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Astrocyte Regulated Neuromorphic Central Pattern
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Abstract—Neuromorphic computing systems, where informa-
tion is transmitted through action potentials in a bio-plausible
fashion, is gaining increasing interest due to its promise of
low-power event-driven computing. Application of neuromor-
phic computing in robotic locomotion research have largely
focused on Central Pattern Generators (CPGs) for bionics robotic
control algorithms - inspired from neural circuits governing
the collaboration of the limb muscles in animal movement.
Implementation of artificial CPGs on neuromorphic hardware
platforms can potentially enable adaptive and energy-efficient
edge robotics applications in resource constrained environments.
However, underlying rewiring mechanisms in CPG for gait
emergence process is not well understood. This work addresses
the missing gap in literature pertaining to CPG plasticity and
underscores the critical homeostatic functionality of astrocytes
- a cellular component in the brain that is believed to play a
major role in multiple brain functions. This paper introduces
an astrocyte regulated Spiking Neural Network (SNN)-based
CPG for learning locomotion gait through Reward-Modulated
STDP for quadruped robots, where the astrocytes help build
inhibitory connections among the artificial motor neurons in
different limbs. The SNN-based CPG is simulated on a multi-
object physics simulation platform resulting in the emergence
of a trotting gait while running the robot on flat ground.
23.3× computational power savings is observed in comparison
to a state-of-the-art reinforcement learning based robot control
algorithm. Such a neuroscience-algorithm co-design approach
can potentially enable a quantum leap in the functionality of
neuromorphic systems incorporating glial cell functionality.

Index Terms—Spiking neural networks, Central pattern gen-
erator, Astrocyte regulation, Locomotion gait.

I. INTRODUCTION

CURRENT brain-inspired engineered systems have pri-
marily focused on the emulation of bio-plausible com-

putational models of neurons and synapses. Incorporation of
other cellular units from the brain is lacking. Over the past few
years, a growing body of evidence has demonstrated that glial
cells, and in particular astrocytes, play an important role in the
maintenance and modulation of neuronal dynamics facilitating
brain function [1]. This work is inspired by recent theories
suggesting that rich temporal dynamics such as synchrony
form the dynamical basis of learning and memory and are
expected to play a key role in enabling a dynamical view of
intelligence for the design of next-generation brain-inspired
engineered learning systems (see report based on 6th US/NIH
BRAIN Initiative Investigators Meeting [2]). In particular, our
work focuses on spinal central pattern generators (CPGs),
which are neural circuits that generate spontaneous rhythmic
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patterns and serve as a model “brain-like” system to design
engineered learning platforms, specifically robotic locomotion
controllers.

Multiple parallel works have pointed toward the critical role
of astrocytes in spinal CPGs. Recent literature has reported
that astrocytes in the spinal cord can influence the activity
of the spinal motor network. Specifically, the excitation of
spinal cord astrocytes causes a decline in fictive locomotion
frequency [3]. Neuroscientists have further illustrated that
excited astrocytes suppress the rhythmic locomotion activity
by releasing ATP, which is metabolized into adenosine (ADO)
immediately. Adenosine works as an antagonist of the exci-
tatory neurotransmitter dopamine (DA) in the motor neurons
[4]. Also, researchers have observed that, in larval zebrafish,
the futile swimming effort can activate radial astrocytes, which
suppresses continuous unsuccessful attempts [5]. Further, it is
reported that such inhibitory effect of astrocytes on swimming
in zebrafish is mediated by a signaling pathway involving
ATP - adenosine - A2 receptor [6]. Such results are consistent
with the claim that astrocytes play a homeostatic role in the
neural system [7]. Driven by such insights, we investigate
the homeostatic regulation role of astrocytes in neuromorphic
Spiking Neural Network (SNN) based CPG circuits for gait
learning in quadruped robots. Neuromorphic robotic control
has been recently gaining attention due to the promise of
enabling low-power edge robotics in resource-constrained en-
vironments [8]–[10]. However, the works remain preliminary
with application to simple robotic platforms primarily due to
overtly simplistic computational modeling of the biological
system, such as single-neuron rhythm generators. This work
forges stronger connections with neuroscience computational
models of CPG and astrocyte regulated synaptic plasticity to
develop an algorithmic learning framework for gait emergence
in legged robotic locomotion. The key distinguishing factors
of our work against prior proposals are:

(i) Neuroscience Inspired CPG Formulation: Based on
the bio-inspiration premise that CPG formulations need to
have stronger neuroscience correlation in order to harness the
efficiency of biological systems, we design a CPG circuit that
captures the temporal dynamics of the locomotion unit and
inter-limb communication to a much higher degree of detail.
As shown in the paper, the bio-inspiration route enables us
to scale neuromorphic robotic control, for the first time, to
quadruped systems.

(ii) Astrocyte Regulated CPG Plasticity: While the dy-
namics of structures mediating CPGs have been extensively
studied [11], [12], rewiring or plasticity of CPGs remains
relatively underexplored [13], [14], especially in terms of
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understanding the homeostatic role of astrocytes. This work
illustrates that astrocytes, working in parallel with local learn-
ing rules like reward-modulated Spike Timing Dependent Plas-
ticity (STDP), suppress over-activated motor neurons directly
or indirectly, by creating inhibitory synapses. This enables
the emergence of a gait that provides continuous and smooth
locomotion, while allowing us to harness the benefits of local,
event-driven learning capability of bio-inspired systems when
implemented on neuromorphic chips - paving the pathway for
edge processing in robotics [15].

Additionally, the proposed algorithm is neuromorphic hard-
ware compatible. For instance, stochastic leaky-integrate-fire
spiking neuron characteristics used herein can be emulated by
magnetic tunneling junction spintronic devices [16]. Addition-
ally, the astrocyte models considered in this work are all local
models, which contain only local variables and communicate
with only the neighboring components in the architecture.
As a result, the proposed algorithm is both bio-inspired and
compatible with existing neuromorphic hardware or can be
implemented by simple extensions of current neuromorphic
computing architectures [17].

II. RELATED WORK AND MAIN CONTRIBUTIONS

In recent years, global policy optimization for robotic
locomotion through reinforcement learning has been widely
investigated [18]–[20], where a policy network receives a
system state vector including the joint positions and velocities,
and outputs the driving signal to the motors. The reinforcement
learning alleviates the difficulty of tuning complex parameter
sets. However, the policy network-driven locomotion usually
requires continuous neural network inference for every control
time step, which is computationally expensive. Further, train-
ing such systems is even more computationally challenging,
thereby limiting their applicability for on-chip learning in edge
robotic systems with resource constraints.

Another category of robotic locomotion algorithms involves
CPG circuits organizing the collaboration among joints or
limbs, where one CPG unit controls a single joint or multiple
joints. Some literature has applied classical control methods,
such as phase oscillators, for the CPG [21]–[23]. From the
neuromorphic implementation standpoint, there has been some
preliminary work aimed at constructing the CPG by using
SNNs [8]–[10]. However, existing works on SNN CPG use
over-simplified neuron models and network architectures. For
example, the flexor and the extensor motor neuron pools are
usually simplified into a network of two neurons, where the
internal fine structure is neglected. The lack of inclusion of
biological details in the CPG architecture has resulted in
limited flexibility of the control system, thereby constraining
their applicability to mostly simple robotic platforms like
hexapod robot, in contrast to the more complex design space
of real-world robotic locomotion control of more intensively
researched models, such as quadruped robots. In this work,
we forge stronger connections with theoretical neuroscience
to develop a detailed bio-inspired CPG model and show that
astrocyte control is instrumental to ensure optimal and stable
gait emergence in robotic quadruped locomotion systems.

Local learning mediated gait emergence ensures compatibility
of our proposed control system with neuromorphic hardware,
thereby leading to the potential of enabling real-time, low-
power on-chip learning.

Finally, we also note that while recent work has explored
the role of astrocytes in neuromorphic computing, it pri-
marily remains limited to self-repair functionalities [24]–[28]
and more recently self-attention mechanisms [29], working
memory [30], energy minimization in neural networks [31],
structure learning [32], and so on.

III. QUADRUPED LOCOMOTION CONTROL CIRCUIT

A. Quadruped System Overview

The defining feature of a quadruped system (applicable to
both biological systems and robots) is the set of four limbs.
In the locomotion of a quadruped system, the contact between
the ground and the feet of the limbs provides support to the
torso and acceleration to the entire animal/robot. In case of
a biological system, the lower motor neurons (located in the
ventral horn of the spinal cord) directly control the tension
of the joint flexors and extensors in the limbs [33]. The
dynamics of the joint movement in the gait during locomotion,
specifically the torque, angular position, angular velocity and
angular acceleration of the joints are determined by the activity
of the lower motor neuron themselves and the communication
among the lower motor neurons pools; between the upper
motor neuron (located in the brainstem) and the lower motor
neuron; and from the Golgi tendon organ to the lower motor
neurons [34], [35]. The gait locomotion functionality of a cat is
still complete even when the cerebrums are removed, which
indicates that the locomotion control system of four-limbed
vertebrates is largely a local neural circuit in the brainstem
and spinal cord [36]. Deriving insights from such neuroscience
studies, we develop a bio-inspired CPG controller that models
the collaboration among the limbs of a quadruped system.
The framework is evaluated for a quadruped robot in a multi-
body interaction physics simulation environment. In this paper,
the Unitree A1 quadruped robot [37] system is adopted. The
dynamics of the robot is simulated in the MuJoCo platform
[38].

Figure 1 shows the proposed CPG architecture for robotic
locomotion, which can be summarized below. A locomotion
unit for a single joint contains 2 motor neuron pools: the
extensor and the flexor. Through internal connections, the
extensor and flexor motor neurons can generate alternating
bursts. The extensor and flexor activities are converted into
the direction and magnitude of the joint actuator torque of
the corresponding joint. Through STDP learning in the inter-
limb connection modulated by the astrocyte and reward signal,
thigh locomotion limbs inhibit or excite each other, through
which the robot’s gait emerges.

B. Central Pattern Generator

Critical behaviors of the gait locomotion of four-limbed an-
imals are: (i) the alternating activity of the flexor and extensor
muscles in the limbs [35], [39] and (ii) the phase difference
among the limb movements. The alternating excitation of the
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Fig. 1. SNN-based CPG architecture. a, The reciprocal inhibition of flexor and extensor motor neuron pools, where the flexor and extensor motor neuron
pools are connected through V1/V2b inhibitory interneurons. For clarity, only 5 motor neurons for each pool are displayed. The symbols for synapses in the
following sub-figures are consistent with those in sub-figure a. b, The thigh muscle inhibits its antagonistic muscle in the calf through an inhibitory interneuron
(IIN). c, A sample snapshot of spontaneous rhythmic burst pattern output from the reciprocal inhibition structure, under non-feedback condition. The vertical
axis represents the number of motor neurons spiking at each time step. d, The motor neuron pool of the thigh sends synapses (solid lines with diamond ends)
to the motor neuron pool of the thigh in all other limbs. It is worth noting here that these synapses could be either excitatory or inhibitory. For clarity, only
the synapses from the front-left limb are displayed. FR: front-right, FL: front-left, RR: rear-right, RL: rear-left.

two muscles of a single joint allows the joint to swing forward
and backward periodically, which further converts the limb
movement between the swing and stance phases [40]. In the
past decade, research has elucidated the alternating excitation
mechanism of the flexor and extensor motor neuron pools -
reciprocal inhibition [41]. Past research has divided the entire
CPG for gait locomotion into locomotion units that individu-
ally control the movement of a single limb [35]. Within the
locomotion units, the motor neurons to an individual muscle
inhibit or excite the motor neurons to other muscles [35].
The phase difference among the limbs usually corresponds
to the specific locomotion speed of the animal [41]. Based
on the phase difference, the gaits are usually categorized into
walking, trotting and bounding [41]. The following sections
will explain (a) how a locomotion unit, controlling a single
limb, is composed of reciprocally inhibiting spiking motor
neuron groups and controls the joint movement, and (b) how
the connections among all the locomotion units (i.e., inter-limb
connection) determine the phase difference among the limbs.

1) Locomotion Unit: Related experiments illustrate that the
flexor and extensor muscles of a single joint always excite
in opposite phases, i.e., when the flexor muscle bursts, the
extensor muscle does not fire, and vice versa [35]. Also,
the duration of the burst of both the flexor and extensor is
approximately constant, which indicates that an active muscle
will spontaneously stop firing after a specific duration of time

[35]. Such a burst pattern raises two critical questions: (1)
How does the motor neuron burst terminate spontaneously
after a specific duration of time? (2) How does the halt of
one muscle’s activity trigger the activity of the antagonistic
muscle? We derive qualitative inspiration from neuroscience
to answer these questions. The continuous firing of a motor
neuron will accumulate Ca2+ in the cytoplasm, which later
opens the K+ channels [35]. The decrement in the spike
frequency of one muscle’s motor neuron pool leads to the
decline of inhibition to the antagonistic motor neuron pool.
Based on this insight, in this paper, we assume that each
motor neuron is receiving continuous background excitatory
stimulation, and consequently, the flexor and the extensor
reciprocally compete with each other, which finally forms
periodic complementary burst patterns. The structure of such a
reciprocal inhibiting SNN for a single joint is shown in Figure
1a. Two types of neurons are contained in this architecture:
the motor neuron and the V1/V2b inhibitory interneuron.
The motor neuron model is Pacemaker Stochastic Leaky-
Integrate and Fire (PSLIF), which includes the cytoplasmic
Ca2+ dynamics and the opening and closing of the K+

channel. The dynamics of the membrane potential of the motor
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neuron i in the motor neuron pool can be formulated as:

d vmotor,i(t)

dt
=

(vmotor rest − vmotor,i(t))

τmotor

+ Ibackground(t, v) · (1 +Noise(t))

− CK chan · Sigmoid(SK chan · ([Ca2+]− ThresCa2+))

+ wV1/V2b−→motor · δ(t− tV1/V2b spike)

+
∑
j̸=i

[wmotor,j−→i · δ(t− tmotor spike,j)]

(1)

Here, vmotor,i is the membrane potential of neuron i in
the pool. τmotor is the motor neuron membrane potential
decay time constant. Ibackground(t, v) = Ibackground,0 +
kbackground,v ·vtorso is the continuous background stimulation.
Ibackground,0 is the strength of the background stimulation
when the magnitude of the velocity of the torso is zero.
kbackground,v is a positive background stimulation increment
coefficient, and vtorso is the magnitude of the velocity of the
torso. The velocity-related background stimulation will lead
to an increasing frequency of the swing of the limbs when
the robot is speeding up. The strength of the background
stimulation also includes randomness. In the discrete imple-
mentation Noise(t) = Arandom · U[−1,1](t) where U[−1,1](t)
is a sampling of a random variable whose distribution is
Uniform[−1, 1]. The random variable is sampled at every time
step of the simulation. Arandom is the amplitude of random-
ness. CK chan is the potential drop rate when the K+ channel
is fully on. Sigmoid(x) = 1

1+e−x . SK chan is the sensitivity
of the K+ channel to the Ca2+ concentration. [Ca2+] is the
cytoplasmic Ca2+ concentration. ThresCa2+ is the [Ca2+]
threshold for opening the K+ channel. wV1/V2b−→motor is a
negative synapse strength from the V1/V2b interneuron to the
motor neurons, and this value is uniformly the same for all the
motor neurons. wmotor,j−→i is the intra-pool excitatory synapse
strength from motor neuron j to motor neuron i. tV1/V2b spike

and tmotor spike,j are the spike timings of V1/V2b interneu-
ron and motor neuron j respectively. The cytoplasmic Ca2+

dynamics is:

d[Ca2+]

dt
=

−[Ca2+]

τCa2+
+ rCa2+δ(t− tspike) (2)

where, [Ca2+] is the concentration of cytoplasmic Ca2+,
τCa2+ is the Ca2+ decay time constant, rCa2+ is the [Ca2+]
unit increment per action potential, tspike is the time of firing
of the motor neuron. Also, the stochasticity of PSLIF neuron
is attributed to the randomness of the condition to trigger
an action potential. The probability of triggering an action
potential by the PSLIF neuron at any time step is:

pspike = Sigmoid(
v − vth
Sspike/2

) (3)

where, v is the membrane potential, vth is the threshold
potential, Sspike is transition width of spike probability. The
motivation for introducing stochasticity is to prevent the si-
multaneous spike of all the motor neurons in a motor neuron
pool.

For each muscle, the corresponding motor neuron pool con-
tains 20 inter-connected motor neurons. The synapses among

the motor neurons within a single pool are generated in a
spatial manner: the location of each motor neuron is randomly
generated in the 3-dimensional region [0, 1] × [0, 1] × [0, 1]
from a uniform distribution and the synapses between a pair of
motor neurons are generated according to the distance between
two motor neurons, as shown below:

wmotor,j−→i = w0dist · e−cdist·dist(j,i) (4)

where, wmotor,j−→i is the synapse strength from motor neuron
a to motor neuron b, w0dist is the synapse strength at zero
distance, dist(j, i) is the spatial distance between motor neu-
ron j and motor neuron i, cdist is the synapse strength spatial
decay coefficient.

The inhibition is reported as a result of the activity of
V1 and V2b inhibitory interneurons in the spinal cord [42].
Thus, in our SNN design, every motor neuron pool excites a
V1/V2b interneuron, which in turn inhibits the motor neuron
pool of the antagonistic muscle. The neuron model of V1/V2b
interneuron is the Stochastic Leaky-Integrate and Fire (SLIF),
where the stochasticity is generated in a similar fashion as
in PSLIF. The rhythmic pattern generated by the reciprocal
inhibition is shown in Figure 1c.

While previous work has proposed the possible connection
of motor neurons in one locomotion unit [35], the mechanical
structure of the limbs of the robot used in this paper is slightly
different from a common quadruped animal, i.e., the number
of joints responsible for locomotion in a single limb and the
length ratio between the thigh and calf are different. Hence,
the common quadruped locomotion unit architecture cannot
be directly applied to the A1 robot. Therefore, we propose
a locomotion unit SNN enabling the feet tips to move in
a circular path (specific to the A1 robot). The diagram of
the locomotion unit SNN is shown in Figure 1b. There is
a second pair of motor neuron pools driving the flexor and
extensor in the calf. Additionally, the thigh flexor inhibits
the calf extensor, and vice versa. The neuron model of the
inhibitory interneuron is SLIF, and they share the same model
hyperparameters with the V1/V2b interneurons due to similar
functionality. At the same time, the thigh flexor and extensors
receive inhibitory sensory input when the thigh is approaching
the limit position, which allows the transition between the
swing and stance phases. For example, the angular range of
the front thigh is [0.6, 1.4]. The front thigh flexor and the
front extensor motor neurons will be inhibited when the thigh
enters the regions [0.6, 0.65] and [1.35, 1.4] correspondingly.
Given the diagonal inhibition from the motor neuron pools of
the thigh to those of the calf, the phase transition of the calf
is completely determined by the thigh motor neuron pools.
Therefore the limit position inhibition for calf muscles is not
necessary.

Regarding driving the motors at robot joints, an angular
impulse with the corresponding sign is generated every time
the flexor and the extensor for this joint spike. The motor
torque trace accumulates the angular impulses and decays
exponentially when there is no stimulus. In the A1 robot, we
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use:

d hthigh(t)

dt
=− hthigh(t)

τh
+ Ithigh · δ(t− tthigh extensor spike)

− Ithigh · δ(t− tthigh flexor spike)

(5)

where, hthigh is the motor torque trace for the thigh joint, τh
is the decay time constant of the motor torque trace, Ithigh
is the increment of torque for a single action potential for
the thigh joint and tthigh extensor spike is the time of firing
of any individual neuron in the thigh extensor motor neuron
pool (similar discussions are valid for the flexor). It should be
noted that, in a discrete implementation of the SNN simulation,
multiple motor neurons can possibly (actually they frequently
do) fire at the same time step. In such a case, all the concurrent
spikes in this time step contribute to the torque. This discussion
is valid for all the following scenarios where the time of
firing of a motor neuron pool is considered. In the MuJoCo
configuration of the robot provided by the manufacturer, the
joint motors of the A1 robot are working in torque mode.
Consequently, the value of hthigh is directly provided as output
to the thigh motor actuator. The calf joint motor is driven by
the same dynamics, but the angular impulse, Icalf , can be a
different value.

2) Inter-limb Connection: Recent works have elaborated
that there are excitatory and inhibitory synapses from the
motor neurons for one limb to the motor neurons for another
limb [35]. In this paper, the phase difference among the
limbs is modulated by the inter-limb excitatory/inhibitory
connections. As shown in Figure 1d, the thigh muscles from
one limb send axons to all the muscles in all the other limbs.
For example, the motor neurons of the thigh extensor in the
front-left limb send connections to the thigh flexors and the
extensors in front-right, rear-left and rear-right limbs. The calf
motor neurons are not involved in the inter-limb connection.
The source motor neuron pool and the target motor neuron
pool are fully connected, but the entire connection shares a
single synapse strength value. Such a connection could be
expressed as a table of size 8 by 8, shown in Figure 2a,
where the value in row i and column j represents the synapse
weight of the connection projected from muscle i to muscle
j. The inter-limb connection is trained by reward-modulated
Spike Timing Dependent Plasticity (STDP), including the
necessary modulation of astrocytes, which will be introduced
in a later section. In the next subsection, the cytoplasmic
signaling pathway will be introduced. The computational detail
regarding the inhibitory effect of astrocyte output on inter-limb
connection will be illustrated in Section IV.

C. Astrocyte Regulation

The astrocyte is reported to play a homeostatic role in spinal
cord locomotion control circuitry [3], [5], [6]. Specifically, the
astrocytes, when activated, release signaling molecules that
suppress over-excited neural groups to prevent energy waste.
The spiking activity of neighboring neurons is a trigger of the
cytoplasmic calcium activity of astrocytes. In general, first,
specific receptors on the plasma membrane of the astrocyte

sense the product of the activated neighboring neurons, such as
2-arachidonyl glycerol (2-AG) or glutamate. Next, a sequence
of interactions between Ca2+, inositol trisphosphate (IP3) and
IP3 receptor responds to the activated membrane receptors.
Finally, multiple types of signaling molecules are released
from the astrocytes, such as glutamate or ATP, following the
Ca2+ or IP3 activity.

Astrocytes are diverse across the entire nervous system. For
the locomotion control system, a previous work suggested that
Endocannabinoid receptor CB1 is expressed by the astrocytes
in multiple brain regions and the dorsal horn of the spinal cord
[43]. In this paper, we regard 2-AG, a type of endocannabinoid,
as the effective neurotransmitter signaling from motor neurons
to the astrocytes. The motor neurons release a constant amount
of 2-AG every time there is an action potential. The concen-
tration of 2-AG decays exponentially when no motor neuron
fires:

d([AG])

dt
=

−[AG]

τAG
+ rAGδ(t− tmotor spike) (6)

where, [AG] is the concentration of 2-AG, τAG is the decay
time constant of 2-AG, rAG is the production rate of 2-AG and
tmotor spike is the time instant when the motor neuron spikes.
2-AG binds to CB1 receptor on the astrocyte and then triggers
the signaling pathway inside the astrocyte.

For the astrocyte-to-neuron signaling pathway, it is well
established that ATP is the direct product of astrocytes that
suppresses the locomotion activity [3], [4], [6]. Nevertheless,
the mathematical model for the relationship between the output
signals of the astrocyte and the Ca2+ and IP3 activity in loco-
motion circuitry has not been detailed in prior works. Also, the
detailed intra-astrocyte dynamics is absent in previous works
on astrocyte-modulated locomotion. Instead, these works con-
centrate on the communication between astrocytes and the sur-
rounding neurons [3], [6]. Therefore, a computational model
for intra-astrocyte activity and ATP production needs to be
adopted. A prior study [44] proposed a single-astrocyte model
whose output is extracellular ATP. However, according to the
paper, the evidence supporting the relationship between IP3

and ATP release was not concrete [44]. Chen et al. also state
that the calcium activity is believed to be the direct cause
of the rise in extracellular ATP concentration [6]. Further,
another work proposed a data-driven mathematical model of
astrocyte, which, nevertheless, concentrates on the propagation
of calcium activity in an astrocyte network [45]. As a result,
adopting a customized model for describing the intra-astrocyte
activity and the astrocyte-ATP relationship is inevitable. Here,
in the absence of backing of in vivo experiments on astrocyte
modulation in the spinal cord, we use the Li-Rinzel model
for intra-astrocyte dynamics and use the unit ATP release
model for the ATP production from astrocytes, where the ATP
release directly depends on the astrocyte cytoplasmic Ca2+

activity. This is consistent with results reported in Refs. [3],
[6] and at the same time minimizes the number of redundant
assumptions.

The Li-Rinzel model [46], which describes the general
cytoplasmic Ca2+-IP3 dynamics, is the basis of many follow-
ing astrocyte dynamics models [47]. In the Li-Rinzel model,
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the activation of CB1 receptor results in IP3 release in the
astrocyte cytoplasm. IP3 further regulates the release of Ca2+

from the Endoplasmic Reticulum (ER) [24]. The transportation
of Ca2+ between the cytoplasm and ER can be divided
into three components: the channel current from ER to the
cytoplasm, Jchan; the passive leakage current from the ER
to the cytoplasm, Jleak; the active pumping current from the
cytoplasm to ER, Jpump. In summary:

d[Ca2+]

dt
= Jchan + Jleak − Jpump (7)

The [Ca2+] here is the concentration of cytoplasmic Ca2+.
Readers seeking a detailed computational model are directed
to [24].

Chen et al. indicate that the extracellular ATP rises fol-
lowing the calcium activity in astrocytes [6]. The extracellular
ATP, once released, is metabolized into adenosine immediately
[3], [4], [6]. The adenosine plays an inhibitory role in the
modulation of locomotion in the spinal cord [3], [6]. Multiple
works have reported that the adenosine receptor on the mem-
brane of the locomotion-related interneurons is a part of the
inhibitory signaling pathway, but the specific type of receptor
varies among different reports. Ref. [4] suggests that adenosine
activates the A1 receptor of the locomotion-related neurons in
mice, while another report demonstrates that A2 is the target
of adenosine in swimming behavior modulation in zebrafish
[6]. As ATP is always metabolized into adenosine rapidly [3],
[4], [6], and the time for degeneration from ATP to adenosine
can be neglected, we simplify the astrocyte-ATP-adenosine
dynamics into astrocyte-adenosine dynamics for reducing the
complexity of the computational model. The product of ATP
metabolism, adenosine, is regarded as the direct output of the
astrocyte. It is also assumed that one unit of adenosine rADO

is released every time when the calcium concentration exceeds
a threshold. Then, adenosine diffuses in the extracellular space
and experiences exponential decay.

d[ADO]

dt
=

−[ADO]

τADO
+ rADOδ(t− tCa2+,ADO prev) (8)

Here, [ADO] is the concentration of adenosine in the
nearby region of the astrocyte, τADO is the adenosine decay
time constant, rADO is the production rate of adenosine,
tCa2+,ADO prev is the time instant when [Ca2+] is above the
threshold satisfying the condition that the time from the last
adenosine release is not shorter than the adenosine refrac-
tory period. The adenosine received by the motor neurons
negatively contributes to the synapse strength sent to this
motor neuron pool. Figure 2b illustrates the negative feedback
relationship between the motor neuron pool and the adenosine.

IV. GAIT LEARNING ALGORITHM

Previous works have discussed the reward-modulated STDP
for encouraging actions through a delayed reward signal [48].
The basic idea of gait search is to reward the gait, i.e., the
phase difference of the bursts among all the motor neuron
pools, providing a larger forward speed and more stable torso
attitude. The effect of different collaborations of the muscles
is usually delayed, i.e., a good gait leads to a large forward

speed, but the speeding up procedure still costs a duration
of time. Hence, reward-modulated STDP is necessary for gait
search. The reward function is given by:

r(t) = αvelx · velx(t)
− αωroll

· |ωroll(t)|
− αωpitch

· |ωpitch(t)|
− αωyaw

· |ωyaw(t)|

(9)

where, velx is the velocity of the torso in x direction, which is
the default heading direction at the beginning of the training
process. ωroll, ωpitch and ωyaw are the angular velocities in the
roll, pitch and yaw directions. The parameters αvelx , αωroll

,
αωpitch

and αωyaw are the reward coefficients. The reward-
induced weight update from motor neuron pool x to motor
neuron pool y in reward-modulated STDP used in this work
can be written as:

∆wreward
x,y (t) = ηeff(t)reff(t) · STDPx,y(t) · ζwx,y (t) (10)

where,

d STDPx,y(t)

dt
= −STDPx,y(t)

τSTDP

+ δ(t− ty spike) · ux(t)

− ηnegative relative · δ(t− tx spike) · uy(t)

d ux(t)

dt
=− ux(t)

τtrace
+ δ(t− tx spike)

ηeff(t) =η · Progress(t)
reff(t) =r(t)− caverage · r(t−0.1s,t)

ζwx,y (t) =
[wmax − wx,y(t)][wx,y(t)− wmin]

(wmax − wmin)2

(11)

where, STDPx,y(t) is the STDP signal from motor neuron
pool x to motor neuron pool y. τSTDP is the STDP signal
decay time constant. ty spike and tx spike are the times of
firing of motor neuron pool y and x. ux(t) and uy(t) are
the spike traces of motor neuron pool x and y at time t.
τtrace is the spike trace decay time constant. ηnegative relative

is the relative negative learning rate, which controls the
contribution of negative STDP signal in learning. ηeff(t) is
the effective learning rate, which is the product of training
progress Progress(t) and learning rate η. The definition of
training progress can be found in the Experiments section.
reff(t) is the effective reward for STDP learning. r(t−0.1s,t) is
the sliding window average of the reward function from 0.1
seconds before to the current time. caverage is the averaged
reward coefficient. By subtracting a fraction of r(t−0.1s,t), the
system encourages the concurrent firing of the muscles which
provides a higher reward than the average. It also discourages
the concurrent firing of the muscles leading to the falling of
the robot, at which time the angular velocities of the torso
are large. ζwx,y

(t) is a weight constraint factor preventing the
weight from being out of the range of [wmin, wmax].

It is worth noting here that the STDP learning algorithm is
usually applied in situations where excitatory synapses play a
significant role [49]. The learning rate for post-synaptic firing
is usually much larger than its counterpart for pre-synaptic
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Fig. 2. Astrocyte regulated gait search. a, The table containing the synapse weight of inter-limb connections. As there is no self-limb connection, the 2
by 2 sub-tables on the diagonal are all zero. b, The astrocyte receives 2-AG from the motor neuron pool, which is later activated and releases adenosine that
decreases the strength of the input synapses to this motor neuron pool. For clarity, only three of the input synapses are displayed.

firing. As a result, the learning of inhibitory synapses, which
are critical in many neural systems like ours, is largely unex-
plored. According to the previous section, adenosine released
by the astrocytes is sensed by the neighboring neurons. For
simplifying the computational model, the detailed interaction
between the adenosine and motor neurons is neglected. It is
assumed that the adenosine generates an inhibitory effect on
the input synapses of the motor neurons. i.e., the adenosine
reduces the weight of the inter-limb synapses from other motor
neurons to the corresponding motor neuron pool, as illustrated
in Figure 2b. Therefore, at every time step, the astrocyte-
induced weight update from motor neuron pool x to motor
neuron pool y is:

∆wastrocyte
x,y (t) =

− ηADO · Progress(t) · [ADOy] · ζwx,y
(t)

(12)

where, ηADO is the efficacy of adenosine in building inhibitory
synapses, Progress(t) is the training progress, [ADOy] is the
adenosine concentration at motor neuron pool y, ζwx,y (t) is
the weight constraint factor. The complete weight update of
the inter-limb connection is:

∆wx,y(t) = ∆wreward
x,y (t) + ∆wastrocyte

x,y (t) (13)

For discussion on the computational modeling of the pro-
posed system, please refer to the section Computational Im-
plementation of the Dynamical System in the supplementary
material.

V. EXPERIMENTS

A. Problem Setup and Simulation Parameters

The experiments are performed using a computational sim-
ulation framework containing the quadruped robot physics
simulation and the discrete simulation of the SNN-based CPG.
MuJoCo (https://github.com/deepmind/mujoco) version 2.1.0

is adopted in this paper for the quadruped robot simulation.
mujoco-py [50], version 2.1.2.14, is used to call the Mu-
JoCo functions through Python APIs. The MJCF model of
the A1 robot is obtained from the manufacturer’s repository
(https://github.com/unitreerobotics/unitree mujoco). The sim-
ulations are run on a bare metal computer with one Intel(R)
Core(TM) i9-13900K CPU, 64GBytes RAM and the Ubuntu
22.04.2 LTS operating system. To simulate the dynamics of the
SNN, i.e., the neuron/astrocyte models and the synaptic learn-
ing rules, we implemented the model dynamics in Python in
a discrete manner, without utilizing any external SNN library.
The simulation frequency is 1000 Hz. The entire codebase of
the SNN implementation can be found at https://github.com/
NeuroCompLab-psu/Astrocyte Regulated Gait Search.git.

The information about the A1 robot model configuration for
simulation, model initialization and control parameters such
as the coefficients of the PI controller can be found in the
supplementary material.

The structure of the algorithm in a single time step can be
split into three distinct steps:

1) SNN and astrocyte model status are updated. Motor
torque output is calculated from motor neuron activities.

2) MuJoCo simulates A1 model for one step
3) Reward is calculated from robot sensor data. Inter-limb

connection weight is updated.

B. Training Session and Training Progress

The MuJoCo environment inherently can simulate the robot
system for an indefinitely long time. However, based on the
locomotion control architecture mentioned before, the robot
cannot reset its own status after a fall. Therefore, splitting
the entire duration of the simulation into training sessions is
necessary. In this paper, a simulation session will terminate
when either the time reaches the maximum session length
or the “non-alive counter” of the robot has a value higher
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than a pre-defined threshold, which implies that the robot
falls or the robot is stuck into a non-healthy attitude. The
maximum session length is set to 10 seconds. The “non-alive
counter” accumulator will increase by one for each time step
the “alive indicator” is false. The “alive indicator” is a Boolean
expression:

ALIVE = Z AXIStorso · (0, 0, 1) ≥ Thresz ALIVE (14)

where, Z AXIStorso is the torso’s local Z-axis vector ex-
pressed in the world coordinate system. Thresz ALIVE is the
threshold of the torso Z-axis vertical component. In an ideal
still-standing attitude, the Z AXIStorso has a value (0, 0, 1),
which is vertically upward.

As the reward-modulated STDP reinforces the synapse
weight when concurrent firing provides a positive reward, the
synapse weights will continuously change even when a good
gait allows the robot to run smoothly. Therefore, the learning
rate should be dependent on the learning progress, in order
to halt the learning when a well-performing gait has been
captured. The training progress is defined as:

Progress(t) = Sigmoid(−
L[curr−10,curr−1]

Lmax
− 0.9

0.02
) (15)

where, L[curr−10,curr−1] is the average length of the previous
10 sessions. Lmax is the maximum session length. Notice that
the value of Progress(t) is in the range of [0, 1]. The training
progress approaches zero when the average session length is
approaching the maximum session length.

At the beginning of the entire training, the robot has a
high possibility to fall to the ground. The training goal at the
beginning, therefore, is learning not to fall. Progressing further,
at the stage where the robot can run continuously for 7 to 8
seconds, the learning goal becomes maximizing the rewards.
The beginning 2 seconds of the session, at this time, negatively
contribute to the learning goal because of the zero resetting
velocity. Consequently, we designed a dynamic learning period
instead of entire-session learning. The starting time step of the
learning period in any session is:

tlearning start

= Clip((L[curr−10,curr−1] − 1), 0, 2) seconds
(16)

C. Gait Emergence and Ablation Study

The entire training process can be divided into multiple
training sessions. For details about training sessions, please
check the Methods section. At the beginning of the training, all
the synapses of the inter-limb connection have zero values. The
limbs hence swing back and forth individually with random
and time-variant phase differences but similar frequencies. In
the process of such random phase difference generation, mul-
tiple types of collaboration among the limbs will temporally
emerge. For example, trotting, pacing or bounding can be
seen for short time periods, typically much shorter than the
maximum session length, at the beginning stages of learning.
Based on our observations in the performed experiments,
such random swings usually lead to a fall or non-continuous
slow running. Among all the emerged gaits, the optimal gait

produces maximum x-directional speed and stable attitude
of the torso. Nevertheless, the non-optimal gaits, generat-
ing slow locomotion, will also result in a positive reward,
because of the large reward coefficient of the x-directional
speed. The effect of the optimal and the non-optimal gaits
all positively contribute to the inter-limb connections, through
the STDP learning algorithm. Such always-positive learning
causes saturated inter-limb synapse strengths at the pre-defined
strength upper bound. Hence, there is a strong need to build
inhibitory inter-limb connection weights, which is performed
by the astrocytes through the release of adenosine to the motor
neurons.

Figure 3 shows the homeostatic contribution of the as-
trocytes. Removing the astrocyte regulation implies that the
second term on the right-hand side of Equation 13 is removed.
In Figure 3a, the left panel shows the trained inter-limb con-
nection weights without the astrocyte model. All the synapses
are trained into excitatory connections with saturated weight
wmax. In the right panel, it can be observed that the connection
from one limb to another limb always contains two excitatory
and two inhibitory synapses. For example, the connections
from FR limb to FL limb have two inhibitory synapses in
the diagonal positions and two excitatory connections in the
anti-diagonal positions, which implies that the extensor of FR
inhibits the extensor of FL (similar discussions are valid for
the flexors). The extensor of FR excites the flexor of FL and
vice versa. Such a combination produces a complementary
firing pattern of the FR and the FL. In fact, the right panel
of Figure 3a indicates a diagonal-synchronizing gait: FR-RL
synchronized and FL-RR synchronized. The two groups are
complementary to each other. This diagonal-synchronizing gait
is usually called trotting. In summary, the astrocyte can filter
out the effect of non-optimal gaits. Figure 3b more obviously
illustrates the trotting gait. In the upper panel, the all-excitatory
inter-limb connection brings unstable locomotion where the
phase difference among the limbs is unstructured. Under
current thigh and calf limit positions, Ibackground, Ithigh and
Icalf , only trotting gait will emerge. For a real quadruped
animal, for example, a cat, the muscle tension and CPG
rhythmic pattern frequency increase along with the descending
modulating signal from the brainstem. Therefore, for the emer-
gence of other gaits, the above-mentioned parameters need
to be specifically tuned for our robotic application scenario.
Furthermore, this trotting gait is currently only applicable to
flat ground. Adaptability to more complex terrain will be the
scope of future work. In Figure 3c, the average rewards in
each session, the final x coordinate and the session lengths
are plotted. The final x coordinate evaluates the distance the
robot has moved as the reset heading direction is positive x
direction. The reward and moving distance in the case without
astrocyte modulation fluctuate around a constant and do not
significantly improve after training. In contrast, including as-
trocyte regulation improves the average reward and locomotion
speed, because of the emergence of the optimal gait. More
specifically, the average x-directional speed of the last 20
sessions is 1.17m/s, which is close to the trotting gate speed
manually set in prior literature [20]. Such a speed emerges
naturally, and it is the result of specific CPG burst duration and
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Fig. 3. Ablation studies. a, Typical trained inter-limb connection weights. b, Typical thigh extensor activities of the four limbs after training. Upper panel:
limb collaboration is absent when astrocyte regulation is removed. Lower panel: diagonal-synchronization emerges under astrocyte regulation. c, The statistics
of the average reward, the displacement in x direction at the final time step of each session, and session length in the training process, where the number of
simulation trails is 20. The dark line represents the mean value, and the shaded region represents the interval of mean ± standard deviation.

motor torque hyper-parameters. A session length shorter than
10 seconds implies a fall of the robot in the session. Involving
astrocyte regulation significantly decreased the probability of
falling during running.

D. Power Consumption Benefits

Recent literature on conventional deep learning approaches
for quadruped robot gait learning primarily involves reinforce-
ment learning, where the action at each control time step is
output from a policy network. For example, [20] introduces
an energy-related reward function in a reinforcement learning
setting for quadruped (Unitree A1 robot) locomotion. The
policy network is a 3-layer architecture where each hidden
layer contains 128 neurons and the output layer contains
12 neurons, providing the target angular positions of the 12
joints in the limbs. The input to the policy network is a
42-dimensional state vector containing the current angular
position and velocity of the joints in the limbs, the roll and
pitch of the torso, the foot contact indicators and the action
produced in the previous control time step. Therefore, the
power consumption of the control system can be regarded as
the product of the energy consumption of a single feed-forward
inference computation and the control frequency. For the feed-
forward inference, the number of multiplication operations of

a single layer j with the bias of an artificial neural network
is:

Numj,MULT = di · do (17)

where, di is the input dimension of this layer and do is
the output dimension of this layer. The number of addition
operations of layer j is:

Numj,ADD = [(di − 1) + 1] · do = di · do (18)

where [(di − 1) + 1] represents the number of additions,
including bias, for a single output neuron. Therefore, the power
consumption of the policy network based control system can
be calculated as,

PPolicy = fcontrol ·
∑

j=1,2,3

(Numj,MULT · ϵMULT

+Numj,ADD · ϵADD)

(19)

where, fcontrol = 100Hz is the control frequency [20], ϵMULT

and ϵADD are the energy consumption of a single multiplica-
tion and a single addition operation. In this paper, we consider
the multiplication and addition operations are implemented
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in 45nm CMOS process [51], where ϵMULT = 3.7pJ and
ϵADD = 0.9pJ. Consequently,

PPolicy = 100Hz · [(42 · 128) + (128 · 128) + (128 · 12)]
× (3.7pJ + 0.9pJ)

= 1.07× 10−5 Watt
(20)

The SNN-based CPG proposed in this paper operates by
means of transmitting and receiving spikes. Instead of the
multiplication and addition operation that takes place for each
synaptic connection in a non-spiking network, only an ADD
operation takes place per synaptic operation in an SNN upon
the receipt of an incoming spike [52]. The energy consumption
of the SNN-based control system therefore can be calculated
by counting the total number of accumulation operations. The
discrete simulation of an SNN implies that the simulation
frequency does not impact the firing frequencies of the spiking
neurons. Thus, the power consumption of the SNN-based CPG
is independent of the SNN simulation frequency, excluding the
sensory input portion in this paper, which will be discussed
in detail below. As elaborated in Section III, the neurons
composing the CPG can be categorized into motor neurons and
inhibitory interneurons, including the V1/V2b interneurons
maintaining the reciprocal inhibition and the IINs between
the thigh and the calf muscles in the same limb. These two
types of inhibitory interneurons both individually inhibit 20
corresponding motor neurons, and hence they can be treated
uniformly: one spike sent from an inhibitory interneuron
results in 20 accumulation operations. One motor neuron in the
calf flexor and extensor motor neuron pool excites 19 other
motor neurons in the same motor neuron pool and excites
a V1/V2b interneuron, which implies that one spike from
a calf muscle motor neuron also leads to 20 accumulation
operations. The case is slightly different for the thigh motor
neurons. In addition to exciting 19 motor neurons in the same
motor neuron pool and a V1/V2b interneuron, one thigh motor
neuron also excites an IIN to inhibit the antagonistic muscle
in the calf. Additionally, one thigh motor neuron in one limb
sends 60 axons in total to the thigh motor neuron pools in
all the other limbs. Thus, one spike from a thigh muscle
motor neuron results in 81 accumulation operations. Also,
when a thigh joint is approaching the limit positions, the
20 corresponding thigh muscle motor neurons receive limit
position inhibitory spikes. The limit position spiking frequency
here is the simulation frequency of the SNN, which is 1000Hz.
Increasing the SNN simulation frequency will not influence the
strength of limit position inhibition onto the motor neurons,
but it will slightly raise the total power consumption. The total
power consumption of the SNN-based controller is:

PSNN−CPG = (fall inhi × 20

+fall calf × 20

+fall thigh × 81

+fall limit posistion × 20)× ϵADD

(21)

where, fall inhi, fall calf , fall thigh and fall limit posistion are the
total firing frequencies of all the inhibitory interneurons, calf
muscle motor neurons, thigh muscle motor neurons and limit

position inhibition. The total firing frequencies of the neurons
are estimated by taking the mean of the session-wise average
firing frequencies of the neurons. Specifically, the CPG runs
for a session whose maximum session length is 10s to produce
one session-wise average firing frequency. The estimated total
firing frequency is the average of 10 session-wise average
firing frequencies. The estimated average firing frequencies
are fall inhi = 6.69 × 102Hz, fall calf = 4.34 × 103Hz,
fall thigh = 4.52 × 103Hz and fall limit posisition = 2.22 ×
103Hz. Consequently, PSNN−CPG = 4.60×10−7 Watt, which
is 23.3× power efficient than the reinforcement learning based
approach.

VI. DISCUSSION

In summary, the work proposes a bio-inspired, SNN-based
control architecture for quadruped robotic systems regulated
by the homeostasis property of astrocytes. The neuromorphic
CPG reveals the high energy efficiency of a spike-based
locomotion control system. Also, the inhibitory astrocytic reg-
ulation causing the gait emergence underscores the significant
role of modeling astrocytes for neuromorphic robotic control
deployed in edge robotic applications.

Future work should consider further strengthening of the
neuroscience connection in CPG modeling to develop adaptive
and energy-efficient robotic locomotion. For instance, a more
bio-plausible CPG modeling can consider the torque applied
to a joint to have a complex relationship with the background
stimulation. Multiple types of interneurons in the spinal cord,
in fact, are involved in the neural circuit at different locomo-
tion speeds [41], which could be a topic of further research.
Descending command signals from the brainstem and sensory
inputs are critical for animal locomotion. Also, the muscles
in the torso are indispensable in multiple types of action. At
first glance of animal locomotion, it seems that the legs are
contributing most to the emergence of gaits. However, the
limb muscles are only a fraction of the actuators of animal
movement. The feed-forward plus feedback organization of
all the muscles and the sensory apparatus as an entity is the
true nature of animal locomotion and underlies the locomotion
efficiency of biological systems.
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SUPPLEMENTARY MATERIAL

Robot Simulation Model and Control Parameters

A single limb of the A1 robot contains three joints which
are called hip, thigh and calf, which can be noticed in Figure
1d. The torque outputs from the central pattern generator are
directly connected to the thigh and calf joint motor actuators.
The terrain is flat ground. The robot’s initial heading direction
is the positive x direction. The thigh and calf joint limit po-
sitions are modified from the manufacturer’s setting for better
gait formation, and the hip joint limit position is not changed.
The position range for the front and rear thigh joints are
correspondingly [poslimit,−

thigh,front, pos
limit,+
thigh,front] = [0.6, 1.4] and

[poslimit,−
thigh,rear, pos

limit,+
thigh,rear] = [0.7, 1.5]. The position range

for the calf joint is [poslimit,−
calf , poslimit,+

calf ] = [−1.6,−1.0], all
position values are in unit rad. As described in the Locomotion
Unit section in the main text, the inhibition region for the thigh
joint is the region within 0.05 from the limit positions. The
“frictionloss” attribute of the joints is also increased to prevent
fast swing angular velocity. The “frictionloss” parameter for
hip and calf joints is set to 10 while that for the thigh joint is
set to 25. The hip joints allow the limbs to move medially or
laterally. Therefore, they do not significantly contribute to the
forward driving force onto the torso. Therefore, a simple PI
controller is designed to stabilize the hip joints at a constant
position, where KP = 30 and KI = 10. The designed stable
position of the hip joints is laterally 0.1, i.e. 0.1 rad away from
the center line of the torso. The expression of the hip joint
torque as a function of the current and cumulative position
error therefore is

torquehip(t) =KP · [pos∗hip − poship(t)]

+KI ·
∫ t

0

[pos∗hip − poship(t)]dt
(22)

where, pos∗hip is the target position of hip joints, i.e. 0.1.
poship(t) is the position of hip joint at time t. The resetting
torso altitude is modified from the default value 0.3 to 0.35
to avoid conflict between the feet and the ground.

Before the onset of each training session, tlearning start and
Progress(t) are calculated. The hip PI controller, motor traces,
MuJoCo system status and all the SNN neuron status are reset.
The astrocyte status is not reset before the beginning of a
new session since the Ca2+ dynamics is a slow fluctuating
process that will not have an abrupt change because of the
change of robot status and is a reflection of the average motor
neuron activities over several seconds. The thigh and calf joint
positions are reset to a weighted sum of the limit positions of
the joints. Accurately:

posresetthigh,front = 0.7 · poslimit,−
thigh,front + 0.3 · poslimit,+

thigh,front

posresetrear = 0.7 · poslimit,−
thigh,rear + 0.3 · poslimit,+

thigh,rear

posresetcalf = 0.7 · poslimit,−
calf + 0.3 · poslimit,+

calf

(23)

Computational Implementation of the Dynamical System

The STDP signal, astrocyte calcium concentration, neuron
membrane potential, and the other system dynamics mentioned
in this work are mostly described through a set of differential
equations which have a common form. The finite difference
method is adopted to implement the evolution of such dy-
namical systems. Figure 4 illustrates the derivation of an
implementable model state updating method. For uniformity,
the time constants in all the implemented dynamic systems are
regarded as much greater than the simulation time step ∆t.

Differential equation in form:

Finite difference:

Reorganize:

When Δt << 𝜏x:

Fig. 4. Computational implementation of model dynamics. The order of
the dynamics of the models used in the paper are not higher than one. Here,
x represents the state variable of the system. The Euler method is adopted to
simulate all the dynamics. A flowchart of derivation is shown here to illustrate
the approximation used in the computation.
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Parameter Description Value

SNN-based CPG
Synapse generation
w0dist Intra-pool zero distance synapse strength 4
cdist Synapse strength spatial decay coefficient 0.3
wV1/V2b−→motor Uniform synapse strength from V1/V2b to motor neuron -50
wmotor−→V1/V2b Uniform synapse strength from motor neuron to V1/V2b 2

Motor neuron
Sizepool Number of motor neurons in a motor neuron pool 20
vmotor rest Motor neuron resting and reseting potential 0 mV
vmotor th Motor neuron threshold potential 10 mV
τmotor Motor neuron membrane potential decay time constant 9 ms
refractorymotor Motor neuron refractory period 5 ms
Smotor spike Motor neuron stochastic firing transition width 0.2
rCa2+ [Ca2+] unit increment per action potential 1
τCa2+ [Ca2+] decay time constant 250 ms
ThresCa2+ [Ca2+] threshold for opening the K+ channel 10
SK chan [Ca2+] sensitivity in K+ channel 10
CK chan K+ channel induced potential drop rate 8000 mV/s
Climit position Limit position inhibitory potential drop rate 400 mV/s
Ibackground,0 Zero-velocity background stimulation strength 1380 mV/s
kbackground,v Velocity-dependent background stimulation increment coefficient 40 mV/(s·m/s)
Arandom Randomness amplitude of background stimulation 0.5

V1/V2b
vV1/V2b rest V1/V2b resting and reseting potential 0 mV
vV1/V2b th V1/V2b threshold potential 10 mV
τV1/V2b V1/V2b membrane potential decay time constant 9 ms
refractoryV1/V2b V1/V2b refractory period 3 ms
SV1/V2b spike V1/V2b stochastic firing transition width 0.2

Torque output
τh Motor torque trace decay time constant 0.1 s
Ithigh Torque increment for a single spike at thigh joint 0.7 N ·m
Icalf Torque increment for a single spike at calf joint 1.1 N ·m
pos∗hip Hip joints’ target position lateral 0.1 rad
KP Hip controller P coefficient 30
KI Hip controller I coefficient 10

TABLE I
PARAMETERS
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Parameter Description Value

Reward-modulated STDP
[wmin, wmax] Weight constraint factor [−0.05, 0.05]
τtrace Motor neuron spike trace decay time constant 0.01 s
τSTDP STDP signal decay time constant 2 s
ηnegative relative Relative negative learning rate in STDP signal 0.3
η Learning rate 5× 10−10

caverage Averaged reward coefficient 0.5
αvelx x-directional velocity reward coefficient 1
αωroll Roll angular velocity reward coefficient −0.1
αωpitch Pitch angular velocity reward coefficient −0.1
αωyaw Yaw angular velocity reward coefficient −0.1

Astrocyte dynamics
rAG 2-AG production rate 1× 10−3

τAG [2-AG] decay time constant 1 s
Thres CaADO [Ca2+] threshold for adenosine release 0.3
rADO Adenosine production rate 0.01
τAG Adenosine decay time constant 1 s
refractoryADO Adenosine release refractory period 0.3 s
ηADO Adenosine inhibition efficacy 1.8× 10−5

MuJoCo model
fsimulation MuJoCo simulation frequency 1000 Hz
Lmax Maximum session length 10 s
Lnon alive threshold Non-alive counter threshold 0.5 s
Thresz ALIVE Alive torso vertical-ness threshold 0.5

[poslimit,−
thigh,front, pos

limit,+
thigh,front] Front thigh joint limit position [0.6, 1.4] rad

[poslimit,−
thigh,rear, pos

limit,+
thigh,rear] Rear thigh joint limit position [0.7, 1.5] rad

[poslimit,−
calf , poslimit,+

calf ] Calf joint limit position [−1.6,−1.0] rad
Ztorso,initial Initial torso altitude 0.35 m
frictionlossthigh Thigh joint frictionloss 25
frictionlosscalf Calf joint frictionloss 10
frictionlosship Hip joint frictionloss 10

TABLE II
PARAMETERS CONT.


