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Fig. 2: Layout of the HLA-DRB1 gene — three distinct

variant types are shown in the bounding boxes.

large human pangenome graphs, remains an extremely time-

consuming process. The current state-of-the-art approach odgi-

layout [20] requires hour-scale time to generate the layout of

the variation graph for a single human chromosome with a

32-core server-class Intel Xeon CPU. In addition, the layout

process often requires multiple rounds of parameter tuning

to achieve an optimal layout, resulting in a bottleneck in the

pangenome analysis pipeline.

This work aims to accelerate the computation of pangenome

graph layouts, a crucial step in pangenomics. We show that

the pangenome layout algorithm exhibits a substantial degree

of data-level parallelism, albeit underutilized in the current

state-of-the-art CPU implementation [20], impeding progress

in pangenome research. With significant data parallelism avail-

able, GPU acceleration holds promise for this application.

However, challenges arise due to the irregular data access

pattern and memory-bound nature of the algorithm.

In this paper, we present a novel solution to pangenome

graph layout computation, by leveraging the computational

power of modern GPUs and optimizing the data access pattern.

Our approach not only accelerates layout computation but also

improves the overall efficiency and scalability of pangenomics

analyses. Our main contributions are as follows:

• To our knowledge, we present the first GPU-based solu-

tion to accelerate pangenome graph layout, which enables

minute-scale layout for the entire chromosome dataset. Our

implementation achieves an average speedup of 57.3× com-

pared to an optimized, state-of-the-art CPU implementation.

We will open-source our software in a format that facilitates

easy integration into the pangenomic analysis pipeline.

• To identify the performance bottleneck, we perform a de-

tailed workload characterization of the pangenome graph

layout algorithm. Our analyses indicate that this workload

has a highly irregular data access pattern and is memory-

bound. Thus, a naı̈ve approach is inadequate for fully

exploiting GPU’s computational capabilities.

• We introduce three key optimizations to improve GPU

performance: (1) optimizing the data layout for improved

cache efficiency, (2) enabling coalesced memory accesses by

coalescing random states, and (3) reducing warp divergence

through warp merging.

• We propose a quantitative metric called sampled path stress

to assess the quality of GPU-generated layouts in a scalable

manner. Through a case study, we demonstrate the potential

to explore performance-quality trade-offs using this metric,

leading to additional speedup.

II. BACKGROUND

This section introduces the background of pangenomics, its

variation graph representation, and its graph layout algorithm.

A. Variation Graph

Graph-based pangenomics aims to study genome variation

within a population of samples. The variation graph serves as

the primary model to describe graph-based pangenomes.

A variation graph G = (P, V,E) is a directed graph

composed of a set of paths P , nodes V and edges E, as shown

in Fig. 1a. Each node represents a nucleotide sequence, each

edge represents the connection of an ordered pair of nodes,

and each path describes a walk over nodes.

The path consists of interconnected nodes and represents the

original genome, e.g., path 2 in Fig. 1a embodies a genome

sequence of AATGC...TAGCAAAC. While most nodes are

shared across all paths, variants exist in the form of unique

nodes. These variants are revealed by visualizing the variation

graph, as shown in Fig. 1b. For instance, the T insertion in

path 2 serves as a variant and is the primary discovery focus.

Variation graphs representing biological sequences typically

exhibit a linear structure, as opposed to the more commonly

encountered planar graphs. This characteristic stems from

the linear nature of the genome sequences they represent,

where the majority of segments are identical due to sequence

homology. Consequently, variation graphs display a notably

low average node degree and density. As an example, the

average node degree of human pangenome graphs released by

the HPRC [7] is 1.4, and the average density is 3.5 × 10−7.

These graph properties, along with the genome-specific path

information, make variation graphs particularly unique, open-

ing opportunities for ad-hoc algorithmic optimizations.

B. Pangenome Graph Layout

The aim of a pangenome graph layout is to organize nodes

and edges in order to highlight the genetic variation present in

the genomes represented in the graph. This enables the large-

scale study of the diversity and evolution embodied in tens

or hundreds of genomes. For example, the layout structure

of a pangenome graph representing the 5 acrocentric human

chromosomes of the HPRC pangenome revealed heterologous

recombination in the human pangenome [13].

Existing general graph layout frameworks [23], [24] strug-

gle to reveal the structural variants of pangenome graphs. We

illustrate this by using Gephi [23] to lay out the HLA-DRB1

gene with algorithms including Fruchterman-Reingold [25],

ForceAtlas2 [26] and Yifan Hu [27]. These algorithms, while

creating 2D structures, fail to uncover the underlying structural

variants. This is due to their design for calculating distances

between all nodes, whereas pangenome graphs only consider

nodes on the same path meaningful.

Given that both the biological meanings of nodes and paths

must be factored into the layout process, only specialized



















Leveraging scalable sampled path stress allows us to explore

the trade-offs between performance and layout quality. Tested

on the RTX A6000 GPU across all 24 human pangenome

graphs, we discover that it is possible to achieve an additional

1.5x speedup over the optimized GPU implementation, while

still maintaining good layout quality.

VIII. RELATED WORK

Several widely-used graph layout tools include Gephi [23],

NetworkX [49], and Graphviz [50]. Efforts have been made

to accelerate these tools on GPUs, as seen in works like [51],

[52]. However, the distinct biological meaning of nodes and

paths in pangenome graphs limit these tools’ suitability.

Numerous pangenome graph layout tools have been devel-

oped to better understand the intricate relationships and varia-

tions among genomes [3]. AGB [18] and VG view [21] employ

the rank-based layout algorithm on the Graphviz backend.

GfaViz [22] and BandageNG [19] adopt the force-directed lay-

out algorithm on the OGDF [53] backend. SGTK [54] applies

the force-directed layout algorithm on the Cytoscape.js [55]

backend. Despite their approaches, none have demonstrated

scalability to the giga-basepair level, as highlighted in a com-

prehensive review [3] of pangenome graph visualization tools.

Among the available tools, odgi-layout [20] stands to be the

only tool capable of scaling to whole-chromosome pangenome

graphs containing millions of nodes. Despite taking hours, it

far surpasses the prior leading tool, BandageNG, which fails

to produce a layout within 7 days [20].

Many efforts have focused on accelerating genomics appli-

cations, from GPU-accelerated sequence alignment [56]–[60],

metagenome assembly [61] and classification [62], to custom

hardware for read assembly [63] and read mapping [64]. Yet,

there is a noticeable gap in acceleration work for pangenome

graphs, presenting ample opportunity.

IX. CONCLUSION AND FUTURE WORK

We present a fast GPU-based pangenome graph layout

solution, achieving a 57.3× speedup on average over the cur-

rent state-of-the-art multi-threaded CPU baseline, and 18.5×

speedup over our own optimized version of the CPU solu-

tion. We leverage the compute power of GPUs with custom

optimizations to address the memory-bound and randomness

challenges. Our work enables the layout of the entire human

pangenome dataset in just a few minutes, which greatly

facilitates pangenomics research. For future work, we believe

scaling our work to a multi-GPU setup is essential to meet

the rapid increase in genome data, and extending to other

pangenome analysis applications in the face of increasing data

availability.
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[14] S. Hübner, “Are we there yet? driving the road to evolutionary graph-
pangenomics,” Current Opinion in Plant Biology, vol. 66, p. 102195,
2022.

[15] J. M. Eizenga, A. M. Novak, E. Kobayashi, F. Villani, C. Cisar,
S. Heumos, G. Hickey, V. Colonna, B. Paten, and E. Garrison, “Efficient
dynamic variation graphs,” Bioinformatics, vol. 36, no. 21, pp. 5139–
5144, 2020.

[16] T. Shiina, K. Hosomichi, H. Inoko, and J. K. Kulski, “The hla genomic
loci map: expression, interaction, diversity and disease,” Journal of

human genetics, vol. 54, no. 1, pp. 15–39, 2009.

[17] D. J. Langton, S. C. Bourke, B. A. Lie, G. Reiff, S. Natu, R. Darlay,
J. Burn, and C. Echevarria, “The influence of hla genotype on the
severity of covid-19 infection,” Hla, vol. 98, no. 1, pp. 14–22, 2021.

[18] A. Mikheenko and M. Kolmogorov, “Assembly graph browser: interac-
tive visualization of assembly graphs,” Bioinformatics, vol. 35, no. 18,
pp. 3476–3478, 2019.

[19] R. R. Wick, M. B. Schultz, J. Zobel, and K. E. Holt, “Bandage:
interactive visualization of de novo genome assemblies,” Bioinformatics,
vol. 31, no. 20, pp. 3350–3352, 2015.

[20] S. Heumos, A. Guarracino, J.-N. M. Schmelzle, J. Li, Z. Zhang,
J. Hagmann, S. Nahnsen, P. Prins, and E. Garrison, “Pangenome graph
layout by Path-Guided Stochastic Gradient Descent,” Bioinformatics,
vol. 40, no. 7, p. btae363, 07 2024. [Online]. Available: https:
//doi.org/10.1093/bioinformatics/btae363

[21] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Daw-
son, W. Jones, S. Garg, C. Markello, M. F. Lin, B. Paten, and R. Durbin,
“Variation graph toolkit improves read mapping by representing genetic
variation in the reference,” Nature biotechnology, vol. 36, no. 9, pp.
875–879, 2018.

[22] G. Gonnella, N. Niehus, and S. Kurtz, “Gfaviz: flexible and interactive
visualization of gfa sequence graphs,” Bioinformatics, vol. 35, no. 16,
pp. 2853–2855, 2019.

[23] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source
software for exploring and manipulating networks,” in Proceedings of

the international AAAI conference on web and social media, vol. 3,
no. 1, 2009, pp. 361–362.

[24] J. X. Zheng, S. Pawar, and D. F. Goodman, “Graph drawing by stochastic
gradient descent,” IEEE transactions on visualization and computer

graphics, vol. 25, no. 9, pp. 2738–2748, 2018.

[25] T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Software: Practice and experience, vol. 21, no. 11,
pp. 1129–1164, 1991.

[26] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “Forceatlas2,
a continuous graph layout algorithm for handy network visualization
designed for the gephi software,” PloS one, vol. 9, no. 6, p. e98679,
2014.

[27] Y. Hu, “Efficient, high-quality force-directed graph drawing,” Mathe-

matica journal, vol. 10, no. 1, pp. 37–71, 2005.

[28] A. Guarracino, S. Heumos, S. Nahnsen, P. Prins, and E. Garrison, “Odgi:
understanding pangenome graphs,” Bioinformatics, vol. 38, no. 13, pp.
3319–3326, 2022.

[29] E. Garrison, A. Guarracino, S. Heumos, F. Villani, Z. Bao, L. Tattini,
J. Hagmann, S. Vorbrugg, S. Marco-Sola, C. Kubica, D. G. Ashbrook,
K. Thorell, R. L. Rusholme-Pilcher, G. Liti, E. Rudbeck, S. Nahnsen,
Z. Yang, M. N. Moses, F. L. Nobrega, Y. Wu, H. Chen, J. de Ligt,
P. H. Sudmant, N. Soranzo, V. Colonna, R. W. Williams, and P. Prins,
“Building pangenome graphs,” bioRxiv, pp. 2023–04, 2023.

[30] L. Community, “Perf: Linux profiling with performance counters,” https:
//github.com/torvalds/linux/tree/master/tools/perf, accessed: 2023-09-17.

[31] Intel, “Intel vtune profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html, accessed: 2023-09-17.

[32] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent,” Advances in neural

information processing systems, vol. 24, 2011.

[33] A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). IEEE, 2014, pp. 35–44.

[34] D. Blackman and S. Vigna, “Scrambled linear pseudorandom number
generators,” ACM Transactions on Mathematical Software (TOMS),
vol. 47, no. 4, pp. 1–32, 2021.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing

Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
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