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Highlights

EufoRiA: A new multi-constituent nutrient and harmful algal blooms
model for river networks with online data assimilation

Min-Gyu Kim, Matthew Bartos

e New physics-based nutrients and HABs model for online modeling of
river basins is introduced.

e Support for unsteady hydraulics allows modeling of regulated river sys-
tems.

e Validation on large river basin shows competitive skill with existing
HAB models.

e Online Kalman Filtering scheme improves predictions by fusing obser-
vations into model.

e Kalman Filter greatly improves estimation performance beyond model-
only approaches.
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Abstract

Surface water quality impairment is an increasing challenge for water man-
agers in the face of urbanization and climate change. While contaminant fate
and transport models are essential for addressing water quality threats like
harmful algal blooms, there is a lack of models designed for real-time simu-
lation and decision support in large, regulated river basins. We propose Eu-
foRiA, a new water quality model for river networks incorporating unsteady
hydraulics, contaminant transport, reaction kinetics for 23 eutrophication-
related constituents, and an online data assimilation scheme using Kalman
Filtering that integrates real-time observations to improve model perfor-
mance. Validating against long-term data from South Korea’s Nakdong
River, EufoRiA offers competitive performance with existing models in pre-
dicting constituents like nitrogen, phosphorus, and algae. Moreover, data
assimilation significantly improves water quality constituent estimation com-
pared to model-only approaches, particularly at ungaged locations. EufoRiA
will enable enhanced decision-making for public safety and health against
increasing water quality threats.

Keywords: Nutrient and HABs modeling, Watershed water quality
management, River networks model, Kalman filtering, Data assimilation,
Digital twins
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1. Introduction

Effective management of water quality in surface water systems is crucial
for providing clean and safe water resources to the public. In recent decades,
urbanization and climate change have contributed to a rapid increase of point
source and non-point source pollution from watersheds. These pollutants
have led to high nutrient levels in surface water systems that result in ecosys-
tem degradation and Harmful Algal Blooms (HABs) [I] 2]. Because HABs
produce toxic substances like Microcystin that pose risks to human health
(notably liver cancer [3]), HABs have been a global concern for decades.
For example, Lake Erie in the US experienced an extreme HAB event in
2014 that disrupted the drinking water supply [4], and the Nakdong River in
South Korea has suffered recurrent HABs during summer due to favorable
environmental drivers, including excessive nutrient levels, high water temper-
atures, intensive solar radiation, and slow river velocity [5l [6]. Furthermore,
climate change is expected to increase the frequency and severity of HABs
because higher temperatures create favorable conditions for phytoplankton
growth, and increased rainfall intensity leads to greater nutrient runoff from
watersheds [7, 8, [9]. To address these challenges, measures to reduce HABs
are essential for ensuring safe drinking water and protecting environmental
health.

Researchers have implemented a variety of strategies to combat HABs that
may be classified into either preventive or adaptive approaches [10]. Preven-
tive measures focus on reducing nutrient loads from point- and nonpoint-
pollution sources, as well as biochemical manipulations to limit HAB out-
breaks. However, reducing pollution sources at the watershed scale typically
requires effective regulations and stepwise reduction programs supported by
long-term budgets [11]. Because reducing HABs through preventive methods
is often limited by budgetary and political constraints, adaptive measures are
also necessary to protect public health and ecosystems. These adaptive mea-
sures seek to respond to HABs in real-time, and may include early warning
systems to limit public exposure as well as proactive control of hydraulic in-
frastructure like dams and weirs to minimize HAB proliferation [10] 12| [13].
These adaptative measures require reliable HAB prediction models that in-
tegrate broad-scale monitoring and accurate geographical and biochemical
knowledge of the target river system.

In this study, we focus on the scientific modeling and forecasting of nutri-
ent and algae dynamics at the river network scale as an adaptive measure



for reducing the adverse impacts of HABs. We begin by reviewing recent
advances in physics-based modeling of nutrients and HABs in surface water
systems, and identify several key knowledge gaps that limit the deployment
of real-time models for watershed-scale nutrient management.

2. Background

Broadly, HABs modeling can be divided into two main approaches: em-
pirical models that are derived from observed data, and physics-based mod-
els that incorporate prior information on contaminant fate and transport
from known physical laws [I3]. Although studies in recent decades have in-
troduced novel empirical approaches based on machine learning algorithms
[14} [15], limitations such as a lack of interpretability and transferability pose
challenges for operational adoption [16]. Given these challenges, this study
focuses on physics-based models, which are the most widely-used type of
model in operational use today, and are suitable for scenario-based impact
assessments of reduction measures and long-term planning requiring future
projection capabilities [13].

A variety of physics-based models have been developed to predict HABs in
surface water systems, with applications ranging from high-fidelity simula-
tion of individual waterbodies to base-level assessment of large river sys-
tems [17, 18, 19, 20, 21]. For comprehensive water quality assessments,
three-dimensional models like EFDC and CAEDYM are often chosen for
their ability to simulate both unsteady hydraulics and complex water quality
dynamics involving nutrients, algae and other constituents like epiphyton,
macrophytes, metals, bacteria, and fish [22) 21]. Due to their high compu-
tational demands and input data requirements, these models are generally
reserved for event-based simulation of individual estuaries and reservoirs with
known water quality problems. For management of larger river systems, two-
dimensional models offer a compromise between model fidelity and practical
utility. Within this vein, CE-QUAL-W2 is a two-dimensional vertical hy-
drodynamics and water quality model that has been applied to rivers and
reservoirs throughout the world, including in Korea where it serves as the
primary water quality model used by the state water utility to simulate ma-
jor rivers and their tributaries [23]. Finally, one-dimensional models offer
a practical choice for water managers seeking to assess nutrient and HAB
dynamics for large-scale river networks. Among these models, QUAL2E is
one of the most widely used water quality models, owing to its long devel-



opment history and numerous application cases, with QUAL2K representing
the latest installment in the QUAL series [18]. Likewise, HSPF is a network-
scale one-dimensional watershed model that serves as a popular choice for
nutrient fate and transport modeling in large river basins [24]. Existing one-
dimensional models generally feature simplified hydraulics, with the QUAL
models pertaining to steady-state conditions, and HSPF featuring a unidi-
rectional kinematic wave routing scheme that is best suited for natural river
systems where backwater effects are limited.

Apart from the development of physics-based models of nutrient and HAB
dynamics, recent work has shown success in improving HAB forecasts through
the use of data assimilation (DA) techniques that combine physically-based
models together with real-time observational data [25]. In the context of
nutrient and HABs modeling, DA seeks to incorporate water quality obser-
vations (e.g. chlorophyll measurements) into physically-based models of nu-
trient cycling and algal bloom dynamics to generate improved forecasts and
estimate HAB potential in ungaged locations. Studies have explored a vari-
ety of different DA approaches including Extended Kalman Filtering (EKF)
126, 27, 28, 29], Ensemble Kalman Filtering (EnKF) [30] 311 132} [33], 34} [35],
Particle Filtering (PF) [36], Maximum Likelihood Estimation [? [37], and
Variational Data Assimilation (3DVAR) [38]. These DA approaches have
been integrated with a host of different water quality models, ranging from
simplified ‘O-dimensional’ tank models [39, [40, [41], 29] 28| 27| 26], to 1D mod-
els like HSPF [? 37], and high-resolution 3D models like EFDC [31], 38 [42].
While most studies focus on assimilation of a single constituent like tempera-
ture [31], [34] 38], sediments [43] 44], chlorophyll [327 |40], or oxygen demand
[36], 411, 28]; several recent studies have applied DA to multiple interdepen-
dent constituents such as algal biomass, phosphate, nitrate, dissolved oxygen,
temperature, and other quantities relevant to HAB formation [45] 42 37, 27].

While recent advances have shown promise in improving forecasts of HABs,
challenges remain in applying these results to operational decision-making at
the watershed scale. Existing models are generally either too computationally-
intensive to apply for large river basins in real-time (EFDC, CAEDYM), or
are too simplified to adequately capture the hydraulic behavior of regulated
river networks (QUAL2K, HSPF), meaning that there is currently no suitable
model to inform reservoir operations at the river basin scale. Moreover, a lack
of built-in support for data assimilation means that most existing approaches
largely rely on ensemble-based DA techniques like EnKF or PF, which use
model outputs produced under iterated model runs to generate sample prob-
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ability distributions of the underlying state variables [25]. While easy to
implement, obtaining accurate results from these methods requires a large
number of model runs, which is often more computationally intensive than
direct approaches like EKF. Moreover, due to the lack of built-in DA support,
existing studies mostly focus on assimilating a single constituent, with very
few studies implementing assimilation of multiple reactive species. Given
that algal growth is dependent on interactions between dozens of distinct
reactive species, assimilation of a single constituent is unlikely to produce
physically consistent estimates among water quality constituents, leading to
degraded forecasting skill. In summary, there is a need for an online modeling
system that combines a full-physics contaminant fate and transport model
with built-in multi-constituent data assimilation functionality to better en-
able adaptive management of nutrients and algal blooms at the watershed
scale.

To address these challenges, we introduce EufoRiA (Eutrophication model
for River System Analysis), a new model built specifically for watershed-
scale simulation and management of HABs that integrates unsteady hy-
draulics, multi-constituent contaminant transport and reaction kinetics, and
online multi-constituent DA capabilities via an Extended Kalman Filtering
(EKF) approach. The model is provided as open-source software, enabling
extensions and integrations with existing models and interfaces. This study
presents the detailed model development process and also presents compre-
hensive validation results in a large real-world river network—the Nakdong
river basin in South Korea. Our key contributions are as follows:

e We introduce a new open-source physics-based model for online model-
ing of nutrient and HABs dynamics in large river networks that incorpo-
rates a physically-based hydraulic model and coupled reaction kinetics
between 23 water quality constituents relevant to eutrophication and
HAB formation.

e Validating the new model against long-term observed water quality
data from a large, regulated river network, we find that EufoRiA achieves
accuracy comparable to existing state-of-the-art models in predicting
concentrations of water quality constituents.

e We derive and implement an efficient method for multi-constituent DA
based on Extended Kalman Filtering (EKF) to assimilate water quality
observations into the model. We show how the proposed DA technique



can be calibrated to integrate prior information on spatial and inter-
constituent correlations via the Kalman Filter’s process noise model.

e Through a holdout assessment, we show that our DA scheme signifi-
cantly enhances estimation of water quality constituents within a large
river network using real-world water quality observations. We find that
DA performance is further improved through integration of prior infor-
mation into the Kalman Filter’s process noise model.

3. Methods

3.1. Development of new multi-constituent water quality model for large river
networks

The EufoRiA model is a comprehensive physics-based nutrient and HABs
model for river networks released as an open-source modeling toolkit in the
Python programming language. This section describes the model develop-
ment methods and procedure, including (i) model development history and
description, (ii) governing equations and solution methods, (iii) biochemical
reaction dynamics, (iv) simulation procedure at the software implementation
level, (v) input data preparation and conversion, (vi) adaptive time-stepping
method, and (vii) model application and validation.
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Hydraulic model Contaminant transport model Eutrophication model for River Analysis
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Figure 1: Brief model development history for EufoRiA



3.1.1. Model development history and brief description

The EufoRiA model simulates essential biochemical dynamics related to eu-
trophication in river network systems such as carbon, nitrogen, phosphorus,
heat, dissolved oxygen, phytoplankton growth, and suspended sediments. In
previous work, Kim and Bartos [46] introduced Pipedream-WQ, a new water
quality model for natural and urban drainage networks based on the unsteady
advection-reaction-diffusion (ARD) equation that incorporates real-time data
assimilation using a Kalman Filtering scheme. Designed for real-time appli-
cations in networked drainage systems, this model features a novel implicit
solver scheme based on the SUPERLINK algorithm [47], ensuring numerical
stability and scalability to large networks. However, this earlier Pipedream-
WQ model focused mainly on contaminant transport, and is thus limited to
modeling a single water quality constituent with simple first-order reaction
kinetics. In this study, we enhance the model’s capabilities and develop an
advanced version—FEufoRiA—to represent water quality dynamics across 23
constituents related to eutrophication, enabling more effective predictions of
nutrient fate and harmful algal blooms in river networks. The present study
also evaluates this new nutrient model using long-term multi-constituent val-
idation data from a large real-world river network. The distinct features of
EufoRiA are summarized as follows:

e FufoRiA simulates nutrient dynamics in complex river networks by
integrating an unsteady hydraulics model based on the Saint-Venant
equations, unsteady transport using the advection-diffusion equation,
and complex biochemical reactions for 23 water quality constituents
into a unified modeling framework.

e Based on these capabilities, the EufoRiA model is suitable for simulat-
ing river networks under the influence of hydraulic infrastructure like
dams and weirs, where contaminant fate and transport are affected by
both unsteady hydraulics and backwater effects induced by impound-
ments.

e The EufoRiA model simultaneously represents both open channels and
pressurized conduits, enabling simulation of urban stormwater systems
in addition to natural river networks affected by built infrastructure.

e As an open-source model, EufoRiA enables extensions and integrations
with other software, allowing for integration with data acquisition sys-
tems, visualization tools, and other process models.
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3.1.2. Governing equations and solution methods

EufoRiA uses two sets of governing equations, corresponding to hydraulics
and contaminant transport, respectively. For hydraulics, the physically-based
Saint-Venant equations are used, consisting of the continuity equation (Equa-
tion (1) and momentum equation (Equation :
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Where A is the cross-sectional area of the river channel (m?), @ is the
flow rate at the given channel (m?/s), u is the flow velocity (m/s), g is the
gravitational force (m/s’), h is the water depth (m), and Sy, Sy, and Sy
represent the channel bottom slope, friction slope, and local head loss slope,
respectively. For contaminant transport, the unsteady advection-reaction-
diffusion equation is used (Equation (3)) [48]
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Where, ¢ is the contaminant concentration (g/m?), D is the diffusion coeffi-
cient (m?/s), k is the first-order reaction coefficient (1/s), Q,c; is the mass
flow rate of contaminant into or out of the system boundary.
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Figure 2: A schematic image of the Superlink algorithm applied for numerical solution of
Saint-Venant and advection-reaction-diffusionequations

A staggered-grid implicit finite-difference scheme (SUPERLINK) is ap-



plied to obtain numerical solutions to these governing equations. Details
of the numerical solutions for these equations are presented in previous re-
search [49] 46]. Figure [2] illustrates the concept of the SUPERLINK al-
gorithm. In this algorithm, computational elements are divided into four
types—superjunctions, superlinks, junctions, and links. Superjunctions rep-
resent storage volumes (e.g. reservoirs or confluence points between tribu-
taries) and may also include boundary-forcing inputs. Superlinks consist of
chains of links and junctions connected in series and are used to represent
river reaches and conduits. Within the SUPERLINK method, a sparse ma-
trix equation is first solved to obtain the solutions to the three governing
equations at superjunctions (in terms of hydraulic heads and contaminant
concentrations at these elements); next, recurrence relations are used to cal-
culate the solutions to governing equations at the internal links and junctions.

3.1.8. Biochemical reaction dynamics

EufoRiA provides essential transport and biochemical dynamics models
to simulate harmful algal blooms (HABs) in river networks, including key
constituents such as water temperature, dissolved oxygen (DO), inorganic
and organic nutrients (C, N, P), phytoplankton groups, and suspended sed-
iments. Figure [3| shows a schematic diagram of the water quality reaction
dynamics included in the EufoRiA model. In general, the dynamics for each
constituent are described by coupled ordinary differential equations that are
functions of both constituent concentrations, exogenous forcings (e.g. light
and temperature), and species-specific parameters that inform reaction rates.
For example, nitrate (NOj3) dynamics are described by the equation:

n
8%1\;03 — _ Z(l — PNH4>Kag,i6n:alg,iCalg,i +\[(NH4’}/]XII4CNH%
‘1:1 v Nitrification
Algal p;(:duction ( 4>
— Kno3vnosCnos — KS;IVO?’ Cros
Denitr?gcation m

Where Cynos is the concentration of nitrate; Cgy; is the concentration of
algal species ¢; Cypa is the concentration of ammonium; K,y ;, Knpa, Knos
and K nos are growth/decay coefficients; yyps and yyos are temperature
multiplier coefficients; Pyga is the ammonium preference factor; 0y.q14, is



the stoichiometric parameter between Cyos and Cyg,; and H is the average
hydraulic depth.

Sections in the Supplementary Information (SI) document provide
a full list of all water quality constituents, a review and comparison of the
biochemical dynamics in the existing models and the EufoRiA model, and
the detailed reaction dynamics equations for all constituents.
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1) Phytoplakton: Represented by biomasses of three phytoplakton groups = Diatom + Green algae + Cyanobacteria

2) TN (Total Nitrogen) = NO4-N + NH,-N + PIN + LPON + LDON + RPON + RDON + Algae-N

3) TP (Total Phosphorus) = PO,-P + PIP + LPOP + LDOP + RPOP + RDOP+ Algae-P

4) TOC (Total Organic Carbon) = LPOC + LDOC + RPOC + RDOC+ Algae-C

5) LPOM (Labile Particulate Organic Matter) = LPOC + LPON + LPOP : Three constituents are individually simulated in the model
6) LDOM (Labile Dissolved Organic Matter) = LDOC + LDON + LDOP

7) RPOM (Refractory Particulate Organic Matter) = RPOC + RPON + RPOP

8) RDOM (Refractory Dissolved Organic Matter) = RDOC + RDON + RDOP

Figure 3: Schematic diagram of the water quality reaction kinetics in EufoRiA

Briefly describing the biochemical dynamics in EufoRiA, the Temperature
model is based on the full heat balance equations between the atmosphere,
water body, and riverbed (SI . The DO model includes depletion by
organic and inorganic constituents, re-aeration from the atmosphere, and
photosynthesis by phytoplankton (SI . The Nutrients model accounts for
both inorganic and organic constituents of carbon, nitrogen, and phospho-
rus compounds. For inorganic constituents, the model simulates phosphate
(PO4-P), ammonium (NH,4-N), nitrate (NO3-N), dissolved inorganic nitro-
gen (DIN), and phosphorus (DIP). Additionally, the organic nutrients (C, N,
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P) are simulated as four different classes: labile dissolved, labile particulate,
refractory dissolved, and refractory particulate (SI . The Phyto-
plankton model simulates three algal groups (i.e., Diatoms, Cyanobacteria,
and Green algae) based on growth, respiration, excretion, mortality, and
settling. The algal growth rate is calculated using nutrient-limiting factors,
employing the Monod equation with temperature and light availability (SI
S9). The Suspended sediment model is based on the transport and settling
processes of inorganic suspended sediment (SI .

Table [1| compares the considered water quality constituents between ex-
isting models and EufoRiA. Compared to QUAL2K, an alternative river
network-scale model for simulating nutrient dynamics, EufoRiA captures the
major biochemical dynamics related to nutrient cycling and HAB formation
while also accounting for unsteady hydraulics and contaminant transport. It
should be noted that biological constituents not directly related to nutrient
and HAB dynamics (e.g. Epiphyton, Macrophytes, Zooplankton, Bacteria,
Fish) are omitted from the current implementation of EufoRiA. Some inor-
ganic and chemical factors that may indirectly affect eutrophication dynamics
(e.g. pH, alkalinity, riverbed sediment kinetics, silica, and metals) are also
currently not included in the model, but are reserved as subjects for future
work.

Oxygen demands used in traditional water quality analysis such as BOD
(Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and CBOD
(Carbonaceous Biochemical Oxygen Demand) are not explicitly modeled in
EufoRiA for several reasons. First, these demands do not correspond to phys-
ical constituents with true masses and so the modeling of these constituents
often relies on empirical formulations that are difficult to generalize or verify.
In addition, the analytical techniques for BOD and COD do not ensure the
thorough quantification of the existing organic compounds in the sample due
to interfering factors [50]. In this regard, EufoRiA simulates only the TOC
as a sum of the organic carbon constituents—LDOC, LPOC, RDOC, and
RPOC-to represent the existence and reactions of organic carbons. Other
DO demands like nitrification and bottom sediment in river channels are
separately modeled using related equations (see SI Equation . This ap-
proach is justified by the fact that some jurisdictions have recently moved
away from oxygen demands and towards physical constituents as primary
water quality indicators: for instance, in South Korea, the representative
water quality criteria to evaluate the water quality grade of reservoirs and

lakes was changed from COD to TOC after 2016 [51].
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Table 1: Comparison of the considered water quality constituents between widely used
existing models and EufoRiA

EFDC CAEDYM CE-QUAL-W2 QUAL2K EufoRiA
(3D)  (3D) (2-D) (D) (1-D)
Hydrodynamics and biochemical capability
Unsteady hydraulics v v v - v
Unsteady biochemical reactions v v v - v
Basic water quality constituents
Water temperature v v v v v
pH, alkalinity - v v v -
Dissolved oxygen and various oxygen demands
DO v v v v v
BOD - v - - -
CBOD - -
COD v - - - -
Nutrients: Carbon, Nitrogen, and Phosphorus
DIC (dissolved inorganic carbon)
LDOC?
LPOC?
RDOC?
RPOC*
Ammonium (NH4)
Nitrate (NO3)
LDON®
LPON®
RDON*
RPON®
Phosphate (PO4)
LDOP*
LPOP?
RDOP*
RPOP?
Ecological constituents
Algae (Phytoplankton)
Epiphyton
Macrophyte and Zooplankton -
Bacteria and Fish -
Suspended solids and others
ISS (Inorganic suspended solids)
Riverbed sediment kinetics
Silica
Metals

2 LDO: Labile dissolved organic, LPO: Labile particulate organic, RDO: Refractory dissolved organic, RPO:
Refractory particulate organic, for the last letter, C: Carbon, N: Nitrogen, P: Phosphorus

State variables

\

AN N N N N N N N NEN
A N N N N N N NENEN
A N N N N N N N N N N NENEN
A N N N N N N N N N N N NENEN
A N N N N N N N N N NENENEN

ANEN
ESRNENEN
SNENEN
EENEN
EEEN

ANEN
ANEN

SNENENEN
SNENENEN
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3.1.4. Simulation procedure at the software implementation level

The model structure of EufoRiA can be divided into three modules: hy-
draulics, constituent transport, and biochemical reactions between constituents.
For hydraulics, the model uses the full dynamic unsteady Saint-Venant equa-
tion with an implicit upwind scheme for momentum transfer. The water
quality model applies the unsteady advection-diffusion-reaction equation,
also using an implicit upwind scheme for the advection component. For
biochemical reactions, to facilitate the linkage between the transport and
biochemical reaction modules, we use the 4th-order Runge-Kutta method,
ensuring model accuracy with relatively large time steps while maintaining
an explicit scheme. Like all explicit methods, the Runge-Kutta method may
suffer from instability at large temporal step sizes, and thus careful selection
of the time step is necessary. To address this issue, we propose an adaptive
time stepping approach as described in SI

Calculations for these three modules are performed sequentially at each
time step, as described in Figure[d First, the model simulates the hydraulics,
including the flow rates and water depths across all elements in the river net-
work. Based on the results of the hydraulic model, the model calculates the
constituent transport using the advection-diffusion equation. Finally, the
model simulates the biochemical reactions at each element. Once these steps
are completed, the model proceeds to the next time step. To increase compu-
tational speed, the numba just-in-time compiler is used to accelerate numeric
computations for the hydraulic, contaminant transport and biochemical re-
action modules.

Exogenous input forcing into the boundary superjunctions Meteorological impact

Flow rate, Q Concentrations, C_qnstituents Air/dew temp., wind, solar radiation
Hydraulic module Transport module Reaction module
Flow rate and water depth Concentration of 23 constituents Reaction between 23 constituents
at all spatial elements at all spatial elements at all spatial elements
(Saint Venant equation) (Advection-Diffusion equation) (Heat balance, reaeration, decomposition,

photosynthesis, growth/death, settling, etc.)

River network model based on the geographic data with controllable hydraulic structures (i.e. weirs)

Figure 4: Brief description of the model simulation process at each time step
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3.1.5. Model application and validation: A case study

As a case study, we apply EufoRiA to a complex real-world river net-
work—the Nakdong River Basin in South Korea—to assess its effectiveness
as a physics-based model for nutrients and HABs. This section provides de-
tails on the study area, data collection, river network model construction,
and the calibration and validation processes.

Study area: Nakdong River basin in South Korea

The study area is the Nakdong River Basin, the second-largest watershed in
South Korea, with a drainage area of 23,817 km? and a mainstem river length
of 525 km [52]. The river basin is highly regulated, with 10 multi-purpose
dams, 2 water supply dams, 8 operational large weirs along the mainstem,
and 1 estuary bank. The river basin also contends with significant point and
non-point pollution sources, including 21 large wastewater treatment plants
(WWTPs) with capacities exceeding 20,000 m?/day, several industrial com-
plexes, and a population of approximately 13 million. Due to high pollutant
loads, this river system experiences periodic HABs during the summer sea-
son. As is widely recognized, regulated river systems significantly impact
algal bloom dynamics, typically in adverse ways [53]. The eight large weirs
constructed along the mainstream between 2009 and 2011 have further exac-
erbated HAB severity and duration by increasing water retention time and
reducing flow velocity. Moreover, as the Nakdong River serves as a drinking
water source for 13 million people, ensuring water quality safety remains a
critical concern. To address these challenges, water managers in South Korea
have been working toward a comprehensive water quality and HABs predic-
tion and forecasting system [54] [55]. In this context, we apply EufoRiA to
this river basin to assess its skill in operational nutrient and HAB modeling.
We focus on the river mainstem and its major tributaries, where the most
validation data are available, and exclude the headwaters located upstream
of the 10 multi-purpose dams (Figure [5)).

Geographic and temporal dataset collection

Data required for model construction include geographical data, water
quality measurements, flow rates, and meteorological data. Table [2| provides
details on the datasets used in this research, including data sources and brief
descriptions. In this study, we collect various geological datasets, including a
30 x 30 m digital elevation model (DEM), shapefiles of river channel networks
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Figure 5: Study area: Nakdong River basin of South Korea (Where, SJ: Sang-Ju weir,
ND: Nak-Dan weir, GM: Gu-Mi weir, CG: Chil-Gok weir, GG: Gangjeong-Goryung weir,
DS: Dal-Sung weir, HC: Hapcheon-Changnyung weir, CH: Changnyung-Haman weir, NH:
Nakdonggang-Hagoo weir)

and centerlines, and the official government-approved hydrologic unit catch-
ment boundaries (141 catchments). In addition, streamflow data from major
tributaries (8 stations) are obtained from the Water Management Informa-
tion System (WAMIS) of South Korea, and representative meteorological
data (4 stations) in the Nakdong River basin were collected from the Korea
Meteorological Agency (KMA) website, including precipitation, air and dew
point temperatures, wind velocity, and solar radiation.

Furthermore, river water quality data from 95 stations, covering 14 con-
stituents such as temperature, DO, TN, TP, Chl-a, and TOC, are obtained
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Table 2: Description of the spatial and temporal datasets used for the model application
in the Nakdong River basin, South Korea

Data Resolution Description Source

Digital  eleva- 30 x 30m DEM of Nakdong River National geographic information insti-

tion model basin in Korea (TIFF) tute of Korea https://www.ngii.go.kr/

Catchment 141 catchments Official Hydrologic Unit Water management information system

boundary Catchment of Korea  of Korea http://www.wamis.go.kr
(shape)

River channel - Channel boundaries of Water management information system
the  mainstream  and of Korea http://www.wamis.go.kr

Meteorological
data

Stream Flow

River water
quality
Effluent flow
rate and water
quality from
WWTPs
Discharging
flow rate and
water level of

dams and weirs

4 stations/hourly

8 stations/daily

95 stations/weekly,
monthly

21 stations/daily

12 dams
weirs /daily

and 8

tributaries (shape)

Precipitation, air and dew
point temperatures, wind
velocity, and solar radia-
tion data (time series from
2013 to 2022)

Observed flow rates from
tributaries  (time
from 2013 to 2022)

Observed water
data from
pling stations (time series
from 2013 to 2022)
Observed discharge
water quality data from the
facilities (time series from
2013 to 2022)

Observed discharge and
water level(EL.m) data of
the facilities (time series
from 2013 to 2022)

series

quality
manual sam-

and

Korea Meteorological Administration

https://data.kma.go.kr

Water Management Information System
of Korea |http://www.wamis.go.kr

National Institute of Environmental Re-
search of Korea http://water.nier.go.kr

National Institute of Environmental Re-
search of Korea http://www.nier.go.kr

Korea Water Resources
http://www.water.or.kr

Corporation

from the National Institute of Environmental Research (NIER) of Korea. Ef-
fluent water quality and flow rate data from 23 wastewater treatment plants
(WWTPs) are also collected from NIER. Operational data for multipurpose
dams and weirs, including discharge and water levels, are retrieved from the

MyWater website of Korea Water Resources Corporation (K-water).
time-series datasets span 10 years, from 2013 to 2022.

All

As mentioned in

Section [3.1.5, the construction of large weirs has altered the environmental
conditions of river channels, making it unreliable to apply water quality data
from before 2012 for model calibration and validation. Figure [6] shows the
locations of the measurement stations for different datasets.
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Figure 6: Locations of dataset: Nakdong River Basin in South Korea

Construction of the river network model

We construct a EufoRiA model for the Nakdong river basin using the pre-
pared geographic data and previously constructed river channel section data,
such as HEC-RAS geological data from K-water and other Korean agencies.
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In this process, we assume that all river channels are rectangular for sim-
plicity, deriving the representative cross-sectional shape by considering the
average width and depth of each river channel and section. Figure 7| shows
the developed river network for this study.
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c) Lateral view of Nakdong River: from Andong Dam to Nakdonggan-Hagoo weir (NH)

Figure 7: River network and classification of the forcing input (flow and water quality)
categories

Within EufoRiA, the ultimate river network model consists of 164 super-
links (representing river reaches and reservoirs) and 174 superjunctions (rep-
resenting confluences, control points, and boundary conditions). The super-
junctions include 41 upstream input boundaries, including 10 multipurpose
dam discharges and 18 WWTP input boundaries for 23 WWTPs facilities.
Additionally, the superlinks contain 3,032 internal links and 3,196 internal
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junctions for total 1,209 km of river network channels. We also represent
eight large controllable weirs in the mainstream of the Nakdong River, which
have a total storage capacity of 533.7 million m? at normal operation lev-
els. For weir control, the control strategy described in Section [S11 is applied
such that the weir outflows produced by the model match the observed weir
outflows over the period of record.

Calibration and validation

To assess the performance of EufoRiA, we calibrate the model to observed
data over a calibration period (2013-2020) and then assess its performance
against observed data over a validation period (2021-2022). The model’s per-
formance during these periods is evaluated based on the metrics described in
Section at eight weir locations along the Nakdong River mainstem, repre-
sented by white rectangular boxes (i.e., SJ, ND, GM, CG, GG, DS, HC, and
CH) in Figure 5| Because EufoRiA is a one-dimensional model, we compare
the model results with depth-averaged observed data at each weir location.
We analyze model performance in terms of six key water quality constituents:
water temperature, dissolved oxygen (DO), total nitrogen (TN), total phos-
phorus (TP), chlorophyll-a (Chl-a), and total organic carbon (TOC). Among
these constituents, water temperature and DO are directly simulated in the
model, while TN, TP, Chl-a, and TOC are derived from the modeled labile,
refractory, particulate, and dissolved portions of each constituent based on
the relationships described in Table

Model calibration is achieved via a trial-and-error empirical calibration ap-
proach using visual comparisons and performance metrics, such as RMSE,
NSE, KGE, and PBIAS. This model calibration approach is chosen due to
the inherent challenge in applying optimization methods to calibrate a multi-
constituent model containing over 100 parameters that govern water quality
reaction kinetics. Because calibrating all parameters simultaneously is im-
practical, we prioritize the most influential parameters for more effective
calibration, such as the nitrification/denitrification coefficients of nitrogen
compounds, the maximum growth and mortality rates of algal groups, the
settling rate for particulate constituents, and temperature multiplier-related
coefficients for most constituents. The key parameter values associated with
major nutrients and HABs applied in this study are presented in SI Tables

(83491
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3.2. Data assimilation

We propose a novel data assimilation (DA) strategy based on Extended
Kalman Filtering (EKF) to assimilate water quality sensor data into the
process model while also incorporating prior knowledge about the system
including observed correlations between water quality constituents. This
section describes the development and evaluation of the DA procedure for
EufoRiA, including (i) EKF scheme for the multi-constituent water quality
model, (ii) observation matrix design, (iii) process noise covariance matrix
design, and (iv) development of hold-out assessment scenarios to evaluate
the performance of the proposed DA method. The distinct features of the
EufoRiA DA scheme are summarized as follows:

e EufoRiA provides built-in data assimilation through an efficient Ex-
tended Kalman Filtering scheme that simultaneously assimilates water
quality observations for up to 23 water quality constituents.

e We propose an observation model that effectively captures the bio-
chemical relationships between common measurable water quality con-
stituents (e.g. chlorophyll-a) and modeled constituents (e.g. algal
biomass).

e We introduce a method for constructing the Extended Kalman Fil-
ter’s process noise covariance matrix that integrates prior knowledge
of spatial and inter-constituent correlations, with the ultimate effect of
increasing DA accuracy.

3.2.1. Kalman Filtering scheme

In Kim and Bartos [46], a data assimilation scheme based on Kalman filter-
ing [56] was developed to assimilate water quality observations into a single-
constituent contaminant transport model based on the advection-reaction-
diffusion equation. The present study extends this functionality to enable
multi-constituent data assimilation within the new EufoRiA nutrient and
HABs model. From the implicit numerical solution of the water quality
transport equation (i.e. advection-reaction-diffusion equation), we may ex-
press the evolution of contaminant concentrations over time in terms of a
state equation (Equation , along with the observed states in terms of an
observation equation (Equation @:

Xipar = Xy + Bigpar +yr + Wy (5)
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Zi — HtXt + Vi (6)

Where, x; is the n-dimensional state vector, w; is a p-dimensional stochas-
tic disturbance defined as zero-mean white noise, v; is an m-dimensional
vector of zero-mean white measurement noise, A; is an (n X n) state transi-
tion matrix, B; is an (n X £) input transition matrix, u; is an (n x 1) vector
of input forcing, y, is an (n x 1) vector of constants, and H, is the (m x n)
observation matrix that expresses the observation function that maps the
measurement data to the state variables in the model. Here, n represents
number of states, p represents the number of disturbance inputs, and m
represents the number of measurement points.

Based on the above state and observation equations, the Kalman recursion
provides an algorithm to assimilate sensor observations into the model to
yield the minimum mean-squared error estimator of system states [46 [56].

Kipar = AXe + Biwyar + Yo + Lisad|Zirac — 24 (7)

7y = Hione(AeXy + Biagpar + y1) (8)

L= PH ' (H,PHI +V;)™* (9)

Pin = AP, — PRHF(H,P,H +V,)"'H,P) AT + W, (10)

Where, X; is the estimate of the state variable, Z,; is the estimate of the model
output, L; is the optimal Kalman gain, V; is the measurement noise covari-
ance matrix, P; is the estimation error covariance matrix, W, is the process
noise covariance matrix. The Kalman gain L; and the error covariance P,
are calculated at every time step and updated to correct the estimate of the
system states X;.

For the multi-constituent system, the matrices and vectors in Equations
may be augmented to represent all r constituents simultaneously. In
this augmented form, the state transition matrix A; will have a dimension of
((nr rows) X (nr columns)); the state vector x;, will have a dimension of ((nr
rows) X (1 column)); and the observation matrix H; will have a dimension
of ((mr rows) x (nr columns)).

3.2.2. Observation matrixz design

In the context of Kalman Filtering, the observation matrix represents a
(linear) function that translates measured quantities (e.g. chlorophyll-a) into
modeled quantities (e.g. algal concentrations). This observation model en-
ables data assimilation for all modeling constituents using a smaller number
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of observed constituents. In our model, the observation matrix is used to
update all 23 modeled constituents based on 10 observed quantities that are
commonly measured in surface water systems, including temperature, DO,
TOC, TN, NHy, NOj3, TP, POy, chlorophyll-a, and suspended sediments.
Figure 8| shows the structure of the proposed observation matrix in this
study that represents the following relationships among the water quality
constituents in the model.

Table 3: Derived constituents in EufoRiA

Derived constituent Simulated constituents in EufoRiA
LDOC + LPOC + RDOC + RPOC
+ c1xALG1 + ¢2xALG2 + ¢3xALG3
PIN + NH4-N + NO3-N 4+ LDON + LPON + RDON

Total organic carbon : TOC =

Total nitrogen : TN =

+ RPON + n1xALGI 4+ n2xALG2 + n3xALG3

PIP + PO4-P + LDOP + LPOP 4+ RDOP + RPOP
Total phosphorus : TP = * e d * *

+ p1xALGI + p2xALG2 + p3xALG3
Chlorophyll-a : Chl-a = chl1XxALGI + chl2xALG1 + chl3xALG3

* ¢1-¢3, n1-n3, pl-p3, and chl 1-chl 3 are explained in Figure E ALGI1-ALG3 are biomass of diatom,
green algae, and cyanobacteria, repectively.

Modeling Observed

Observation matrix Ht (1,740 x 4,002) constituents constituents

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 23 (23x1) (10x 1)
(10x23) Temp DO LDOC LPOC RDOC RPOC PIN NH4N NO3N LDON LPON RDON RPON PIP  PO4P LDOP LPOP RDOP RPOP ALG1 ALG2 ALG3 ISS
1 Temp I 1[Temp | = 1[ Temp
2 DO | 2| po 2| po
3 ToC 3| Lpoc 3| Toc
— mq mm afteoc| 4
5 NH4N 5 [ RDOC 5| NHaN
6 NO3N 6 [ RPOC 6 [ NO3N
7T |op*H|op*H|op*H| HEIERIED
8 PO4P 8 [ NHaN 8 | posr
9 CHLA | 9 [ No3N 9| cHLA
10 1SS ‘ [ 10| LDON | 10| IsS
Row: number of the observed variables 11| LPON
Column: number of the 'to be updated" variables 12| RDON
13| RPON
n (n x n diagonal matrix) : n is the number of superjunctions in the system 14 PIP
» Element values : 1 (for data assimilation applied point), 0 (without data assimilation point) 15| PO4P
16| LDOP
c1-c3 Algae biomass to Carbon conversion coefficient for the algae groups 1-3 17| LPOP
n1-n3 Algae biomass to Nitrogen conversion coefficient for the algae groups 1-3 18 RDOP
p1-p3  Algae biomass to Phosphorus conversion coefficient for the algae groups 1-3 19 RPOP
on Organic N to Nitrogen conversion coefficient for 4 organic materials (RDON, LDON, RPON, LPON) 20| ALG1
op Organic P to Phosphorus conversion coefficient for four organic materials (RDOP, LDOP, RPOP, LPOP) 21| ALG2
chl1-chI3 Algae biomass to Chlorophyll-a conversion coefficient for the algae groups 1-3 22| ALG3
23| Iss

Figure 8: Building the observation matrix for the Kalman filtering
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3.2.3. Process noise covariance matrix design

The process noise covariance matrix reflects the uncertainty in the process
model, and thus specifying this matrix properly is crucial for obtaining ac-
curate state estimation results within the Kalman Filter. In Kim and Bartos
[46], it was shown that the process noise covariance matrix has a significant
effect on the results of the Kalman filtering procedure, both in terms of the
spatial distribution of the ‘correction’ applied by the Kalman filter, and on
the accuracy of the ultimate state estimate. In the present study, we intro-
duce and evaluate a new approach to calibrate the process noise covariance
matrix based on observed correlations from the historical record. Specifically,
we analyze and integrate the historical observed spatial and inter-species
correlations among water quality constituents to construct the process noise
covariance matrix, and then assess the improvement in performance afforded
by incorporating this correlation structure into the Kalman filter.

The proposed method for specifying the process noise covariance accounts
for both the spatial correlation in nutrient runoff inputs and the inter-constituent
correlations between chemically-similar constituents. The spatial correlation
component reflects the fact that nutrient loads are highly correlated in space
[57] (e.g. fertilizer runoff from agricultural fields is spatially contiguous).
Likewise, the interconstituent correlation reflects the fact that contaminants
often exhibit significant correlations with one another due to similarities in
chemical composition. For example, concentrations of nitrogen constituents
such as total nitrogen, nitrate, and organic nitrogen groups are frequently
correlated. To incorporate observed correlations into the DA framework, we
first use historically observed water quality constituent concentrations from
2013-2020 (calibration period) to determine both reach-wise and constituent-
wise covariances for each constituent. These covariances are then arranged
into covariance matrices describing both the spatial and inter-constituent
correlations. Additional details on this procedure are outlined in SI Sec-
tions [S14 and [S15. Based on the spatial and inter-constituent covariance
matrices derived in the previous steps, a large block matrix representing the
process noise covariance matrix for the entire system is constructed, as shown
in Figure @ In this figure, Zspatial-Ci is the spatial correlation matrix be-
tween computational elements for the 7th constituent, and ). . ~.~ ;18 the
inter-constituent correlation matrix between the ith and jth water quality
constituents at each spatial point.
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Figure 9: Building the system-wide process noise covariance matrix using the spatial and
inter-constituent correlation matrices. Where, n: number of the spatial computational
elements in the model = 174 in this study, r: number of modeling constituents = 23 from

C1 to Coys

3.2.4. Spatial holdout assessment

We evaluate the improvement in model skill attributable to the proposed

DA scheme using a holdout assessment.
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Figure 10: Data assimilation procedure in EufoRiA

assimilation points (where DA is applied) and holdout points (which are
used only for evaluation). Sensor data are then assimilated into the model
at the selected subset of assimilation points and the estimated contaminant
concentrations are compared to measured contaminant concentrations at all
sites. This procedure is repeated for a successively increasing number of
assimilation points to determine how increasing the number of assimilated
gages improves model accuracy. This holdout analysis is repeated using both
the default (uncorrelated) process noise covariance matrix and the calibrated
(correlated) process noise covariance matrix to assess how the inclusion of
prior knowledge of correlations improves DA performance.

A total of 66 gage locations—37 in the mainstem of the Nakdong River
and 29 in the tributaries—are used for DA holdout assessment. We apply a
succession of 8 different holdout cases, ranging from 8-66 assimilation points
(corresponding to 12-100% coverage), as shown in Figure Case 0 rep-
resents the base scenario without DA application (model-only) and is not
included in Figure In case 1, DA is applied to 8 locations representing
the weirs in the river mainstem. For cases 2 through 6, the number of as-
similation points successively increases from 15 points to 56 points. Finally,
in Case 7, all observed data from the 66 locations in the river network are
utilized for DA. Modeling skill is assessed in terms of a suite of performance
metrics as described in Section (i.e., NSE, KGE, RMSE, and PBIAS).
For each holdout trial, we compute the mean of each performance metric
over all 66 gage locations.

3.3. Model performance evaluation metrics

We evaluate the performance of the multi-constituent water quality model
in terms of the Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE),
Root Mean Squared Error (RMSE), and Percent Bias (PBIAS) performance
metrics. NSE yields values between negative infinity and 1, and when it is
greater than zero, the model can be considered a reasonable predictor (i.e.
better than using the observed mean). The Nash-Sutcliffe Efficiency (NSE)
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Case1: 8 points Case2: 15 points Case3: 25 points Case4: 35 points Caseb: 45 points Caseb6: 56 points Case7: 66 points

Weirs: 8 Weirs: 8 Weirs: 8 Weirs: 8 Weirs: 8 Weirs: 8 Weirs: 8
Tributary: 7 Tributary: 7 Tributary: 17 Tributary: 20 Tributary: 20 Tributary: 29

Mainstream: 10 Mainstream:10 Mainstream:17 Mainstream:28 Mainstream:29

Figure 11: Scenarios for the spatial holdout assessment

is calculated using the following equation:

Zi]\il (Qobs,i - Qsim,i)2
Zi]\il (Qobs,i - %)2

h

NSE=1- (11)

Where, Qo is i observed value, Qi is i simulated value, @, is a
mean of the observed values, and NV is the number of observed data

The Kling-Gupta Efficiency (KGE) is calculated using the following equa-

tion [58]:

KGE=1—+/(r—12+(a—1)2+ (8 —1)? (12)

Where, r is the Pearson correlation coefficient between s and Qgm, ¢ is
the ratio of the standard deviation of simulated values to the standard devi-
ation of observed values (a = ‘;—;n), [ is the ratio of the mean of simulated

values to the mean of observed values (B = ’;S% , Ogim 18 the standard devi-

ation of the simulated values, o is the standard deviation of the observed
values, fism is the mean of the simulated values, and ji4 is the mean of the
observed values.

The Root Mean Squared Error (RMSE) and the percentage bias (PBIAS)
are computed as follows:

N
RMSE _ \/thl(Qobs,i - Qsim,i)2 (13>

N
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>y (Qobssi = Qi)
Zﬁil Qobs,i
When the RMSE of the model results is close to zero, the model can be con-
sidered highly accurate. Additionally, a PBIAS of zero indicates an unbiased
model, while a positive PBIAS suggests that the model tends to underesti-

mate the observed values, and a negative PBIAS indicates that the model
tends to overestimate them.

PBIAS =

x 100 (14)

4. Results

4.1. Model calibration and validation

To evaluate the model performance, simulation results without DA are
first compared against established criteria for NSE, KGE, and PBIAS in
watershed-scale water quality models. Ranges corresponding to satisfactory
and unsatisfactory model performance for different constituents are shown
in Table [4] [59]. More specifically, we apply the criteria for Nitrogen (Daily)
and Phosphorus (Monthly) for NSE and KGE, and the criteria for Nutrients
(Monthly) for PBIAS.

Table 4: Performance evaluation criteria for watershed-scale water quality models [59]

Temporal L Not
Measure Component Very Good Good Satisfactory
scale satisfactory

NSE (KGE) Nitrogen, Phosphorus Monthly 0.65 < NSE 0.50 < NSE < 0.65 0.35 < NSE < 0.50 NSE < 0.35

[PBIAS|(%) Nitrogen, Phosphorus Daily & Monthly |PBIAS|(%) < 15 15 < [PBIAS|(%) < 20 20 < [PBIAS|(%) < 30 30 < |PBIAS|(%)

Figures |12/ and [13|show the model calibration and validation results at the
Changnyung-Haman (CH) weir, the most downstream weir in the Nakdong
River. We select this location because the model output at this point reflects
the accumulated uncertainties from numerous boundary input forcings as
well as the complexity of the model itself. For reference, we provide results
from other weirs in the Supplementary Information (SI) @ According to
the results, percent biases for all evaluated constituents are mostly within
the range of +£10% with the exception of the calibration result for Chl-a,
indicating that there are no significant biases in the model results. The val-
idation results for water temperature, DO, TN, and TP show high accuracy
with NSE of 0.402-0.986, KGE of 0.619-0.964, while the validation results
of Chl-a and TOC show relatively lower accuracy with NSE of 0.272-0.305,
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KGE of 0.376-0.513 (Table [5). Model performance across all constituents is
comparable to results obtained from existing models in other studies (see SI
Section [S17 for a detailed comparison).

4.1.1. Water temperature

As seen in Figure the temperature simulation results (black line) show
excellent agreement with observed data (blue circle). Reproducing the spa-
tial and temporal temperature pattern is crucial for ensuring the reliability of
the river network water quality model because water temperature affects the
reaction rates of most biochemical processes. According to the results, NSE
values are 0.965 and 0.986, KGE are 0.926 and 0.964, RMSE are 1.604 and
1.011, and percent biases are +3.4% and -0.9% for the calibration and valida-
tion periods, respectively. According to the criteria in Table [4] these results
are classified as ‘very good’ (Table . It should be noted that a longer sim-
ulation period during calibration causes higher variability and fluctuations,
resulting in slightly lower performance across all metrics.

Water temperature in EufoRiA is affected by meteorological drivers, in-
cluding air temperature, dew point temperature, wind velocity, and solar
radiation, as well as hydraulic factors such as water flow rate and depth.
Given the complexity of the river network and input data, as well as the
significant depth and volume of the mainstream river channel (as shown in
Figure that strongly affect the river’s heat balance, we conclude that Eufo-
RiA effectively represents key heat balance processes, ensuring reliable water
temperature modeling in impounded river networks like the Nakdong River.

4.1.2. Dissolved oxygen (DO)

After calibration, the model results for DO show good agreement with the
observed data, with NSE values of 0.483 and 0.402, KGE values of 0.757
and 0.761, RMSE values of 1.690 and 1.640, and percent biases of +9.2%
and 49.6% for the calibration and validation periods, respectively (Figures
and . These results can be assessed as ‘satisfactory’ to ‘very good’
performance in terms of NSE and KGE, and ‘very good’ performance in
terms of percent bias by applying the criteria for ‘Phosphorus’ in Table [4]

Dissolved oxygen (DO) plays a pivotal role in maintaining the natural self-
purification capacity of river ecosystems and acts as an electron acceptor
in the decomposition of organic matter and oxidation processes, such as in
the nitrification of ammonium (NHJ) to nitrate (NO3). While reaeration
at the water surface is the key mechanism for recovering DO concentration
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in the water column, photosynthesis by phytoplankton also plays a critical
role in nutrient-rich river systems. Large weirs in the river also limit oxygen
exchange in the water column due to the increased water depth, resulting
in hypoxia at the bottom of the river channel. Although these factors may
affect the model results, in this study, we assume that the river channel is
well-mixed vertically and horizontally because EufoRiA is a one-dimensional
model. Even under this restriction, the model results show that EufoRiA
appropriately represents the DO dynamics and seasonal patterns in the com-
plicated river network of the Nakdong River.

4.1.8. Chlorophyll-a (Chl-a)

Most river water quality models such as EFDC, CAEDYM, QUAL2K, and
CE-QUAL-W2 offer highly complicated algal growth models that incorporate
various nutrient concentrations (e.g., nitrate, ammonium, and phosphate)
and environmental drivers such as solar radiation, water temperature, and
water depth. As a result, modeling HABs in the large-scale river network
with high accuracy is typically extremely challenging work.

Considering these limitations and complexity, EufoRiA offers quite reason-
able Chl-a modeling results (Figures |12 and , with NSE values of -0.001
and 0.305, KGE of 0.137 and 0.376, RMSE of 15.973 and 12.442, and per-
cent biases of +13.1% and +7.2%, which are evaluated as ‘not satisfactory’
to ‘satisfactory’ in NSE and KGE, ‘very good’ in the percent bias. These
results are comparable to those achieved in other studies (see SI Section|S17).

In EufoRiA, Chl-a is calculated based on the three algal groups—diatom,
green algae, and cyanobacteria. Even though these algal groups have dif-
ferent growth rates, optimal temperatures, and sensitivity to nutrient con-
centrations, we calibrate the model using only the observed value of Chl-a,
resulting in limited accuracy. To improve model results, more detailed ob-
servation for algal groups should be required in the future research.

4.1.4. Total nitrogen (TN)

The calibrated model results for TN show good agreement with the ob-
served data (Figures [12|and , with NSE values of 0.757 and 0.820, KGE
values of 0.773 and 0.753, RMSE values of 0.383 and 0.292, and percent biases
of +5.4% and 40.7% for the calibration and validation periods, respectively.
These results can be classified as ‘very good’ performance (Table 5)).

Accurate estimation of nutrient sources like nitrogen and phosphorus is
crucial for reproducing the overall HAB dynamics at different spatial and
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temporal scales. In EufoRiA, total nitrogen concentration is calculated as
the sum of nitrate, ammonium, particulate inorganic nitrogen, four organic
nitrogen groups, and internal nitrogen in three algal groups, rather than as
an individual constituent. After nitrogen compounds enter the system (i.e.,
river network), the only pathways for total nitrogen removal in the model
are settling and denitrification (SI . Excluding these two processes, total
nitrogen in the system can be considered a conservative substance, while the
relative composition among the above constituents continuously changes dur-
ing the modeling process. In other words, the remaining total nitrogen in the
system from the exogenous input loadings can be controlled by calibrating
the settling and denitrification rates. In addition, total nitrogen concentra-
tion is higher during the low flow season than high flow season because of the
impact of the nitrate in the base flow from groundwater discharge. We can
confirm that EufoRiA model results reproduce this temporal pattern with
reasonable accuracy.

4.1.5. Total phosphorus (TP)

The simulation results of TP show good agreement with observed data,
with NSE of 0.485 and 0.398, KGE of 0.515 and 0.619, RMSE of 0.018 and
0.015, and percent biases of -1.3% and -7.7% for calibration and validation
period, respectively (Figure[12]and[L3). Applying the criteria in Table (Table
, the results are evaluated as ‘satisfactory’ to ‘good’ in NSE and KGE, ‘very
good’ in percent bias. Considering the model’s complexity, uncertainties in
input forcings and model parameters, we confirm that this level of perfor-
mance metrics is reliable for the predicting the HABs in Nakdong River.

Phosphorus—especially phosphate as a reactive and soluble phosphorus—is
the major limiting factor for algal growth in the Nakdong River due to the
high background nitrogen concentration and the implementation of advanced
phosphorus removal technologies in the wastewater treatment process. Dur-
ing the low flow period, phosphorus from point sources controls the total
amount of available phosphorus for algal growth. However, during the high
flow season, phosphorus originating from non-point sources in watersheds
provides additional nutrients, resulting in summer HABs after rainfall events.
The model output in Figure[12]and [L3|show that EufoRiA reliably reproduces
this seasonal pattern with satisfactory accuracy.
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Figure 12: Calibration (2013-2020) results at Changnyung Haman (CH) weir
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Figure 13: Validation results (2021-2022) at Changnyung Haman (CH) weir
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4.1.6. Total organic carbon (TOC)

TOC model outputs show relatively less accurate results compared to the
temperature, DO, and nutrients modeling results, with NSE of -0.019 and
0.272, KGE of 0.335 and 0.513, RMSE of 0.893 and 0.744, and percent biases
of -0.8% and -0.6% for calibration and validation periods, respectively. Ac-
cording to Table [5] these results are classified as ‘not satisfactory’ to ‘good’
for NSE and KGE, ‘very good’ for the percent bias. As noted previously,
these results are comparable to the performance of existing models (SI Sec-
tion .

EufoRiA does not explicitly simulate the conventional oxygen demands
such as BOD, CBOD, and COD because these quantities represent surro-
gate indicators to evaluate the oxygen demand reactions in the water, and
do not exist as real physical quantities. Although many studies have sought
to enhance modeling of these quantities, existing work has struggled to rep-
resent these quantities with satisfactory accuracy. Therefore, in this study,
we simulate only four different organic carbon groups (i.e., LDOC, LPOC,
RDOC, and RPOC) instead of simulating BOD, CBOD, or COD in the
model. TOC model results also tend to correlate with Chl-a concentrations
(i.e., algal biomass) given that the organic carbons are produced by photo-
synthesis during algal growth process. Therefore, to enhance the accuracy of
TOC model results, the algal growth model accuracy must first be improved.

Table 5: Model calibration and validation results at the CH weir in the Nakdong-River:
model performance metrics-NSE, KGE, RMSE, and PBIAS — for representative water
quality constituents (We apply the criteria of daily nitrogen case in Table [4] and N.S. is
Not Satisfactory.)

NSE KGE RMSE PBIAS

Calibration Validation  Calibration Validation  Calibration Validation Calibration Validation
Temperature 0.965 0.986 0.926 0.964 1.604 1.011 +3.4% -0.9%
Assessment result Very good ~ Very good  Very good  Very good - - Very good  Very good
Dissolved Oxygen 0.483 0.402 0.757 0.761 1.690 1.640 +9.2% +9.6%
Assessment result Satisfactory Satisfactory Very good  Very good - - Very good  Very good
Chloropyll-a -0.001 0.305 0.137 0.376 15.973 12.442 +13.1% +7.2%
Assessment result N.S. N.S. N.S. Satisfactory - - Very good ~ Very good
Total Nitrogen 0.757 0.820 0.773 0.753 0.383 0.292 +5.4% +0.7%
Assessment result Very good  Very good ~ Very good  Very good - - Very good  Very good
Total Phosphorus 0.485 0.398 0.515 0.619 0.018 0.015 -1.3% -7.7%
Assessment result Satisfactory Satisfactory Good Good - - Very good  Very good
Total Organic Carbon -0.019 0.272 0.335 0.513 0.893 0.744 -0.8% -0.6%
Assessment result N.S. N.S. N.S. Good - - Very good  Very good
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4.2. Improvement in performance attributable to Data Assimilation

While EufoRiA provides results that are comparable to existing water qual-
ity models under the model-only simulation case (Section , data assimi-
lation (DA) greatly improves the prediction performance by integrating ob-
servational data at in-stream locations into the numerical model. Analyzing
the improvement in KGE, NSE, PBIAS, and RMSE attributable to DA for
different sensor coverage densities, DA is found to significantly improve esti-
mation performance in terms of all metrics considered, even under relatively
sparse sensor coverage. Estimation performance is found to further improve
when prior information on spatial and inter-constituent correlations is in-
corporated into the process noise covariance matrix. Sensors located along
the river mainstem are found to be most effective at improving estimation
performance relative to sensors located at smaller tributaries.

4.2.1. Model only vs. Data Assimilation (DA) applied simulation results
Based on the spatial holdout assessment described in Section [3.2.4, DA sig-
nificantly improves model performance for all constituents considered, and a
greater number of data assimilation locations leads to better estimation per-
formance. Figure|l4]shows results for six representative constituents in terms
of improvement in KGE. Here, KGE is selected as a summary benchmark
due to its ability to simultaneously measure correlation, bias, and variance
of errors. In both the spatially correlated and uncorrelated cases, the mean
KGE:s of all observed points are consistently enhanced as the number of DA
points increases from Case 1 (8 points, or 12% sensor coverage) to Case 7
(66 points, or 100% sensor coverage). Notably, even under Case 1—the sce-
nario with the smallest number of DA points—we observe significant KGE
improvements for all considered constituents, especially for total organic car-
bon and Chlorophyll-a. Under the model-only case, these two constituents
showed the poorest performance, with Chlorophyll-a obtaining an mean KGE
of 0.054 (‘Not Satisfactory’) over all gage locations, and TOC obtaining an
mean KGE of 0.255 (‘Not Satisfactory’). However, these results rapidly im-
prove as data is assimilated. For Case 1 (12% sensor coverage), TOC achieves
‘Satisfactory” performance, with a mean KGE of 0.389 for the uncorrelated
case. By Case 3 (38% sensor coverage), TOC and Chlorophyll-a both achieve
‘Good’ performance, with mean KGEs of 0.492 and 0.419, respectively. Fi-
nally, by Case 6 (85% sensor coverage), TOC and Chlorophyll-a obtain ‘Very
Good’ performance, with mean KGEs of 0.632 and 0.614, respectively. These
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Figure 14: Result of the spatial holdout assessment based on the different numbers of
data assimilation point scenarios

results indicate that DA enables accurate estimation of water quality con-
stituents that are otherwise difficult to model even after extensive calibration.
Moreover, even with a small number of DA locations, the mean state estima-
tion results for the entire river network are significantly improved, especially
when the DA locations are selected in the portions of the river mainstem
that are impounded by weirs.
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In addition to KGE, DA improves estimation accuracy with respect to all
other performance metrics considered. Table [ shows the mean NSE, KGE,
RMSE, and PBIAS metrics for six water quality constituents at all gauge
locations under the model-only case (Case 0) and DA-applied cases (Case 1,
Case 4, and Case 7). We highlight here the results for Case 4 (representing
53% sensor coverage) and Case 7 (representing 100% sensor coverage). Under
the model-only case, PBIAS ranges from 4.1-38% among constituents with a
mean value of 15%. By Case 4, PBIAS is reduced to 3.8-25% with a mean of
10% (achieving all ‘Good’ and ‘Very Good’ scores, except for Chlorophyll-a
which is ‘Satisfactory’). Finally, by Case 7 PBIAS ranges from 3.1-16% with
a mean of 7.3% (achieving all ‘Very Good’ scores except for Chlorophyll-a,
which remains ‘Satisfactory’). NSE scores are lower in general, but are still
substantially improved by DA, with NSE improving from -1.05-0.92 (mean
-0.01) under the model-only case, to -0.404-0.934 (mean 0.33) under Case
4, to 0.22-0.95 (mean 0.61) under Case 7 (achieving all ‘Good’ and ‘Very
Good’ scores, except for TOC which remains ‘Not Satisfactory’). In terms
of the overall error, RMSE is reduced by 15-39% under Case 4, and by
28-58% under Case 7. In summary, DA improves modeling skill for all per-
formance metrics considered, with the largest improvements again occurring
for difficult-to-model constituents like TOC and Chlorophyll-a.

4.2.2. Impact of the process noise covariance matrix on DA performance
DA performance is further improved by incorporating prior knowledge on
spatial and inter-constituent correlations into the Kalman Filter’s process
noise covariance matrix. Based on the scenarios described in Section[3.2.4, we
compare the holdout results first assuming that process noise is uncorrelated
(i.e. using a diagonal process noise covariance matrix), and second assuming
that the process noise is correlated (i.e. using the process noise covariance
matrix introduced in Sectionm. Figureshows that incorporating prior
knowledge of spatial correlations consistently achieves better performance
under all considered scenarios and constituents. Comparing the results with
each spatially uncorrelated case, including spatial correlations in the process
noise covariance matrix shows percent improvements in KGE of 0.003-0.007
for temperature, 0.003-0.018 for DO, 0.007-0.090 for Chlorophyll-a, 0.006—
0.033 for total nitrogen, -0.002-0.041 for total phosphorus, and 0.009-0.037
for TOC under given DA scenarios. From these results, we confirm that
the proposed calibrated process noise covariance matrix, which considers the
correlations between the spatial locations based on the historical observed
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Table 6: Comparison between the Model-only simulation results vs. DA applied (spa-
tially uncorrelated) results: mean NSE, KGE, RMSE, and PBIAS for representative water
quality constituents at all gauge locations during the validation period (2021-2022)

Model-only DA Case 1 DA Case 4 DA Case 7 Performance Improvement

NSE (Max Absolute Change)
Temperature 0.918Y 0.9207 0.934v 0.950¢ +0.032
Dissolved Oxygen 0.620v 0.644" 0.733Y 0.810v +0.190
Chlorophyll-a -0.447" -0.160™ 0.198" 0.580” +1.027
Total Nitrogen 0.247" 0.235™ 0.4979 0.672Y +0.425
Total Phosphorus -0.368" -0.319" 0.028" 0.4389 -+0.806
Total Organic Carbon -1.045™ -0.822" -0.404™ 0.217" +1.262
KGE (Max Absolute Change)
Temperature 0.908v 0.907v 0.917v 0.931v +0.023
Dissolved Oxygen 0.782" 0.793" 0.826" 0.858 +0.076
Chlorophyll-a 0.054" 0.247" 0.4919 0.709" -+0.655
Total Nitrogen 0.566" 0.608Y 0.720v 0.800" +0.234
Total Phosphorus 0.335° 0.371° 0.5379 0.710v +0.375
Total Organic Carbon 0.255° 0.389° 0.539¢ 0.683" +0.428
RMSE (Max Percent Change)
Temperature 2.050 1.979 1.748 1.482 -27.7%
Dissolved Oxygen 1.280 1.180 1.045 0.871 -32.0%
Chlorophyll-a 12.26 10.04 7.483 5.110 -58.3%
Total Nitrogen 0.554 0.524 0.409 0.328 -40.8%
Total Phosphorus 0.022 0.020 0.015 0.011 -50.0%
Total Organic Carbon 0.990 0.869 0.701 0.538 -45.7%
PBIAS (Max Percent Change)
Temperature 4.127Y 4.516 3.812v 3.140v -23.9%
Dissolved Oxygen 5.743Y 4.956" 4.388Y 3.585Y -37.6%
Chlorophyll-a 38.34" 31.99" 25.18° 15.92° -58.5%
Total Nitrogen 9.1819 8.933" 6.028" 4.536" -50.6%
Total Phosphorus 16.73° 16.62° 11.479 8.378Y -50.0%
Total Organic Carbon 15.07° 14.429 11.659 8.173Y -45.8%

v: very good; g: good; s: satisfactory; n: not satisfactory

water quality data, significantly enhances the Kalman Filter’s overall state
estimation performance.

4.2.8. Spatial analysis of DA performance improvements

We observe that the DA impacts tend to disappear more quickly for tribu-
taries with small water volumes and short retention times. This result likely
occurs because the water quality at a specific location along the river chan-
nel is immediately affected by advection both from the upstream reach and
into the downstream reach. Collecting more detailed observational data at
locations with large water volumes like reservoirs and river mainstems will
thus generally result in greater temporal persistence of DA corrections and
improved model skill. Figure |15/ shows this tendency in the mainstem and
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tributaries. While the mainstem river channel shows clearer performance en-
hancements between the model-only and DA applied cases, in the tributaries,
the modifications of KGE are relatively small compared to the mainstem lo-
cations.

The spatial map of improvements in KGE for each constituent shown in
Figure clearly reflect the difference in DA effectiveness between main
channel and tributary locations. More specifically, KGE enhancement in
the mainstem and tributary locations are -0.04-0.121 and -0.007-0.056 for
the temperature, 0.017-0.255 and 0.013-0.099 for DO, 0.018-1.209 and -
0.005-1.347 for Chl-a, 0.066-0.699 and 0.014-0.523 for TN, 0.105-2.444 and
0.013-0.973 for TP, and 0.062-1.123 and -0.003-0.723 for TOC, respectively.
Considering these results, it is a better strategy to choose locations for data
assimilation in mainstem rivers or reservoirs within river networks that have
substantial storage volumes, in order to enhance model performance under
data-scarce conditions.

5. Discussion

5.1. Nowel open-source-based river water quality model for online applications

For better management of water quality and HABs in river systems, water
managers and researchers need effective online models with data assimilation
capabilities. This study presents EufoRiA, which is to our knowledge the
first comprehensive online water quality model for large river networks that
combines full unsteady hydraulics, complex nutrient and HAB dynamics, and
data assimilation capabilities. This framework enables online modeling and
forecasting of HABs at the river network scale, with the ultimate goal of
enabling water managers to proactively improve water quality and reduce
HAB outbreaks via real-time control of hydraulic structures such as weirs,
dams, and small-scale detention facilities [60].

Additionally, the open-source nature of our model facilitates active modi-
fication and extension, providing a general framework that may be tailored
to specific real-world use cases. For instance, new reaction kinetics such as
bottom nutrient exchange in the hyporheic zone or additional reaction terms
for existing constituents in the model can be readily extended by adding new
modules into the base model. Given its extensibility, we expect that EufoRiA
provides a feasible and reliable software toolkit to build comprehensive online
modeling systems for water quality management at the watershed scale.
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5.2. Selection of the target modelling constituents and extensibility

The selection of water quality constituents in physics-based models depends
on the specific objectives of water quality or ecological modeling. While many
comprehensive models for rivers, lakes, and oceans incorporate highly com-
plex water quality reaction kinetics to address various potential reactions
in aquatic systems, highly complex models typically introduce greater uncer-
tainty due to insufficient measurement data for input and verification, poorly
understood biochemical processes, and the inherent heterogeneity of water
systems [61]. Furthermore, increasing model complexity usually demands
greater computational resources.

Therefore, a careful selection of model constituents is essential. For in-
stance, the CAEDYM model represents one of the most sophisticated and
advanced water quality and ecological models encompassing the eutrophica-
tion process. This model incorporates seven algal groups, five zooplankton
groups, a jellyfish, five fish groups, a pathogen, a bacteria, four epiphyte
groups, a seagrass, and three invertebrate groups, alongside fundamental nu-
trient kinetics [21]. However, given its complexity and the typical scarcity
of measurement data, simultaneous modeling of these ecological processes
without elaborately designed monitoring programs for specific purposes is
typically infeasible in most practical implementations.

In this regard, EufoRiA omits relatively less influential constituents and
interactions for HABs modelling. For instance, EufoRiA does not simulate
constituents such as pH, alkalinity, conductivity, dissolved and particulate
organic carbon, BOD, CBOD, COD, epiphyton, macrophyte, or zooplank-
ton. In addition, while some researchers emphasize the importance of the
hyporheic zone in nutrient cycling of river systems, EufoRiA does not yet
include active interactions between river channels and bottom sediments.
Including these additional components in the model would require further
calibration and validation datasets, which are often unavailable in public pe-
riodic monitoring data. As discussed in Section modifying the source
code is always feasible and straightforward when calibration data becomes
available. Therefore, we reserve these model extensions for future research.

5.8. Model performance and accuracy of EufoRiA: the necessity of DA meth-
ods

The new multi-constituent water quality model shows reasonable perfor-

mance despite the fact that the chosen study area includes multiple natural

and anthropogenic pollutant sources, complex interactions with hydraulic
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infrastructure, and a large and heterogeneous river network model spanning
nearly 24,000 km?. While the simulation results for temperature, DO, nitro-
gen, and phosphorus show good agreement with the observed data, results
for Chl-a and TOC are less accurate. The relatively low modeling accuracy
for these quantities is caused by the inherent complexity in their reaction
dynamics, which are subject to a large variety of environmental drivers such
as meteorological conditions, nutrient levels and availability, and hydraulic
conditions in the river channel. Researchers have applied various numerical
models to assess and evaluate river water quality and algal bloom dynamics.
However, accurate prediction of algal bloom dynamics is still highly challeng-
ing when using physics-based numerical models alone. Our results confirm
the limitation of this model-only approach. To address this issue, we propose
the integration of data assimilation methods to incorporate real-time sensor
data into physics-based nutrient and HAB models. By incorporating real-
time water quality observations into physics-based models, data assimilation
enables more reliable prediction of highly uncertain constituents including
Chl-a and TOC. Based on the results in Section [4.2.1, we conclude that
model results after applying the DA method show much better performance
compared to the model-only simulation results.

5.4. Integration of prior knowledge into DA process noise model

This study introduces a new method to improve DA performance by spec-
ifying the Kalman Filter’s process noise model based on historical observa-
tions. Given that watershed-scale nutrient modeling is highly uncertain with
a large number of degrees of freedom, it is crucial to ensure model accu-
racy based on all available knowledge about the target surface water system.
The two major sources of uncertainty that are represented with the Kalman
Filtering framework include measurement error (e.g. sensor noise) and mod-
eling error (e.g. uncertainty in model parameters and exogenous inputs).
While measurement error can be readily characterized from sensor manu-
facturer specifications, model uncertainty is much more difficult to quantify,
given that model parameters and nutrient inputs to the river network are
generally unknown. For this reason, the model uncertainty (process noise) is
often taken to be uncorrelated by default. However, our findings show that
incorporating observed correlations into the process noise covariance matrix
significantly improves predictive performance of the model. The process noise
covariance is thus a crucial parameter for obtaining accurate model results,
and should be calibrated using all available data where possible.
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5.5. Limatations and future research directions

Improvement of biochemical reaction kinetics and model structure

As discussed in the previous section, we ignore several biochemical and
physical relationships such as nutrient exchange with underlying sediment
layers, complicated sorption/desorption of nutrients, and additional con-
stituents like zooplankton. Depending on the circumstances of the applied
water body, these reactions may be critical factors for modeling of nutrients
and harmful algal blooms. Model users must carefully consider the appli-
cability of the EufoRiA model in light of the most relevant dynamics for
their particular use case. In addition, this version of EufoRiA uses one-
dimensional rectangular cross-sections for river channels. To represent more
complex phenomena caused by thermal and density stratification in deep
reservoirs, additional methods are needed to simulate stratification within
computational elements. Furthermore, representation of more complicated
channel cross-sectional geometries may provide more reliable model results.

Computational performance

The computational speed of EufoRiA is sufficient for real-time modeling
of large river networks, but may pose a constraint for applications requir-
ing large numbers of model runs such as model calibration, multi-scenario
analysis, or real-time control. For the Nakdong river case study, the model
requires roughly 1 hour for a 1-year simulation without data assimilation,
and 5-6 times longer when DA is applied with hourly updates. For a 1-week
forecast, this means the model requires about 1-2 minutes without DA, and
10-15 minutes with DA (using 13th Gen Intel Core i9-13900K CPU). This
performance makes our model a practical choice for online modeling of large
river basins. However, for applications like model predictive control, which
require repeated calculations over an ensemble of scenarios, improvements to
model speed may be required.

Application cases in real-world river networks

Because EufoRiA is a newly-developed model, there is currently a lack of
case studies that demonstrate the applicability of the model across different
climates, ecosystems, and nutrient loading scenarios. Additional case studies
are needed to assess the model’s performance under different use cases and
accumulate results and insights from these experiences.
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Coupled simulation with a rainfall-runoff model in watershed scale

Although EufoRiA offers highly sophisticated nutrient and HAB dynamics
modeling within river networks, its capabilities remain restricted to the river
channel. While point source pollution is represented through specific bound-
ary inputs, most non-point source pollutants originate from the upstream
watershed. Therefore, a separate watershed pollutant runoff and loading
module is needed to fully integrate hydrology and pollutant dynamics at the
watershed scale while incorporating relevant transport paths such as over-
land flow, interflow, groundwater baseflow. Most basin-scale rainfall-runoff
and water quality models, such as SWAT, HSPF, and SWMM, follow a semi-
distributed approach, incorporating both watershed runoff and river routing
components. Similarly, integrating a hydrologic module into EufoRiA would
enable more effective management of river basins that are impacted by both
point and nonpoint-source pollutants.

6. Conclusion

This study introduces EufoRiA, an open-source physics-based model de-
signed for online nutrient and HAB modeling in large regulated river basins.
Featuring a hydraulic model based on the Saint-Venant equations, a contam-
inant transport model based on the unsteady advection-diffusion equation, a
coupled reaction kinetics model incorporating 23 water quality constituents,
and an efficient data assimilation scheme based on Extended Kalman Fil-
tering, FufoRiA is designed to enable real-time simulation and management
of nutrient cycling and eutrophication dynamics at the river basin scale.
Validating EufoRiA against long-term water quality observations from the
Nakdong river basin in South Korea, the model demonstrates good perfor-
mance in reproducing observed water quality, with high accuracy for tem-
perature, DO, TN, and TP, and relatively less accurate results for Chl-a
and TOC, although performance is comparable to existing modeling stud-
ies. Applying data assimilation to fuse water quality measurements into the
model drastically improves forecasting skill for all performance metrics con-
sidered. A spatial holdout assessment confirms that performance improve-
ments attributable to DA persist even under relatively sparse sensor coverage.
Moreover, we show that calibrating the process noise covariance matrix to
incorporate historically observed spatial and inter-constituent correlations
significantly improves state estimation performance.
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EufoRiA provides a foundation for future digital twin models of river net-
works that will enable online simulation of nutrient and eutrophication dy-
namics. Towards this end, EufoRiA integrates a fully open-source software
framework; advanced physics-based modeling of unsteady hydraulics, con-
taminant fate and transport, and multispecies reaction kinetics; and an effi-
cient watershed-scale data assimilation scheme based on Extended Kalman
Filtering that continuously updates the process model based on real-time ob-
served data. However, further enhancements focusing on computational effi-
ciency optimization, accuracy improvements for complex organic constituents
like Chl-a and TOC, and integration with watershed runoff models are needed
to enable a more holistic water management system. Through these efforts,
we expect that EufoRiA will serve as an effective tool for water quality man-
agement in regulated river basins, helping water managers address the signif-
icant challenges of water quality deterioration and HABs caused by climate
change.

CRediT authorship contribution statement

Min-Gyu Kim: Writing — original draft, Conceptualization, Methodol-
ogy, Software, Investigation, Visualization. Matthew Bartos: Writing —
review and editing, Supervision, Methodology, Software, Validation, Fund-
ing acquisition

Declaration of interests

The authors declare that they have no known competing financial interests
or personal relationships that could have appeared to influence the work
reported in this paper.

Acknowledgement

This study was supported in part by the National Science Foundation,
United States under Grant No. 2340176, and the Korea Water Resources
corporation.

Supplementary Information: A. Supplementary Information

Supplementary information for this article is attached as a supplementary
information document. This document includes a list of state variables, a list

44



of reaction parameters and their calibrated values , brief review of the
biochemical dynamics in the existing models , comprehensive theoretical
backgrounds for all considered biochemical reaction kinetics , cali-
bration and validation results for representative eight weir locations @,
monthly boxplot for eight weir locations during the validation period @,
and the normalized target diagrams [62] for representative six water quality
constituents based on the different numbers of DA location scenarios .

Software and data availability

Source code and data for the pre-review version of this work is available
at: https://github.com/minsky97/EufoRiA.

Software Name: EufoRiA

Developer: Min-Gyu Kim and Matthew Bartos
Contact: mgkim@Qutexas.edu and mdbartosQutexas.edu
Date first available: June 26, 2025

Programming Language: Python

Documentation: Detailed documentation on theoretical backgrounds,
parameters, and additional model outputs is available in Supplemen-
tary Information A.[ST

References

1]

J. Huisman, G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspa-
gen, P. M. Visser, Cyanobacterial blooms, Nature Reviews Microbiology
16 (2018) 471-483. doi:10.1038/s41579-018-0040-1.

H. W. Paerl, T. G. Otten, Harmful Cyanobacterial Blooms: Causes,
Consequences, and Controls, Microbial Ecology 65 (2013) 995-1010.
doii10.1007/s00248-012-0159-y.

L. E. Fleming, C. Rivero, J. Burns, C. Williams, J. A. Bean, K. A.
Shea, J. Stinn, Blue green algal (cyanobacterial) toxins, surface drinking
water, and liver cancer in Florida, Harmful Algae 1 (2002) 157-168.
doi:10.1016/51568-9883(02) 00026-4.

45


https://github.com/minsky97/EufoRiA
http://dx.doi.org/10.1038/s41579-018-0040-1
http://dx.doi.org/10.1007/s00248-012-0159-y
http://dx.doi.org/10.1016/S1568-9883(02)00026-4

[4]

[10]

[11]

S. B. Watson, C. Miller, G. Arhonditsis, G. L. Boyer, W. Carmichael,
M. N. Charlton, R. Confesor, D. C. Depew, T. O. Hook, S. A. Ludsin,
G. Matisoft, S. P. McElmurry, M. W. Murray, R. Peter Richards, Y. R.
Rao, M. M. Steffen, S. W. Wilhelm, The re-eutrophication of Lake Erie:
Harmful algal blooms and hypoxia, Harmful Algae 56 (2016) 44-66.
doii10.1016/j.hal.2016.04.010.

K. B. Kim, M.-K. Jung, Y. F. Tsang, H.-H. Kwon, Stochastic modeling
of chlorophyll-a for probabilistic assessment and monitoring of algae
blooms in the Lower Nakdong River, South Korea, Journal of Hazardous
Materials 400 (2020) 123066. doi;10.1016/j. jhazmat.2020.123066.

S. Bae, D. Seo, Analysis and modeling of algal blooms in the Nakdong
River, Korea, Ecological Modelling 372 (2018) 53-63. do0i:10.1016/j.
ecolmodel.2018.01.019.

M. L. Wells, B. Karlson, A. Wulff, R. Kudela, C. Trick, V. Asnaghi,
E. Berdalet, W. Cochlan, K. Davidson, M. De Rijcke, S. Dutkiewicz,
G. Hallegraeff, K. J. Flynn, C. Legrand, H. Paerl, J. Silke, S. Suikka-
nen, P. Thompson, V. L. Trainer, Future HAB science: Directions
and challenges in a changing climate, Harmful Algae 91 (2020) 101632.
doii10.1016/j.hal.2019.101632.

H. W. Paerl, W. S. Gardner, K. E. Havens, A. R. Joyner, M. J. Mc-
Carthy, S. E. Newell, B. Qin, J. T. Scott, Mitigating cyanobacte-
rial harmful algal blooms in aquatic ecosystems impacted by climate
change and anthropogenic nutrients, Harmful Algae 54 (2016) 213-222.
doii10.1016/j.hal.2015.09.009.

H. W. Paerl, J. Huisman, Blooms Like It Hot, Science 320 (2008) 57-58.
doi:10.1126/science.1155398.

C. R. Anderson, S. K. Moore, M. C. Tomlinson, J. Silke, C. K. Cusack,
Living with Harmful Algal Blooms in a Changing World, in: Coastal
and Marine Hazards, Risks, and Disasters, Elsevier, 2015, pp. 495-561.
doi:10.1016/B978-0-12-396483-0.00017-0.

C. Lancelot, V. Thieu, A. Polard, J. Garnier, G. Billen, W. Hecq,
N. Gypens, Cost assessment and ecological effectiveness of nutrient re-
duction options for mitigating Phaeocystis colony blooms in the South-
ern North Sea: An integrated modeling approach, Science of The Total

46


http://dx.doi.org/10.1016/j.hal.2016.04.010
http://dx.doi.org/10.1016/j.jhazmat.2020.123066
http://dx.doi.org/10.1016/j.ecolmodel.2018.01.019
http://dx.doi.org/10.1016/j.ecolmodel.2018.01.019
http://dx.doi.org/10.1016/j.hal.2019.101632
http://dx.doi.org/10.1016/j.hal.2015.09.009
http://dx.doi.org/10.1126/science.1155398
http://dx.doi.org/10.1016/B978-0-12-396483-0.00017-0

[12]

[13]

[14]

[15]

[16]

Environment 409 (2011) 2179-2191. doi:10.1016/j.scitotenv.2011.
02.023.

W. Guan, M. Bao, X. Lou, Z. Zhou, K. Yin, Monitoring, modeling and
projection of harmful algal blooms in China, Harmful Algae 111 (2022)
102164. doi:10.1016/j.hal.2021.102164.

D. K. Ralston, S. K. Moore, Modeling harmful algal blooms in a chang-
ing climate, Harmful Algae 91 (2020) 101729. doii10.1016/j.hal.2019.
101729l

R. C. Cruz, P. Reis Costa, S. Vinga, L. Krippahl, M. B. Lopes, A
Review of Recent Machine Learning Advances for Forecasting Harmful
Algal Blooms and Shellfish Contamination, Journal of Marine Science
and Engineering 9 (2021) 283. doi:10.3390/jmse9030283.

Q. V. Ly, X. C. Nguyen, N. C. L¢, T.-D. Truong, T.-H. T. Hoang, T. J.
Park, T. Magbool, J. Pyo, K. H. Cho, K.-S. Lee, J. Hur, Application of
Machine Learning for eutrophication analysis and algal bloom prediction
in an urban river: A 10-year study of the Han River, South Korea,
Science of The Total Environment 797 (2021) 149040. doi:10.1016/j .
scitotenv.2021.149040.

L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, L. Kagal,
Explaining Explanations: An Overview of Interpretability of Machine
Learning, in: 2018 IEEE 5th International Conference on Data Science
and Advanced Analytics (DSAA), IEEE, Turin, Italy, 2018, pp. 80-89.
doi:10.1109/DSAA.2018.00018.

W. Astuti, R. Govindaraju, Characterization and Modeling of Harmful
Algal Blooms: A Review, Journal of Hydraulic Engineering 151 (2025)
03125001. doi:10.1061/JHEND8 . HYENG-14108.

S. C. Chapra, G. Pelletier, H. Tao, Qual2k: a modeling framework for
simulating river and stream water quality, version 2.11: documentation

and users manual, Civil and Environmental Engineering Dept., Tufts
University, Medford, MA 109 (2008).

A. Y. K. Kyeong Park, A Three-Dimensional Hydrodynamic-
Eutrophication Model (HEM-3D) : Description of water quality and
sediment process submodels (1995). doi:10.21220/V5ZHIN.

47


http://dx.doi.org/10.1016/j.scitotenv.2011.02.023
http://dx.doi.org/10.1016/j.scitotenv.2011.02.023
http://dx.doi.org/10.1016/j.hal.2021.102164
http://dx.doi.org/10.1016/j.hal.2019.101729
http://dx.doi.org/10.1016/j.hal.2019.101729
http://dx.doi.org/10.3390/jmse9030283
http://dx.doi.org/10.1016/j.scitotenv.2021.149040
http://dx.doi.org/10.1016/j.scitotenv.2021.149040
http://dx.doi.org/10.1109/DSAA.2018.00018
http://dx.doi.org/10.1061/JHEND8.HYENG-14108
http://dx.doi.org/10.21220/V5ZH9N

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

T. Cole, S. Wells, CE-QUAL-W2: A Two-dimensional, Laterally Aver-
aged, Hydrodynamic and Water Quality Model Version 3.5, 2006.

M. Hipsey, J. Romero, J. Antenucci, D. Hamilton, Computational
aquatic ecosystem dynamics model: Caedym v2, Contract Research
Group, Centre for Water Research, University of Western Australia 90
(2006).

T. Tetra, The environmental fluid dynamics code: Theory and compu-
tation, volume 3: Water quality module, Technical report (2007).

T. M. Cole, S. A. Wells, Ce-qual-w2: A two-dimensional, laterally av-
eraged, hydrodynamic and water quality model, version 3.5 (2006).

B. Bicknell, J. Imhoff, J. Kittle, A. Donigian, R. Johanson, Hydrological
simulation program-Fortran (HSPF): User’s manual for release 12, US
EPA Environmental Research Lab, 1997.

K. H. Cho, Y. Pachepsky, M. Ligaray, Y. Kwon, K. H. Kim, Data as-
similation in surface water quality modeling: A review, Water Research
186 (2020) 116307. doi:10.1016/j .watres.2020.116307.

J. Mao, J. H. Lee, K. Choi, The extended Kalman filter for forecast
of algal bloom dynamics, Water Research 43 (2009) 4214-4224. doi:10.
1016/j.watres.2009.06.012.

A. Voutilainen, T. Pyhélahti, K. Y. Kallio, J. Pulliainen, H. Haario,
J. P. Kaipio, A filtering approach for estimating lake water quality from
remote sensing data, International Journal of Applied Earth Observation
and Geoinformation 9 (2007) 50-64. doi;10.1016/j. jag.2006.07.001.

R. Pastres, S. Ciavatta, C. Solidoro, The Extended Kalman Filter
(EKF) as a tool for the assimilation of high frequency water quality data,
Ecological Modelling 170 (2003) 227-235. doi:10.1016/30304-3800 (03)
00230-8.

K. Ennola, J. Sarvala, G. Dévai, Modelling zooplankton population dy-
namics with the extended Kalman filtering technique, Ecological Mod-
elling 110 (1998) 135-149. doi:10.1016/50304-3800(98) 00057 -X.

48


http://dx.doi.org/10.1016/j.watres.2020.116307
http://dx.doi.org/10.1016/j.watres.2009.06.012
http://dx.doi.org/10.1016/j.watres.2009.06.012
http://dx.doi.org/10.1016/j.jag.2006.07.001
http://dx.doi.org/10.1016/S0304-3800(03)00230-8
http://dx.doi.org/10.1016/S0304-3800(03)00230-8
http://dx.doi.org/10.1016/S0304-3800(98)00057-X

[30]

[31]

[33]

[34]

[35]

C. Chen, J. Huang, Q. Chen, J. Zhang, Z. Li, Y. Lin, Assimilating multi-
source data into a three-dimensional hydro-ecological dynamics model
using Ensemble Kalman Filter, Environmental Modelling & Software
117 (2019) 188-199. doi:10.1016/j.envsoft.2019.03.028.

A. Javaheri, M. Babbar-Sebens, R. N. Miller, S. L. Hallett, J. L.
Bartholomew, An adaptive ensemble Kalman filter for assimilation of
multi-sensor, multi-modal water temperature observations into hydrody-
namic model of shallow rivers, Journal of Hydrology 572 (2019) 682—691.
doii10.1016/j. jhydrol.2019.03.036.

T. Page, P. J. Smith, K. J. Beven, 1. D. Jones, J. A. Elliott, S. C.
Maberly, E. B. Mackay, M. De Ville, H. Feuchtmayr, Adaptive forecast-
ing of phytoplankton communities, Water Research 134 (2018) 74-85.
doi:10.1016/j.watres.2018.01.046.

J. Huang, J. Gao, An improved Ensemble Kalman Filter for optimizing
parameters in a coupled phosphorus model for lowland polders in Lake
Taihu Basin, China, Ecological Modelling 357 (2017) 14-22. doi:10.
1016/j.ecolmodel.2017.04.019.

A. Javaheri, M. Babbar-Sebens, R. N. Miller, From skin to bulk: An ad-
justment technique for assimilation of satellite-derived temperature ob-
servations in numerical models of small inland water bodies, Advances in
Water Resources 92 (2016) 284-298. doi:10.1016/j.advwatres.2016.
03.012.

D. Shao, Z. Wang, B. Wang, W. Luo, A Water Quality Model
with Three Dimensional Variational Data Assimilation for Contami-
nant Transport, Water Resources Management 30 (2016) 4501-4512.
doii10.1007/s11269-016-1432-5.

S. Wang, N. Flipo, T. Romary, Oxygen data assimilation for estimat-
ing micro-organism communities’ parameters in river systems, Water
Research 165 (2019) 115021. doi:10.1016/j.watres.2019.115021.

S. Kim, D.-J. Seo, H. Riazi, C. Shin, Improving water quality forecasting
via data assimilation — Application of maximum likelihood ensemble
filter to HSPF, Journal of Hydrology 519 (2014) 2797-2809. doi:10.
1016/ . jhydrol.2014.09.051

49


http://dx.doi.org/10.1016/j.envsoft.2019.03.028
http://dx.doi.org/10.1016/j.jhydrol.2019.03.036
http://dx.doi.org/10.1016/j.watres.2018.01.046
http://dx.doi.org/10.1016/j.ecolmodel.2017.04.019
http://dx.doi.org/10.1016/j.ecolmodel.2017.04.019
http://dx.doi.org/10.1016/j.advwatres.2016.03.012
http://dx.doi.org/10.1016/j.advwatres.2016.03.012
http://dx.doi.org/10.1007/s11269-016-1432-5
http://dx.doi.org/10.1016/j.watres.2019.115021
http://dx.doi.org/10.1016/j.jhydrol.2014.09.051
http://dx.doi.org/10.1016/j.jhydrol.2014.09.051

[38]

[39]

[40]

[41]

[42]

[45]

[46]

M. Babbar-Sebens, L. Li, K. Song, S. Xie, On the Use of Landsat-5 TM
Satellite for Assimilating Water Temperature Observations in 3D Hydro-
dynamic Model of Small Inland Reservoir in Midwestern US, Advances
in Remote Sensing 02 (2013) 214-227. doi:10.4236/ars.2013.23024.

B. Beck, P. Young, Systematic Identification of DO-BOD Model Struc-
ture, Journal of the Environmental Engineering Division 102 (1976)
909-927. do0ii10.1061/JEEGAV.0000554.

P. Whitehead, Modelling algal behaviour in the river thames, Water
Research 18 (1984) 945-953. doi:10.1016/0043-1354(84)90244-6.

B. Cosby, G. Hornberger, Identification of photosynthesis-light models
for aquatic systems I. Theory and simulations, Ecological Modelling 23
(1984) 1-24. doi:10.1016/0304-3800(84)90116-9.

K. Kim, M. Park, J.-H. Min, I. Ryu, M.-R. Kang, L. J. Park, Simulation
of algal bloom dynamics in a river with the ensemble Kalman filter,
Journal of Hydrology 519 (2014) 2810-2821. doi:10.1016/j. jhydrol.
2014.09.073.

N. Margvelashvili, J. Parslow, M. Herzfeld, K. Wild-Allen, J. An-
drewartha, F. Rizwi, E. Jones, Development of operational data-
assimilating water quality modelling system for South-East Tasmania,
in: OCEANS’'10 IEEE SYDNEY, IEEE, Sydney, Australia, 2010, pp.
1-5. d0i:10.1109/0CEANSSYD.2010.5603601.

A. Vodacek, Y. Li, A. J. Garrett, Remote sensing data assimilation in
environmental models, in: 2008 37th IEEE Applied Imagery Pattern
Recognition Workshop, TEEE, Washington, DC, USA, 2008, pp. 1-5.
doi:10.1109/AIPR.2008.4906472.

S. Loos, C. M. Shin, J. Sumihar, K. Kim, J. Cho, A. H. Weerts, En-
semble data assimilation methods for improving river water quality fore-
casting accuracy, Water Research 171 (2020) 115343. doi:10.1016/j.
watres.2019.115343.

M.-G. Kim, M. Bartos, A digital twin model for contaminant fate and
transport in urban and natural drainage networks with online state
estimation, Environmental Modelling & Software 171 (2024) 105868.
doii10.1016/j.envsoft.2023.105868.

50


http://dx.doi.org/10.4236/ars.2013.23024
http://dx.doi.org/10.1061/JEEGAV.0000554
http://dx.doi.org/10.1016/0043-1354(84)90244-6
http://dx.doi.org/10.1016/0304-3800(84)90116-9
http://dx.doi.org/10.1016/j.jhydrol.2014.09.073
http://dx.doi.org/10.1016/j.jhydrol.2014.09.073
http://dx.doi.org/10.1109/OCEANSSYD.2010.5603601
http://dx.doi.org/10.1109/AIPR.2008.4906472
http://dx.doi.org/10.1016/j.watres.2019.115343
http://dx.doi.org/10.1016/j.watres.2019.115343
http://dx.doi.org/10.1016/j.envsoft.2023.105868

[47]

[48]

[49]

[50]

[55]

Z. Ji, General Hydrodynamic Model for Sewer/Channel Network Sys-
tems, Journal of Hydraulic Engineering 124 (1998) 307-315. doi:10.
1061/ (ASCE)0733-9429(1998)124:3(307).

J. L. Martin, S. C. McCutcheon, Hydrodynamics and transport for water
quality modeling, CRC press, 1998.

M. Bartos, B. Kerkez, Pipedream: An interactive digital twin model
for natural and urban drainage systems, Environmental Modelling &
Software 144 (2021) 105120. doiz10.1016/j.envsoft.2021.105120.

J. A. Aguilar-Torrejon, P. Balderas-Herndndez, GG. Roa-Morales, C. E.
Barrera-Diaz, 1. Rodriguez-Torres, T. Torres-Blancas, Relationship, im-
portance, and development of analytical techniques: COD, BOD, and,
TOC in water—An overview through time, SN Applied Sciences 5 (2023)
118. d0i:10.1007/s42452-023-05318-7.

MOE, The 2nd Master plan for water environmental management, Min-
istry of Environment of South Korea, Daejeon, South Korea, 2015.

S. S. Park, Y. S. Lee, A water quality modeling study of the Nakdong
River, Korea, Ecological Modelling 152 (2002) 65-75. doi:10.1016/
S0304-3800(01)00489-6.

J. Kim, J. R. Jones, D. Seo, Factors affecting harmful algal bloom
occurrence in a river with regulated hydrology, Journal of Hydrology:
Regional Studies 33 (2021) 100769. doi;10.1016/j.ejrh.2020.100769.

J. Kim, T. Lee, D. Seo, Algal bloom prediction of the lower Han River,
Korea using the EFDC hydrodynamic and water quality model, Ecolog-
ical Modelling 366 (2017) 27-36. doi:10.1016/j.ecolmodel.2017.10.
015.

H. Y. Kim, C. Shin, Y. Park, J. Moon, Water Resources Management
in the Republic of Korea: Korea’s Challenge to Flood & Drought with
Multi-purpose Dam and Multi-regional Water Supply System, IDB Pub-
lications (2018). doi:10.18235/0001532.

R. E. Kalman, A New Approach to Linear Filtering and Prediction
Problems, Journal of Basic Engineering 82 (1960) 35-45. doi:10.1115/
1.3662552.

51


http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:3(307)
http://dx.doi.org/10.1061/(ASCE)0733-9429(1998)124:3(307)
http://dx.doi.org/10.1016/j.envsoft.2021.105120
http://dx.doi.org/10.1007/s42452-023-05318-7
http://dx.doi.org/10.1016/S0304-3800(01)00489-6
http://dx.doi.org/10.1016/S0304-3800(01)00489-6
http://dx.doi.org/10.1016/j.ejrh.2020.100769
http://dx.doi.org/10.1016/j.ecolmodel.2017.10.015
http://dx.doi.org/10.1016/j.ecolmodel.2017.10.015
http://dx.doi.org/10.18235/0001532
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552

[57]

[58]

[61]

[62]

[63]

[64]

[65]

A. T. Cahill, F. Ungaro, M. B. Parlange, M. Mata, D. R. Nielsen,
Combined spatial and kalman filter estimation of optimal soil hy-
draulic properties, Water Resources Research 35 (1999) 1079-1088.
doi:10.1029/1998WR900121.

H. V. Gupta, H. Kling, K. K. Yilmaz, G. F. Martinez, Decomposition
of the mean squared error and nse performance criteria: Implications
for improving hydrological modelling, Journal of hydrology 377 (2009)
80-91. doif10.1016/7 . jhydrol.2009.08.003.

D. N. Moriasi, M. W. Gitau, N. Pai, P. Daggupati, Hydrologic and
water quality models: Performance measures and evaluation criteria,
Transactions of the ASABE 58 (2015) 1763-1785. doi:10.13031/trans.
58.10715.

J. Oh, M. Bartos, Model predictive control of stormwater basins
coupled with real-time data assimilation enhances flood and pol-
lution control under uncertainty, Water Research 235 (2023)
119825. URL: https://www.sciencedirect.com/science/article/
pii/S0043135423002609. doithttps://doi.org/10.1016/j.watres.
2023.119825.

K.-E. Lindenschmidt, The effect of complexity on parameter sensitivity
and model uncertainty in river water quality modelling, Ecological Mod-
elling 190 (2006) 72-86. doi:https://doi.org/10.1016/j.ecolmodel.
2005.04.016.

J. K. Jolliff, J. C. Kindle, I. Shulman, B. Penta, M. A. Friedrichs,
R. Helber, R. A. Arnone, Summary diagrams for coupled hydrodynamic-
ecosystem model skill assessment, Journal of Marine Systems 76 (2009)
64-82. doi:10.1016/j . jmarsys.2008.05.014.

R. V. Thomann, J. A. Mueller, Principles of surface water quality mod-
eling and control (1987).

D. K. Brady, W. L. Graves, J. C. Geyer, Surface heat exchange at power
plant cooling lakes (1969).

E. L. Thackston, J. W. Dawson III, Recalibration of a reaeration equa-
tion, Journal of environmental engineering 127 (2001) 317-321.

52


http://dx.doi.org/10.1029/1998WR900121
http://dx.doi.org/10.1016/j.jhydrol.2009.08.003
http://dx.doi.org/10.13031/trans.58.10715
http://dx.doi.org/10.13031/trans.58.10715
https://www.sciencedirect.com/science/article/pii/S0043135423002609
https://www.sciencedirect.com/science/article/pii/S0043135423002609
http://dx.doi.org/https://doi.org/10.1016/j.watres.2023.119825
http://dx.doi.org/https://doi.org/10.1016/j.watres.2023.119825
http://dx.doi.org/https://doi.org/10.1016/j.ecolmodel.2005.04.016
http://dx.doi.org/https://doi.org/10.1016/j.ecolmodel.2005.04.016
http://dx.doi.org/10.1016/j.jmarsys.2008.05.014

[66]

[67]

[68]

[69]

[71]

[72]

K. W. Thornton, A. S. Lessem, A temperature algorithm for modifying
biological rates, Transactions of the American Fisheries Society 107
(1978)2847287.dOklO.1577/1548-8659(1978)1O7<284:ATAFMB>2.O.
CO; 2.

R. V. Thomann, J. J. Fitzpatrick, Calibration and Verification of a
Mathematical Model of the Eutrophication of the Potomac Estuary, DC
Department of Environmental Sciences, 1982.

H.-S. Kim, S.-Y. Kim, J. Park, M. Han, The Fractionation Char-
acteristics of Organic Matter in Pollution Sources and River, Jour-
nal of Korean Society on Water Environment 33 (2017) 580-586.
doi:10.15681/KSWE.2017.33.5.580.

Y. Du, X. Liu, M. Hu, X. Liu, W. Peng, C. Liu, K. Rinke, B. Boehrer,
Y. Wang, Resolving spatially complex interactions between hydrody-
namics and biogeochemical processing in a large reservoir with met-
alimnetic oxygen deficits, Journal of Hydrology 644 (2024) 132060.
doi{10.1016/7. jhydrol. 2024 .132060.

D. Brito, T. B. Ramos, M. C. Gongalves, M. Morais, R. Neves, Inte-
grated modelling for water quality management in a eutrophic reservoir
in south-eastern Portugal, Environmental Earth Sciences 77 (2018) 40.
doi;10.1007/s12665-017-7221-5.

S. M. Hong, A. Abbas, S. Kim, D. H. Kwon, N. Yoon, D. Yun, S. Lee,
Y. Pachepsky, J. Pyo, K. H. Cho, Autonomous calibration of EFDC for
predicting chlorophyll-a using reinforcement learning and a real-time
monitoring system, Environmental Modelling & Software 168 (2023)
105805. d0i:10.1016/j.envsoft.2023.105805.

D. H. Lee, J. H. Kim, M.-H. Park, M. K. Stenstrom, J.-H. Kang, Auto-
matic calibration and improvements on an instream chlorophyll a sim-
ulation in the HSPF model, Ecological Modelling 415 (2020) 108835.
doi:10.1016/j.ecolmodel.2019.108835.

H. H. Bui, N. H. Ha, T. N. D. Nguyen, A. T. Nguyen, T. T. H. Pham,
J. Kandasamy, T. V. Nguyen, Integration of SWAT and QUAL2K for
water quality modeling in a data scarce basin of Cau River basin in

53


http://dx.doi.org/10.1577/1548-8659(1978)107%3C284:ATAFMB%3E2.0.CO;2
http://dx.doi.org/10.1577/1548-8659(1978)107%3C284:ATAFMB%3E2.0.CO;2
http://dx.doi.org/10.15681/KSWE.2017.33.5.580
http://dx.doi.org/10.1016/j.jhydrol.2024.132060
http://dx.doi.org/10.1007/s12665-017-7221-5
http://dx.doi.org/10.1016/j.envsoft.2023.105805
http://dx.doi.org/10.1016/j.ecolmodel.2019.108835

[74]

[75]

[76]

(78]

Vietnam, Ecohydrology & Hydrobiology 19 (2019) 210-223. doi:10.
1016/3 . ecohyd.2019.03. 005,

J. Kim, A. Jonoski, D. P. Solomatine, P. L. M. Goethals, Water Quality
Modelling for Nitrate Nitrogen Control Using HEC-RAS: Case Study
of Nakdong River in South Korea, Water 15 (2023) 247. doi:10.3390/
w15020247.

J. Pyo, L. J. Park, Y. Pachepsky, S.-S. Baek, K. Kim, K. H. Cho, Us-
ing convolutional neural network for predicting cyanobacteria concentra-
tions in river water, Water Research 186 (2020) 116349. doi:10.1016/
j.watres.2020.116349.

D. Kim, Y. Kim, B. Kim, Simulation of eutrophication in a reservoir by
CE-QUAL-W2 for the evaluation of the importance of point sources and
summer monsoon, Lake and Reservoir Management 35 (2019) 64-76.
doii10.1080/10402381.2018.1530318.

M. T. Brett, S. K. Ahopelto, H. K. Brown, B. E. Brynestad, T. W.
Butcher, E. E. Coba, C. A. Curtis, J. T. Dara, K. B. Doeden, K. R.
Evans, L. Fan, J. D. Finley, N. J. Garguilo, S. M. Gebreeyesus, M. K.
Goodman, K. W. Gray, C. Grinnell, K. L. Gross, B. R. E. Hite, A. J.
Jones, P. T. Kenyon, A. M. Klock, R. E. Koshy, A. M. Lawler, M. Lu,
L. Martinkosky, J. R. Miller-Schulze, Q. T. N. Nguyen, E. R. Runde,
J. M. Stultz, S. Wang, F. P. White, C. H. Wilson, A. S. Wong, S. Y.
Wu, P. G. Wurden, T. R. Young, G. B. Arhonditsis, The modeled
and observed response of Lake Spokane hypolimnetic dissolved oxygen
concentrations to phosphorus inputs, Lake and Reservoir Management
32(2016)2467258.dOklO.1080/10402381.2016.1170079.

B. Tasnim, X. Fang, J. S. Hayworth, D. Tian, Simulating Nutrients and
Phytoplankton Dynamics in Lakes: Model Development and Applica-
tions, Water 13 (2021) 2088. doi:10.3390/w13152088.

o4


http://dx.doi.org/10.1016/j.ecohyd.2019.03.005
http://dx.doi.org/10.1016/j.ecohyd.2019.03.005
http://dx.doi.org/10.3390/w15020247
http://dx.doi.org/10.3390/w15020247
http://dx.doi.org/10.1016/j.watres.2020.116349
http://dx.doi.org/10.1016/j.watres.2020.116349
http://dx.doi.org/10.1080/10402381.2018.1530318
http://dx.doi.org/10.1080/10402381.2016.1170079
http://dx.doi.org/10.3390/w13152088

Supplementary Information

for

FufoRiA: A new multi-constituent nutrient and harmful
algal blooms model for river networks with online data
assimilation

Min-Gyu Kim & Matthew Bartos

mgkim@utexas.edu & mdbartosQutexas.edu

Civil, Architectural and Environmental Engineering,

University of Texas at Austin



S1. Definition of the state variables and parameters

Table S1: State variables including hydraulics and water quality constituents in

EufoRiA (1)

Variable  Description Unit
Ty Water temperature °C
Agur face Surface area of the control volume m?
Apottom Bottom area of the control volume m?

V Volume of the control volume m?

H Average hydraulic depth m
Cho Dissolved oxygen concentration mg/L
Cpo,sat Saturation DO concentration mg/L
Cpo DO concentration mg/L
Calg, Diatom Algal concentration of Diatom mg/L
Caig.Green Algal concentration of Green algae mg/L
Caig,cyano Algal concentration of Cyanobacteria mg/L
CrLpoc Labile dissolved organic carbon concentration mg/L
CrLroc Labile particulate organic carbon concentration mg/L
Crpoc Refractory dissolved organic carbon concentration — mg/L
Crproc Refractory particulate organic carbon concentration mg/L
Cna Ammonium concentration mg/L
Cnos Nitrate (NO3-N-+NO2-N) concentration mg/L
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Table S2: State variables including hydraulics and water quality constituents in

EufoRiA (2)

Variable  Description Unit
CpIn Particulate inorganic nitrogen concentration mg/L
CrLpon Labile dissolved organic nitrogen concentration mg/L
CrLpon Labile particulate organic nitrogen concentration mg/L
Crpon Refractory dissolved organic nitrogen concentration mg/L
Crpron Refractory particulate organic nitrogen concentra- mg/L
tion
Cpou Phosphate concentration mg/L
Cprp Particulate inorganic phosphorus concentration mg/L
CrLpopr Labile dissolved organic phosphorus concentration — mg/L
Crrop Labile particulate organic phosphorus concentration mg/L
Crpopr Refractory dissolved organic phosphorus concentra- mg/L
tion
Crpop Refractory particulate organic phosphorus concen- mg/L
tration
Cirss Inorganic suspended solids concentration mg/L
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Table S3: Parameters related to the biochemical reactions in EufoRiA (1)

Parameter  Description Unit Applied
Value
. 0.12—

Ksop Sediment oxygen demand (SOD) mg/m?/day 0.50

Klsop K1 parameter for the temperature - 0.01
multiplier for SOD

K250p K2 parameter for the temperature - 0.99
multiplier for SOD

T1sop T1 parameter for the temperature - 0.0
multiplier for SOD

T2s50p T2 parameter for the temperature - 23.0
multiplier for SOD

ONH4—N Oxygen stoichiometric coefficient for - 4.57
nitrification

doc Oxygen stoichiometric coefficient for - 0.3
organic carbon

dag, Diatom Oxygen stoichiometric coefficient for - 1.7
algal growth for Diatom

dag,Green Oxygen stoichiometric coefficient for - 1.7
algal growth for Green algae

dag,Cyano Oxygen stoichiometric coefficient for - 1.7

algal growth for Cyanobacteria
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Table S4: Parameters related to the biochemical reactions in EufoRiA (2)

Parameter  Description Unit Applied
Value

K piatom  Algal biomass (mg/L) to Chlorophyll-a - 0.07
(mg/m?) ratio of diatom

K g maz, Diatom Maximum algal growth rate of diatom 1/day 4.75

K o1 maz Diatom Maximum algal respiration rate of diatom 1/day 0.019

K o maz, DiatorMaximum algal mortality rate of diatom  1/day 0.019

K e maz, Diatom Maximum algal excretion rate of diatom  1/day ~ 0.019

K piatom Settling rate of diatom 1/day  0.01

K1piatom K1 parameter for the temperature multi- - 0.50
plier for diatom

K2piatom K2 parameter for the temperature multi- - 0.99
plier for diatom

K3piatom K3 parameter for the temperature multi- - 0.99
plier for diatom

Kapiaiom K4 parameter for the temperature multi- - 0.01
plier for diatom

T1piatom T1 parameter for the temperature multi- - 0.01
plier for diatom

T2Dpiatom T2 parameter for the temperature multi- - 6.0
plier for diatom

T'3Diatom T3 parameter for the temperature multi- - 10.0
plier for diatom

TApiatom T4 parameter for the temperature multi- - 11.0
plier for diatom

d¢ Diatom Stoichiometric equivalent between algal - 0.6
biomass and carbon for green diatom

ON, Diatom Stoichiometric equivalent between algal - 0.08
biomass and nitrogen for green diatom

0P, Diatom Stoichiometric equivalent between algal - 0.005

biomass and phosphorus for diatom
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Table S5: Parameters related to the biochemical reactions in EufoRiA (3)

Parameter  Description Unit Applied
Value

KchiGreen  Algal biomass (mg/L) to Chlorophyll-a - 0.07
(mg/m?) ratio for green algaes

K o9 maz,Green. Maximum growth rate of green algae 1/day 2.55

Ko max Green. Maximum respiration rate of green algaec  1/day 0.019

K om maz.Green Maximum mortality rate of green algae 1/day 0.019

K e maz,creen. Maximum excretion rate of green algae 1/day 0.019

K Green Settling rate of green algae 1/day 0.005

Klgreen K1 parameter for the temperature multi- - 0.01
plier for green algae

K2¢cen K2 parameter for the temperature multi- - 0.99
plier for green algae

K3Green K3 parameter for the temperature multi- - 0.99
plier for green algae

Kdcreen K4 parameter for the temperature multi- - 0.01
plier for green algae

T1green T1 parameter for the temperature multi- - 14.0
plier for green algae

T26Green T2 parameter for the temperature multi- - 16.0
plier for green algae

T36reen T3 parameter for the temperature multi- - 18.0
plier for green algae

T4Green T4 parameter for the temperature multi- - 22.0
plier for green algae

d¢ Green Stoichiometric equivalent between algal - 0.6
biomass and carbon for green algae

ON,Green Stoichiometric equivalent between algal - 0.08
biomass and nitrogen for green algae

Op,Green Stoichiometric equivalent between algal - 0.005

biomass and phosphorus for green algae
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Table S6: Parameters related to the biochemical reactions in EufoRiA (4)

Parameter  Description Unit Applied
Value

Ken,oyano  Algal biomass (mg/L) to Chlorophyll-a - 0.07
(mg/m?) ratio

K ogmaz,cyano Maximum growth rate of Cyanobacteria  1/day 3.45

Ko maz,cyano Maximum respiration rate of Cyanobacte- 1/day 0.019
ria

K o maz,cyano Maximum mortality rate of Cyanobacteria 1/day 0.019

K oe maz,cyano Maximum excretion rate of Cyanobacteria 1/day 0.019

K1cyano K1 parameter for calculating the temper- - 0.01
ature multiplier for Cyanobacteria

K2cyano K2 parameter for calculating the temper- - 0.99
ature multiplier for Cyanobacteria

K3cyano K3 parameter for calculating the temper- - 0.99
ature multiplier for Cyanobacteria

K4cyano K4 parameter for calculating the temper- - 0.05
ature multiplier for Cyanobacteria

T1cyano T1 parameter for calculating the temper- - 20.0
ature multiplier for Cyanobacteria

T2cyano T2 parameter for calculating the temper- - 25.0
ature multiplier for Cyanobacteria

T'3cyano T3 parameter for calculating the temper- - 28.0
ature multiplier for Cyanobacteria

T'4cyano T4 parameter for calculating the temper- - 32.0
ature multiplier for Cyanobacteria

d¢eyano Stoichiometric equivalent between algal - 0.6
biomass and carbon for cyanobacteria

ON cyano Stoichiometric equivalent between algal - 0.08
biomass and nitrogen for cyanobacteria

dP,cyano Stoichiometric equivalent between algal - 0.005

biomass and phosphorus for cyanobacteria

S-6



Table S7: Parameters related to the biochemical reactions in EufoRiA (5)

Parameter  Description Unit Applied
Value

Kripoc Labile dissolved organic carbon decay 1/day  0.002
rate

K poc Labile particulate organic carbon decay 1/day 0.002
rate

Krpoc Refractory dissolved organic carbon de- 1/day  0.002
cay rate

Krpoc Refractory particulate organic carbon de- 1/day  0.002
cay rate

Krpoc—rpoc Decomposition rate from labile to refrac- 1/day 0.01
tory DOC

K1 poc—srrpoc Decomposition rate from labile to refrac- 1/day 0.01
tory POC

K rroc Settling coefficient for LPOC m/day  0.002

K, rroc Settling coefficient for RPOC m/day  0.002

Knpa Nitrification rate 1/day  0.18

Klnga K1 parameter for calculating the temper- - 0.05
ature multiplier for nitrification

K2np4 K2 parameter for calculating the temper- - 0.99
ature multiplier for nitrification

T1npa T1 parameter for calculating the temper- - 0.01
ature multiplier for nitrification

T2NH4 T2 parameter for calculating the temper- - 15.0
ature multiplier for nitrification

Knos Denitrification rate 1/day  0.012

Klnos K1 parameter for calculating the temper- - 0.0001
ature multiplier for denitrification

K2n03 K2 parameter for calculating the temper- - 0.99
ature multiplier for denitrification

T1no3 T1 parameter for calculating the temper- - 10.0
ature multiplier for denitrification

T2n03 T2 parameter for calculating the temper- - 20.0
ature multiplier for denitrification

K nos Settling coefficient for nitrate m/day  0.000

S-7



Table S8: Parameters related to the biochemical reactions in EufoRiA (6)

Parameter  Description Unit Applied
Value

K, pin Settling coefficient for particulate inor- m/day  0.005
ganic nitrogen

Pnia Ammonium preference factor by NH4 and - 0.000
NO3 concentration

Pin Portion factor when algae decay to LDON - 0.5

Kipon Labile dissolved organic nitrogen decay 1/day  0.02
rate

Krpon Labile particulate organic nitrogen decay 1/day  0.02
rate

Krpon Refractory dissolved organic nitrogen de- 1/day 0.02
cay rate

Krpon Refractory particulate organic nitrogen 1/day  0.02
decay rate

K1 pon—rponDecomposition rate from labile to refrac- 1/day 0.02
tory DON

Krpon—rpon Decomposition rate from labile to refrac- 1/day 0.02
tory PON

K 1pon Settling coefficient for LPON m/day  0.002

K, rron Settling coefficient for RPON m/day  0.002

Pip Portion factor when algae decays to - 0.6
LDOP

Koas prp Adsorption coefficient to PIP 1/day  0.02

Kes.prp Desorption coefficient from PIP 1/day 0.005

K prp Settling coefficient for PIP m/day  0.05

Kipop Labile dissolved organic phosphorus de- 1/day 0.015
cay rate

Krpop Labile particulate organic phosphorus de- 1/day 0.015
cay rate

Krpop Refractory dissolved organic phosphorus 1/day  0.015
decay rate

Kgrpop Refractory particulate organic phospho- 1/day 0.015

rus decay rate




Table S9: Parameters related to the biochemical reactions in EufoRiA (7)

Parameter  Description Unit Applied
Value

Kipopr—rpop Decomposition rate from labile to refrac- 1/day 0.01
tory DOP

K pop—rpop Decomposition rate from labile to refrac- 1/day 0.01
tory POP

K, rrop Settling coefficient for LPOP m/day  0.04

Ks rrop Settling coefficient for RPOP m/day  0.04

Ky N piatom  Half saturation coefficient of nitrogen for mg/L 0.1
Diatom

K N Green Half saturation coefficient of nitrogen for mg/L 0.1
Green algae

K, N.cyano Half saturation coefficient of nitrogen for mg/L 0.1
cyanobacteria

K N4 Half saturation coefficient for ammonium mg/L 0.1

K ppiatom  Half saturation coefficient of nitrogen for mg/L 0.001
Diatom

K pGreen Half saturation coefficient of nitrogen for mg/L 0.001
Green algae

K pcyano Half saturation coefficient of nitrogen for mg/L 0.001
Cyanobacteria

K prp Half saturation coefficient for adsorption mg/L 0.005

to PIP
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S2. Review of the existing models focusing on the biochemical re-
actions

Based on a literature review of widely used existing models (QUAL2K,
EFDC, CAEDYM, and CE-QUAL-W2), we include the most essential con-
stituents, such as temperature, dissolved oxygen, organic and inorganic nu-
trients (N, P, C), and algal groups (Green, Diatom, and Cyanobacteria) in
EufoRiA.

The Environmental Fluid Dynamics Code (EFDC) is a surface water mod-
eling system that includes three-dimensional hydrodynamics and a water
quality model. This model was first developed at the Virginia Institute of
Marine Science (VIMS) and has been applied to hundreds of water bodies,
including lakes, estuaries, oceans, and rivers worldwide. For water quality
modeling, the initial approach involved coupling EFDC’s hydrodynamic code
with the external water quality model, WASP. Later, a fully integrated code
was developed based on the nutrient and sediment kinetics equations of the
CE-QUAL-ICM model [22].

The Computational Aquatic Ecosystem Dynamics Model (CAEDYM) is
one of the most comprehensive and complex water quality and ecological
models, incorporating various nutrients, algae, epiphyton, macrophytes, and
higher organisms such as fish. CAEDYM requires an external three-dimensional
hydrodynamics model, the Estuary, Lake, and Coastal Ocean Model (EL-
COM) [21]. In Korea, the ELCOM-CAEDYM model is implemented as a
reservoir model for K-water’s integrated water quality modeling system, par-
ticularly due to its strong capability to reproduce thermal stratification in
density-stratified lakes.

CE-QUAL-W2 is a two-dimensional vertical hydrodynamics and water
quality model actively maintained by the USACE and the Water Quality
Research Group at Portland State University. The latest version of this
model was released on February 11, 2023, [23]. It has been applied to nu-
merous rivers and reservoirs in various countries. In Korea, K-water utilizes
this model as a river model for major large rivers and their tributaries.

QUALZ2E is one of the most widely used water quality models. Its long de-
velopment history and numerous application cases make it a reliable choice
for solving water quality problems. QUAL2K is the latest version of the
QUAL series model, providing fundamental biochemical reaction kinetics
for one-dimensional river networks. Since our EufoRiA model also incor-
porates one-dimensional river networks, reviewing the reaction relationships
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presented by QUAL2K is necessary and valuable [18].

There are some controversial differences in reaction kinetics among existing
models, particularly in how each model handles organic matter. For example,
in the EFDC model, algal mortality increases organic matter groups—including
labile and refractory forms—regardless of whether they are dissolved or par-
ticulate [22]. However, in the CE-QUAL-W2 and CAEDYM models, algal
mortality results in an increase only in labile dissolved and particulate or-
ganic matter.

Regarding the transformation of organic matter, the CAEDYM model al-
lows labile particulate organic matter to decompose into labile dissolved or-
ganic matter, while refractory particulate organic matter decays into refrac-
tory dissolved organic matter. In contrast, the CE-QUAL-W2 model permits
labile dissolved and particulate organic matter to decompose into refractory
dissolved and particulate organic matter. Additionally, the EFDC model fol-
lows a slightly different reaction scheme for organic matter. QUAL2K, on the
other hand, uses a relatively simple approach to simulate organic nutrients
[18]. In EufoRiA, we adopt the organic matter kinetics of the CE-QUAL-W2

model (Figure [SI).
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Figure S1: Comparison of the organic and nutrient cycle between models

S-12



S3. Limitations of existing models

Existing physics-based HAB models like CE-QUAL-W2, EFDC, and CAEDYM
are primarily applied to individual river channels, estuaries, reservoirs, and
oceans as opposed to river networks consisting of multiple interconnected
reaches. These models focus on accurately capturing the stratification of
heat, nutrient, and algae concentrations within these large waterbodies, which
requires computationally-intensive 2D or 3D simulations. However, in com-
plex river networks consisting of shallow and well-mixed streams, higher-
dimensional models face challenges such as numerical instability due to rapidly
changing dry and wet conditions, the need for small time steps, and difficulty
in representing irregular horizontal and depth grids under complicated river
bathymetry. Given these limitations, 1D models often present a more practi-
cal solution for simulation of water quality dynamics at the watershed scale.
However, existing 1D models feature simplified hydraulics that limit their
applicability in managed river basins that are affected by backwater effects
and hydraulic controls. QUAL2K-—the most widely applied 1D model—is
a steady-state model and thus does not account for unsteady flow induced
by storm events or controlled hydraulic structures like movable weirs [1§].
While HSPF supports unsteady flow, its unidirectional kinematic wave rout-
ing scheme does not capture backwater effects created by impoundments,
making it poorly-suited to studying the effects of hydraulic controls in regu-
lated river basins. In summary, there is a strong need for a watershed-scale
nutrient and HABs model that accounts for both unsteady hydraulics and
multi-constituent contaminant fate and transport.
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S4. Water Temperature

In EufoRiA, we adopt the full heat balance model in the existing models
including QUAL2K and CE-QUAL-W2 ([18], [20]). Most theoretical back-
grounds and equations are referenced and refined from these models.

S4.1. Transport model of the water temperature

We can express the advection-diffusion transport of water temperature us-
ing the following equation. In the modeling process, temperature is simulated
as an arbitrary constituent.

AT, O (D A@Tw) 9QT,

5 = B2 o o + source/sink (S.1)

Where, D is the diffusion coefficient (m?/sec), A is the cross-sectional area
of links (m?), Q is the flow rate (m3/sec).

S4.2. Heat balance of the water column

The QUAL2K documentation [18] provides detailed heat balance relation-
ships and equations for a one-dimensional river model. Since this study does
not aim to develop a heat exchange model, we adopted a similar approach
for water temperature modeling.

In open channels that interact with the atmosphere and solar radiation,
the temperature change within a control volume V' can be calculated using
the following relationship. This calculation is performed separately from the
transport equation:
dT,

dt
Where Jyq is the total heat flux through the surface area of the control vol-
ume (W/m?), p is the water density (g/cm?), C, is the specific heat capacity
of water, and V' is the control volume (m?). In temperature modeling of river
channels, the variations in water density and specific heat with temperature
are negligible. Therefore, we assume that p = 1 g/cm® and C, =1 (i.e. we
ignore these terms in the model.).

The total heat flux consists of both radiative and non-radiative compo-
nents (QUAL2K documentation, 2008). These components include net solar
shortwave radiation (Jg,), net atmospheric longwave radiation (J,,), long-
wave back radiation from the water (Jp,), conduction and convection (.J.),

AsurfaceJtotal = /)va (SQ)
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evaporation and condensation (.J,), and sediment heat exchange (Js). The
total heat flux can be expressed as follows (Figure [S2).

Jtotal - an + Jan - Jbr - Jc - Je + Js (83>

Radiation terms Non radiation terms

Net absorbed radiation

Atmosphere Jon Jan Jor Je Je
Water column

A v Water Conduction

Evaporation

Condensation

longwave Convection

T]S Heat exchange
v

Riverbed sediment

Figure S2: Total heat balance model for water temperature modeling

Table S10: Comparison of water temperature model between models

EFDC CAEDYMP CE-QUAL-W2 QUAL2K EufoRiA

Reaction Functions® Method
(3D)  (3D) (2.D) (D) (D)

Solar shortwave radiation(+) v v v v v (1) -
Atmospheric longwave radiation(+) v v v v f(Toirs €air) 4th-order
Water longwave radiation(—) v v v v v f(Tw) 4th-order
Conduction/convection(+,—) v v v v v f(Tw, Tair, Uwina) ~ 1st-order
Evaporation/condensation(+,—) v v v v v f (Wwinds €s, €air)  zero-order
Sediment heat exchange(+,—) v v v v v f(Tw, Teed) 1st-order
Ice formation/melt(+,—) v - v - - f(Tp, Tice, ete.)  1st-order

a Where, I is solar radiation intensity (WW/m?), Ty, is the air temperature, uy,ing is the wind velocity
(m/s), eqir is the vapor pressure of the atmosphere (mmHg), Tseq is the riverbed sediment temperature,
and Tjce is the ice temperature.

S4.3. Calculation of heat flux terms

S4.3.1. Net solar shortwave radiation, Js,
In EufoRiA, because we directly apply the solar radiation measurement
data from KMA (Korea Meteorological Administration), our model does not
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include the equations described in QUAL2K [18], to estimate net solar short-
wave radiation from extraterrestrial radiation and cloud cover data.

S54.8.2. Atmospheric longwave radiation, J,,

Because the atmosphere has own temperature, it emits longwave radiation
according to the Stefan-Boltzmann law, contributing to heat inflow into the
water body. This term accounts for the attenuation effect of the atmosphere
and the reflectance of the water surface [18], [63]:

Jan = 0(Tpir +273.15)*(A 4+ 0.031\/eqir ) (1 — Ry) (S.4)

where o is the Stefan-Boltzmann constant (= 11.7 x 107% cal/(ecm?dK*?)),
T is the air temperature (°C'), A is an empirical coefficient (ranging from
0.5 to 0.7), e is the atmospheric vapor pressure (mmHg), and Ry is the
reflectance coefficient (~ 0.03).

S54.8.3. Water longwave back radiation, Jy,
Similar to the atmosphere, the water body emits longwave radiation based
on its temperature [18§]:

Jor = €0 (T, + 273.15)* (S.5)
where € is the emissivity of water (~ 0.97), and T}, is the water temperature.

S4.3.4. Conduction and convection, J.

Heat exchange between air and water occurs through both conduction and
convection. Wind-induced mixing enhances convective heat transfer, while
conductive heat transfer occurs at the air-water interface. When the air
temperature is higher than the water temperature, heat flows into the water
body, and vice versa. This process is described as follows [1§]:

Jc = le(Uw)(Tw - Tair) (S6>
where ¢; is the Bowen coefficient (~ 0.47 mmHg¢°C™'), f(U,) = 19.0 +
0.95U2 proposed by Brady et al. [64], and U, is the wind velocity (m/s).

S4.3.5. Fvaporation and condensation, J.
According to Dalton’s law, evaporation results in heat loss from the water
body, while condensation leads to heat gain when the atmospheric vapor
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pressure exceeds the saturated vapor pressure. This process is expressed by
the following equation:

Je = f(Uw)<€s - 6air) (87)

where e, is the saturated vapor pressure of water (mmHg), and e, is the
atmospheric vapor pressure (mm#Hg).

S4.8.6. Sediment heat exchange
The heat balance for the bottom sediment bed is expressed as [18]:
dT Js
dt psCsested
where T} is the temperature of the bottom sediment bed, J, is the heat flux
between the water and sediment bed, p; is the sediment density, C.4 is the
specific heat capacity of the sediment, and H,.4 is the effective depth of the
sediment bed.
The heat flux from the sediment bed to the water is given by:

Js = psCs (T, — Ty) (S.9)

“10.5H yeq 0. 5Hsed

Substituting this flux into the heat balance equation:

de . _psCsed05H d(T T )

= S.10
dt psCsested ( )
dT o

R R (S.11)

S4.4. Summary of the water temperature model

The governing equations for water temperature transport and heat balance
in EufoRiA are as follows:
For the transport of water temperature:

AT, 0 T\  9QT,
ot oz (DAax)_ o

+ source/sink (S5.12)
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For the heat balance of the control volume of water:

dT, 1
— 2 = —— 3 Jo + (T +273.15)*(A + 0.031\/eair) (1 — Ry) — ea (T, + 273.15)*
dt pCp,H

_le(Uw)(Tw - Tair) - f(Uw)(es - 6ai7") - pscsedo.;);—_;— d(Tw - Ts)}

(S.13)

where H is the average hydraulic depth of the control volume (m). In
EufoRiA | this is further divided into the depth at junctions and the average
depth of links, given by H = A/B, where A is the cross-sectional area of
the link and B is the link width. To reduce the uncertainty of relevant
parameters, we apply (psCseqcis)/(0.5Hgeq) = 0.146 in the model.
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S5. Dissolved Oxygen

S5.1. Conceptual reaction kinetics

Dissolved oxygen dynamics are described by the schematic in Figure [S2.

Atmosphere

Water column

Nitrification

Reaeration

SOD

Respiration

Photosynthesis

Algae

Riverbed sediment

Figure S3: Dissolved oxygen model

Table S11: Comparison of dissolved oxygen kinetics between models

EFDC CAEDYM

CE-QUAL-W2 QUAL2K EufoRiA

Reaction Functions * Method
(D) (D) (2D) D) (D)

Reaeration(+) v v v v v f (Wwater, Wwing, ) 1st-order

Algal production(+) v v v v v f(Cay, N, P,I1,T,) Monod
Algal respiration(—) v v v v v f(Caig, Tow) 1st-order
Nitrification(—) v v v v v f(Cnugn, To) 1st-order
SOD(-) ® v v v v v - zero-order
Organic carbon decay(—) v v v - v f(Coc, Tw) 1st-order
COD decay(—) v - - - - f(Ccopn, Tw) 1st-order
CBOD decay(—) v - v v - f(Cepop,Tw) 1st-order
Suspended sediment decay(—) - - - v - f(Crss, Tw) 1st-order
Epiphyton production(+) v v v v - f(Cppi, N, P,1,T,) 1st-order
Epiphyton respiration(—) v v v v - F(Crpi, Tw) 1st-order
Macrophyte production(+) - v v - - f(Crtae, N, P,1,T,,) 1st-order
Macrophyte respiration(—) - v v - - F(Criacs Tw) 1st-order
Zooplankton respiration(—) - v v - - F(C200, Tow) 1st-order

& Where, wwater is water velocity(m/s), ying is wind velocity(m/s), Ty is the water temperature,
C) are the concentrations of the constituents name of k, N and P mean the concentrations of the
nitrogen and phosphorus groups, and I is the light intensity.

b Sediment oxygen demand of the riverbed is applied as zero-order reaction.
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S5.2. Governing Equations
55.2.1. Dissolved oxygen
The dissolved oxygen dynamics are described by:

9Cpo -
ot = AsurfaceKL(CDO,sat - CDO)I—i' Z(Kag,i - Kar,i)éO:Alg,iCAlg,i
Teae:gtion \i:l _

~
Algal production and respiration

—  Kipocdo.ocyocCrpoc —  Krpocdo.ocyocCrroc

Vv Vv
Labile dissolved organic carbon decay  Labile particulate organic carbon decay

—  Kgpocdo.ocyocCrooc = Krprocdo.ocYocCrroc,

-~

TV
Refractory dissolved organic carbon decay  Refractory particulate organic carbon decay

Abottom
— EynsdonnsynmCnm — Ksoproc—;
Nitrification h g d
0-order SOD

(S.14)

S55.2.2. Reaeration coefficient from atmosphere, K,

The reaeration coefficient can be expressed the sum of hydraulic and wind

reaeration coefficient as follows.[1§]

KL,w
H

Ky =K+

(S.15)

There hydraulic reaeration coefficient K, ;(J65]) and the wind reaeration

coefficient are described by:

U0.67

o If H < 0.61m, use the Owens-Gibbs formula: k., = 5.32%7ss

o If H > 0.6lm and H > 3.45U%, use the O’Connor-Dobbins formula:

kan = 3.9305%

e Otherwise, use the Churchill formula: k,, = 5.026-

H1.67

In addition, K7y, is described by:

K = 0.0986U, %) (S.16)

w

where H is the hydraulic depth(m) and U, 1o is the wind velocity at 10m

height.
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The saturated oxygen concentration Cpp sqr can be calculated by:

1.575701 x 105 6.642308 x 107

Cpo,sat = €Xp (—139.34411 +

Tabs T (S.17)
1.2438 x 1010 8.621949 x 1011) i
Tc?bs Tcilbs

where, T, = T, + 273.15 is the absolute temperature
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S6. Carbon

S6.1. Conceptual reaction kinetics

The carbon cycle is illustrated in Figure In EufoRiA, we ignore the
dissolved inorganic carbon (DIC) term in this figure.

Atmosphere
Exchange Resplratlonl_—| Water column
Algae-C -
Uptake Settling
Excretion | Motality q
Organic
Dissolved Particulate Carbon
' Labile
Decomposition Decomposition
Refractory
Decay i Deca
Inorganic
Carbon

Dissolved

Flux Flux Settling

Riverbed sediment

Figure S4: Carbon model of EufoRiA

Table S12: Comparison of carbon reaction kinetics between models - (1)

EFDC CAEDYM CE-QUAL-W2 QUAL2K EufoRiA

Reaction (3-D) (3-D) (2-D) (1-D) -WQ (1-D) Functions Method
LDOC(Labile Dissolved Organic Carbon)
Algal mortality/excretion(+) v v Not applied * Not applied” v f(Cag, Tw) 1st-order
Decomposition to RDOC(—) - - v f(Crpoc, Tu) 1st-order
Decomposition from LPOC(+) v v - f(Crpoc, Tw 1st-order
Decomposition from RPOC(+) v - - f(Crpoc, Ty ) 1st-order
Decay to DIC(—) v v v f(Crpoc,Tw)  lst-order
Riverbed sediment flux(+,—) - v - f(CrLpoc,Tw) 0,1st order
Epiphyton mortality /excretion(+) v v - F(Crpi, u) 1st-order
Macrophyte mortality /excretion(+) - v - f(Chae, Tw) 1st-order
Zooplankton mortality /excretion(+) - v - f(C200s Tw) 1st-order

LPOC(Labile Particulate Organic Carbon)

Algal mortality/excretion(+) v v Not applied * Not applied” v F(Cag, Tw) 1st-order
Decomposition to RPOC(-) - - v f(Crpoc,Ty)  1st-order
Decomposition to LDOC(-) v v - f(Crpoc,Tw)  lst-order
Decay to DIC(—) - - v f(Crpoc,Ty)  lst-order
Resuspension(+) - v - f(wwater) -
Settling(—) v v v f(CLpoc) 1st-order
Epiphyton mortality /excretion(+) v v - F(Crpis Tw) 1st-order
Macrophyte mortality /excretion(+) - v - f(Crae, Tw) 1st-order
Zooplankton mortality/excretion(+) - v - f(C200s Tw) 1st-order

2 No information is provided. The manual does not describe the reaction kinetics for this constituent.
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Table S13: Comparison of carbon reaction kinetics between models - (2)

EFDC CAEDYM CE-QUAL-W2 QUAL2K  EufoRiA

Reaction Functions Method
(3-D) (3-D) (2-D) (1-D) (1-D)
RDOC(Refractory Dissolved Organic Carbon)
Algal mortality /excretion(+) v - Not applied *  Not applied® - f(Cag, To) Ist-order
Decomposition from LDOC(+) - - v f(Crpoc,T,y)  1st-order

(

Decomposition from RPOC(+) - v - f(Crroc,Ty)  1st-order
Decay to DIC(-) v v v f(Crpoc, T

v (

) 1st-order
Riverbed sediment flux(+,—) - - f(Crpoc, Tw) 0,1st order
Epiphyton mortality/excretion(+) v - - F(Crpis Tw) 1st-order
RPOC(Refractory Particulate Organic Carbon)
Algal mortality /excretion(+) v - Not applied *  Not applied® - f(Cag, Tw) 1st-order
Decomposition from LPOC(+) - - v f(Crpoc,Ty)  1st-order
Decomposition to RDOC(—) - v _ f(Crroc,Ty)  1st-order
Decomposition to LDOC(—) v - - f(Crpoc,Ty)  1st-order
Decay to DIC(-) - - v f(Crroc,Ty)  1st-order
Resuspension(+) - v - S (Wwater) -
Settling(—) v v v f(Crpoc) Ist-order
Epiphyton mortality/excretion(+) v - - f(Crpis Tw) 1st-order

& Organic carbon in CE-QUAL-W2 is categorized as organic matters, specifically into LDOM, LPOM,
RDOM, and RPOM.

b QUAL2K simulates total inorganic carbon and CBOD species without differentiating between
the labile, refractory, dissolved, and particulate groups.

S6.2. Governing equations

S6.2.1. Organic carbons
Organic carbon (OC) is classified into four distinct groups.
Labile dissolved organic carbon(LDOC) dynamics are described by:

9CLpoc
o g Puc(Kam,i + Kae,i)0c:a19,:Calgi — KrpocvocCrpoc
& _ decay to DIC
algal mortality and excretion (S 18)

— Krpoc—rpocyocCLpoc,

~
labile to refractory decomposition
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Labile particulate organic carbon(LPOC) dynamics are described by:

n

dCLpoc
o - g (1 = Pac)(Kam,i + Kae,i)0c:a19,iC a19,: — KrrocyocCrroc
g=1 decay to DIC
algal mortality and excretion
K c K, 1roc c
— A LPOC—RPOCTOCYLPOC, — g -Lpoc
v NS >
labile to refractory decomposition af
settling

(5.19)
Refractory dissolved organic carbon(RDOC) dynamics are described by:

0Crpoc
% = Krpoc—rpocyocCLpoc — KrpocyocCrpoc (S.20)

Vv Vv
labile to refractory decomposition decay to DIC

Refractory particulate organic carbon(RPOC) dynamics are described by:

dCrpoc i c i c K rpoc o
ot — 3 LPOC—RPOCYOC LPOC — £ RPOCYOCURPOC — H RPOC
labile to refractory decomposition decay to carbon ~ g -

settling

(S.21)

Total organic carbon(C'roc) can be calculated using the following equation.

Croc = Crpoc + Crroc + Crpoc + Crroc + Y 6ciaigiCagi  (S.22)

The particulate and dissolved inorganic carbon are ignored in EufoRiA, as
inorganic carbon is not a limiting factor for algal growth in most models.

S6.2.2. Temperature multipliers

The temperature multiplier 7o and yyg4 can be calculated using the tem-
perature coefficients K1, K5, T}, T5 for each constituent. The same expression
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will be applied for other constituents including yon, Yopr, Ypo4, and etc.

Kl e’yl (Tw _Tl)

Ar = 1+ Kyen(Tu-Th) — K,

1 anQ(lle)
To-T) ""K1(1-Ka)

where, v, =
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S7. Nitrogen

S7.1. Conceptual reaction kinetics

The nitrogen cycle is illustrated in Figure

Denitrification

Atmosphere

Inorganic
Nitrogen
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Water column

Uptake

A

Decay

gae-N Settling
Excretion | Motalit
Uptake " 4 Organic
Dissolved Particulate Nitrogen

Dissolved

K Adsorption
& Desorpti

Particulate

Flux

Flux

Settling

Labile

Refractory

Riverbed sediment

Figure S5: Nitrogen model of EufoRiA

Table S14: Comparison of nitrogen reaction kinetics between models - (1)

. EFDC CAEDYM CE-QUAL-W2 QUAL2K  EufoRiA .
Reaction (3-D) (3-D) (2-D) (1-D) (1-D) Functions Method
NH4-N(Ammonium)
Algal production(+) v v v v v f(Cuayg, N,P,I,T,,)  Monod
Algal respiration(—) v v v v v F(Cag, Tw) 1st-order
Nitrification(—) v v v v v f(Cnra, T) 1st-order
Decay from POM(+) - - v - v f(Crom,Tw) 1st-order
Decay from DOM(+) v v v v v f(Cpon, Tw) 1st-order
Riverbed sediment release(+) v v v v - - zero-order
Riverbed sediment absorb(—) v v - - - f(Cnua) 1st-order
CBOD decay(+) - - v - - f(Cecpop, Tw) 1st-order
Desorption from PIN - v v - - - zero-order
Adsorption to PIN(—) - v - - - f(Cnua) 1st-order
Epiphyton production(+) v v v v - f(Crpis Cnpa, T) Monod
Epiphyton respiration(—) v v v v - F(Crpiy Tw) 1st-order
Macrophyte production(+) - v v - - f(Crac, Cna, Tw) Monod
Macrophyte respiration(—) - v - - - F(Craes Tw) 1st-order
Zooplankton respiration(—) - v v - - F(C%00,Tw) 1st-order
PIN(Particulate Inorganic Nitrogen)
Adsorption from NH4(+) v v Not applied * Not applied * v f(Cnma, Crss) Monod
Desorption to NH4(—) v v v f(Cpin) 1st-order
Settling(—) v v v f(Cpin) 1st-order
Resuspension(+) v v - F(Water) -

2 No information is provided. The manual does not describe the reaction kinetics for this constituent.
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Table S15: Comparison of nitrogen reaction kinetics between models - (2)

Reaction EFDC CAEDYM CE-QUAL-W2 QUAL2K EufoRiA Functions Method
(3D) (D) (2-D) D) (D)
NO3+NO2(Nitrate)

Nitrification(+) v v v v v f(Cnua, Tw) 1st-order
Algal production(—) v v v v v f(Cug,N,P,I,T,) 1st-order
Denitrification(-) v v v v v f(Cnos, Tw) 1st-order
Riverbed sediment release(+) v v - - - - zero-order
Riverbed sediment absorb(—) v v - - v f(Cnos) Ist-order
Epiphyton production(—) v v v v - f(Crpi»COnos, Twy)  1st-order

LDON(Labile Dissolved Organic Nitrogen)

Algal mortality /excretion(+) v v v Not applied * v f(Cug, Tw) 1st-order

Decomposition to RDON(—) - - v v f(CrLpon,Tw) 1st-order
Decomposition from LPON(+) v v - - f(Crpon.Tw) 1st-order
Decomposition from RPON(+) v - - - f(Crpon,Tw) 1st-order

Decay to NH4(—) v v v v f(CrLpon,Tw) 1st-order

Riverbed sediment flux(+,-) - v - - f(CrLpon,Tw) 0,1st order

Epiphyton mortality /excretion(+) v v v - f(Crpis Tw) Ist-order
Macrophyte mortality /excretion(+) - v v - F(Chrtac, Tw) Ist-order
Zooplankton mortality /excretion(+) - v - - F(C200, Tw) 1st-order
LPON(Labile Particulate Organic Nitrogen)

Algal mortality /excretion(+) v v v Not applied® v f(Caig, Tw) 1st-order

Decomposition to RPON(—) - - v v f(Crpon,Tw) Ist-order

Decomposition to LDON(—) v v - - f(Crpon, “) 1st-order

Decay to NH4(—) - - v v f(Crpon, Ty 1st-order
Resuspension(+) - v - - f (“wuter) -
Settling(—) v v v v f(CLpon) 1st-order
Epiphyton mortality /excretion(+) v v v - F(Crpis Tw) 1st-order
Macrophyte mortality /excretion(+) - v v - f(Craes Tw) 1st-order
Zooplankton mortality /excretion(+) - v v - f(Cz00,Tw) 1st-order
RDON(Refractory Dissolved Organic Nitrogen)

Algal mortality /excretion(+) v - - Not applied® - f(Cug, Tw) 1st-order
Decomposition from LDON(+) - , v v f(CrLpon,Tw) 1st-order
Decomposition from RPON(+) - v - - f(Crron,Tyw) 1st-order

Decay to NH4(—) v v v v f(Crpon,Tw) 1st-order

Riverbed sediment flux(+,—) - v - - f(Crpon,Tw) 0,1st order

Epiphyton mortality/excretion(+) v - - - f(Crpi, Tw) 1st-order
RPON(Refractory Particulate Organic Nitrogen)

Algal mortality /excretion(+) v - - Not applied® - f(Cag, Tw) 1st-order
Decomposition from LPON(+) - - v v f(Crpon,Tw) 1st-order

Decomposition to RDON(—) - v - - f(Crpon,Tw) 1st-order

Decomposition to LDON(-) v - - - f(Crpron,Tw) 1st-order

Decay to NH4(—) - - v v f(Crpon,Tw) 1st-order
Resuspension(+) - v - - [ (Wwater) -

Settling(—) v v v v f(Crron) 1st-order

Epiphyton mortality/excretion(+) v - - - F(Crpis Tw) 1st-order

Macrophyte mortality /excretion(+) - - v - f(Chriac, Tw) 1st-order

2 QUAL2K simulates the organic nitrogen without distinguishing the labile, refractory, dissolved, and

particulate groups.
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S7.2. Governing equations
S7.2.1. Ammonium (NHy — N)

Ammonium reactions are described by:

oC n n
NHA4
ot = E PNH4Kag,i5N:Alg,iCalg,i - E PNH4Kag,i6N:Alg,iOalg,i
i=1 =1
~ > NS ~~ >
Algal respiration Algal production

+  KiponOnonyonCrpon +  Krponion.onvonCrron

' TV
Labile dissolved organic nitrogen decay  Labile particulate organic nitrogen decay

+  Kgrponidn.onYonCroon — +  KrponOn.onYonCrPON
v Vv
Refractory dissolved organic nitrogen decay = Refractory particulate organic nitrogen decay

— KnuaynmaCnig

~
Nitrification

(S.24)

S7.2.2. Particulate inorganic nitrogen (PIN )
Particulate inorganic nitrogen dynamics are described by:

JCpin Crss
—— = Kuis PN

K pin
>CNH4 — Kges,piNnCpin — ——Cpin

ot Ki.pin + Crss H
(S.25)
S7.2.3. Nitrate (NO3 — N )
Nitrate (NO2 + NO3) reactions dynamics are described by:
0Cnos
5 Z(l — Pnia)KagidnaigiCag.i + KnnaynuaCnig
3:1 - _ Nitrifggation
Algal production (SQG)
K nos
— KnosvosCnog — —— Cnvos
Denitggcation H’_/
Settling
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S7.2.4. Organic nitrogen
Labile dissolved organic nitrogen (LDON) dynamics are described by:

aC'LDON

TR Z PN (Kam,i + Kae,i)On.419,iC 419 — KzponyonCroon

i=1

~
Y Decay to NH4

Vv
Algal mortality and excretion

— Krpon—rponYonCLpon

TV
Labile to refractory decomposition

(S.27)

Labile particulate organic nitrogen (LPON) dynamics are described by:

n

aC1LPON
a0 E (1 — Pan) (Kam,i + Kaei)On:a19,:C 19, — KrronvonCrron
. TV
g=1 _ Decay to NH4
-
Algal mortality and excretion
K C KS,LPON C
-4 LPON—RPON"YON LPON, — H LPON
=i \ J
Labile to refractory decomposition Dl
Settling

(S.28)

Refractory dissolved organic nitrogen (RDON) dynamics are described by:

OCrpoN _ 1 o i o
T 9t CLDON—-RDONTJONLDON,— 8 RDONJONRDON, (S.29)
Labile to refractory decomposition Decay to NH4

Refractory particulate organic nitrogen (RPON) dynamics are described

by:

ac'RPON _ K C K C Ks,RPON C
ot = NLPON—RPON"ON LPON — & RPONYONURPON — J7i RPON
Labile to refractory decomposition Decay to NH4 h VT d
Settling
(S.30)
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Total nitrogen concentration (Cry) is calculated by:

Cry = Cngs+Cno3+Crpon +Crpon +Crpon +Crpron + Z On:A1g,iC ag,i
(S.31)
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S8. Phosphorus

S8.1. Conceptual reaction kinetics

The phosphorus cycle is illustrated in Figure

Atmosphere
Water column —
> Algae-P| -
Settling
Uptake Excretion | Motality Organic

Dissolved Particulate  Phosphorus

Decomposition

Decomposition

Decay Decay] |
Inorganic
Dissolved PO4-P

Adsorblion
| & Desorption Flux

Flux Settling Settling

Riverbed sediment

Figure S6: Phosphorus model of EufoRiA

Table S16: Comparison of phosphorus reaction kinetics between models - (1)

EFDC CAEDYM CE-QUAL-W2 QUAL2K EufoRiA

Reaction Functions Method
(3D) (D) (2D) D) (D)
PO4-P(Phosphate)

Algal production(+) v v v v v f(Cuag, N, P, 1,T,) Monod

Algal respiration(—) v - v v v f(Cag, Tw) 1st-order

Decay from POM(+) - - v v f(Crom, Tw) 1st-order
Decay from DOM(+) v v v v v f(Cpom,Tw) 1st-order
Riverbed sediment release(+) v v v - - - zero-order
Riverbed sediment absorb(—) v v - v - F(Cnua) 1st-order
CBOD decay(+) - - v - - f(Cepop, Tw) 1st-order
Suspended sediment release(+) - v v - - - zero-order
Suspended sediment adsorption(—) - v v - - F(Cnua) 1st-order

Epiphyton production(+) v v v v - f(Crpi» Cnra, Tw) Monod
Epiphyton respiration(—) - - v v - F(Crpis Tw) 1st-order

Macrophyte production(+) - v v - - F(Crtaes Onias Tw) Monod
Macrophyte respiration(—) - - v - - f(Crrac, Tw) 1st-order
Zooplankton respiration(—) - - v - - F(C%00, Ti) 1st-order

2 No information is provided. The manual does not describe the reaction kinetics for this constituent.
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Table S17: Comparison of phosphorus reaction kinetics between models - (2)

. EFDC CAEDYM CE-QUAL-W2 QUAL2K  EufoRiA .
Reaction Functions Method
(D) (3D) (2-D) D) (D)
PIP(Particulate Inorganic Phosphorus)
Adsorption from PO4(+) v v v Not applied * v f(Cpou, Crss) Monod
Desorption to PO4(—) v v v v f(Cprp) 1st-order
Settling(—) v v v v f(Cprp) 1st-order
Resuspension(+) v v - - f(Wwater) -
LDOP(Labile Dissolved Organic Phosphorus)

Algal mortality /excretion(+) v v v Not applied * v f(Cug, Tow) 1st-order

Decomposition to RDOP(—) - - v v f(Crpop, T, ) 1st-order
Decomposition from LPOP(+) v v - - f(Crpop, T, 1st-order
Decomposition from RPOP(+) v - - — f(Crpop, Tw) 1st-order

Decay to PO4(—) v v v v f(Crpop,T,)  1st-order

Riverbed sediment flux(+,-) - v - L f(Crpop, Ty ) 0,1st order

Epiphyton mortality/excretion(+) v v v - f(CE,,, 1st-order
Macrophyte mortality /excretion(+) - v v - F(Chrac, 1st-order
Zooplankton mortality /excretion(+) - v - - F(C00, w) 1st-order
LPOP(Labile Particulate Organic Phosphorus)

Algal mortality /excretion(+) v v v Not applied® v f(Cuag, Tw) 1st-order

Decomposition to RPOP(—) - - v v f(Crpop,Ty)  lst-order

Decomposition to LDOP(—) v v - - f(Crpop,Ty)  lst-order

Decay to PO4(—) - - v v f(Crpop,Ty)  lst-order
Resuspension(+) - v - - f(Wwater) -
Settling(—) v v 4 v f(Crrop) 1st-order
Zooplankton predation(—) - v v - f(Crrop) 1st-order
Epiphyton mortality/excretion(+) v v v - F(Chrpis Tw) 1st-order
Macrophyte mortality/excretion(+) - v v - F(Crtaey Tow) 1st-order
Zooplankton mortality/excretion(+) - v v - f(Cs00, Tw) 1st-order
RDOP (Refractory Dissolved Organic Phosphorus)

Algal mortality/excretion(+) v - - Not applied® - f(Cug, Tw) 1st-order
Decomposition from LDOP(+) - - v v f(Crpop,T,)  1st-order
Decomposition from RPOP(+) - v - - f(Crpop,T,)  1st-order

Decay to PO4(-) v v v v f(Crpop,T,y)  1st-order

Riverbed sediment flux(+,-) - v - - f(Crpor,T,y) 0,1st order

Epiphyton mortality /excretion(+) v - - - F(Chrpis Tw) 1st-order
RPOP (Refractory Particulate Organic Phosphorus)

Algal mortality /excretion(+) v - - Not applied® - f(Cuag, Tw) 1st-order
Decomposition from LPOP(+) - - v v f(Crpop,Ty)  lst-order

Decomposition to RDOP(—) v - - f(Crpop,Ty,)  1st-order

Decomposition to LDOP(—) v - - - f(Crpop,T,)  1st-order

Decay to PO4(—) - - v v f(Crpop,T,y)  1st-order
Resuspension(+) - v - - f(Wwater) -

Settling(—) v v v v f(Crpop) 1st-order

Epiphyton mortality/excretion(+) v - - - F(Chrpis Tw) 1st-order

Macrophyte mortality /excretion(+) - - v - F(Chrtaes Tw) 1st-order

& QUALZ2K simulates the organic phosphorus without distinguishing the labile, refractory, dissolved,

and particulate groups.
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S8.2. Governing equations

58.2.1. Phosphate (PO, — P)
Phosphate reaction dynamics are described by:

e " n f
PO4 1SS
— = Z Kariop.agiCaigi — E Kag,i0p.a19,iCagi — Kadas,prp (?(—C) Cproa
¢ i=1 i=1 h,ads + Crss
~_ ~ , RN ~— , N ~ ,
Algal respiration Algal production Adsorption to ISS

+ Kges pipCrip + Krpordp.orYorCLpopr + Krporidp.orYorCrLrop
\ ; N v N J

v ~
Desorption from ISS  Labile dissolved organic phosphorus decay = Labile particulate organic phosphorus decay

+ KRDOP,iéP:OP'yOPCRDOP + KRPOPéP:OP/YOPCRPOP
o Vv
Refractory dissolved organic phosphorus decay  Refractory particulate organic phosphorus decay
(S.32)

S8.2.2. Particulate inorganic phosphorus (PIP)
Particulate inorganic phosphorus dynamics are described by:

Crss
Knprp + Crss

dCprp
ot

K prp
= Kads,P1P< )CPO4 — Kies, p1pCpip — ——Clprp

H
(.33)

S58.2.3. organic phosphorus
Labile dissolved organic phosphorus(LDOP) dynamics are described by:

aCYLDOP

a > Pap(Kami + Kaei)0p.a1iCogi — KrporyorCrpop,

. vV
\z:l _ Decay to PO4

~
Algal mortality and excretion

(S.34)

— Krpor—rporYorCLDOP

~
Labile to refractory decomposition
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Labile particulate organic phosphorus (LPOP) dynamics are described by:

n

aCLPOP
T E (1 — Pop)(Kam,i + Kaei)dop:aigiCagi — KrroryorCrrop,
F=1 _ Decay to PO4
Algal mortality and excretion

K rop

— Krpop—rrorYorCrLrop — —7—CLpoP
TV d " H
Labile to refractory decomposition T
Settling

(S.35)

Refractory dissolved organic phosphorus (RDOP) dynamics are described
by:

oC
% = Krpor—rporyorCroop — KrporyorCroor (5.36)

-~

TV
Labile to refractory decomposition Decay to PO4

Refractory particulate organic phosphorus (RPOP) dynamics are described
by:

JCrpop % c % c KS,RPOPO
ot &rrororpoPYOPCLPOP T INRPOPVOPTRPOP =~ YRPOP
Labile to refractory decomposition Decay to PO4 h VT d

Settling
(.37)

Total phosphorus concentration (Crp) can be calculated using the following
equation.

Crp = Cpos+Crpop+Crpor +Crpop + Crrop + Z Op.agiCagi (S.38)
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S9. Algae (Phytoplankton)

S59.1. Conceptual reaction kinetics

Figure |S7 shows the algal growth kinetics in EufoRiA .

Water column
Respiration Organic
o Carbon
Photosynthesis __.m
Inorganic Respiration
Carbon ¢ B
| Mortality [T
] Excretion Nitrogen
Uptake
Algae
T Leno ™y
Uptake . R
m—f— Mortality |  Phosphorus
Excretion
Settling
Riverbed sediment

Figure S7: Algae model

Table S18: Comparison of algal reaction kinetics between models

EFDC* CAEDYMP CE-QUAL-W2 QUAL2K" EufoRiA

Reaction (3-D) (3-D) (2-D) (1-D) (1-D) Functions Method
Species 4 groups 7 groups N groups 1 group N groups - -
Production(+) v v v v v f(Cay, N, P, 1,T,,)  Monod
Respiration(—) v v v v v f(Cay, Tw) 1st-order

Mortality(—) v v v v v f(Cag, Tw) 1st-order
Excretion(—) v v v v v f(Cag, Tw) 1st-order
Settling(—) v v v v v f(Cag, Tw) Ist-order
Resuspension(+) - v - - - I (Wwater) 1st-order
Predation(—) VA v v - - f(C200, Caig, Cronm)  Monod

2 EFDC considers respiration, mortality, and excretion as a basal metabolism
b CAEDYM and QUAL2K do not separate mortality and excretion

59.2. Governing equations
In EufoRiA, algal growth, respiration, excretion, mortality, and settling
are modeled by the following equation.

OC a1 K ;
9,0 s,Alg,i
- (Kag,i - Kar,i - Kae,i - Kam,i>CAlg,i - —CAlg,i (839)
ot \ g y Jii
Algal growth, respiration, excretion, and mortality Settling
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S59.2.1. Algal growth rate

Algal growth rate is calculated using limitations of nutrients and light with
temperature multipliers.

Kag,i = fYaT,ifYaf,i)‘mmKag,ma:p,i (S40>

where, K,,; is algal growth rate for speciesi (1/day), Kaugmaz, s maximum
algal growth rate for speciesi (1/day), Var; is temperature multiplier for rising
curve for species i, 7,¢, is temperature multiplier for falling curve for species
i, and M\, is minimum limitation factor.

59.2.2. Temperature multiplier

We adopt the same temperature multiplier model as CE-QUAL-W2 [66].
This expression provides the capability to set the optimal temperature range
for specific algal groups.
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Figure S8: Example of the temperature multiplier function (source: [23])

Ar =0 where T, <1

Kle’YI(Tw*Tl) K4672(T4*Tw)
AT - 1 + Klefyl(Tw—Tl) . Kl 1 + K4672(T4_Tw) — K4 Where TI < Tw < T4
Ar, =0 where T, > T,
(5.41)
1 K> (1-Ky) K3(1—Ky)
where, 11 = = InF iy, 12 = Tsl oo
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S59.2.3. Nutrient and light limitation factor
The nutrient and light limitation factor (\;,) can be calculated using two
different expressions as follows.

: Cnua+ Cnos Crou >
)\min = min 5 y A ) S.42
(Kh,N+CNH4+CN03 Kh,P+CPO4 light ( )
Alternatively,
: Cnua + Cnos Cros )
Amin, = 1IN ’ s S 43
(Kh,N+ONH4—|—CN03 Kh,P+CPO4 light ( )

where, P, ,, is half-saturation coefficient for nitrogen, £, is half-saturation
coefficient for phosphorus. The light attenuation factor Ajgn: is defined using
Steele’s equation (1962) as follows.

2.7182 [ _PAR©) _ PAR(0)
Night = Wi <e Kip kel _ o7 "Kip ) (S.44)

where, PAR(0) = 0.471, I is solar radiation at the water surface W/m?,
K, is the PAR at which algal growth is optimal.

The light extinction coefficient k. is defined as follows.
ke = kep + a155Crss + apomCrom + caig Z Caig.i (S.45)

where k¢, is the background light extinction coefficient (1/m), a;ss is the
light extinction due to inorganic suspended solids (m3/m/g), apoas is the
light extinction due to particulate organic matters (m?®/m/g), and a4, is the
light extinction due to algal group concentrations (m?®/m/g).

The ammonium preference factor Pypy is calculated as follows [67, 23]:

Cnos
Knnia+ Cnpa)(Kpvas + Cnos)
Ky NH4
(Cnua+ Cnos)(Knnua + Cnos)

PNH4 - C(NHZJL(
(S.46)

+CNpa
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S59.2.4. Other algal rates
Algal respiration, excretion, and mortality rates are calculated using the
following expressions.

Kar,'i = )\TKar,max,i
Ka@vi = (1 - )‘light))‘TKae,maz,i <S47>
Kam,i - )\TKam,ma:r,i

S10. Inorganic suspended solids

Each model deals with the suspended solids or sediments differently. It
is difficult to distinguish between suspended solids and sediments in many
cases. In EufoRiA we consider that the inorganic suspended solids are equal
to suspended sediments. We apply the settling of suspended solids as follows.

ocC K,
o = ——3 Ciss (S.48)

Additionally, we consider the adsorption/release of phosphate and ammo-
nium in the water column using two nutrient variables: particulate inorganic
nitrogen (PIN) and particulate inorganic phosphorus (P P). The equations
can be found in the previous chapters.
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S11. Representing hydraulic structures and controls

EufoRiA provides the capability to model in-stream structures like weirs,
which significantly impact the flow regime of rivers both spatially and tem-
porally. Due to the retention effect of these weirs, accurately representing
them is crucial for simulating water quality constituents and phenomena like
harmful algal blooms in impounded and regulated river network models. In
EufoRiA, we not only represent these in-stream hydraulic structures but also
control them based on the opening ratio at each time step between the bot-
tom and maximum operational elevations, to reproduce the observed water
levels—used as the reference value for control—at each storage weir. To
achieve reliable control of weirs in the model, we implement Proportional-
Integral-Derivative (PID) control method as follows:

de(t)
dt

Where, u(t) is the control value (e.g., weir opening ratio—from 0 (close) -
1 (fully open)- for each storage weir), K,, K;, and K, are the proportional,
integral, and derivative gain respectively, €(t) = hmoder(t) — hops (1) is the error
between simulated water level at the weir location (heqe) and the observed
water level at the weir location (hps).

To derive the incremental PID control, we differentiate both sides of Equa-

tion ([S.49) by time:

u(t) = Kpe(t) + K; /t e(t)dt + Ky (5.49)

du(t) de(t) d%e(t)
=K Kie(t) + K, S.50
dt gy T+ IGel) + Koo (5.50)
Applying the Backward scheme:
u(tk) = u(tk_l) o e(tk) — G(tk_l)
At = Kp At + K26<tk)
e(ti)—e(tir)  eltp_1)—e(ts_s) (S.51)
K At At*
+ d( At )

Where, At is the time interval between the time k£ and k& — 1 (k is the
current time step.), At* is the time interval between the time k — 1 and
k — 2, e(ty), e(ty_1), and e(ty_2) are the error between the observed water
level and simulated water level at the time k, £ — 1, and k — 2, respectively.
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By rearranging Equation (S.51), we obtain the following incremental PID
control expression:

u(tk) = U(tk_l) + Kp(e(tk) — e(tk_l)) + Kie(tk)At

y (S.52)

+§—(€(tk) — 26(75]@71) + €<tk,2))
t

Although we use the adaptive time-stepping method described in Section
[S13, for simplification, we assume that the time step, At, is constant—that is,
At = At* in Equation (S.51). Based on Equation ([S.52]), the opening ratios
of all weirs are adjusted at every time step to ensure that the simulated water
levels at each weir closely follow the observed or desired control values.
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S12. Input data preparation and conversion

Preparing the input time series data, including meteorological and water
quality data for multi-constituent water quality models, is typically a tedious
and time-consuming task for modelers. For instance, in CE-QUAL-W2, users
must prepare numerous separate input files, such as flow rate, water quality,
and meteorological time series, for each branch or tributary. In contrast,
EufoRiA offers an efficient approach to streamline these processes. Figure
and Table illustrate the conceptual input data conversion process and
provide details.

A‘csv file” including all observed locations

locations

A‘csv file’: water quality vs. superjunction vs.
triburary vs. weather stations
snum mer_no  met_staton Timeseries DataFrame in Python
3

Water quality timeseries data Specification file Automatic generation
defining the spatial relationship of the input forcing for all B.C.

923959598

39

Meteorological timeseries data Inter-constituent relationship

- User-specified organic compounds fractions
(labile : repractory, dissoved : particulate)
- Historical monthly fractions of algal groups

om0 13 Groenalgae = Cyanabacteria = Diatom

01120132 136 - 1

ooy 16 3 o0s -
owmoa 1% g os
02120135 136 5,07
02120136 136 £0s
051120137 136 &g os
111120138 136 2”04
Tinmons 1 £ os
g o2

o
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A ‘csv file’ including all observed locations

0
0
0
0
o
028 -3 152 08 0
0
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0
%

Figure S9: Input forcing timeseries data conversion process in EufoRiA

In EufoRiA, modelers prepare a single ‘CSV’ file containing all observed
water quality datasets—at daily or longer frequencies (e.g., weekly, monthly),
with no requirement for fixed intervals—classified by the observation station’s
name. More specifically, to build the input dataset, the model automatically
generates time series of water quality data for specific input boundary loca-
tions, referencing a table that matches the observation station names with the
corresponding boundary superjunctions using a single water quality dataset
file. Similarly, meteorological data is prepared in a ‘CSV’ file, distinguished
by its station code number. EufoRiA then converts these datasets into input
time series for each relevant boundary input location, using a specification
file that defines the spatial relationships between the water quality stations,
superjunction indices, meteorological station numbers, and other relevant in-
formation. In addition, the initial values for water quality constituents at all
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computational elements in the model are automatically assigned based on the
user-defined simulation start date and input dataset. For flow rate bound-
ary inputs, the model applies the area-ratio allocation method to determine
runoff flow rates from associated input locations. Additionally, measured
point source flow rates, such as dam releases and wastewater treatment dis-
charges, are incorporated as boundary inputs.

Table S19: Conversion equations between observed and modeled water quality constituents

Nutrient Measured Modeling .
. . Conversion methods
group constituents constituents
LDOC LDOC = frpoc™ TOC
LPOC RDOC = frpoc®™ TOC
Carbon ToC RDOC LPOC = fLpoc™ TOC
RPOC RPOC = frpoc®™ TOC
NOs3-N -
TN NH4-N -
Nitrogen DTN LDON LDON = frpon™ (DTN — NO3-N — NH4-N)
NO3-N LPON RDON = frponx (DTN — NO3-N — NH,4-N)
NH,-N RDON LPON = frpon® (TN — DTN — Algae-N)
RPON RPON = frpon" (TN — DTN — Algae-N)
PO4-P -
TP LDOP LDOP = fupop*x (DTP — PO4-P)
Phosphorus DTP RDOP RDOP = frpop®x (DTP — PO4-P)
PO4-P LPOP LPOP = frpop®x (TP — DTP — Algae-P)
RPOP RPOP = frpop°x (TP — DTP — Algae-P)

2 The fractions of LDOC, RDOC, LPOC, and RPOC in TOC, respectively
b The fractions of labile and refractory in the dissolved and particulate organic nitrogen, respectively
¢ The fractions of labile and refractory in the dissolved and particulate organic phosphorus, respectively

Because not all 23 of the modeled constituents can be observed or specified
directly, a set of conversion relationships are used to build the full input data
for the model based on known relationships with observed constituents. For
this task, the model uses user-specified information on the relative propor-
tions of labile vs. refractory and dissolved vs. particulate organic compounds.
For example, total nitrogen, nitrate, and ammonium data are used to cal-
culate LDON, LPON, RDON, and RPON, relying on prior research that
defines the relative proportions and relationships between these constituents
and the observed data. A similar approach is applied to organic carbon and

phosphorus. Specifically, for organic carbon, we refer to a previous study
on the relative fractions between LDOC, LPOC, RDOC, and RPOC in the
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Han River of South Korea ([68]). Table[S19 summarizes the data conversion
methods. Additionally, the model converts chlorophyll-a concentration into
the biomass of three algal groups using their historical monthly patterns.
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S13. Adaptive time-stepping method

EufoRiA employs an adaptive time-stepping method to reduce simulation
times by using a large temporal step size during baseflow conditions, and
using a fine temporal step size during storm events to avoid truncation er-
ror and instability. In coupled hydrodynamic and water quality modeling,
ensuring both numerical stability and accuracy is critical for producing reli-
able simulation outcomes. While the fully implicit numerical scheme used for
the hydraulics and water quality solvers in this study ensures unconditional
stability, large time intervals may still compromise the accuracy of the nu-
merical solution. This issue is especially critical in coupled modeling, where
even minor volume balance errors between the computational elements in
the hydraulic solver can significantly affect water quality results, leading to
abrupt concentration peaks or even negative values due to the high sensi-
tivity of concentration calculations in low-volume conditions. To maintain
accuracy while ensuring reasonable computational speed, proper time inter-
val selection are essential in the coupled simulation of the hydraulic and water
quality model.

Given the complexity of our model structure—which integrates distinct
solvers for hydraulics and water quality transport—and the absence of a
theoretical framework for determining a universally optimal time step across
different solvers, we adopt a practical adaptive time-stepping method. The
proposed time interval (At) at the specific time is determined using Equation

S.53

N x kperceltile

1
N x kpercentile

Al’ik
|Qir/ Air|

Where, N is the number of all links in the model, k;;,,. is a user specified
parameter to adjust the magnitude of At, Kpercentite 1S @ user specified pa-
rameter to limit the averaging range, Ax;; is the length of the ikth link in
the model, A;. and @Q);; are the water cross-sectional area and the flow rate
at the ¢kth link in the model, respectively.

This expression resembles the widely known Courant-Friedrichs-Lewy (CFL)
condition, At < CpaeAx/u, where C,,, is a numerical method-dependent
constant, u is the flow velocity, and Ax is the spatial discretization element in
the numerical model. In our approach, users specify the minimum and max-
imum allowable time intervals. If the calculated At falls within this range,
it is applied directly as the next time interval. Additionally, to mitigate the

At = ktime (S53>

k=1
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impact of extremely large flow velocities (|Qix/Aix|) in the model network,
we introduce a coefficient, Epepcentite, Which restricts the averaging range to
a subset of Aw;,/(|Qix/Air|) values. For instance, if kpercentiie = 0.7, the
model computes At for the next time interval by averaging the top 70% of
these values, sorted in descending order. Through the case study described
in [3.1.5, this approach is found to perform effectively under properly chosen
parameters in Equation [S.53|
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S14. Spatial correlation between the locations in the river network

To incorporate observed spatial correlations in contaminant dynamics into
the DA framework, we first use historically observed water quality constituent
concentrations from 2013-2020 (calibration period) to determine reach-wise
correlations for each constituent. We then incorporate these spatial corre-
lations into the process noise covariance matrix used by the Kalman Filter.
The underlying assumption is that exogenous inputs (such as fertilizer runoff
loads) are spatially correlated, allowing integration of prior knowledge into
the process noise covariance matrix to improve the DA results [57]. This
assumption is particularly valid in river networks, where contaminant runoff
loads are significantly correlated in space.

However, implementing spatial correlations requires careful consideration
of distance weighting to localize their impact. Because several water qual-
ity constituents are heavily influenced by surrounding environmental factors
(e.g., water temperature is primarily a function of meteorological phenom-
ena rather than location), spurious spatial correlations may occur between
distantly-separated points that lack causal physical connections. To avoid
this issue, we limit the correlation impact based on the distance between
spatial elements applying a simple distance weight function as follows, with
considering the relationship of Cov(X,Y) = pxyoxoy:

d; ;
Y spatial,Cn ij = PijUin(% (S.54)

Where Ygpatiar,c,,ij is the covariance matrix that has elements consisting of
1th and jth spatial covariance for nth water quality constituent, C,, means
the nth constituent, p;; is the Pearson’s correlation for nth water quality
constituent between sth and jth spatial elements, o; and o, is the standard
deviation at ¢ and jth spatial elements, d;; is the Euclidean distance (m)
between ith and jth spatial elements, ¢ is the user parameter (m) that defines
the effective distance for correlation impact. In this study, ¢ = 20,000 m is
applied as the effective distance.

In addition, because different tributaries exhibit distinct water quality
characteristics and are subject to nutrient loads originating from different
upstream areas, the spatial correlation effects should be limited between lo-
cations in different tributaries. Therefore, we ignore correlations between
tributaries that are separated by drainage divides to maintain physical con-
sistency. Figure [S10 shows the procedure to develop the spatial correlation
matrices in EufoRiA.
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S15. Inter-constituent correlations between water quality constituents

Water quality constituents often exhibit significant correlations due to sim-
ilarities in chemical composition. For example, concentrations of nitrogen
constituents such as total nitrogen, nitrate, and organic nitrogen groups are
frequently correlated. By leveraging these correlations, we aim to enhance
the estimation of unmeasured water quality constituents, such as organic ni-
trogen groups, using the measured constituents like total nitrogen or nitrate.
As before, we capture these correlations within the process noise covari-
ance matrix based on historically-observed correlations between constituents.
First, inter-constituent correlations are analyzed for the calibration period
(2013-2020), and the resulting correlations are used to construct the inter-
constituent process noise covariance matrix. This inter-constituent process
noise covariance matrix, together with the spatial correlation matrix, is then
used inform the Kalman Filter during the validation period (2021-2022) and
the resulting improvement in model skill is assessed.
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S16. Details of the data assimilation procedure during numerical
modeling

As discussed in Section [3.1.4, EufoRiA simulates coupled hydraulic and
water quality dynamics in three steps, which include (i) the hydraulic sim-
ulation, (ii) the water quality transport simulation, and (iii) the simulation
of reactions between the water quality constituents. Within this framework,
data assimilation is applied between the water quality transport and reac-
tion steps of the simulation. Thus, the state and input transition matrices
for the Kalman filter represent the system dynamics as described by the
hydraulics and advection-diffusion equation instead of the water quality re-
action dynamics. This design choice is made given that the integration of the
water quality reaction dynamics and transport equations is challenging given
the complex reactions between the large number of constituents considered.
However, considering the relatively small time steps of several minutes in
this model, we can assume that system dynamics affecting the water quality
concentrations during each time interval can be primarily represented by the
spatial hydraulics and transport phenomenon rather than reaction kinetics.
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S17. Comparison of model performances across different studies

To compare the performance of EufoRiA with existing models across var-
ious application scenarios, we collected performance metrics from different
studies as presented below. Table [S20 shows the performance of various
models across different studies for predicting Chlorophyll-a and nutrients.

We also include the performance metrics presented in Table |5 to enable
direct comparison with other assessment results from the literature. In com-
parison with literature data, the results of EufoRiA show relatively good
performance for temperature, total nitrogen, and total phosphorus. Addi-
tionally, we can conclude that the DO and Chlorophyll-a results of EufoRiA
also show comparable-level performances to existing research.

However, direct comparison would be inappropriate due to differences in
target water bodies, simulation periods, target constituents, and performance
metrics. Therefore, these values should be used for reference purposes only.
Additionally, it should be noted that most existing applications have focused
on modeling mainstem rivers or individual reservoirs, rather than complex
river networks with multiple upstream boundary conditions and numerous
WWTPs as point-source inputs, as implemented in this study.
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Table S20: Model performance across different studies (Cal: Calibration, Val:
Validation. When no distinction is made between calibration and validation periods,
results are classified as calibration cases.)

Author Model Constituent NSE R? RMSE PBIAS
Cal Val Cal Val Cal Val Cal Val
This study EufoRiA Temperature 0.97 0.99 - - 1.60 1.01  +3.4% -0.9%
(Tal)le DO 0.48 0.40 - - 1.69 1.64  +9.2% +9.6%
Chl-a -0.00 0.31 - - 15.97 1244 +13.1% +7.2%
TN 0.76 0.82 - - 0.38 0.29  +5.4% +0.7%
TP 0.49 0.40 - - 0.02 0.02  -1.3% -7.7%
TOC -0.02 0.27 - - 0.89 074 -0.8% -0.6%
Du et al. [69] CE-QUAL-W2 Temperature 0.95 - 0.95 - 0.46 - - -
Chl-a 0.55 - 0.54 = 0.3 - - -
TN - 0.58 - 0.24 - - -
TP - 0.55 = 0.01 - - -
Brito et al. [70] CE-QUAL-W2 Temperature - - - - 1.8 - - -
DO - - - - 7.6 - - -
Chl-a - - - - 62.9 - - -
Nitrate - - - - 0.4 - - -
Orthophosphoate - - - - 0.48 - - -
Hong et al. [TI] ~ EFDC Chl-a - - 0.213 - 8.434 - - -
Lee et al. [72] HSPF Temperature 0.96 0.96 0.96 0.96 - - +1.62% +3.09%
Nitrate -1.05 0.61 0.17 0.63 - - -2.45% -6.45%
Phosphoate -0.45 -0.35 0.24 0.06 - - +36.46%  +53.34%
Chl-a 0.22 0.18 0.36 0.25 - - +6.60% +33.44%
Bui et al. [73] SWAT+QUAL2K  Temperature 0.53 - 0.72 - - - -1.68% -
BOD 0.26 - 0.45 - - - +12.56% -
COD 0.16 - 0.38 - - - +6.49% +53.34%
TN 0.62 - 0.77 - - - +13.73% -
TP 0.24 - 0.32 - - - +9.92% -
Kim et al. [74] HEC-RAS Nitrate 0.30-0.83  -0.16-0.76 0.44-0.90 0.37-0.79 - - -5.0-10.3%  0.4-10.0%
Pyo et al. EFDC-NIER Temperature - - - - 0.92-1.15 - - -
DO - - - - 1.35-3.27 - - -
BOD - - - - 0.83-1.04 - - -
TN - - - - 0.32-0.67 - - -
TP - - - - 0.01-0.04 - - -
Chl-a - - - - 9.52-19.93 - - -
Kim et al. [76] CE-QUAL-W2 Temperature - - 0.89-0.95 - 1.64-2.32 - - -
TP - - 0.14-0.77 - 0.01-0.07 - - -
Chl-a - - 0.27-0.36 - 6.7-13.2 - - -
TOC - - 0.11-0.43 - 1.2 - - -
Brett et al. [77] CE-QUAL-W2 Temperature 0.82 - - - 1.3 - 6% -
TP -0.1 - - - 0.01 - 58% -
Chl-a 0.14 - - - 4.6 - 66% -
DO 0.85 - - - 1.2 - 12% -
Tasnim et al. [78] MINLAKE2020 Temperature 0.50-0.98 - 0.95-0.99 - 0.98-1.88 - - -
DO -0.12-0.80 - 0.87-0.93 - 1.79-3.42 - - -
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S18. Model Calibration and validation result graphs for SJ, ND,
GM, CG, GG, DS, and HC weirs
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Figure S11: Calibration (2013-2020) results for Sangju (SJ) weir
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Figure S12: Validation (2021-2022) results for Sangju (SJ) weir
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Figure S13: Calibration (2013-2020) results for Nakdan (ND) weir
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Figure S14: Validation (2021-2022) results for Nakdan (ND) weir
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Figure S15: Calibration (2013-2020) results for Gumi (GM) weir
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Figure S16: Validation (2021-2022) results for Gumi (GM) weir
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Figure S17: Calibration (2013-2020) results for Chilgok (CG) weir
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Figure S18: Validation (2021-2022) results for Chilgok (CG) weir
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Figure S19: Calibration (2013-2020) results for Gangjeong-Goryung (GG) weir
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Figure S21: Calibration (2013-2020) results for Dalsung (DS) weir
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Figure S22: Validation (2021-2022) results for Dalsung (DS) weir
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Figure S23: Calibration (2013-2020) results for Hapcheon-Changnyung (HC) weir
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Figure S24: Validation (2021-2022) results for Hapcheon-Changnyung (HC) weir
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S19. Monthly boxplots for validation periods (2021-2022)
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Figure S26: Monthly boxplot for Nakdan (ND) weir
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Figure S28: Monthly boxplot for Chilgok (CG) weir
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Figure S30: Monthly boxplot for Dalsung (DS) weir
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Figure S32: Monthly boxplot for Changnyung-Haman (CH) weir
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S20. The normalized target diagrams

The target diagram was introduced by Jolliff et al. [62] to visually depict
how both the pattern statistics and the bias (mean value differences) con-
tribute to the magnitude of the total Root-Mean-Square Difference (RMSD).

In the normalized target diagram, y-axis represents the normalized bias as
follows: —

m—T

B* =

(S.55)

0-7'
Where, B* is the normalized bias, m is the mean of model output values, 7
is the mean of observation values, o, is the standard deviation of observation
values.
In addition, the x-axis represents the normalized unbiased RMSD calcu-
lated by:

RMSD' — (%25_1 {(mn — ) — (ry — ?)} 2)Msign(% —,)/o (S.56)

Where, RMSD’ is the normalized unbiased RMSD, m,, is the nth model
output value, r, is the nth observed value, o,, is the standard deviation of
the model output values.

Finally, RMSD can be calculated using the following expression.

RMSD = +/(B*)? + (RMSD')? (S.57)

In this section, we present normalized target diagrams comparing uncorre-
lated versus correlated DA cases for major water quality constituents across
seven DA scenarios. Each point represents one of 66 observation points de-
picted in each graph. The color of each point indicates its RMSD value
according to the legend provided.
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Figure S33: Normalized target diagrams for temperature model: spatially uncorrelated
cases
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Figure S34: Normalized target diagrams for temperature model: spatially correlated cases
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Figure S35: Normalized target diagrams for dissolved oxygen (DO) model: spatially un-
correlated cases
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Figure S36: Normalized target diagrams for dissolved oxygen (DO) model: spatially cor-
related cases
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Figure S37: Normalized target diagrams for Chlorophyll-a (Chl-a) model: spatially un-
correlated cases
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Figure S38: Normalized target diagrams for Chlorophyll-a (Chl-a) model: spatially corre-
lated cases
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Figure S39: Normalized target diagrams for total nitrogen (TN) model: spatially uncor-
related cases
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Figure S40: Normalized target diagrams for total nitrogen (TN) model: spatially corre-
lated cases
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Figure S41: Normalized target diagrams for total phosphorus (TP) model: spatially un-
correlated cases
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Figure S42: Normalized target diagrams for total phosphorus (TP) model: spatially cor-
related cases
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Figure S43: Normalized target diagrams for total organic carbon (TOC) model: spatially
uncorrelated cases
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Figure S44: Normalized target diagrams for total organic carbon (TOC) model: spatially
correlated cases
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Figure S45:

RMSE map for all superjunctions by DA scenarios: Temperature
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S21. RMSE maps for all superjunctions by DA scenarios

Figure S46: RMSE map for all superjunctions by the DA scenarios: Dissolved oxygen
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Figure S47: RMSE map for all superjunctions by the DA scenarios: Chlorophyll-a

Figure S48: RMSE map for all superjunctions by the DA scenarios: Total nitrogen
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DA_Case2

DA_Case3

Rty
At
Rt
Rty

DA_Case4

DA_Case5

DA_Case6

DA_Case7

Y&

vy
vy
Y

S-79

RMSE for TP

" RMSE for ToC

: Total phosphorus

Figure S50: RMSE map for all superjunctions by the DA scenarios: Total organic carbon
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