman filtering
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3.2.3. Process noise covariance matrix design
The process noise covariance matrix reflects the uncertainty in the process

model, and thus specifying this matrix properly is crucial for obtaining ac-
curate state estimation results within the Kalman Filter. In Kim and Bartos
[46], it was shown that the process noise covariance matrix has a significant
e!ect on the results of the Kalman filtering procedure, both in terms of the
spatial distribution of the ‘correction’ applied by the Kalman filter, and on
the accuracy of the ultimate state estimate. In the present study, we intro-
duce and evaluate a new approach to calibrate the process noise covariance
matrix based on observed correlations from the historical record. Specifically,
we analyze and integrate the historical observed spatial and inter-species
correlations among water quality constituents to construct the process noise
covariance matrix, and then assess the improvement in performance a!orded
by incorporating this correlation structure into the Kalman filter.
The proposed method for specifying the process noise covariance accounts

for both the spatial correlation in nutrient runo! inputs and the inter-constituent
correlations between chemically-similar constituents. The spatial correlation
component reflects the fact that nutrient loads are highly correlated in space
[57] (e.g. fertilizer runo! from agricultural fields is spatially contiguous).
Likewise, the interconstituent correlation reflects the fact that contaminants
often exhibit significant correlations with one another due to similarities in
chemical composition. For example, concentrations of nitrogen constituents
such as total nitrogen, nitrate, and organic nitrogen groups are frequently
correlated. To incorporate observed correlations into the DA framework, we
first use historically observed water quality constituent concentrations from
2013–2020 (calibration period) to determine both reach-wise and constituent-
wise covariances for each constituent. These covariances are then arranged
into covariance matrices describing both the spatial and inter-constituent
correlations. Additional details on this procedure are outlined in SI Sec-
tions S14 and S15. Based on the spatial and inter-constituent covariance
matrices derived in the previous steps, a large block matrix representing the
process noise covariance matrix for the entire system is constructed, as shown
in Figure 9. In this figure,

∑
spatial-Ci is the spatial correlation matrix be-

tween computational elements for the ith constituent, and
∑

const-CiCj is the
inter-constituent correlation matrix between the ith and jth water quality
constituents at each spatial point.
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Inter-constituent correlation 
matrix between two constituents

Submatrices at the off-diagonal
of the block matrix
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n x n

(diagonal)
=

𝐶1
n x 1

𝐶2
n x 1

𝐶4
n x 1

𝐶𝑟
n x 1

𝐶3
n x 1

Inter-constituent
correlation

Inter-constituent
correlation
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n x n

𝛴𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝐶2

𝛴𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝐶3

𝛴𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝐶4

𝛴𝑠𝑝𝑎𝑡𝑖𝑎𝑙,𝑛𝑛

𝛴𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝐶𝑟

𝛴𝑐𝑜𝑛𝑠𝑡,𝐶1𝐶3
n x n

(diagonal)

𝛴𝑐𝑜𝑛𝑠𝑡,𝐶3𝐶1
n x n

(diagonal)

𝛴𝑐𝑜𝑛𝑠𝑡,𝐶2𝐶4
n x n

(diagonal)

𝛴𝑐𝑜𝑛𝑠𝑡,𝐶4𝐶2
n x n

(diagonal)

Process noise covariance matrix State variables𝑊𝑡 (4,002 x 4,002)

Conceptual structure of the proposed 
process noise covariance matrix

𝛴𝑠𝑝𝑎𝑡𝑖𝑎𝑙,𝑟𝑟 =

Spatial correlation matrix 
for constituent ‘r’

Submatrices at the diagonal 
of the block matrix

n x n

n x n

n x n

Figure 9: Building the system-wide process noise covariance matrix using the spatial and
inter-constituent correlation matrices. Where, n: number of the spatial computational
elements in the model = 174 in this study, r: number of modeling constituents = 23 from
C1 to C23

3.2.4. Spatial holdout assessment
We evaluate the improvement in model skill attributable to the proposed

DA scheme using a holdout assessment. Gage sites are first divided into
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Hydraulic simulation
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water depth
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System-wide

state estimation
(Kalman filter)

Data assimilation

Figure 10: Data assimilation procedure in EufoRiA

assimilation points (where DA is applied) and holdout points (which are
used only for evaluation). Sensor data are then assimilated into the model
at the selected subset of assimilation points and the estimated contaminant
concentrations are compared to measured contaminant concentrations at all
sites. This procedure is repeated for a successively increasing number of
assimilation points to determine how increasing the number of assimilated
gages improves model accuracy. This holdout analysis is repeated using both
the default (uncorrelated) process noise covariance matrix and the calibrated
(correlated) process noise covariance matrix to assess how the inclusion of
prior knowledge of correlations improves DA performance.
A total of 66 gage locations—37 in the mainstem of the Nakdong River

and 29 in the tributaries—are used for DA holdout assessment. We apply a
succession of 8 di!erent holdout cases, ranging from 8–66 assimilation points
(corresponding to 12–100% coverage), as shown in Figure 11. Case 0 rep-
resents the base scenario without DA application (model-only) and is not
included in Figure 11. In case 1, DA is applied to 8 locations representing
the weirs in the river mainstem. For cases 2 through 6, the number of as-
similation points successively increases from 15 points to 56 points. Finally,
in Case 7, all observed data from the 66 locations in the river network are
utilized for DA. Modeling skill is assessed in terms of a suite of performance
metrics as described in Section 3.3 (i.e., NSE, KGE, RMSE, and PBIAS).
For each holdout trial, we compute the mean of each performance metric
over all 66 gage locations.

3.3. Model performance evaluation metrics

We evaluate the performance of the multi-constituent water quality model
in terms of the Nash-Sutcli!e E”ciency (NSE), Kling-Gupta E”ciency (KGE),
Root Mean Squared Error (RMSE), and Percent Bias (PBIAS) performance
metrics. NSE yields values between negative infinity and 1, and when it is
greater than zero, the model can be considered a reasonable predictor (i.e.
better than using the observed mean). The Nash-Sutcli!e E”ciency (NSE)
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Case1: 8 points Case2: 15 points Case3: 25 points Case4: 35 points

Weirs: 8 Weirs: 8
Tributary: 7

Weirs: 8
Tributary: 7

Mainstream:10

Weirs: 8
Tributary: 17

Mainstream:10

Case5: 45 points Case6: 56 points Case7: 66 points

Weirs: 8
Tributary: 20

Mainstream:17
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Mainstream:28

Weirs: 8
Tributary: 29

Mainstream:29

Figure 11: Scenarios for the spatial holdout assessment

is calculated using the following equation:

NSE = 1→
∑N

i=1(Qobs,i →Qsim,i)2∑N
i=1(Qobs,i →Qobs)2

(11)

Where, Qobs,i is ith observed value, Qsim,i is ith simulated value, Qobs is a
mean of the observed values, and N is the number of observed data
The Kling-Gupta E”ciency (KGE) is calculated using the following equa-

tion [58]:

KGE = 1→
√

(r → 1)2 + (ϱ→ 1)2 + (ς → 1)2 (12)

Where, r is the Pearson correlation coe”cient between Qobs and Qsim, ϱ is
the ratio of the standard deviation of simulated values to the standard devi-
ation of observed values

(
ϱ = ωsim

ωobs

)
, ς is the ratio of the mean of simulated

values to the mean of observed values
(
ς = µsim

µobs

)
, φsim is the standard devi-

ation of the simulated values, φobs is the standard deviation of the observed
values, µsim is the mean of the simulated values, and µobs is the mean of the
observed values.
The Root Mean Squared Error (RMSE) and the percentage bias (PBIAS)

are computed as follows:

RMSE =

√∑N
t=1(Qobs,i →Qsim,i)2

N
(13)
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PBIAS =

∑N
i=1(Qobs,i →Qsim,i)∑N

i=1 Qobs,i

↑ 100 (14)

When the RMSE of the model results is close to zero, the model can be con-
sidered highly accurate. Additionally, a PBIAS of zero indicates an unbiased
model, while a positive PBIAS suggests that the model tends to underesti-
mate the observed values, and a negative PBIAS indicates that the model
tends to overestimate them.

4. Results

4.1. Model calibration and validation

To evaluate the model performance, simulation results without DA are
first compared against established criteria for NSE, KGE, and PBIAS in
watershed-scale water quality models. Ranges corresponding to satisfactory
and unsatisfactory model performance for di!erent constituents are shown
in Table 4 [59]. More specifically, we apply the criteria for Nitrogen (Daily)
and Phosphorus (Monthly) for NSE and KGE, and the criteria for Nutrients
(Monthly) for PBIAS.

Table 4: Performance evaluation criteria for watershed-scale water quality models [59]

Measure Component
Temporal

scale
Very Good Good Satisfactory

Not

satisfactory

NSE (KGE) Nitrogen, Phosphorus Monthly 0.65 < NSE 0.50 ↓ NSE ↓ 0.65 0.35 < NSE < 0.50 NSE ↓ 0.35

|PBIAS|(%) Nitrogen, Phosphorus Daily & Monthly |PBIAS|(%) < 15 15 < |PBIAS|(%) < 20 20 ↓ |PBIAS|(%) ↓ 30 30 < |PBIAS|(%)

Figures 12 and 13 show the model calibration and validation results at the
Changnyung-Haman (CH) weir, the most downstream weir in the Nakdong
River. We select this location because the model output at this point reflects
the accumulated uncertainties from numerous boundary input forcings as
well as the complexity of the model itself. For reference, we provide results
from other weirs in the Supplementary Information (SI) S18. According to
the results, percent biases for all evaluated constituents are mostly within
the range of ±10% with the exception of the calibration result for Chl-a,
indicating that there are no significant biases in the model results. The val-
idation results for water temperature, DO, TN, and TP show high accuracy
with NSE of 0.402–0.986, KGE of 0.619–0.964, while the validation results
of Chl-a and TOC show relatively lower accuracy with NSE of 0.272–0.305,
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KGE of 0.376–0.513 (Table 5). Model performance across all constituents is
comparable to results obtained from existing models in other studies (see SI
Section S17 for a detailed comparison).

4.1.1. Water temperature
As seen in Figure 12, the temperature simulation results (black line) show

excellent agreement with observed data (blue circle). Reproducing the spa-
tial and temporal temperature pattern is crucial for ensuring the reliability of
the river network water quality model because water temperature a!ects the
reaction rates of most biochemical processes. According to the results, NSE
values are 0.965 and 0.986, KGE are 0.926 and 0.964, RMSE are 1.604 and
1.011, and percent biases are +3.4% and -0.9% for the calibration and valida-
tion periods, respectively. According to the criteria in Table 4, these results
are classified as ‘very good’ (Table 5). It should be noted that a longer sim-
ulation period during calibration causes higher variability and fluctuations,
resulting in slightly lower performance across all metrics.
Water temperature in EufoRiA is a!ected by meteorological drivers, in-

cluding air temperature, dew point temperature, wind velocity, and solar
radiation, as well as hydraulic factors such as water flow rate and depth.
Given the complexity of the river network and input data, as well as the
significant depth and volume of the mainstream river channel (as shown in
Figure 7) that strongly a!ect the river’s heat balance, we conclude that Eufo-
RiA e!ectively represents key heat balance processes, ensuring reliable water
temperature modeling in impounded river networks like the Nakdong River.

4.1.2. Dissolved oxygen (DO)
After calibration, the model results for DO show good agreement with the

observed data, with NSE values of 0.483 and 0.402, KGE values of 0.757
and 0.761, RMSE values of 1.690 and 1.640, and percent biases of +9.2%
and +9.6% for the calibration and validation periods, respectively (Figures
12 and 13). These results can be assessed as ‘satisfactory’ to ‘very good’
performance in terms of NSE and KGE, and ‘very good’ performance in
terms of percent bias by applying the criteria for ‘Phosphorus’ in Table 4.
Dissolved oxygen (DO) plays a pivotal role in maintaining the natural self-

purification capacity of river ecosystems and acts as an electron acceptor
in the decomposition of organic matter and oxidation processes, such as in
the nitrification of ammonium (NH+

4 ) to nitrate (NO-
3). While reaeration

at the water surface is the key mechanism for recovering DO concentration
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in the water column, photosynthesis by phytoplankton also plays a critical
role in nutrient-rich river systems. Large weirs in the river also limit oxygen
exchange in the water column due to the increased water depth, resulting
in hypoxia at the bottom of the river channel. Although these factors may
a!ect the model results, in this study, we assume that the river channel is
well-mixed vertically and horizontally because EufoRiA is a one-dimensional
model. Even under this restriction, the model results show that EufoRiA
appropriately represents the DO dynamics and seasonal patterns in the com-
plicated river network of the Nakdong River.

4.1.3. Chlorophyll-a (Chl-a)
Most river water quality models such as EFDC, CAEDYM, QUAL2K, and

CE-QUAL-W2 o!er highly complicated algal growth models that incorporate
various nutrient concentrations (e.g., nitrate, ammonium, and phosphate)
and environmental drivers such as solar radiation, water temperature, and
water depth. As a result, modeling HABs in the large-scale river network
with high accuracy is typically extremely challenging work.
Considering these limitations and complexity, EufoRiA o!ers quite reason-

able Chl-a modeling results (Figures 12 and 13), with NSE values of -0.001
and 0.305, KGE of 0.137 and 0.376, RMSE of 15.973 and 12.442, and per-
cent biases of +13.1% and +7.2%, which are evaluated as ‘not satisfactory’
to ‘satisfactory’ in NSE and KGE, ‘very good’ in the percent bias. These
results are comparable to those achieved in other studies (see SI Section S17).
In EufoRiA, Chl-a is calculated based on the three algal groups—diatom,

green algae, and cyanobacteria. Even though these algal groups have dif-
ferent growth rates, optimal temperatures, and sensitivity to nutrient con-
centrations, we calibrate the model using only the observed value of Chl-a,
resulting in limited accuracy. To improve model results, more detailed ob-
servation for algal groups should be required in the future research.

4.1.4. Total nitrogen (TN)
The calibrated model results for TN show good agreement with the ob-

served data (Figures 12 and 13), with NSE values of 0.757 and 0.820, KGE
values of 0.773 and 0.753, RMSE values of 0.383 and 0.292, and percent biases
of +5.4% and +0.7% for the calibration and validation periods, respectively.
These results can be classified as ‘very good’ performance (Table 5).
Accurate estimation of nutrient sources like nitrogen and phosphorus is

crucial for reproducing the overall HAB dynamics at di!erent spatial and
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temporal scales. In EufoRiA, total nitrogen concentration is calculated as
the sum of nitrate, ammonium, particulate inorganic nitrogen, four organic
nitrogen groups, and internal nitrogen in three algal groups, rather than as
an individual constituent. After nitrogen compounds enter the system (i.e.,
river network), the only pathways for total nitrogen removal in the model
are settling and denitrification (SI S7). Excluding these two processes, total
nitrogen in the system can be considered a conservative substance, while the
relative composition among the above constituents continuously changes dur-
ing the modeling process. In other words, the remaining total nitrogen in the
system from the exogenous input loadings can be controlled by calibrating
the settling and denitrification rates. In addition, total nitrogen concentra-
tion is higher during the low flow season than high flow season because of the
impact of the nitrate in the base flow from groundwater discharge. We can
confirm that EufoRiA model results reproduce this temporal pattern with
reasonable accuracy.

4.1.5. Total phosphorus (TP)
The simulation results of TP show good agreement with observed data,

with NSE of 0.485 and 0.398, KGE of 0.515 and 0.619, RMSE of 0.018 and
0.015, and percent biases of -1.3% and -7.7% for calibration and validation
period, respectively (Figure 12 and 13). Applying the criteria in Table (Table
5), the results are evaluated as ‘satisfactory’ to ‘good’ in NSE and KGE, ‘very
good’ in percent bias. Considering the model’s complexity, uncertainties in
input forcings and model parameters, we confirm that this level of perfor-
mance metrics is reliable for the predicting the HABs in Nakdong River.
Phosphorus—especially phosphate as a reactive and soluble phosphorus—is

the major limiting factor for algal growth in the Nakdong River due to the
high background nitrogen concentration and the implementation of advanced
phosphorus removal technologies in the wastewater treatment process. Dur-
ing the low flow period, phosphorus from point sources controls the total
amount of available phosphorus for algal growth. However, during the high
flow season, phosphorus originating from non-point sources in watersheds
provides additional nutrients, resulting in summer HABs after rainfall events.
The model output in Figure 12 and 13 show that EufoRiA reliably reproduces
this seasonal pattern with satisfactory accuracy.
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Figure 12: Calibration (2013-2020) results at Changnyung Haman (CH) weir
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Figure 13: Validation results (2021-2022) at Changnyung Haman (CH) weir
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4.1.6. Total organic carbon (TOC)
TOC model outputs show relatively less accurate results compared to the

temperature, DO, and nutrients modeling results, with NSE of -0.019 and
0.272, KGE of 0.335 and 0.513, RMSE of 0.893 and 0.744, and percent biases
of -0.8% and -0.6% for calibration and validation periods, respectively. Ac-
cording to Table 5, these results are classified as ‘not satisfactory’ to ‘good’
for NSE and KGE, ‘very good’ for the percent bias. As noted previously,
these results are comparable to the performance of existing models (SI Sec-
tion S17).
EufoRiA does not explicitly simulate the conventional oxygen demands

such as BOD, CBOD, and COD because these quantities represent surro-
gate indicators to evaluate the oxygen demand reactions in the water, and
do not exist as real physical quantities. Although many studies have sought
to enhance modeling of these quantities, existing work has struggled to rep-
resent these quantities with satisfactory accuracy. Therefore, in this study,
we simulate only four di!erent organic carbon groups (i.e., LDOC, LPOC,
RDOC, and RPOC) instead of simulating BOD, CBOD, or COD in the
model. TOC model results also tend to correlate with Chl-a concentrations
(i.e., algal biomass) given that the organic carbons are produced by photo-
synthesis during algal growth process. Therefore, to enhance the accuracy of
TOC model results, the algal growth model accuracy must first be improved.

Table 5: Model calibration and validation results at the CH weir in the Nakdong-River:
model performance metrics–NSE, KGE, RMSE, and PBIAS – for representative water
quality constituents (We apply the criteria of daily nitrogen case in Table 4, and N.S. is
Not Satisfactory.)

NSE KGE RMSE PBIAS

Calibration Validation Calibration Validation Calibration Validation Calibration Validation

Temperature 0.965 0.986 0.926 0.964 1.604 1.011 +3.4% -0.9%

Assessment result Very good Very good Very good Very good - - Very good Very good

Dissolved Oxygen 0.483 0.402 0.757 0.761 1.690 1.640 +9.2% +9.6%

Assessment result Satisfactory Satisfactory Very good Very good - - Very good Very good

Chloropyll-a -0.001 0.305 0.137 0.376 15.973 12.442 +13.1% +7.2%

Assessment result N.S. N.S. N.S. Satisfactory - - Very good Very good

Total Nitrogen 0.757 0.820 0.773 0.753 0.383 0.292 +5.4% +0.7%

Assessment result Very good Very good Very good Very good - - Very good Very good

Total Phosphorus 0.485 0.398 0.515 0.619 0.018 0.015 -1.3% -7.7%

Assessment result Satisfactory Satisfactory Good Good - - Very good Very good

Total Organic Carbon -0.019 0.272 0.335 0.513 0.893 0.744 -0.8% -0.6%

Assessment result N.S. N.S. N.S. Good - - Very good Very good
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4.2. Improvement in performance attributable to Data Assimilation

While EufoRiA provides results that are comparable to existing water qual-
ity models under the model-only simulation case (Section 4.1), data assimi-
lation (DA) greatly improves the prediction performance by integrating ob-
servational data at in-stream locations into the numerical model. Analyzing
the improvement in KGE, NSE, PBIAS, and RMSE attributable to DA for
di!erent sensor coverage densities, DA is found to significantly improve esti-
mation performance in terms of all metrics considered, even under relatively
sparse sensor coverage. Estimation performance is found to further improve
when prior information on spatial and inter-constituent correlations is in-
corporated into the process noise covariance matrix. Sensors located along
the river mainstem are found to be most e!ective at improving estimation
performance relative to sensors located at smaller tributaries.

4.2.1. Model only vs. Data Assimilation (DA) applied simulation results
Based on the spatial holdout assessment described in Section 3.2.4, DA sig-

nificantly improves model performance for all constituents considered, and a
greater number of data assimilation locations leads to better estimation per-
formance. Figure 14 shows results for six representative constituents in terms
of improvement in KGE. Here, KGE is selected as a summary benchmark
due to its ability to simultaneously measure correlation, bias, and variance
of errors. In both the spatially correlated and uncorrelated cases, the mean
KGEs of all observed points are consistently enhanced as the number of DA
points increases from Case 1 (8 points, or 12% sensor coverage) to Case 7
(66 points, or 100% sensor coverage). Notably, even under Case 1—the sce-
nario with the smallest number of DA points—we observe significant KGE
improvements for all considered constituents, especially for total organic car-
bon and Chlorophyll-a. Under the model-only case, these two constituents
showed the poorest performance, with Chlorophyll-a obtaining an mean KGE
of 0.054 (‘Not Satisfactory’) over all gage locations, and TOC obtaining an
mean KGE of 0.255 (‘Not Satisfactory’). However, these results rapidly im-
prove as data is assimilated. For Case 1 (12% sensor coverage), TOC achieves
‘Satisfactory’ performance, with a mean KGE of 0.389 for the uncorrelated
case. By Case 3 (38% sensor coverage), TOC and Chlorophyll-a both achieve
‘Good’ performance, with mean KGEs of 0.492 and 0.419, respectively. Fi-
nally, by Case 6 (85% sensor coverage), TOC and Chlorophyll-a obtain ‘Very
Good’ performance, with mean KGEs of 0.632 and 0.614, respectively. These
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Figure 14: Result of the spatial holdout assessment based on the di!erent numbers of
data assimilation point scenarios

results indicate that DA enables accurate estimation of water quality con-
stituents that are otherwise di”cult to model even after extensive calibration.
Moreover, even with a small number of DA locations, the mean state estima-
tion results for the entire river network are significantly improved, especially
when the DA locations are selected in the portions of the river mainstem
that are impounded by weirs.
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In addition to KGE, DA improves estimation accuracy with respect to all
other performance metrics considered. Table 6 shows the mean NSE, KGE,
RMSE, and PBIAS metrics for six water quality constituents at all gauge
locations under the model-only case (Case 0) and DA-applied cases (Case 1,
Case 4, and Case 7). We highlight here the results for Case 4 (representing
53% sensor coverage) and Case 7 (representing 100% sensor coverage). Under
the model-only case, PBIAS ranges from 4.1–38% among constituents with a
mean value of 15%. By Case 4, PBIAS is reduced to 3.8–25% with a mean of
10% (achieving all ‘Good’ and ‘Very Good’ scores, except for Chlorophyll-a
which is ‘Satisfactory’). Finally, by Case 7 PBIAS ranges from 3.1–16% with
a mean of 7.3% (achieving all ‘Very Good’ scores except for Chlorophyll-a,
which remains ‘Satisfactory’). NSE scores are lower in general, but are still
substantially improved by DA, with NSE improving from -1.05–0.92 (mean
-0.01) under the model-only case, to -0.404–0.934 (mean 0.33) under Case
4, to 0.22–0.95 (mean 0.61) under Case 7 (achieving all ‘Good’ and ‘Very
Good’ scores, except for TOC which remains ‘Not Satisfactory’). In terms
of the overall error, RMSE is reduced by 15–39% under Case 4, and by
28–58% under Case 7. In summary, DA improves modeling skill for all per-
formance metrics considered, with the largest improvements again occurring
for di”cult-to-model constituents like TOC and Chlorophyll-a.

4.2.2. Impact of the process noise covariance matrix on DA performance
DA performance is further improved by incorporating prior knowledge on

spatial and inter-constituent correlations into the Kalman Filter’s process
noise covariance matrix. Based on the scenarios described in Section 3.2.4, we
compare the holdout results first assuming that process noise is uncorrelated
(i.e. using a diagonal process noise covariance matrix), and second assuming
that the process noise is correlated (i.e. using the process noise covariance
matrix introduced in Section 3.2.3). Figure 14 shows that incorporating prior
knowledge of spatial correlations consistently achieves better performance
under all considered scenarios and constituents. Comparing the results with
each spatially uncorrelated case, including spatial correlations in the process
noise covariance matrix shows percent improvements in KGE of 0.003–0.007
for temperature, 0.003–0.018 for DO, 0.007–0.090 for Chlorophyll-a, 0.006–
0.033 for total nitrogen, -0.002–0.041 for total phosphorus, and 0.009–0.037
for TOC under given DA scenarios. From these results, we confirm that
the proposed calibrated process noise covariance matrix, which considers the
correlations between the spatial locations based on the historical observed

36

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Table 6: Comparison between the Model-only simulation results vs. DA applied (spa-
tially uncorrelated) results: mean NSE, KGE, RMSE, and PBIAS for representative water
quality constituents at all gauge locations during the validation period (2021-2022)

Model-only DA Case 1 DA Case 4 DA Case 7 Performance Improvement
NSE (Max Absolute Change)
Temperature 0.918v 0.920v 0.934v 0.950v +0.032
Dissolved Oxygen 0.620v 0.644v 0.733v 0.810v +0.190
Chlorophyll-a -0.447n -0.160n 0.198n 0.580v +1.027
Total Nitrogen 0.247n 0.235n 0.497g 0.672v +0.425
Total Phosphorus -0.368n -0.319n 0.028n 0.438g +0.806
Total Organic Carbon -1.045n -0.822n -0.404n 0.217n +1.262
KGE (Max Absolute Change)
Temperature 0.908v 0.907v 0.917v 0.931v +0.023
Dissolved Oxygen 0.782v 0.793v 0.826v 0.858v +0.076
Chlorophyll-a 0.054n 0.247n 0.491g 0.709v +0.655
Total Nitrogen 0.566v 0.608v 0.720v 0.800v +0.234
Total Phosphorus 0.335s 0.371s 0.537g 0.710v +0.375
Total Organic Carbon 0.255s 0.389s 0.539g 0.683v +0.428
RMSE (Max Percent Change)
Temperature 2.050 1.979 1.748 1.482 -27.7%
Dissolved Oxygen 1.280 1.180 1.045 0.871 -32.0%
Chlorophyll-a 12.26 10.04 7.483 5.110 -58.3%
Total Nitrogen 0.554 0.524 0.409 0.328 -40.8%
Total Phosphorus 0.022 0.020 0.015 0.011 -50.0%
Total Organic Carbon 0.990 0.869 0.701 0.538 -45.7%
PBIAS (Max Percent Change)
Temperature 4.127v 4.516v 3.812v 3.140v -23.9%
Dissolved Oxygen 5.743v 4.956v 4.388v 3.585v -37.6%
Chlorophyll-a 38.34n 31.99n 25.18s 15.92s -58.5%
Total Nitrogen 9.181g 8.933v 6.028v 4.536v -50.6%
Total Phosphorus 16.73s 16.62s 11.47g 8.378v -50.0%
Total Organic Carbon 15.07s 14.42g 11.65g 8.173v -45.8%

v: very good; g: good; s: satisfactory; n: not satisfactory

water quality data, significantly enhances the Kalman Filter’s overall state
estimation performance.

4.2.3. Spatial analysis of DA performance improvements
We observe that the DA impacts tend to disappear more quickly for tribu-

taries with small water volumes and short retention times. This result likely
occurs because the water quality at a specific location along the river chan-
nel is immediately a!ected by advection both from the upstream reach and
into the downstream reach. Collecting more detailed observational data at
locations with large water volumes like reservoirs and river mainstems will
thus generally result in greater temporal persistence of DA corrections and
improved model skill. Figure 15 shows this tendency in the mainstem and
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tributaries. While the mainstem river channel shows clearer performance en-
hancements between the model-only and DA applied cases, in the tributaries,
the modifications of KGE are relatively small compared to the mainstem lo-
cations.
The spatial map of improvements in KGE for each constituent shown in

Figure 15 clearly reflect the di!erence in DA e!ectiveness between main
channel and tributary locations. More specifically, KGE enhancement in
the mainstem and tributary locations are -0.04–0.121 and -0.007–0.056 for
the temperature, 0.017–0.255 and 0.013–0.099 for DO, 0.018–1.209 and -
0.005–1.347 for Chl-a, 0.066–0.699 and 0.014–0.523 for TN, 0.105–2.444 and
0.013–0.973 for TP, and 0.062–1.123 and -0.003–0.723 for TOC, respectively.
Considering these results, it is a better strategy to choose locations for data
assimilation in mainstem rivers or reservoirs within river networks that have
substantial storage volumes, in order to enhance model performance under
data-scarce conditions.

5. Discussion

5.1. Novel open-source-based river water quality model for online applications

For better management of water quality and HABs in river systems, water
managers and researchers need e!ective online models with data assimilation
capabilities. This study presents EufoRiA, which is to our knowledge the
first comprehensive online water quality model for large river networks that
combines full unsteady hydraulics, complex nutrient and HAB dynamics, and
data assimilation capabilities. This framework enables online modeling and
forecasting of HABs at the river network scale, with the ultimate goal of
enabling water managers to proactively improve water quality and reduce
HAB outbreaks via real-time control of hydraulic structures such as weirs,
dams, and small-scale detention facilities [60].
Additionally, the open-source nature of our model facilitates active modi-

fication and extension, providing a general framework that may be tailored
to specific real-world use cases. For instance, new reaction kinetics such as
bottom nutrient exchange in the hyporheic zone or additional reaction terms
for existing constituents in the model can be readily extended by adding new
modules into the base model. Given its extensibility, we expect that EufoRiA
provides a feasible and reliable software toolkit to build comprehensive online
modeling systems for water quality management at the watershed scale.
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Figure 15: Change of the KGE at the all observation points based on the di!erent
numbers of data assimilation point scenarios: Physics-based model only (Base scenario)
vs. 66 points data assimilation (Case 7 scenario), and KGE enhancement between two
scenarios
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5.2. Selection of the target modelling constituents and extensibility

The selection of water quality constituents in physics-based models depends
on the specific objectives of water quality or ecological modeling. While many
comprehensive models for rivers, lakes, and oceans incorporate highly com-
plex water quality reaction kinetics to address various potential reactions
in aquatic systems, highly complex models typically introduce greater uncer-
tainty due to insu”cient measurement data for input and verification, poorly
understood biochemical processes, and the inherent heterogeneity of water
systems [61]. Furthermore, increasing model complexity usually demands
greater computational resources.
Therefore, a careful selection of model constituents is essential. For in-

stance, the CAEDYM model represents one of the most sophisticated and
advanced water quality and ecological models encompassing the eutrophica-
tion process. This model incorporates seven algal groups, five zooplankton
groups, a jellyfish, five fish groups, a pathogen, a bacteria, four epiphyte
groups, a seagrass, and three invertebrate groups, alongside fundamental nu-
trient kinetics [21]. However, given its complexity and the typical scarcity
of measurement data, simultaneous modeling of these ecological processes
without elaborately designed monitoring programs for specific purposes is
typically infeasible in most practical implementations.
In this regard, EufoRiA omits relatively less influential constituents and

interactions for HABs modelling. For instance, EufoRiA does not simulate
constituents such as pH, alkalinity, conductivity, dissolved and particulate
organic carbon, BOD, CBOD, COD, epiphyton, macrophyte, or zooplank-
ton. In addition, while some researchers emphasize the importance of the
hyporheic zone in nutrient cycling of river systems, EufoRiA does not yet
include active interactions between river channels and bottom sediments.
Including these additional components in the model would require further
calibration and validation datasets, which are often unavailable in public pe-
riodic monitoring data. As discussed in Section 5.1, modifying the source
code is always feasible and straightforward when calibration data becomes
available. Therefore, we reserve these model extensions for future research.

5.3. Model performance and accuracy of EufoRiA: the necessity of DA meth-
ods

The new multi-constituent water quality model shows reasonable perfor-
mance despite the fact that the chosen study area includes multiple natural
and anthropogenic pollutant sources, complex interactions with hydraulic
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infrastructure, and a large and heterogeneous river network model spanning
nearly 24,000 km2. While the simulation results for temperature, DO, nitro-
gen, and phosphorus show good agreement with the observed data, results
for Chl-a and TOC are less accurate. The relatively low modeling accuracy
for these quantities is caused by the inherent complexity in their reaction
dynamics, which are subject to a large variety of environmental drivers such
as meteorological conditions, nutrient levels and availability, and hydraulic
conditions in the river channel. Researchers have applied various numerical
models to assess and evaluate river water quality and algal bloom dynamics.
However, accurate prediction of algal bloom dynamics is still highly challeng-
ing when using physics-based numerical models alone. Our results confirm
the limitation of this model-only approach. To address this issue, we propose
the integration of data assimilation methods to incorporate real-time sensor
data into physics-based nutrient and HAB models. By incorporating real-
time water quality observations into physics-based models, data assimilation
enables more reliable prediction of highly uncertain constituents including
Chl-a and TOC. Based on the results in Section 4.2.1, we conclude that
model results after applying the DA method show much better performance
compared to the model-only simulation results.

5.4. Integration of prior knowledge into DA process noise model

This study introduces a new method to improve DA performance by spec-
ifying the Kalman Filter’s process noise model based on historical observa-
tions. Given that watershed-scale nutrient modeling is highly uncertain with
a large number of degrees of freedom, it is crucial to ensure model accu-
racy based on all available knowledge about the target surface water system.
The two major sources of uncertainty that are represented with the Kalman
Filtering framework include measurement error (e.g. sensor noise) and mod-
eling error (e.g. uncertainty in model parameters and exogenous inputs).
While measurement error can be readily characterized from sensor manu-
facturer specifications, model uncertainty is much more di”cult to quantify,
given that model parameters and nutrient inputs to the river network are
generally unknown. For this reason, the model uncertainty (process noise) is
often taken to be uncorrelated by default. However, our findings show that
incorporating observed correlations into the process noise covariance matrix
significantly improves predictive performance of the model. The process noise
covariance is thus a crucial parameter for obtaining accurate model results,
and should be calibrated using all available data where possible.
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5.5. Limitations and future research directions

Improvement of biochemical reaction kinetics and model structure
As discussed in the previous section, we ignore several biochemical and

physical relationships such as nutrient exchange with underlying sediment
layers, complicated sorption/desorption of nutrients, and additional con-
stituents like zooplankton. Depending on the circumstances of the applied
water body, these reactions may be critical factors for modeling of nutrients
and harmful algal blooms. Model users must carefully consider the appli-
cability of the EufoRiA model in light of the most relevant dynamics for
their particular use case. In addition, this version of EufoRiA uses one-
dimensional rectangular cross-sections for river channels. To represent more
complex phenomena caused by thermal and density stratification in deep
reservoirs, additional methods are needed to simulate stratification within
computational elements. Furthermore, representation of more complicated
channel cross-sectional geometries may provide more reliable model results.

Computational performance
The computational speed of EufoRiA is su”cient for real-time modeling

of large river networks, but may pose a constraint for applications requir-
ing large numbers of model runs such as model calibration, multi-scenario
analysis, or real-time control. For the Nakdong river case study, the model
requires roughly 1 hour for a 1-year simulation without data assimilation,
and 5-6 times longer when DA is applied with hourly updates. For a 1-week
forecast, this means the model requires about 1-2 minutes without DA, and
10-15 minutes with DA (using 13th Gen Intel Core i9-13900K CPU). This
performance makes our model a practical choice for online modeling of large
river basins. However, for applications like model predictive control, which
require repeated calculations over an ensemble of scenarios, improvements to
model speed may be required.

Application cases in real-world river networks
Because EufoRiA is a newly-developed model, there is currently a lack of

case studies that demonstrate the applicability of the model across di!erent
climates, ecosystems, and nutrient loading scenarios. Additional case studies
are needed to assess the model’s performance under di!erent use cases and
accumulate results and insights from these experiences.
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Coupled simulation with a rainfall-runo! model in watershed scale
Although EufoRiA o!ers highly sophisticated nutrient and HAB dynamics

modeling within river networks, its capabilities remain restricted to the river
channel. While point source pollution is represented through specific bound-
ary inputs, most non-point source pollutants originate from the upstream
watershed. Therefore, a separate watershed pollutant runo! and loading
module is needed to fully integrate hydrology and pollutant dynamics at the
watershed scale while incorporating relevant transport paths such as over-
land flow, interflow, groundwater baseflow. Most basin-scale rainfall-runo!
and water quality models, such as SWAT, HSPF, and SWMM, follow a semi-
distributed approach, incorporating both watershed runo! and river routing
components. Similarly, integrating a hydrologic module into EufoRiA would
enable more e!ective management of river basins that are impacted by both
point and nonpoint-source pollutants.

6. Conclusion

This study introduces EufoRiA, an open-source physics-based model de-
signed for online nutrient and HAB modeling in large regulated river basins.
Featuring a hydraulic model based on the Saint-Venant equations, a contam-
inant transport model based on the unsteady advection-di!usion equation, a
coupled reaction kinetics model incorporating 23 water quality constituents,
and an e”cient data assimilation scheme based on Extended Kalman Fil-
tering, EufoRiA is designed to enable real-time simulation and management
of nutrient cycling and eutrophication dynamics at the river basin scale.
Validating EufoRiA against long-term water quality observations from the
Nakdong river basin in South Korea, the model demonstrates good perfor-
mance in reproducing observed water quality, with high accuracy for tem-
perature, DO, TN, and TP, and relatively less accurate results for Chl-a
and TOC, although performance is comparable to existing modeling stud-
ies. Applying data assimilation to fuse water quality measurements into the
model drastically improves forecasting skill for all performance metrics con-
sidered. A spatial holdout assessment confirms that performance improve-
ments attributable to DA persist even under relatively sparse sensor coverage.
Moreover, we show that calibrating the process noise covariance matrix to
incorporate historically observed spatial and inter-constituent correlations
significantly improves state estimation performance.
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EufoRiA provides a foundation for future digital twin models of river net-
works that will enable online simulation of nutrient and eutrophication dy-
namics. Towards this end, EufoRiA integrates a fully open-source software
framework; advanced physics-based modeling of unsteady hydraulics, con-
taminant fate and transport, and multispecies reaction kinetics; and an e”-
cient watershed-scale data assimilation scheme based on Extended Kalman
Filtering that continuously updates the process model based on real-time ob-
served data. However, further enhancements focusing on computational e”-
ciency optimization, accuracy improvements for complex organic constituents
like Chl-a and TOC, and integration with watershed runo!models are needed
to enable a more holistic water management system. Through these e!orts,
we expect that EufoRiA will serve as an e!ective tool for water quality man-
agement in regulated river basins, helping water managers address the signif-
icant challenges of water quality deterioration and HABs caused by climate
change.
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S1. Definition of the state variables and parameters

Table S1: State variables including hydraulics and water quality constituents in
EufoRiA (1)

Variable Description Unit

Tw Water temperature ↓C

Asurface Surface area of the control volume m2

Abottom Bottom area of the control volume m2

V Volume of the control volume m3

H Average hydraulic depth m

CDO Dissolved oxygen concentration mg/L

CDO,sat Saturation DO concentration mg/L

CDO DO concentration mg/L

CAlg,Diatom Algal concentration of Diatom mg/L

CAlg,Green Algal concentration of Green algae mg/L

CAlg,Cyano Algal concentration of Cyanobacteria mg/L

CLDOC Labile dissolved organic carbon concentration mg/L

CLPOC Labile particulate organic carbon concentration mg/L

CRDOC Refractory dissolved organic carbon concentration mg/L

CRPOC Refractory particulate organic carbon concentration mg/L

CNH4 Ammonium concentration mg/L

CNO3 Nitrate (NO3-N+NO2-N) concentration mg/L
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Table S2: State variables including hydraulics and water quality constituents in
EufoRiA (2)

Variable Description Unit

CPIN Particulate inorganic nitrogen concentration mg/L

CLDON Labile dissolved organic nitrogen concentration mg/L

CLPON Labile particulate organic nitrogen concentration mg/L

CRDON Refractory dissolved organic nitrogen concentration mg/L

CRPON Refractory particulate organic nitrogen concentra-
tion

mg/L

CPO4 Phosphate concentration mg/L

CPIP Particulate inorganic phosphorus concentration mg/L

CLDOP Labile dissolved organic phosphorus concentration mg/L

CLPOP Labile particulate organic phosphorus concentration mg/L

CRDOP Refractory dissolved organic phosphorus concentra-
tion

mg/L

CRPOP Refractory particulate organic phosphorus concen-
tration

mg/L

CISS Inorganic suspended solids concentration mg/L
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Table S3: Parameters related to the biochemical reactions in EufoRiA (1)

Parameter Description Unit Applied
Value

KSOD Sediment oxygen demand (SOD) mg/m2/day
0.12–
0.50

K1SOD K1 parameter for the temperature
multiplier for SOD

- 0.01

K2SOD K2 parameter for the temperature
multiplier for SOD

- 0.99

T1SOD T1 parameter for the temperature
multiplier for SOD

- 0.0

T2SOD T2 parameter for the temperature
multiplier for SOD

- 23.0

εNH4↑N Oxygen stoichiometric coe”cient for
nitrification

- 4.57

εOC Oxygen stoichiometric coe”cient for
organic carbon

- 0.3

εag,Diatom Oxygen stoichiometric coe”cient for
algal growth for Diatom

- 1.7

εag,Green Oxygen stoichiometric coe”cient for
algal growth for Green algae

- 1.7

εag,Cyano Oxygen stoichiometric coe”cient for
algal growth for Cyanobacteria

- 1.7
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Table S4: Parameters related to the biochemical reactions in EufoRiA (2)

Parameter Description Unit Applied
Value

KChl,Diatom Algal biomass (mg/L) to Chlorophyll-a
(mg/m3) ratio of diatom

- 0.07

Kag,max,DiatomMaximum algal growth rate of diatom 1/day 4.75
Kar,max,DiatomMaximum algal respiration rate of diatom 1/day 0.019
Kam,max,DiatomMaximum algal mortality rate of diatom 1/day 0.019
Kae,max,DiatomMaximum algal excretion rate of diatom 1/day 0.019
Ks,Diatom Settling rate of diatom 1/day 0.01
K1Diatom K1 parameter for the temperature multi-

plier for diatom
- 0.50

K2Diatom K2 parameter for the temperature multi-
plier for diatom

- 0.99

K3Diatom K3 parameter for the temperature multi-
plier for diatom

- 0.99

K4Diatom K4 parameter for the temperature multi-
plier for diatom

- 0.01

T1Diatom T1 parameter for the temperature multi-
plier for diatom

- 0.01

T2Diatom T2 parameter for the temperature multi-
plier for diatom

- 6.0

T3Diatom T3 parameter for the temperature multi-
plier for diatom

- 10.0

T4Diatom T4 parameter for the temperature multi-
plier for diatom

- 11.0

εC,Diatom Stoichiometric equivalent between algal
biomass and carbon for green diatom

- 0.6

εN,Diatom Stoichiometric equivalent between algal
biomass and nitrogen for green diatom

- 0.08

εP,Diatom Stoichiometric equivalent between algal
biomass and phosphorus for diatom

- 0.005
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Table S5: Parameters related to the biochemical reactions in EufoRiA (3)

Parameter Description Unit Applied

Value

KChl,Green Algal biomass (mg/L) to Chlorophyll-a
(mg/m3) ratio for green algaes

- 0.07

Kag,max,Green Maximum growth rate of green algae 1/day 2.55

Kar,max,Green Maximum respiration rate of green algae 1/day 0.019

Kam,max,Green Maximum mortality rate of green algae 1/day 0.019

Kae,max,Green Maximum excretion rate of green algae 1/day 0.019

Ks,Green Settling rate of green algae 1/day 0.005

K1Green K1 parameter for the temperature multi-
plier for green algae

- 0.01

K2Green K2 parameter for the temperature multi-
plier for green algae

- 0.99

K3Green K3 parameter for the temperature multi-
plier for green algae

- 0.99

K4Green K4 parameter for the temperature multi-
plier for green algae

- 0.01

T1Green T1 parameter for the temperature multi-
plier for green algae

- 14.0

T2Green T2 parameter for the temperature multi-
plier for green algae

- 16.0

T3Green T3 parameter for the temperature multi-
plier for green algae

- 18.0

T4Green T4 parameter for the temperature multi-
plier for green algae

- 22.0

εC,Green Stoichiometric equivalent between algal
biomass and carbon for green algae

- 0.6

εN,Green Stoichiometric equivalent between algal
biomass and nitrogen for green algae

- 0.08

εP,Green Stoichiometric equivalent between algal
biomass and phosphorus for green algae

- 0.005
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Table S6: Parameters related to the biochemical reactions in EufoRiA (4)

Parameter Description Unit Applied

Value

KChl,Cyano Algal biomass (mg/L) to Chlorophyll-a
(mg/m3) ratio

- 0.07

Kag,max,Cyano Maximum growth rate of Cyanobacteria 1/day 3.45

Kar,max,Cyano Maximum respiration rate of Cyanobacte-
ria

1/day 0.019

Kam,max,CyanoMaximum mortality rate of Cyanobacteria 1/day 0.019

Kae,max,Cyano Maximum excretion rate of Cyanobacteria 1/day 0.019

K1Cyano K1 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 0.01

K2Cyano K2 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 0.99

K3Cyano K3 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 0.99

K4Cyano K4 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 0.05

T1Cyano T1 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 20.0

T2Cyano T2 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 25.0

T3Cyano T3 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 28.0

T4Cyano T4 parameter for calculating the temper-
ature multiplier for Cyanobacteria

- 32.0

εC,cyano Stoichiometric equivalent between algal
biomass and carbon for cyanobacteria

- 0.6

εN,cyano Stoichiometric equivalent between algal
biomass and nitrogen for cyanobacteria

- 0.08

εP,cyano Stoichiometric equivalent between algal
biomass and phosphorus for cyanobacteria

- 0.005

S-6

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Table S7: Parameters related to the biochemical reactions in EufoRiA (5)

Parameter Description Unit Applied

Value

KLDOC Labile dissolved organic carbon decay
rate

1/day 0.002

KLPOC Labile particulate organic carbon decay
rate

1/day 0.002

KRDOC Refractory dissolved organic carbon de-
cay rate

1/day 0.002

KRPOC Refractory particulate organic carbon de-
cay rate

1/day 0.002

KLDOC↔RDOC Decomposition rate from labile to refrac-
tory DOC

1/day 0.01

KLPOC↔RPOC Decomposition rate from labile to refrac-
tory POC

1/day 0.01

Ks,LPOC Settling coe”cient for LPOC m/day 0.002

Ks,RPOC Settling coe”cient for RPOC m/day 0.002

KNH4 Nitrification rate 1/day 0.18

K1NH4 K1 parameter for calculating the temper-
ature multiplier for nitrification

- 0.05

K2NH4 K2 parameter for calculating the temper-
ature multiplier for nitrification

- 0.99

T1NH4 T1 parameter for calculating the temper-
ature multiplier for nitrification

- 0.01

T2NH4 T2 parameter for calculating the temper-
ature multiplier for nitrification

- 15.0

KNO3 Denitrification rate 1/day 0.012

K1NO3 K1 parameter for calculating the temper-
ature multiplier for denitrification

- 0.0001

K2NO3 K2 parameter for calculating the temper-
ature multiplier for denitrification

- 0.99

T1NO3 T1 parameter for calculating the temper-
ature multiplier for denitrification

- 10.0

T2NO3 T2 parameter for calculating the temper-
ature multiplier for denitrification

- 20.0

Ks,NO3 Settling coe”cient for nitrate m/day 0.000

S-7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Table S8: Parameters related to the biochemical reactions in EufoRiA (6)

Parameter Description Unit Applied

Value

Ks,PIN Settling coe”cient for particulate inor-
ganic nitrogen

m/day 0.005

PNH4 Ammonium preference factor by NH4 and
NO3 concentration

- 0.000

Pd,N Portion factor when algae decay to LDON - 0.5

KLDON Labile dissolved organic nitrogen decay
rate

1/day 0.02

KLPON Labile particulate organic nitrogen decay
rate

1/day 0.02

KRDON Refractory dissolved organic nitrogen de-
cay rate

1/day 0.02

KRPON Refractory particulate organic nitrogen
decay rate

1/day 0.02

KLDON↔RDONDecomposition rate from labile to refrac-
tory DON

1/day 0.02

KLPON↔RPON Decomposition rate from labile to refrac-
tory PON

1/day 0.02

Ks,LPON Settling coe”cient for LPON m/day 0.002

Ks,RPON Settling coe”cient for RPON m/day 0.002

Pd,P Portion factor when algae decays to
LDOP

- 0.6

Kads,PIP Adsorption coe”cient to PIP 1/day 0.02

Kdes,PIP Desorption coe”cient from PIP 1/day 0.005

Ks,PIP Settling coe”cient for PIP m/day 0.05

KLDOP Labile dissolved organic phosphorus de-
cay rate

1/day 0.015

KLPOP Labile particulate organic phosphorus de-
cay rate

1/day 0.015

KRDOP Refractory dissolved organic phosphorus
decay rate

1/day 0.015

KRPOP Refractory particulate organic phospho-
rus decay rate

1/day 0.015
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Table S9: Parameters related to the biochemical reactions in EufoRiA (7)

Parameter Description Unit Applied

Value

KLDOP↔RDOP Decomposition rate from labile to refrac-
tory DOP

1/day 0.01

KLPOP↔RPOP Decomposition rate from labile to refrac-
tory POP

1/day 0.01

Ks,LPOP Settling coe”cient for LPOP m/day 0.04

Ks,RPOP Settling coe”cient for RPOP m/day 0.04

Kh,N,Diatom Half saturation coe”cient of nitrogen for
Diatom

mg/L 0.1

Kh,N,Green Half saturation coe”cient of nitrogen for
Green algae

mg/L 0.1

Kh,N,Cyano Half saturation coe”cient of nitrogen for
cyanobacteria

mg/L 0.1

Kh,NH4 Half saturation coe”cient for ammonium mg/L 0.1

Kh,P,Diatom Half saturation coe”cient of nitrogen for
Diatom

mg/L 0.001

Kh,P,Green Half saturation coe”cient of nitrogen for
Green algae

mg/L 0.001

Kh,P,Cyano Half saturation coe”cient of nitrogen for
Cyanobacteria

mg/L 0.001

Kh,PIP Half saturation coe”cient for adsorption
to PIP

mg/L 0.005
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S2. Review of the existing models focusing on the biochemical re-
actions

Based on a literature review of widely used existing models (QUAL2K,
EFDC, CAEDYM, and CE-QUAL-W2), we include the most essential con-
stituents, such as temperature, dissolved oxygen, organic and inorganic nu-
trients (N, P, C), and algal groups (Green, Diatom, and Cyanobacteria) in
EufoRiA.
The Environmental Fluid Dynamics Code (EFDC) is a surface water mod-

eling system that includes three-dimensional hydrodynamics and a water
quality model. This model was first developed at the Virginia Institute of
Marine Science (VIMS) and has been applied to hundreds of water bodies,
including lakes, estuaries, oceans, and rivers worldwide. For water quality
modeling, the initial approach involved coupling EFDC’s hydrodynamic code
with the external water quality model, WASP. Later, a fully integrated code
was developed based on the nutrient and sediment kinetics equations of the
CE-QUAL-ICM model [22].
The Computational Aquatic Ecosystem Dynamics Model (CAEDYM) is

one of the most comprehensive and complex water quality and ecological
models, incorporating various nutrients, algae, epiphyton, macrophytes, and
higher organisms such as fish. CAEDYM requires an external three-dimensional
hydrodynamics model, the Estuary, Lake, and Coastal Ocean Model (EL-
COM) [21]. In Korea, the ELCOM-CAEDYM model is implemented as a
reservoir model for K-water’s integrated water quality modeling system, par-
ticularly due to its strong capability to reproduce thermal stratification in
density-stratified lakes.
CE-QUAL-W2 is a two-dimensional vertical hydrodynamics and water

quality model actively maintained by the USACE and the Water Quality
Research Group at Portland State University. The latest version of this
model was released on February 11, 2023, [23]. It has been applied to nu-
merous rivers and reservoirs in various countries. In Korea, K-water utilizes
this model as a river model for major large rivers and their tributaries.
QUAL2E is one of the most widely used water quality models. Its long de-

velopment history and numerous application cases make it a reliable choice
for solving water quality problems. QUAL2K is the latest version of the
QUAL series model, providing fundamental biochemical reaction kinetics
for one-dimensional river networks. Since our EufoRiA model also incor-
porates one-dimensional river networks, reviewing the reaction relationships
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presented by QUAL2K is necessary and valuable [18].
There are some controversial di!erences in reaction kinetics among existing

models, particularly in how each model handles organic matter. For example,
in the EFDCmodel, algal mortality increases organic matter groups—including
labile and refractory forms—regardless of whether they are dissolved or par-
ticulate [22]. However, in the CE-QUAL-W2 and CAEDYM models, algal
mortality results in an increase only in labile dissolved and particulate or-
ganic matter.
Regarding the transformation of organic matter, the CAEDYM model al-

lows labile particulate organic matter to decompose into labile dissolved or-
ganic matter, while refractory particulate organic matter decays into refrac-
tory dissolved organic matter. In contrast, the CE-QUAL-W2 model permits
labile dissolved and particulate organic matter to decompose into refractory
dissolved and particulate organic matter. Additionally, the EFDC model fol-
lows a slightly di!erent reaction scheme for organic matter. QUAL2K, on the
other hand, uses a relatively simple approach to simulate organic nutrients
[18]. In EufoRiA, we adopt the organic matter kinetics of the CE-QUAL-W2
model (Figure S1).
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Figure S1: Comparison of the organic and nutrient cycle between models
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S3. Limitations of existing models

Existing physics-based HABmodels like CE-QUAL-W2, EFDC, and CAEDYM
are primarily applied to individual river channels, estuaries, reservoirs, and
oceans as opposed to river networks consisting of multiple interconnected
reaches. These models focus on accurately capturing the stratification of
heat, nutrient, and algae concentrations within these large waterbodies, which
requires computationally-intensive 2D or 3D simulations. However, in com-
plex river networks consisting of shallow and well-mixed streams, higher-
dimensional models face challenges such as numerical instability due to rapidly
changing dry and wet conditions, the need for small time steps, and di”culty
in representing irregular horizontal and depth grids under complicated river
bathymetry. Given these limitations, 1D models often present a more practi-
cal solution for simulation of water quality dynamics at the watershed scale.
However, existing 1D models feature simplified hydraulics that limit their
applicability in managed river basins that are a!ected by backwater e!ects
and hydraulic controls. QUAL2K—the most widely applied 1D model—is
a steady-state model and thus does not account for unsteady flow induced
by storm events or controlled hydraulic structures like movable weirs [18].
While HSPF supports unsteady flow, its unidirectional kinematic wave rout-
ing scheme does not capture backwater e!ects created by impoundments,
making it poorly-suited to studying the e!ects of hydraulic controls in regu-
lated river basins. In summary, there is a strong need for a watershed-scale
nutrient and HABs model that accounts for both unsteady hydraulics and
multi-constituent contaminant fate and transport.
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S4. Water Temperature

In EufoRiA, we adopt the full heat balance model in the existing models
including QUAL2K and CE-QUAL-W2 ([18], [20]). Most theoretical back-
grounds and equations are referenced and refined from these models.

S4.1. Transport model of the water temperature

We can express the advection-di!usion transport of water temperature us-
ing the following equation. In the modeling process, temperature is simulated
as an arbitrary constituent.

ωATw

ωt
=

ω

ωx

(
DA

ωTw

ωx

)
→ ωQTw

ωx
+ source/sink (S.1)

Where, D is the di!usion coe”cient (m2/sec), A is the cross-sectional area
of links (m2), Q is the flow rate (m3/sec).

S4.2. Heat balance of the water column

The QUAL2K documentation [18] provides detailed heat balance relation-
ships and equations for a one-dimensional river model. Since this study does
not aim to develop a heat exchange model, we adopted a similar approach
for water temperature modeling.
In open channels that interact with the atmosphere and solar radiation,

the temperature change within a control volume V can be calculated using
the following relationship. This calculation is performed separately from the
transport equation:

AsurfaceJtotal = ↼CpV
dTw

dt
(S.2)

Where Jtotal is the total heat flux through the surface area of the control vol-
ume (W/m2), ↼ is the water density (g/cm3), Cp is the specific heat capacity
of water, and V is the control volume (m3). In temperature modeling of river
channels, the variations in water density and specific heat with temperature
are negligible. Therefore, we assume that ↼ = 1 g/cm3 and Cp = 1 (i.e. we
ignore these terms in the model.).
The total heat flux consists of both radiative and non-radiative compo-

nents (QUAL2K documentation, 2008). These components include net solar
shortwave radiation (Jsn), net atmospheric longwave radiation (Jan), long-
wave back radiation from the water (Jbr), conduction and convection (Jc),
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evaporation and condensation (Je), and sediment heat exchange (Js). The
total heat flux can be expressed as follows (Figure S2).

Jtotal = Jsn + Jan → Jbr → Jc → Je + Js (S.3)

Water column
Atmosphere 𝐽𝑠𝑛 𝐽𝑎𝑛 𝐽𝑏𝑟 𝐽𝑐 𝐽𝑒

𝐽𝑠

Solar
shortwave

Riverbed sediment

Atmospheric
longwave

Net absorbed radiation

Water
longwave

Conduction
Convection

Evaporation
Condensation

Radiation terms

Heat exchange

Non radiation terms

Figure S2: Total heat balance model for water temperature modeling

Table S10: Comparison of water temperature model between models

Reaction
EFDC

(3-D)

CAEDYMb

(3-D)

CE-QUAL-W2

(2-D)

QUAL2K

(1-D)

EufoRiA

(1-D)
Functionsa Method

Solar shortwave radiation(+) ↭ ↭ ↭ ↭ ↭ f(I) -

Atmospheric longwave radiation(+) ↭ ↭ ↭ ↭ ↭ f(Tair, eair) 4th-order

Water longwave radiation(–) ↭ ↭ ↭ ↭ ↭ f(Tw) 4th-order

Conduction/convection(+,–) ↭ ↭ ↭ ↭ ↭ f(Tw, Tair, uwind) 1st-order

Evaporation/condensation(+,–) ↭ ↭ ↭ ↭ ↭ f(uwind, es, eair) zero-order

Sediment heat exchange(+,–) ↭ ↭ ↭ ↭ ↭ f(Tw, Tsed) 1st-order

Ice formation/melt(+,–) ↭ - ↭ - - f(Tw, Tice, etc.) 1st-order

a Where, I is solar radiation intensity (W/m2), Tair is the air temperature, uwind is the wind velocity
(m/s), eair is the vapor pressure of the atmosphere (mmHg), Tsed is the riverbed sediment temperature,
and Tice is the ice temperature.

S4.3. Calculation of heat flux terms

S4.3.1. Net solar shortwave radiation, Jsn
In EufoRiA, because we directly apply the solar radiation measurement

data from KMA (Korea Meteorological Administration), our model does not
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include the equations described in QUAL2K [18], to estimate net solar short-
wave radiation from extraterrestrial radiation and cloud cover data.

S4.3.2. Atmospheric longwave radiation, Jan
Because the atmosphere has own temperature, it emits longwave radiation

according to the Stefan-Boltzmann law, contributing to heat inflow into the
water body. This term accounts for the attenuation e!ect of the atmosphere
and the reflectance of the water surface [18], [63]:

Jan = φ(Tair + 273.15)4(A+ 0.031
↔
eair)(1→RL) (S.4)

where φ is the Stefan-Boltzmann constant (= 11.7↑ 10↑8 cal/(cm2dK4)),
Tair is the air temperature (↓C), A is an empirical coe”cient (ranging from
0.5 to 0.7), eair is the atmospheric vapor pressure (mmHg), and RL is the
reflectance coe”cient (↗ 0.03).

S4.3.3. Water longwave back radiation, Jbr
Similar to the atmosphere, the water body emits longwave radiation based

on its temperature [18]:

Jbr = ↽φ(Tw + 273.15)4 (S.5)

where ↽ is the emissivity of water (↗ 0.97), and Tw is the water temperature.

S4.3.4. Conduction and convection, Jc
Heat exchange between air and water occurs through both conduction and

convection. Wind-induced mixing enhances convective heat transfer, while
conductive heat transfer occurs at the air-water interface. When the air
temperature is higher than the water temperature, heat flows into the water
body, and vice versa. This process is described as follows [18]:

Jc = c1f(Uw)(Tw → Tair) (S.6)

where c1 is the Bowen coe”cient (↗ 0.47 mmHg↓C↑1), f(Uw) = 19.0 +
0.95U2

w proposed by Brady et al. [64], and Uw is the wind velocity (m/s).

S4.3.5. Evaporation and condensation, Je
According to Dalton’s law, evaporation results in heat loss from the water

body, while condensation leads to heat gain when the atmospheric vapor
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pressure exceeds the saturated vapor pressure. This process is expressed by
the following equation:

Je = f(Uw)(es → eair) (S.7)

where es is the saturated vapor pressure of water (mmHg), and eair is the
atmospheric vapor pressure (mmHg).

S4.3.6. Sediment heat exchange
The heat balance for the bottom sediment bed is expressed as [18]:

dTs

dt
= → Js

↼sCsedHsed
(S.8)

where Ts is the temperature of the bottom sediment bed, Js is the heat flux
between the water and sediment bed, ↼s is the sediment density, Csed is the
specific heat capacity of the sediment, and Hsed is the e!ective depth of the
sediment bed.
The heat flux from the sediment bed to the water is given by:

Js = ↼sCsed
ϱs

0.5Hsed
(Ts → Tw) (S.9)

Substituting this flux into the heat balance equation:

dTs

dt
= →

↼sCsed
εs

0.5Hsed
(Ts → Tw)

↼sCsedHsed
(S.10)

dTs

dt
= → ϱs

0.5H2
sed

(Ts → Tw) (S.11)

S4.4. Summary of the water temperature model

The governing equations for water temperature transport and heat balance
in EufoRiA are as follows:
For the transport of water temperature:

ωATw

ωt
=

ω

ωx

(
DA

ωTw

ωx

)
→ ωQTw

ωx
+ source/sink (S.12)

S-17

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



For the heat balance of the control volume of water:

dTw

dt
=

1

↼CpH

{
Jsn + φ(Tair + 273.15)4(A+ 0.031

↔
eair)(1→RL)→ ↽φ(Tw + 273.15)4

→c1f(Uw)(Tw → Tair)→ f(Uw)(es → eair)→ ↼sCsed
ϱs

0.5Hsed
(Tw → Ts)

}

(S.13)

where H is the average hydraulic depth of the control volume (m). In
EufoRiA , this is further divided into the depth at junctions and the average
depth of links, given by H = A/B, where A is the cross-sectional area of
the link and B is the link width. To reduce the uncertainty of relevant
parameters, we apply (↼sCsedϱs)/(0.5Hsed) = 0.146 in the model.
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S5. Dissolved Oxygen

S5.1. Conceptual reaction kinetics
Dissolved oxygen dynamics are described by the schematic in Figure S2.

Water column
Atmosphere

Reaeration

SOD

NH4-N

DO

Nitrification

Algae
Photosynthesis

Respiration

NO3-N

LDOC

LPOC

RDOC

RPOC

Decay

Riverbed sediment

Figure S3: Dissolved oxygen model

Table S11: Comparison of dissolved oxygen kinetics between models

Reaction
EFDC

(3-D)

CAEDYM

(3-D)

CE-QUAL-W2

(2-D)

QUAL2K

(1-D)

EufoRiA

(1-D)
Functions a Method

Reaeration(+) ↭ ↭ ↭ ↭ ↭ f(uwater, uwind, H) 1st-order

Algal production(+) ↭ ↭ ↭ ↭ ↭ f(CAlg, N, P, I, Tw) Monod

Algal respiration(–) ↭ ↭ ↭ ↭ ↭ f(CAlg, Tw) 1st-order

Nitrification(–) ↭ ↭ ↭ ↭ ↭ f(CNH4N, Tw) 1st-order

SOD(–) b ↭ ↭ ↭ ↭ ↭ - zero-order

Organic carbon decay(–) ↭ ↭ ↭ - ↭ f(COC , Tw) 1st-order

COD decay(–) ↭ - - - - f(CCOD, Tw) 1st-order

CBOD decay(–) ↭ - ↭ ↭ - f(CCBOD, Tw) 1st-order

Suspended sediment decay(–) - - - ↭ - f(CISS, Tw) 1st-order

Epiphyton production(+) ↭ ↭ ↭ ↭ - f(CEpi, N, P, I, Tw) 1st-order

Epiphyton respiration(–) ↭ ↭ ↭ ↭ - f(CEpi, Tw) 1st-order

Macrophyte production(+) - ↭ ↭ - - f(CMac, N, P, I, Tw) 1st-order

Macrophyte respiration(–) - ↭ ↭ - - f(CMac, Tw) 1st-order

Zooplankton respiration(–) - ↭ ↭ - - f(CZoo, Tw) 1st-order

a Where, uwater is water velocity(m/s), uwind is wind velocity(m/s), Tw is the water temperature,
Ck are the concentrations of the constituents name of k, N and P mean the concentrations of the
nitrogen and phosphorus groups, and I is the light intensity.
b Sediment oxygen demand of the riverbed is applied as zero-order reaction.
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S5.2. Governing Equations

S5.2.1. Dissolved oxygen
The dissolved oxygen dynamics are described by:

ωCDO

ωt
= AsurfaceKL(CDO,sat → CDO)︸ ︷︷ ︸

reaeration

+
n∑

i=1

(Kag,i →Kar,i)εO:Alg,iCAlg,i

︸ ︷︷ ︸
Algal production and respiration

→ KLDOCεO:OCϑOCCLDOC︸ ︷︷ ︸
Labile dissolved organic carbon decay

→ KLPOCεO:OCϑOCCLPOC︸ ︷︷ ︸
Labile particulate organic carbon decay

→ KRDOCεO:OCϑOCCRDOC︸ ︷︷ ︸
Refractory dissolved organic carbon decay

→ KRPOCεO:OCϑOCCRPOC︸ ︷︷ ︸
Refractory particulate organic carbon decay

→KNH4εO:NH4ϑNH4CNH4︸ ︷︷ ︸
Nitrification

→KSODϑOC
Abottom

V︸ ︷︷ ︸
0-order SOD

(S.14)

S5.2.2. Reaeration coe”cient from atmosphere, KL

The reaeration coe”cient can be expressed the sum of hydraulic and wind
reaeration coe”cient as follows.[18]

KL = KL,h +
KL,w

H
(S.15)

There hydraulic reaeration coe”cient Kr,h([65]) and the wind reaeration
coe”cient are described by:

• If H < 0.61m, use the Owens-Gibbs formula: kah = 5.32U0.67

H1.85

• If H > 0.61m and H > 3.45U2.5, use the O’Connor-Dobbins formula:
kah = 3.93U0.5

H1.5

• Otherwise, use the Churchill formula: kah = 5.026 U
H1.67

In addition, KL,w is described by:

KL,w = 0.0986U1.64
w,10 (S.16)

where H is the hydraulic depth(m) and Uw,10 is the wind velocity at 10m
height.
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The saturated oxygen concentration CDO,sat can be calculated by:

CDO,sat = exp

(
→139.34411 +

1.575701↑ 105

Tabs
→ 6.642308↑ 107

T 2
abs

+
1.2438↑ 1010

T 3
abs

→ 8.621949↑ 1011

T 4
abs

) (S.17)

where, Tabs = Tw + 273.15 is the absolute temperature
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S6. Carbon

S6.1. Conceptual reaction kinetics

The carbon cycle is illustrated in Figure S4. In EufoRiA, we ignore the
dissolved inorganic carbon (DIC) term in this figure.
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LPOCLDOC
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Labile
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Organic
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Inorganic
Carbon

Water column
Atmosphere

Exchange

Decay

Decay

Decay

Decay

DecompositionDecomposition

Riverbed sediment

Respiration

Excretion

Figure S4: Carbon model of EufoRiA

Table S12: Comparison of carbon reaction kinetics between models - (1)

Reaction
EFDC
(3-D)

CAEDYM
(3-D)

CE-QUAL-W2
(2-D)

QUAL2K
(1-D)

EufoRiA
-WQ (1-D)

Functions Method

LDOC(Labile Dissolved Organic Carbon)
Algal mortality/excretion(+) ↭ ↭ Not applied a Not appliedb ↭ f(CAlg, Tw) 1st-order
Decomposition to RDOC(–) - - ↭ f(CLDOC , Tw) 1st-order

Decomposition from LPOC(+) ↭ ↭ - f(CLPOC , Tw) 1st-order
Decomposition from RPOC(+) ↭ - - f(CRPOC , Tw) 1st-order

Decay to DIC(–) ↭ ↭ ↭ f(CLDOC , Tw) 1st-order
Riverbed sediment flux(+,–) - ↭ - f(CLDOC , Tw) 0,1st order

Epiphyton mortality/excretion(+) ↭ ↭ - f(CEpi, Tw) 1st-order
Macrophyte mortality/excretion(+) - ↭ - f(CMac, Tw) 1st-order
Zooplankton mortality/excretion(+) - ↭ - f(CZoo, Tw) 1st-order
LPOC(Labile Particulate Organic Carbon)

Algal mortality/excretion(+) ↭ ↭ Not applied a Not appliedb ↭ f(CAlg, Tw) 1st-order
Decomposition to RPOC(–) - - ↭ f(CLPOC , Tw) 1st-order
Decomposition to LDOC(–) ↭ ↭ - f(CLPOC , Tw) 1st-order

Decay to DIC(–) - - ↭ f(CLPOC , Tw) 1st-order
Resuspension(+) - ↭ - f(uwater) -

Settling(–) ↭ ↭ ↭ f(CLPOC) 1st-order
Epiphyton mortality/excretion(+) ↭ ↭ - f(CEpi, Tw) 1st-order
Macrophyte mortality/excretion(+) - ↭ - f(CMac, Tw) 1st-order
Zooplankton mortality/excretion(+) - ↭ - f(CZoo, Tw) 1st-order

a No information is provided. The manual does not describe the reaction kinetics for this constituent.

S-22

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Table S13: Comparison of carbon reaction kinetics between models - (2)

Reaction
EFDC

(3-D)

CAEDYM

(3-D)

CE-QUAL-W2

(2-D)

QUAL2K

(1-D)

EufoRiA

(1-D)
Functions Method

RDOC(Refractory Dissolved Organic Carbon)

Algal mortality/excretion(+) ↭ - Not applied a Not appliedb - f(CAlg, Tw) 1st-order

Decomposition from LDOC(+) - - ↭ f(CLDOC , Tw) 1st-order

Decomposition from RPOC(+) - ↭ - f(CRPOC , Tw) 1st-order

Decay to DIC(–) ↭ ↭ ↭ f(CRDOC , Tw) 1st-order

Riverbed sediment flux(+,–) - ↭ - f(CRDOC , Tw) 0,1st order

Epiphyton mortality/excretion(+) ↭ - - f(CEpi, Tw) 1st-order

RPOC(Refractory Particulate Organic Carbon)

Algal mortality/excretion(+) ↭ - Not applied a Not appliedb - f(CAlg, Tw) 1st-order

Decomposition from LPOC(+) - - ↭ f(CLPOC , Tw) 1st-order

Decomposition to RDOC(–) - ↭ - f(CRPOC , Tw) 1st-order

Decomposition to LDOC(–) ↭ - - f(CRPOC , Tw) 1st-order

Decay to DIC(–) - - ↭ f(CRPOC , Tw) 1st-order

Resuspension(+) - ↭ - f(uwater) -

Settling(–) ↭ ↭ ↭ f(CRPOC) 1st-order

Epiphyton mortality/excretion(+) ↭ - - f(CEpi, Tw) 1st-order

a Organic carbon in CE-QUAL-W2 is categorized as organic matters, specifically into LDOM, LPOM,
RDOM, and RPOM.
b QUAL2K simulates total inorganic carbon and CBOD species without di$erentiating between
the labile, refractory, dissolved, and particulate groups.

S6.2. Governing equations

S6.2.1. Organic carbons
Organic carbon (OC) is classified into four distinct groups.
Labile dissolved organic carbon(LDOC) dynamics are described by:

ωCLDOC

ωt
=

n∑

i=1

Pd,C(Kam,i +Kae,i)εC:Alg,iCalg,i

︸ ︷︷ ︸
algal mortality and excretion

→KLDOCϑOCCLDOC︸ ︷︷ ︸
decay to DIC

→KLDOC→RDOCϑOCCLDOC︸ ︷︷ ︸
labile to refractory decomposition

(S.18)
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Labile particulate organic carbon(LPOC) dynamics are described by:

ωCLPOC

ωt
=

n∑

i=1

(1→ Pd,C)(Kam,i +Kae,i)εC:Alg,iCAlg,i

︸ ︷︷ ︸
algal mortality and excretion

→KLPOCϑOCCLPOC︸ ︷︷ ︸
decay to DIC

→KLPOC→RPOCϑOCCLPOC︸ ︷︷ ︸
labile to refractory decomposition

→ Ks,LPOC

H
CLPOC

︸ ︷︷ ︸
settling

(S.19)

Refractory dissolved organic carbon(RDOC) dynamics are described by:

ωCRDOC

ωt
= KLDOC→RDOCϑOCCLDOC︸ ︷︷ ︸

labile to refractory decomposition

→KRDOCϑOCCRDOC︸ ︷︷ ︸
decay to DIC

(S.20)

Refractory particulate organic carbon(RPOC) dynamics are described by:

ωCRPOC

ωt
= KLPOC→RPOCϑOCCLPOC︸ ︷︷ ︸

labile to refractory decomposition

→KRPOCϑOCCRPOC︸ ︷︷ ︸
decay to carbon

→ Ks,RPOC

H
CRPOC

︸ ︷︷ ︸
settling

(S.21)

Total organic carbon(CTOC) can be calculated using the following equation.

CTOC = CLDOC + CLPOC + CRDOC + CRPOC +
∑

εC:Alg,iCAlg,i (S.22)

The particulate and dissolved inorganic carbon are ignored in EufoRiA, as
inorganic carbon is not a limiting factor for algal growth in most models.

S6.2.2. Temperature multipliers
The temperature multiplier ϑOC and ϑNH4 can be calculated using the tem-

perature coe”cients K1, K2, T1, T2 for each constituent. The same expression
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will be applied for other constituents including ϑON , ϑOP , ϑPO4, and etc.

⇀T =
K1eϑ1(Tw↑T1)

1 +K1eϑ1(Tw↑T1) →K1
(S.23)

where, ϑ1 =
1

T2↑T1
lnK2(1↑K1)

K1(1↑K2)
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S7. Nitrogen

S7.1. Conceptual reaction kinetics

The nitrogen cycle is illustrated in Figure S5.
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RDON

ParticulateDissolved

Labile

Refractory

Algae-N
Motality

NH4-N

Riverbed sediment
Settling

Flux

NO3-N
Nitrification

Uptake Uptake

Water column
AtmosphereDenitrification

Flux

Organic
Nitrogen

Dissolved

PINParticulate

Settling

Settling
Excretion

Inorganic
Nitrogen

RPON

Decay

Decay

Decay

Decay

DecompositionDecomposition

Adsorption
& Desorption

Figure S5: Nitrogen model of EufoRiA

Table S14: Comparison of nitrogen reaction kinetics between models - (1)

Reaction
EFDC

(3-D)

CAEDYM

(3-D)

CE-QUAL-W2

(2-D)

QUAL2K

(1-D)

EufoRiA

(1-D)
Functions Method

NH4-N(Ammonium)

Algal production(+) ↭ ↭ ↭ ↭ ↭ f(CAlg, N, P, I, Tw) Monod

Algal respiration(–) ↭ ↭ ↭ ↭ ↭ f(CAlg, Tw) 1st-order

Nitrification(–) ↭ ↭ ↭ ↭ ↭ f(CNH4, Tw) 1st-order

Decay from POM(+) - - ↭ - ↭ f(CPOM , Tw) 1st-order

Decay from DOM(+) ↭ ↭ ↭ ↭ ↭ f(CDOM , Tw) 1st-order

Riverbed sediment release(+) ↭ ↭ ↭ ↭ - - zero-order

Riverbed sediment absorb(–) ↭ ↭ - - - f(CNH4) 1st-order

CBOD decay(+) - - ↭ - - f(CCBOD, Tw) 1st-order

Desorption from PIN - ↭ ↭ - - - zero-order

Adsorption to PIN(–) - ↭ - - - f(CNH4) 1st-order

Epiphyton production(+) ↭ ↭ ↭ ↭ - f(CEpi, CNH4, Tw) Monod

Epiphyton respiration(–) ↭ ↭ ↭ ↭ - f(CEpi, Tw) 1st-order

Macrophyte production(+) - ↭ ↭ - - f(CMac, CNH4, Tw) Monod

Macrophyte respiration(–) - ↭ - - - f(CMac, Tw) 1st-order

Zooplankton respiration(–) - ↭ ↭ - - f(CZoo, Tw) 1st-order

PIN(Particulate Inorganic Nitrogen)

Adsorption from NH4(+) ↭ ↭ Not applied a Not applied a ↭ f(CNH4, CISS) Monod

Desorption to NH4(–) ↭ ↭ ↭ f(CPIN) 1st-order

Settling(–) ↭ ↭ ↭ f(CPIN) 1st-order

Resuspension(+) ↭ ↭ - f(uwater) -

a No information is provided. The manual does not describe the reaction kinetics for this constituent.
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Table S15: Comparison of nitrogen reaction kinetics between models - (2)

Reaction
EFDC

(3-D)

CAEDYM

(3-D)

CE-QUAL-W2

(2-D)

QUAL2K

(1-D)

EufoRiA

(1-D)
Functions Method

NO3+NO2(Nitrate)

Nitrification(+) ↭ ↭ ↭ ↭ ↭ f(CNH4, Tw) 1st-order

Algal production(–) ↭ ↭ ↭ ↭ ↭ f(CAlg, N, P, I, Tw) 1st-order

Denitrification(-) ↭ ↭ ↭ ↭ ↭ f(CNO3, Tw) 1st-order

Riverbed sediment release(+) ↭ ↭ - - - - zero-order

Riverbed sediment absorb(–) ↭ ↭ - - ↭ f(CNO3) 1st-order

Epiphyton production(–) ↭ ↭ ↭ ↭ - f(CEpi, CNO3, Tw) 1st-order

LDON(Labile Dissolved Organic Nitrogen)

Algal mortality/excretion(+) ↭ ↭ ↭ Not applied a ↭ f(CAlg, Tw) 1st-order

Decomposition to RDON(–) - - ↭ ↭ f(CLDON , Tw) 1st-order

Decomposition from LPON(+) ↭ ↭ - - f(CLPON , Tw) 1st-order

Decomposition from RPON(+) ↭ - - - f(CRPON , Tw) 1st-order

Decay to NH4(–) ↭ ↭ ↭ ↭ f(CLDON , Tw) 1st-order

Riverbed sediment flux(+,–) - ↭ - - f(CLDON , Tw) 0,1st order

Epiphyton mortality/excretion(+) ↭ ↭ ↭ - f(CEpi, Tw) 1st-order

Macrophyte mortality/excretion(+) - ↭ ↭ - f(CMac, Tw) 1st-order

Zooplankton mortality/excretion(+) - ↭ - - f(CZoo, Tw) 1st-order

LPON(Labile Particulate Organic Nitrogen)

Algal mortality/excretion(+) ↭ ↭ ↭ Not applieda ↭ f(CAlg, Tw) 1st-order

Decomposition to RPON(–) - - ↭ ↭ f(CLPON , Tw) 1st-order

Decomposition to LDON(–) ↭ ↭ - - f(CLPON , Tw) 1st-order

Decay to NH4(–) - - ↭ ↭ f(CLPON , Tw) 1st-order

Resuspension(+) - ↭ - - f(uwater) -

Settling(–) ↭ ↭ ↭ ↭ f(CLPON) 1st-order

Epiphyton mortality/excretion(+) ↭ ↭ ↭ - f(CEpi, Tw) 1st-order

Macrophyte mortality/excretion(+) - ↭ ↭ - f(CMac, Tw) 1st-order

Zooplankton mortality/excretion(+) - ↭ ↭ - f(CZoo, Tw) 1st-order

RDON(Refractory Dissolved Organic Nitrogen)

Algal mortality/excretion(+) ↭ - - Not applieda - f(CAlg, Tw) 1st-order

Decomposition from LDON(+) - - ↭ ↭ f(CLDON , Tw) 1st-order

Decomposition from RPON(+) - ↭ - - f(CRPON , Tw) 1st-order

Decay to NH4(–) ↭ ↭ ↭ ↭ f(CRDON , Tw) 1st-order

Riverbed sediment flux(+,–) - ↭ - - f(CRDON , Tw) 0,1st order

Epiphyton mortality/excretion(+) ↭ - - - f(CEpi, Tw) 1st-order

RPON(Refractory Particulate Organic Nitrogen)

Algal mortality/excretion(+) ↭ - - Not applieda - f(CAlg, Tw) 1st-order

Decomposition from LPON(+) - - ↭ ↭ f(CLPON , Tw) 1st-order

Decomposition to RDON(–) - ↭ - - f(CRPON , Tw) 1st-order

Decomposition to LDON(–) ↭ - - - f(CRPON , Tw) 1st-order

Decay to NH4(–) - - ↭ ↭ f(CRPON , Tw) 1st-order

Resuspension(+) - ↭ - - f(uwater) -

Settling(–) ↭ ↭ ↭ ↭ f(CRPON) 1st-order

Epiphyton mortality/excretion(+) ↭ - - - f(CEpi, Tw) 1st-order

Macrophyte mortality/excretion(+) - - ↭ - f(CMac, Tw) 1st-order

a QUAL2K simulates the organic nitrogen without distinguishing the labile, refractory, dissolved, and
particulate groups.
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S7.2. Governing equations

S7.2.1. Ammonium (NH4 →N)
Ammonium reactions are described by:

ωCNH4

ωt
=

n∑

i=1

PNH4Kag,iεN :Alg,iCalg,i

︸ ︷︷ ︸
Algal respiration

→
n∑

i=1

PNH4Kag,iεN :Alg,iCalg,i

︸ ︷︷ ︸
Algal production

+ KLDONεn:onϑONCLDON︸ ︷︷ ︸
Labile dissolved organic nitrogen decay

+ KLPON,iεN :ONϑONCLPON︸ ︷︷ ︸
Labile particulate organic nitrogen decay

+ KRDON,iεN :ONϑONCRDON︸ ︷︷ ︸
Refractory dissolved organic nitrogen decay

+ KRPONεN :ONϑONCRPON︸ ︷︷ ︸
Refractory particulate organic nitrogen decay

→KNH4ϑNH4CNH4︸ ︷︷ ︸
Nitrification

(S.24)

S7.2.2. Particulate inorganic nitrogen (PIN)
Particulate inorganic nitrogen dynamics are described by:

ωCPIN

ωt
= Kads,PIN

(
CISS

Kh,PIN + CISS

)
CNH4 →Kdes,PINCPIN → Ks,PIN

H
CPIN

(S.25)

S7.2.3. Nitrate (NO3 →N)
Nitrate (NO2 + NO3) reactions dynamics are described by:

ωCNO3

ωt
= →

n∑

i=1

(1→ PNH4)Kag,iεn:alg,iCalg,i

︸ ︷︷ ︸
Algal production

+KNH4ϑNH4CNH4︸ ︷︷ ︸
Nitrification

→KNO3ϑNO3CNO3︸ ︷︷ ︸
Denitrification

→ Ks,NO3

H
CNO3

︸ ︷︷ ︸
Settling

(S.26)
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S7.2.4. Organic nitrogen
Labile dissolved organic nitrogen (LDON) dynamics are described by:

ωCLDON

ωt
=

n∑

i=1

Pd,N(Kam,i +Kae,i)εN :Alg,iCAlg,i

︸ ︷︷ ︸
Algal mortality and excretion

→KLDONϑONCLDON︸ ︷︷ ︸
Decay to NH4

→KLDON→RDONϑONCLDON︸ ︷︷ ︸
Labile to refractory decomposition

(S.27)

Labile particulate organic nitrogen (LPON) dynamics are described by:

ωCLPON

ωt
=

n∑

i=1

(1→ Pd,N)(Kam,i +Kae,i)εN :Alg,iCAlg,i

︸ ︷︷ ︸
Algal mortality and excretion

→KLPONϑONCLPON︸ ︷︷ ︸
Decay to NH4

→KLPON→RPONϑONCLPON︸ ︷︷ ︸
Labile to refractory decomposition

→ Ks,LPON

H
CLPON

︸ ︷︷ ︸
Settling

(S.28)

Refractory dissolved organic nitrogen (RDON) dynamics are described by:

ωCRDON

ωt
= KLDON→RDONϑONCLDON︸ ︷︷ ︸

Labile to refractory decomposition

→KRDONϑONCRDON︸ ︷︷ ︸
Decay to NH4

(S.29)

Refractory particulate organic nitrogen (RPON) dynamics are described
by:

ωCRPON

ωt
= KLPON→RPONϑONCLPON︸ ︷︷ ︸

Labile to refractory decomposition

→KRPONϑONCRPON︸ ︷︷ ︸
Decay to NH4

→ Ks,RPON

H
CRPON

︸ ︷︷ ︸
Settling

(S.30)
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Total nitrogen concentration (CTN) is calculated by:

CTN = CNH4+CNO3+CLDON +CLPON +CRDON +CRPON +
∑

εN :Alg,iCAlg,i

(S.31)
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S8. Phosphorus

S8.1. Conceptual reaction kinetics

The phosphorus cycle is illustrated in Figure S6.
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Figure S6: Phosphorus model of EufoRiA

Table S16: Comparison of phosphorus reaction kinetics between models - (1)

Reaction
EFDC

(3-D)

CAEDYM

(3-D)

CE-QUAL-W2

(2-D)

QUAL2K

(1-D)

EufoRiA

(1-D)
Functions Method

PO4-P(Phosphate)

Algal production(+) ↭ ↭ ↭ ↭ ↭ f(CAlg, N, P, I, Tw) Monod

Algal respiration(–) ↭ - ↭ ↭ ↭ f(CAlg, Tw) 1st-order

Decay from POM(+) - - ↭ - ↭ f(CPOM , Tw) 1st-order

Decay from DOM(+) ↭ ↭ ↭ ↭ ↭ f(CDOM , Tw) 1st-order

Riverbed sediment release(+) ↭ ↭ ↭ - - - zero-order

Riverbed sediment absorb(–) ↭ ↭ - ↭ - f(CNH4) 1st-order

CBOD decay(+) - - ↭ - - f(CCBOD, Tw) 1st-order

Suspended sediment release(+) - ↭ ↭ - - - zero-order

Suspended sediment adsorption(–) - ↭ ↭ - - f(CNH4) 1st-order

Epiphyton production(+) ↭ ↭ ↭ ↭ - f(CEpi, CNH4, Tw) Monod

Epiphyton respiration(–) - - ↭ ↭ - f(CEpi, Tw) 1st-order

Macrophyte production(+) - ↭ ↭ - - f(CMac, CNH4, Tw) Monod

Macrophyte respiration(–) - - ↭ - - f(CMac, Tw) 1st-order

Zooplankton respiration(–) - - ↭ - - f(CZoo, Tw) 1st-order

a No information is provided. The manual does not describe the reaction kinetics for this constituent.
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Table S17: Comparison of phosphorus reaction kinetics between models - (2)

Reaction
EFDC

(3-D)

CAEDYM

(3-D)

CE-QUAL-W2

(2-D)

QUAL2K

(1-D)

EufoRiA

(1-D)
Functions Method

PIP(Particulate Inorganic Phosphorus)

Adsorption from PO4(+) ↭ ↭ ↭ Not applied a ↭ f(CPO4, CISS) Monod

Desorption to PO4(–) ↭ ↭ ↭ ↭ f(CPIP ) 1st-order

Settling(–) ↭ ↭ ↭ ↭ f(CPIP ) 1st-order

Resuspension(+) ↭ ↭ - - f(uwater) -

LDOP(Labile Dissolved Organic Phosphorus)

Algal mortality/excretion(+) ↭ ↭ ↭ Not applied a ↭ f(CAlg, Tw) 1st-order

Decomposition to RDOP(–) - - ↭ ↭ f(CLDOP , Tw) 1st-order

Decomposition from LPOP(+) ↭ ↭ - - f(CLPOP , Tw) 1st-order

Decomposition from RPOP(+) ↭ - - - f(CRPOP , Tw) 1st-order

Decay to PO4(–) ↭ ↭ ↭ ↭ f(CLDOP , Tw) 1st-order

Riverbed sediment flux(+,–) - ↭ - - f(CLDOP , Tw) 0,1st order

Epiphyton mortality/excretion(+) ↭ ↭ ↭ - f(CEpi, Tw) 1st-order

Macrophyte mortality/excretion(+) - ↭ ↭ - f(CMac, Tw) 1st-order

Zooplankton mortality/excretion(+) - ↭ - - f(CZoo, Tw) 1st-order

LPOP(Labile Particulate Organic Phosphorus)

Algal mortality/excretion(+) ↭ ↭ ↭ Not applieda ↭ f(CAlg, Tw) 1st-order

Decomposition to RPOP(–) - - ↭ ↭ f(CLPOP , Tw) 1st-order

Decomposition to LDOP(–) ↭ ↭ - - f(CLPOP , Tw) 1st-order

Decay to PO4(–) - - ↭ ↭ f(CLPOP , Tw) 1st-order

Resuspension(+) - ↭ - - f(uwater) -

Settling(–) ↭ ↭ ↭ ↭ f(CLPOP ) 1st-order

Zooplankton predation(–) - ↭ ↭ - f(CLPOP ) 1st-order

Epiphyton mortality/excretion(+) ↭ ↭ ↭ - f(CEpi, Tw) 1st-order

Macrophyte mortality/excretion(+) - ↭ ↭ - f(CMac, Tw) 1st-order

Zooplankton mortality/excretion(+) - ↭ ↭ - f(CZoo, Tw) 1st-order

RDOP(Refractory Dissolved Organic Phosphorus)

Algal mortality/excretion(+) ↭ - - Not applieda - f(CAlg, Tw) 1st-order

Decomposition from LDOP(+) - - ↭ ↭ f(CLDOP , Tw) 1st-order

Decomposition from RPOP(+) - ↭ - - f(CRPOP , Tw) 1st-order

Decay to PO4(–) ↭ ↭ ↭ ↭ f(CRDOP , Tw) 1st-order

Riverbed sediment flux(+,–) - ↭ - - f(CRDOP , Tw) 0,1st order

Epiphyton mortality/excretion(+) ↭ - - - f(CEpi, Tw) 1st-order

RPOP(Refractory Particulate Organic Phosphorus)

Algal mortality/excretion(+) ↭ - - Not applieda - f(CAlg, Tw) 1st-order

Decomposition from LPOP(+) - - ↭ ↭ f(CLPOP , Tw) 1st-order

Decomposition to RDOP(–) - ↭ - - f(CRPOP , Tw) 1st-order

Decomposition to LDOP(–) ↭ - - - f(CRPOP , Tw) 1st-order

Decay to PO4(–) - - ↭ ↭ f(CRPOP , Tw) 1st-order

Resuspension(+) - ↭ - - f(uwater) -

Settling(–) ↭ ↭ ↭ ↭ f(CRPOP ) 1st-order

Epiphyton mortality/excretion(+) ↭ - - - f(CEpi, Tw) 1st-order

Macrophyte mortality/excretion(+) - - ↭ - f(CMac, Tw) 1st-order

a QUAL2K simulates the organic phosphorus without distinguishing the labile, refractory, dissolved,
and particulate groups.
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S8.2. Governing equations

S8.2.1. Phosphate (PO4 → P )
Phosphate reaction dynamics are described by:

ωCPO4

ωt
=

n∑

i=1

Kar,iεP :Alg,iCAlg,i

︸ ︷︷ ︸
Algal respiration

→
n∑

i=1

Kag,iεP :Alg,iCAlg,i

︸ ︷︷ ︸
Algal production

→Kads,PIP

(
CISS

Kh,ads + CISS

)
CPO4

︸ ︷︷ ︸
Adsorption to ISS

+ Kdes,PIPCPIP︸ ︷︷ ︸
Desorption from ISS

+ KLDOP εP :OPϑOPCLDOP︸ ︷︷ ︸
Labile dissolved organic phosphorus decay

+ KLPOP,iεP :OPϑOPCLPOP︸ ︷︷ ︸
Labile particulate organic phosphorus decay

+ KRDOP,iεP :OPϑOPCRDOP︸ ︷︷ ︸
Refractory dissolved organic phosphorus decay

+ KRPOP εP :OPϑOPCRPOP︸ ︷︷ ︸
Refractory particulate organic phosphorus decay

(S.32)

S8.2.2. Particulate inorganic phosphorus (PIP )
Particulate inorganic phosphorus dynamics are described by:

ωCPIP

ωt
= Kads,PIP

(
CISS

Kh,PIP + CISS

)
CPO4 →Kdes,PIPCPIP → Ks,PIP

H
CPIP

(S.33)

S8.2.3. organic phosphorus
Labile dissolved organic phosphorus(LDOP) dynamics are described by:

ωCLDOP

ωt
=

n∑

i=1

Pd,P (Kam,i +Kae,i)εP :Alg,iCAlg,i

︸ ︷︷ ︸
Algal mortality and excretion

→KLDOPϑOPCLDOP︸ ︷︷ ︸
Decay to PO4

→KLDOP→RDOPϑOPCLDOP︸ ︷︷ ︸
Labile to refractory decomposition

(S.34)
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Labile particulate organic phosphorus (LPOP) dynamics are described by:

ωCLPOP

ωt
=

n∑

i=1

(1→ Pd,P )(Kam,i +Kae,i)εOP :Alg,iCAlg,i

︸ ︷︷ ︸
Algal mortality and excretion

→KLPOPϑOPCLPOP︸ ︷︷ ︸
Decay to PO4

→ KLPOP→RPOPϑOPCLPOP︸ ︷︷ ︸
Labile to refractory decomposition

→ Ks,LPOP

H
CLPOP

︸ ︷︷ ︸
Settling

(S.35)

Refractory dissolved organic phosphorus (RDOP) dynamics are described
by:

ωCRDOP

ωt
= KLDOP→RDOPϑOPCLDOP︸ ︷︷ ︸

Labile to refractory decomposition

→KRDOPϑOPCRDOP︸ ︷︷ ︸
Decay to PO4

(S.36)

Refractory particulate organic phosphorus (RPOP) dynamics are described
by:

ωCRPOP

ωt
= KLPOP→RPOPϑOPCLPOP︸ ︷︷ ︸

Labile to refractory decomposition

→KRPOPϑOPCRPOP︸ ︷︷ ︸
Decay to PO4

→ Ks,RPOP

H
CRPOP

︸ ︷︷ ︸
Settling

(S.37)

Total phosphorus concentration (CTP ) can be calculated using the following
equation.

CTP = CPO4+CLDOP +CLPOP +CRDOP +CRPOP +
∑

εP :Alg,iCAlg,i (S.38)
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S9. Algae (Phytoplankton)

S9.1. Conceptual reaction kinetics
Figure S7 shows the algal growth kinetics in EufoRiA .

Algae
(C,N,P)

Settling

Organic
Water column

LDOC

LPOC

LDON

LPON

LDOP

LPOP

DIC

Carbon

Nitrogen

Phosphorus

NH4-N

NO3-N

PO4-P

Inorganic
Carbon

Phosphorus

Nitrogen

Mortality
Excretion

Mortality
Excretion

Uptake

Uptake

DO
Respiration

Photosynthesis

Respiration

Riverbed sediment

Figure S7: Algae model

Table S18: Comparison of algal reaction kinetics between models

Reaction
EFDCa

(3-D)

CAEDYMb

(3-D)

CE-QUAL-W2

(2-D)

QUAL2Kb

(1-D)

EufoRiA

(1-D)
Functions Method

Species 4 groups 7 groups N groups 1 group N groups - -

Production(+) ↭ ↭ ↭ ↭ ↭ f(CAlg, N, P, I, Tw) Monod

Respiration(–) ↭ ↭ ↭ ↭ ↭ f(CAlg, Tw) 1st-order

Mortality(–) ↭ ↭ ↭ ↭ ↭ f(CAlg, Tw) 1st-order

Excretion(–) ↭ ↭ ↭ ↭ ↭ f(CAlg, Tw) 1st-order

Settling(–) ↭ ↭ ↭ ↭ ↭ f(CAlg, Tw) 1st-order

Resuspension(+) - ↭ - - - f(uwater) 1st-order

Predation(–) ↭ ↭ ↭ - - f(CZoo, CAlg, CPOM) Monod
a EFDC considers respiration, mortality, and excretion as a basal metabolism
b CAEDYM and QUAL2K do not separate mortality and excretion

S9.2. Governing equations
In EufoRiA, algal growth, respiration, excretion, mortality, and settling

are modeled by the following equation.

ωCAlg,i

ωt
= (Kag,i →Kar,i →Kae,i →Kam,i)CAlg,i︸ ︷︷ ︸

Algal growth, respiration, excretion, and mortality

→ Ks,Alg,i

H
CAlg,i

︸ ︷︷ ︸
Settling

(S.39)
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S9.2.1. Algal growth rate
Algal growth rate is calculated using limitations of nutrients and light with

temperature multipliers.

Kag,i = ϑar,iϑaf,i⇀minKag,max,i (S.40)

where, Kag,i is algal growth rate for species i (1/day), Kag,max,i is maximum
algal growth rate for species i (1/day), ϑar,i is temperature multiplier for rising
curve for species i, ϑaf,i is temperature multiplier for falling curve for species
i, and ⇀min is minimum limitation factor.

S9.2.2. Temperature multiplier
We adopt the same temperature multiplier model as CE-QUAL-W2 [66].

This expression provides the capability to set the optimal temperature range
for specific algal groups.

Figure S8: Example of the temperature multiplier function (source: [23])

⇀T = 0 where Tw ↓ T1

⇀T =
K1eϑ1(Tw↑T1)

1 +K1eϑ1(Tw↑T1) →K1︸ ︷︷ ︸
ϑar

K4eϑ2(T4↑Tw)

1 +K4eϑ2(T4↑Tw) →K4︸ ︷︷ ︸
ϑaf

where T1 < Tw < T4

⇀Tw = 0 where Tw ↘ T4

(S.41)

where, ϑ1 =
1

T2↑T1
lnK2(1↑K1)

K1(1↑K2)
, ϑ2 =

1
T4↑T3

lnK3(1↑K4)
K4(1↑K3)
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S9.2.3. Nutrient and light limitation factor
The nutrient and light limitation factor (⇀min) can be calculated using two

di!erent expressions as follows.

⇀min = min

(
CNH4 + CNO3

Kh,N + CNH4 + CNO3
,

CPO4

Kh,P + CPO4
,⇀light

)
(S.42)

Alternatively,

⇀min = min

(
CNH4 + CNO3

Kh,N + CNH4 + CNO3
,

CPO4

Kh,P + CPO4

)
⇀light (S.43)

where, Ph,n is half-saturation coe”cient for nitrogen, Ph,p is half-saturation
coe”cient for phosphorus. The light attenuation factor ⇀light is defined using
Steele’s equation (1962) as follows.

⇀light =
2.7182

keH

(
e
↑PAR(0)

KLp ekeH → e
↑PAR(0)

KLp

)
(S.44)

where, PAR(0) = 0.47I0, I0 is solar radiation at the water surface W/m2,
KLp is the PAR at which algal growth is optimal.

The light extinction coe”cient ke is defined as follows.

ke = keb + ϱISSCISS + ϱPOMCPOM + ϱAlg

n∑

i

CAlg,i (S.45)

where keb is the background light extinction coe”cient (1/m), ϱISS is the
light extinction due to inorganic suspended solids (m3/m/g), ϱPOM is the
light extinction due to particulate organic matters (m3/m/g), and ϱAlg is the
light extinction due to algal group concentrations (m3/m/g).
The ammonium preference factor PNH4 is calculated as follows [67, 23]:

PNH4 = CNH4
CNO3

(Kh,NH4 + CNH4)(Kh,NH4 + CNO3)

+CNH4
Kh,NH4

(CNH4 + CNO3)(Kh,NH4 + CNO3)

(S.46)
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S9.2.4. Other algal rates
Algal respiration, excretion, and mortality rates are calculated using the

following expressions.

Kar,i = ⇀TKar,max,i

Kae,i = (1→ ⇀light)⇀TKae,max,i

Kam,i = ⇀TKam,max,i

(S.47)

S10. Inorganic suspended solids

Each model deals with the suspended solids or sediments di!erently. It
is di”cult to distinguish between suspended solids and sediments in many
cases. In EufoRiA we consider that the inorganic suspended solids are equal
to suspended sediments. We apply the settling of suspended solids as follows.

ωCISS

ωt
= →Ks,ISS

H
CISS (S.48)

Additionally, we consider the adsorption/release of phosphate and ammo-
nium in the water column using two nutrient variables: particulate inorganic
nitrogen (PIN) and particulate inorganic phosphorus (PIP ). The equations
can be found in the previous chapters.

S-38

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



S11. Representing hydraulic structures and controls

EufoRiA provides the capability to model in-stream structures like weirs,
which significantly impact the flow regime of rivers both spatially and tem-
porally. Due to the retention e!ect of these weirs, accurately representing
them is crucial for simulating water quality constituents and phenomena like
harmful algal blooms in impounded and regulated river network models. In
EufoRiA, we not only represent these in-stream hydraulic structures but also
control them based on the opening ratio at each time step between the bot-
tom and maximum operational elevations, to reproduce the observed water
levels—used as the reference value for control—at each storage weir. To
achieve reliable control of weirs in the model, we implement Proportional-
Integral-Derivative (PID) control method as follows:

u(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de(t)

dt
(S.49)

Where, u(t) is the control value (e.g., weir opening ratio–from 0 (close) -
1 (fully open)– for each storage weir), Kp, Ki, and Kd are the proportional,
integral, and derivative gain respectively, e(t) = hmodel(t)→hobs(t) is the error
between simulated water level at the weir location (hmodel) and the observed
water level at the weir location (hobs).
To derive the incremental PID control, we di!erentiate both sides of Equa-

tion (S.49) by time:

du(t)

dt
= Kp

de(t)

dt
+Kie(t) +Kd

d2e(t)

dt2
(S.50)

Applying the Backward scheme:

u(tk)→ u(tk↑1)

#t
= Kp

(
e(tk)→ e(tk↑1)

#t

)
+Kie(tk)

+Kd

( e(tk)↑e(tk→1)
#t → e(tk→1)↑e(tk→2)

#t↑

#t

) (S.51)

Where, #t is the time interval between the time k and k → 1 (k is the
current time step.), #t↗ is the time interval between the time k → 1 and
k → 2, e(tk), e(tk↑1), and e(tk↑2) are the error between the observed water
level and simulated water level at the time k, k → 1, and k → 2, respectively.
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By rearranging Equation (S.51), we obtain the following incremental PID
control expression:

u(tk) = u(tk↑1) +Kp(e(tk)→ e(tk↑1)) +Kie(tk)#t

+
Kd

#t
(e(tk)→ 2e(tk↑1) + e(tk↑2))

(S.52)

Although we use the adaptive time-stepping method described in Section
S13, for simplification, we assume that the time step, #t, is constant—that is,
#t = #t↗ in Equation (S.51). Based on Equation (S.52), the opening ratios
of all weirs are adjusted at every time step to ensure that the simulated water
levels at each weir closely follow the observed or desired control values.
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S12. Input data preparation and conversion

Preparing the input time series data, including meteorological and water
quality data for multi-constituent water quality models, is typically a tedious
and time-consuming task for modelers. For instance, in CE-QUAL-W2, users
must prepare numerous separate input files, such as flow rate, water quality,
and meteorological time series, for each branch or tributary. In contrast,
EufoRiA o!ers an e”cient approach to streamline these processes. Figure
S9 and Table S19 illustrate the conceptual input data conversion process and
provide details.

A ‘csv file’: water quality vs. superjunction vs. 
triburary vs. weather stations 

A ‘csv file’ including all observed locations

Water quality timeseries data

A ‘csv file’ including all observed locations

Meteorological timeseries data

Specification file 
defining the spatial relationship

   - User-specified organic compounds fractions    
     (labile : repractory, dissoved : particulate)
   - Historical monthly fractions of algal groups

Inter-constituent relationship

Automatic generation 
of the input forcing for all B.C. 

locations

Timeseries DataFrame in Python

Figure S9: Input forcing timeseries data conversion process in EufoRiA

In EufoRiA, modelers prepare a single ‘CSV’ file containing all observed
water quality datasets—at daily or longer frequencies (e.g., weekly, monthly),
with no requirement for fixed intervals—classified by the observation station’s
name. More specifically, to build the input dataset, the model automatically
generates time series of water quality data for specific input boundary loca-
tions, referencing a table that matches the observation station names with the
corresponding boundary superjunctions using a single water quality dataset
file. Similarly, meteorological data is prepared in a ‘CSV’ file, distinguished
by its station code number. EufoRiA then converts these datasets into input
time series for each relevant boundary input location, using a specification
file that defines the spatial relationships between the water quality stations,
superjunction indices, meteorological station numbers, and other relevant in-
formation. In addition, the initial values for water quality constituents at all
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computational elements in the model are automatically assigned based on the
user-defined simulation start date and input dataset. For flow rate bound-
ary inputs, the model applies the area-ratio allocation method to determine
runo! flow rates from associated input locations. Additionally, measured
point source flow rates, such as dam releases and wastewater treatment dis-
charges, are incorporated as boundary inputs.

Table S19: Conversion equations between observed and modeled water quality constituents

Nutrient

group

Measured

constituents

Modeling

constituents
Conversion methods

Carbon TOC

LDOC

LPOC

RDOC

RPOC

LDOC = fLDOC
a→ TOC

RDOC = fRDOC
a→ TOC

LPOC = fLPOC
a→ TOC

RPOC = fRPOC
a→ TOC

Nitrogen

TN

DTN

NO3-N

NH4-N

NO3-N

NH4-N

LDON

LPON

RDON

RPON

-

-

LDON = fLDON
b→ (DTN↑NO3-N↑NH4-N)

RDON = fRDON
b→ (DTN↑NO3-N↑NH4-N)

LPON = fLPON
b→ (TN↑DTN↑Algae-N)

RPON = fRPON
b→ (TN↑DTN↑Algae-N)

Phosphorus
TP

DTP

PO4-P

PO4-P

LDOP

RDOP

LPOP

RPOP

-

LDOP = fLDOP
c→ (DTP↑ PO4-P)

RDOP = fRDOP
c→ (DTP↑ PO4-P)

LPOP = fLPOP
c→ (TP↑DTP↑Algae-P)

RPOP = fRPOP
c→ (TP↑DTP↑Algae-P)

a The fractions of LDOC, RDOC, LPOC, and RPOC in TOC, respectively
b The fractions of labile and refractory in the dissolved and particulate organic nitrogen, respectively
c The fractions of labile and refractory in the dissolved and particulate organic phosphorus, respectively

Because not all 23 of the modeled constituents can be observed or specified
directly, a set of conversion relationships are used to build the full input data
for the model based on known relationships with observed constituents. For
this task, the model uses user-specified information on the relative propor-
tions of labile vs. refractory and dissolved vs. particulate organic compounds.
For example, total nitrogen, nitrate, and ammonium data are used to cal-
culate LDON, LPON, RDON, and RPON, relying on prior research that
defines the relative proportions and relationships between these constituents
and the observed data. A similar approach is applied to organic carbon and
phosphorus. Specifically, for organic carbon, we refer to a previous study
on the relative fractions between LDOC, LPOC, RDOC, and RPOC in the

S-42

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Han River of South Korea ([68]). Table S19 summarizes the data conversion
methods. Additionally, the model converts chlorophyll-a concentration into
the biomass of three algal groups using their historical monthly patterns.
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S13. Adaptive time-stepping method

EufoRiA employs an adaptive time-stepping method to reduce simulation
times by using a large temporal step size during baseflow conditions, and
using a fine temporal step size during storm events to avoid truncation er-
ror and instability. In coupled hydrodynamic and water quality modeling,
ensuring both numerical stability and accuracy is critical for producing reli-
able simulation outcomes. While the fully implicit numerical scheme used for
the hydraulics and water quality solvers in this study ensures unconditional
stability, large time intervals may still compromise the accuracy of the nu-
merical solution. This issue is especially critical in coupled modeling, where
even minor volume balance errors between the computational elements in
the hydraulic solver can significantly a!ect water quality results, leading to
abrupt concentration peaks or even negative values due to the high sensi-
tivity of concentration calculations in low-volume conditions. To maintain
accuracy while ensuring reasonable computational speed, proper time inter-
val selection are essential in the coupled simulation of the hydraulic and water
quality model.
Given the complexity of our model structure—which integrates distinct

solvers for hydraulics and water quality transport—and the absence of a
theoretical framework for determining a universally optimal time step across
di!erent solvers, we adopt a practical adaptive time-stepping method. The
proposed time interval (#t) at the specific time is determined using Equation
S.53.

#t = ktime
1

N ↑ kpercentile

N→kperceltile∑

ik=1

#xik

|Qik/Aik|
(S.53)

Where, N is the number of all links in the model, ktime is a user specified
parameter to adjust the magnitude of #t, kpercentile is a user specified pa-
rameter to limit the averaging range, #xik is the length of the ikth link in
the model, Aik and Qik are the water cross-sectional area and the flow rate
at the ikth link in the model, respectively.
This expression resembles the widely known Courant-Friedrichs-Lewy (CFL)

condition, #t ↫ Cmax#x/u, where Cmax is a numerical method-dependent
constant, u is the flow velocity, and #x is the spatial discretization element in
the numerical model. In our approach, users specify the minimum and max-
imum allowable time intervals. If the calculated #t falls within this range,
it is applied directly as the next time interval. Additionally, to mitigate the
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impact of extremely large flow velocities (|Qik/Aik|) in the model network,
we introduce a coe”cient, kpercentile, which restricts the averaging range to
a subset of #xik/(|Qik/Aik|) values. For instance, if kpercentile = 0.7, the
model computes #t for the next time interval by averaging the top 70% of
these values, sorted in descending order. Through the case study described
in 3.1.5, this approach is found to perform e!ectively under properly chosen
parameters in Equation S.53.
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S14. Spatial correlation between the locations in the river network

To incorporate observed spatial correlations in contaminant dynamics into
the DA framework, we first use historically observed water quality constituent
concentrations from 2013–2020 (calibration period) to determine reach-wise
correlations for each constituent. We then incorporate these spatial corre-
lations into the process noise covariance matrix used by the Kalman Filter.
The underlying assumption is that exogenous inputs (such as fertilizer runo!
loads) are spatially correlated, allowing integration of prior knowledge into
the process noise covariance matrix to improve the DA results [57]. This
assumption is particularly valid in river networks, where contaminant runo!
loads are significantly correlated in space.
However, implementing spatial correlations requires careful consideration

of distance weighting to localize their impact. Because several water qual-
ity constituents are heavily influenced by surrounding environmental factors
(e.g., water temperature is primarily a function of meteorological phenom-
ena rather than location), spurious spatial correlations may occur between
distantly-separated points that lack causal physical connections. To avoid
this issue, we limit the correlation impact based on the distance between
spatial elements applying a simple distance weight function as follows, with
considering the relationship of Cov(X, Y ) = ↼XY φXφY :

$spatial,Cn,ij = ↼ijφiφje
↑

dij
ω (S.54)

Where $spatial,Cn,ij is the covariance matrix that has elements consisting of
ith and jth spatial covariance for nth water quality constituent, Cn means
the nth constituent, ↼ij is the Pearson’s correlation for nth water quality
constituent between ith and jth spatial elements, φi and φj is the standard
deviation at i and jth spatial elements, dij is the Euclidean distance (m)
between ith and jth spatial elements, ⇁ is the user parameter (m) that defines
the e!ective distance for correlation impact. In this study, ⇁ = 20, 000 m is
applied as the e!ective distance.
In addition, because di!erent tributaries exhibit distinct water quality

characteristics and are subject to nutrient loads originating from di!erent
upstream areas, the spatial correlation e!ects should be limited between lo-
cations in di!erent tributaries. Therefore, we ignore correlations between
tributaries that are separated by drainage divides to maintain physical con-
sistency. Figure S10 shows the procedure to develop the spatial correlation
matrices in EufoRiA.
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a) Calculate the correlation 
coefficients using observed datasets

c) Update correlations multiplying
 the distance weights

b) Calculate the distance matrix 
between spatial locations

𝜌𝑖𝑗𝑒
−
𝑑𝑖𝑗
𝜙

Calculation of the distance weights

e) Isolate between tributaries

Interpolated matrix for all superjunction 
locations based on observed locations

(66 of 174 locations)

𝜌𝑖𝑗 𝑑𝑖𝑗

d) Ignore negative correlations

23 spatial correlation matrices
for 23 modeling constituents

(based on 10 observed constituents)

(𝜙 = 20000 𝑖. 𝑒. 20𝑘𝑚 )

Corr. Coef. Distance (m) Corr. Coef.

Corr. Coef. Corr. Coef.

Output

Index numbers for superjunction locations 
in the river network (174 locations)

Mainstream

Weirs

W
ei

rs

Tributaries
Naesungcheon

Younggang
Wuicheon

Gamcheon

Geumhogang

Hoicheon
Hwanggang

Namgang
Milyanggang

Σ𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝐶1 ~ Σ𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝐶23

Σ𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝐶𝑛,𝑖𝑗 = 𝜎𝑖𝜎𝑗𝜌𝑖𝑗𝑒
−
𝑑𝑖𝑗
𝜙

Figure S10: Procedure for developing the spatial correlation matrices between the di!erent
superjunction locations in the river network
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S15. Inter-constituent correlations between water quality constituents

Water quality constituents often exhibit significant correlations due to sim-
ilarities in chemical composition. For example, concentrations of nitrogen
constituents such as total nitrogen, nitrate, and organic nitrogen groups are
frequently correlated. By leveraging these correlations, we aim to enhance
the estimation of unmeasured water quality constituents, such as organic ni-
trogen groups, using the measured constituents like total nitrogen or nitrate.
As before, we capture these correlations within the process noise covari-
ance matrix based on historically-observed correlations between constituents.
First, inter-constituent correlations are analyzed for the calibration period
(2013–2020), and the resulting correlations are used to construct the inter-
constituent process noise covariance matrix. This inter-constituent process
noise covariance matrix, together with the spatial correlation matrix, is then
used inform the Kalman Filter during the validation period (2021–2022) and
the resulting improvement in model skill is assessed.
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S16. Details of the data assimilation procedure during numerical
modeling

As discussed in Section 3.1.4, EufoRiA simulates coupled hydraulic and
water quality dynamics in three steps, which include (i) the hydraulic sim-
ulation, (ii) the water quality transport simulation, and (iii) the simulation
of reactions between the water quality constituents. Within this framework,
data assimilation is applied between the water quality transport and reac-
tion steps of the simulation. Thus, the state and input transition matrices
for the Kalman filter represent the system dynamics as described by the
hydraulics and advection-di!usion equation instead of the water quality re-
action dynamics. This design choice is made given that the integration of the
water quality reaction dynamics and transport equations is challenging given
the complex reactions between the large number of constituents considered.
However, considering the relatively small time steps of several minutes in
this model, we can assume that system dynamics a!ecting the water quality
concentrations during each time interval can be primarily represented by the
spatial hydraulics and transport phenomenon rather than reaction kinetics.
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S17. Comparison of model performances across di!erent studies

To compare the performance of EufoRiA with existing models across var-
ious application scenarios, we collected performance metrics from di!erent
studies as presented below. Table S20 shows the performance of various
models across di!erent studies for predicting Chlorophyll-a and nutrients.
We also include the performance metrics presented in Table 5 to enable

direct comparison with other assessment results from the literature. In com-
parison with literature data, the results of EufoRiA show relatively good
performance for temperature, total nitrogen, and total phosphorus. Addi-
tionally, we can conclude that the DO and Chlorophyll-a results of EufoRiA
also show comparable-level performances to existing research.
However, direct comparison would be inappropriate due to di!erences in

target water bodies, simulation periods, target constituents, and performance
metrics. Therefore, these values should be used for reference purposes only.
Additionally, it should be noted that most existing applications have focused
on modeling mainstem rivers or individual reservoirs, rather than complex
river networks with multiple upstream boundary conditions and numerous
WWTPs as point-source inputs, as implemented in this study.
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Table S20: Model performance across di!erent studies (Cal: Calibration, Val:
Validation. When no distinction is made between calibration and validation periods,
results are classified as calibration cases.)

Author Model Constituent NSE R2 RMSE PBIAS

Cal Val Cal Val Cal Val Cal Val

This study

(Table 5)

EufoRiA Temperature 0.97 0.99 - - 1.60 1.01 +3.4% -0.9%

DO 0.48 0.40 - - 1.69 1.64 +9.2% +9.6%

Chl-a -0.00 0.31 - - 15.97 12.44 +13.1% +7.2%

TN 0.76 0.82 - - 0.38 0.29 +5.4% +0.7%

TP 0.49 0.40 - - 0.02 0.02 -1.3% -7.7%

TOC -0.02 0.27 - - 0.89 0.74 -0.8% -0.6%

Du et al. [69] CE-QUAL-W2 Temperature 0.95 - 0.95 - 0.46 - - -

Chl-a 0.55 - 0.54 - 0.3 - - -

TN 0.59 - 0.58 - 0.24 - - -

TP 0.55 - 0.55 - 0.01 - - -

Brito et al. [70] CE-QUAL-W2 Temperature - - - - 1.8 - - -

DO - - - - 7.6 - - -

Chl-a - - - - 62.9 - - -

Nitrate - - - - 0.4 - - -

Orthophosphoate - - - - 0.48 - - -

Hong et al. [71] EFDC Chl-a - - 0.213 - 8.434 - - -

Lee et al. [72] HSPF Temperature 0.96 0.96 0.96 0.96 - - +1.62% +3.09%

Nitrate -1.05 0.61 0.17 0.63 - - -2.45% -6.45%

Phosphoate -0.45 -0.35 0.24 0.06 - - +36.46% +53.34%

Chl-a 0.22 0.18 0.36 0.25 - - +6.60% +33.44%

Bui et al. [73] SWAT+QUAL2K Temperature 0.53 - 0.72 - - - -1.68% -

BOD 0.26 - 0.45 - - - +12.56% -

COD 0.16 - 0.38 - - - +6.49% +53.34%

TN 0.62 - 0.77 - - - +13.73% -

TP 0.24 - 0.32 - - - +9.92% -

Kim et al. [74] HEC-RAS Nitrate 0.30–0.83 -0.16–0.76 0.44–0.90 0.37–0.79 - - -5.0–10.3% 0.4–10.0%

Pyo et al. [75] EFDC-NIER Temperature - - - - 0.92–1.15 - - -

DO - - - - 1.35–3.27 - - -

BOD - - - - 0.83–1.04 - - -

TN - - - - 0.32–0.67 - - -

TP - - - - 0.01–0.04 - - -

Chl-a - - - - 9.52–19.93 - - -

Kim et al. [76] CE-QUAL-W2 Temperature - - 0.89-0.95 - 1.64–2.32 - - -

TP - - 0.14–0.77 - 0.01–0.07 - - -

Chl-a - - 0.27–0.36 - 6.7–13.2 - - -

TOC - - 0.11–0.43 - 1.2 - - -

Brett et al. [77] CE-QUAL-W2 Temperature 0.82 - - - 1.3 - 6% -

TP -0.1 - - - 0.01 - 58% -

Chl-a 0.14 - - - 4.6 - 66% -

DO 0.85 - - - 1.2 - 12% -

Tasnim et al. [78] MINLAKE2020 Temperature 0.50–0.98 - 0.95–0.99 - 0.98–1.88 - - -

DO -0.12–0.80 - 0.87–0.93 - 1.79–3.42 - - -
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S18. Model Calibration and validation result graphs for SJ, ND,
GM, CG, GG, DS, and HC weirs

Figure S11: Calibration (2013-2020) results for Sangju (SJ) weir
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Figure S12: Validation (2021-2022) results for Sangju (SJ) weir
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Figure S13: Calibration (2013-2020) results for Nakdan (ND) weir
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Figure S14: Validation (2021-2022) results for Nakdan (ND) weir
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Figure S15: Calibration (2013-2020) results for Gumi (GM) weir
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Figure S16: Validation (2021-2022) results for Gumi (GM) weir
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Figure S17: Calibration (2013-2020) results for Chilgok (CG) weir
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Figure S18: Validation (2021-2022) results for Chilgok (CG) weir
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Figure S19: Calibration (2013-2020) results for Gangjeong-Goryung (GG) weir
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Figure S20: Validation (2021-2022) results for Gangjeong-Goryung (GG) weir
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Figure S21: Calibration (2013-2020) results for Dalsung (DS) weir
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Figure S22: Validation (2021-2022) results for Dalsung (DS) weir

S-63

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Figure S23: Calibration (2013-2020) results for Hapcheon-Changnyung (HC) weir
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Figure S24: Validation (2021-2022) results for Hapcheon-Changnyung (HC) weir
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S19. Monthly boxplots for validation periods (2021-2022)

Figure S25: Monthly boxplot for Sangju (SJ) weir

Figure S26: Monthly boxplot for Nakdan (ND) weir
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Figure S27: Monthly boxplot for Gumi (GM) weir

Figure S28: Monthly boxplot for Chilgok (CG) weir
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Figure S29: Monthly boxplot for Gangjeong-Goryung (GG) weir

Figure S30: Monthly boxplot for Dalsung (DS) weir
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Figure S31: Monthly boxplot for Hapcheon-Changnyung (HC) weir

Figure S32: Monthly boxplot for Changnyung-Haman (CH) weir
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S20. The normalized target diagrams

The target diagram was introduced by Jolli! et al. [62] to visually depict
how both the pattern statistics and the bias (mean value di!erences) con-
tribute to the magnitude of the total Root-Mean-Square Di!erence (RMSD).
In the normalized target diagram, y-axis represents the normalized bias as

follows:

B↗ =
m→ r

φr
(S.55)

Where, B↗ is the normalized bias, m is the mean of model output values, r
is the mean of observation values, φr is the standard deviation of observation
values.
In addition, the x-axis represents the normalized unbiased RMSD calcu-

lated by:

RMSD↘ =

(
1

N
$N

n=1


(mn →m)→ (rn → r)

2)0.5

sign(φm → φr)/φr (S.56)

Where, RMSD↘ is the normalized unbiased RMSD, mn is the nth model
output value, rn is the nth observed value, φm is the standard deviation of
the model output values.
Finally, RMSD can be calculated using the following expression.

RMSD =
√

(B↗)2 + (RMSD↘)2 (S.57)

In this section, we present normalized target diagrams comparing uncorre-
lated versus correlated DA cases for major water quality constituents across
seven DA scenarios. Each point represents one of 66 observation points de-
picted in each graph. The color of each point indicates its RMSD value
according to the legend provided.
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Figure S33: Normalized target diagrams for temperature model: spatially uncorrelated
cases

Figure S34: Normalized target diagrams for temperature model: spatially correlated cases
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Figure S35: Normalized target diagrams for dissolved oxygen (DO) model: spatially un-
correlated cases

Figure S36: Normalized target diagrams for dissolved oxygen (DO) model: spatially cor-
related cases

S-72

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Figure S37: Normalized target diagrams for Chlorophyll-a (Chl-a) model: spatially un-
correlated cases

Figure S38: Normalized target diagrams for Chlorophyll-a (Chl-a) model: spatially corre-
lated cases
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Figure S39: Normalized target diagrams for total nitrogen (TN) model: spatially uncor-
related cases

Figure S40: Normalized target diagrams for total nitrogen (TN) model: spatially corre-
lated cases
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Figure S41: Normalized target diagrams for total phosphorus (TP) model: spatially un-
correlated cases

Figure S42: Normalized target diagrams for total phosphorus (TP) model: spatially cor-
related cases
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Figure S43: Normalized target diagrams for total organic carbon (TOC) model: spatially
uncorrelated cases

Figure S44: Normalized target diagrams for total organic carbon (TOC) model: spatially
correlated cases
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S21. RMSE maps for all superjunctions by DA scenarios

Figure S45: RMSE map for all superjunctions by DA scenarios: Temperature

Figure S46: RMSE map for all superjunctions by the DA scenarios: Dissolved oxygen
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Figure S47: RMSE map for all superjunctions by the DA scenarios: Chlorophyll-a

Figure S48: RMSE map for all superjunctions by the DA scenarios: Total nitrogen

S-78

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5336170

Pr
ep

rin
t n

ot 
pe

er 
rev

iew
ed



Figure S49: RMSE map for all superjunctions by the DA scenarios: Total phosphorus

Figure S50: RMSE map for all superjunctions by the DA scenarios: Total organic carbon
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