Rapid GPU-Based Pangenome Graph Layout

Jan-Niklas Schmelzle
Technical University of Munich
Munich, Germany

ge75qgew @tum.de

Jiajie Li
Cornell University
Ithaca, NY, USA

jl4257 @cornell.edu

Giulia Guidi
Cornell University
Ithaca, NY, USA

gg434@cornell.edu

Andrea Guarracino
UTHSC
Memphis, TN, USA

aguarral @uthsc.edu

Abstract—Computational Pangenomics is an emerging field
that studies genetic variation using a graph structure encom-
passing multiple genomes. Visualizing pangenome graphs is vital
for understanding genome diversity. Yet, handling large graphs
can be challenging due to the high computational demands of
the graph layout process.

In this work, we conduct a thorough performance character-
ization of a state-of-the-art pangenome graph layout algorithm,
revealing significant data-level parallelism, which makes GPUs
a promising option for compute acceleration. However, irregular
data access and the algorithm’s memory-bound nature present
significant hurdles. To overcome these challenges, we develop a
solution implementing three key optimizations: a cache-friendly
data layout, coalesced random states, and warp merging. Addi-
tionally, we propose a quantitative metric for scalable evaluation
of pangenome layout quality.

Evaluated on 24 human whole-chromosome pangenomes, our
GPU-based solution achieves a 57.3x speedup over the state-of-
the-art multithreaded CPU baseline without layout quality loss,
reducing execution time from hours to minutes.

Index Terms—Pangenomics, Bioinformatics, Graph layout,
GPU acceleration

I. INTRODUCTION

Low-cost genome sequencing [1], [2] has made it possible
to collect extensive genetic data for specific species, providing
opportunities for deeper exploration. Pangenomics [3] is an
emerging field of genomics that aims to understand the com-
plete picture of the genetic variation of a species by studying
multiple genomes [4], [5]. Graphical pangenomics models
a pangenome as a graph. This graph-based approach com-
plements traditional reference-based genomics by revealing
overlooked genetic variation when a single reference genome
is used [6]. In particular, the recent release of the first draft
of the human pangenome reference [7] represents a major
milestone. This achievement represents a significant advance
in human genetics, echoing the first release of the human
genome sequence in 2001 [8].

Pangenomes [9] can model the entire genomic variation of
a given population [10]. A variant refers to the differences
between different genome sequences and can provide biologi-
cal insights, such as disease susceptibility [11], [12], genome
functionality identification [13], and evolutionary studies [14].

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 1EEE

yd383@cornell.edu

Pjotr Prins
UTHSC
Memphis, TN, USA

jprins @uthsc.edu

Simon Heumos
University of Tiibingen
Tiibingen, Germany
simon.heumos @gbic.uni-tuebingen.de

Yixiao Du
Cornell University
Ithaca, NY, USA

Erik Garrison
UTHSC
Memphis, TN, USA
egarrisS @uthsc.edu

Zhiru Zhang
Cornell University
Ithaca, NY, USA

zhiruz@cornell.edu

A prevalent pangenomic model to represent these differ-
ences is the variation graph [15]. As illustrated in Fig. 1, the
variation graph captures both genomic sequences and varia-
tions amongst them. The data structure of a variation graph,
formed by merging identical segments from multiple genomes
into a single node, is depicted in Fig. la. Its visualization, as
seen in Fig. 1b, reveals variants including insertions, deletions,
and single nucleotide variants (SN'Vs). In general, visualization
is an effective way to reveal structural differences between
genomes and gain insights [3].

deletion

insertion o

AA T GC..TA ! ciCA c
H I
Lt
pathO0=[v0,v2,v4,v5,v6,v7] path0 [SNV
pathl=[v0,v2,v4,v5,v7] pathl
path2=[v0,vl,v2,v3,v5,v6,v7] path2 [N

(a) Variation graph data structure. (b) Visualization.

Fig. 1: A variation graph and its visualization example —
the three genomes are depicted in different colors; the path of
interconnected nodes represents the original genome.

The visualization of a pangenome combines layout and
rendering, with the layout component being fundamental to the
graph visualization quality. In particular, the layout of a varia-
tion graph is crucial to variant discovery in large pangenomes.
Fig. 2 shows the layout of the HLA-DRBI1 gene [16], which
encodes an immune system protein associated with reduced
severity of COVID-19 disease [17]. Genome researchers can
easily identify the location and structure of variants with an
optimized, planar 2D layout of the variation graph, aiding in
the study of pangenomes.

However, general graph layout frameworks are not well-
suited to effectively lay out pangenome graphs. This limitation
primarily arises from the unique biological significance associ-
ated with the nodes and paths within a pangenome. Currently,
only specialized tools [18]-[22] for pangenome graphs offer
effective support. Yet, pangenome graph layout, especially for

’\Q Divergence

oop /
Large Structural

Variant /'C(
Fig. 2: Layout of the HLA-DRB1 gene — three distinct
variant types are shown in the bounding boxes.

large human pangenome graphs, remains an extremely time-
consuming process. The current state-of-the-art approach odgi-
layout [20] requires hour-scale time to generate the layout of
the variation graph for a single human chromosome with a
32-core server-class Intel Xeon CPU. In addition, the layout
process often requires multiple rounds of parameter tuning
to achieve an optimal layout, resulting in a bottleneck in the
pangenome analysis pipeline.

This work aims to accelerate the computation of pangenome
graph layouts, a crucial step in pangenomics. We show that
the pangenome layout algorithm exhibits a substantial degree
of data-level parallelism, albeit underutilized in the current
state-of-the-art CPU implementation [20], impeding progress
in pangenome research. With significant data parallelism avail-
able, GPU acceleration holds promise for this application.
However, challenges arise due to the irregular data access
pattern and memory-bound nature of the algorithm.

In this paper, we present a novel solution to pangenome
graph layout computation, by leveraging the computational
power of modern GPUs and optimizing the data access pattern.
Our approach not only accelerates layout computation but also
improves the overall efficiency and scalability of pangenomics
analyses. Our main contributions are as follows:

¢ To our knowledge, we present the first GPU-based solu-
tion to accelerate pangenome graph layout, which enables
minute-scale layout for the entire chromosome dataset. Our
implementation achieves an average speedup of 57.3x com-
pared to an optimized, state-of-the-art CPU implementation.
We will open-source our software in a format that facilitates
easy integration into the pangenomic analysis pipeline.

o To identify the performance bottleneck, we perform a de-
tailed workload characterization of the pangenome graph
layout algorithm. Our analyses indicate that this workload
has a highly irregular data access pattern and is memory-
bound. Thus, a naive approach is inadequate for fully
exploiting GPU’s computational capabilities.

« We introduce three key optimizations to improve GPU
performance: (1) optimizing the data layout for improved
cache efficiency, (2) enabling coalesced memory accesses by
coalescing random states, and (3) reducing warp divergence
through warp merging.

« We propose a quantitative metric called sampled path stress
to assess the quality of GPU-generated layouts in a scalable
manner. Through a case study, we demonstrate the potential

to explore performance-quality trade-offs using this metric,
leading to additional speedup.

II. BACKGROUND

This section introduces the background of pangenomics, its
variation graph representation, and its graph layout algorithm.

A. Variation Graph

Graph-based pangenomics aims to study genome variation
within a population of samples. The variation graph serves as
the primary model to describe graph-based pangenomes.

A variation graph G = (P, V,E) is a directed graph
composed of a set of paths P, nodes V and edges F, as shown
in Fig. la. Each node represents a nucleotide sequence, each
edge represents the connection of an ordered pair of nodes,
and each path describes a walk over nodes.

The path consists of interconnected nodes and represents the
original genome, e.g., path 2 in Fig. 1la embodies a genome
sequence of AATGC...TAGCAAAC. While most nodes are
shared across all paths, variants exist in the form of unique
nodes. These variants are revealed by visualizing the variation
graph, as shown in Fig. 1b. For instance, the T insertion in
path 2 serves as a variant and is the primary discovery focus.

Variation graphs representing biological sequences typically
exhibit a linear structure, as opposed to the more commonly
encountered planar graphs. This characteristic stems from
the linear nature of the genome sequences they represent,
where the majority of segments are identical due to sequence
homology. Consequently, variation graphs display a notably
low average node degree and density. As an example, the
average node degree of human pangenome graphs released by
the HPRC [7] is 1.4, and the average density is 3.5 x 1077,
These graph properties, along with the genome-specific path
information, make variation graphs particularly unique, open-
ing opportunities for ad-hoc algorithmic optimizations.

B. Pangenome Graph Layout

The aim of a pangenome graph layout is to organize nodes
and edges in order to highlight the genetic variation present in
the genomes represented in the graph. This enables the large-
scale study of the diversity and evolution embodied in tens
or hundreds of genomes. For example, the layout structure
of a pangenome graph representing the 5 acrocentric human
chromosomes of the HPRC pangenome revealed heterologous
recombination in the human pangenome [13].

Existing general graph layout frameworks [23], [24] strug-
gle to reveal the structural variants of pangenome graphs. We
illustrate this by using Gephi [23] to lay out the HLA-DRB1
gene with algorithms including Fruchterman-Reingold [25],
ForceAtlas2 [26] and Yifan Hu [27]. These algorithms, while
creating 2D structures, fail to uncover the underlying structural
variants. This is due to their design for calculating distances
between all nodes, whereas pangenome graphs only consider
nodes on the same path meaningful.

Given that both the biological meanings of nodes and paths
must be factored into the layout process, only specialized

tools for pangenome graphs prove effective. Among these,
the current state-of-the-art approach is odgi-layout, which is
part of the comprehensive pangenome analysis framework
ODGI [28]. By adapting Zheng et al’s work [24] to the
pangenomic field, odgi-layout utilizes a path-guided stochastic
gradient descent (Path-Guided SGD) algorithm to minimize
stress, a proxy metric quantifying the difference between
reference and layout distances. With its multi-threaded CPU
implementation, odgi-layout stands as the only tool capable of
handling whole-chromosome graphs with millions of nodes.

However, more efficient graph layout solutions are needed
to rapidly compute layouts of increasingly large and complex
pangenomes. Indeed, odgi-layout demands hours on a 32-
core Intel Xeon CPU to generate a pangenome graph layout
for just one human chromosome. Specifically, computing the
layout of the chromosome 1 (Chr.1) pangenome — the largest
chromosomal pangenome released by HPRC — alone exceeds
2.5 hours. Completing the layouts for all 24 chromosomal
pangenome graphs from HPRC sums up to a significant
28 hours. Notably, running the layout computation once
takes up nearly a third of the entire pangenomics analysis
pipeline [29]’s duration. Given that multiple runs are often
performed for optimization, the layout computation becomes
an even more pronounced bottleneck.

This performance issue impedes the study of large and/or
complex pangenome graphs because of the prolonged layout
generation times. Importantly, a fast layout solution would
facilitate interactive visualization, allowing on-the-fly explo-
ration of specific loci, genomic regions, entire chromosomes,
or even whole genomes. This would further pave the way for
the development of next-generation pangenome browsers, un-
locking the study of population-scale genetic variability. This
motivates us to pursue substantial acceleration in pangenome
graph layout generation.

C. Path-Guided SGD Algorithm

Alg. 1 presents the pseudocode for the path-guided SGD
algorithm used in odgi-layout. This algorithm iteratively se-
lects one pair of nodes (n;,n;) from the same path p (lines
7-11). For each of these nodes, represented by a line segment
in the layout, a visualization point is selected (lines 12,
13). This yields a pair of visualization points (vi,Vj), each
corresponding to an endpoint of the respective node’s line
segment. This pair of visualization points forms a loss function
(known as stress) with its reference distance d,..; and current
layout distance ||v; — v;|| (line 14). Then the coordinates are
updated based on the gradient (line 15).

The update process is illustrated in Fig. 3, where both nodes
are moved against the direction of the gradient [24].

III. WORKLOAD CHARACTERIZATION

In this section, we describe the workload characterization
of the multi-threaded CPU implementation of odgi-layout on
a 32-core Intel Xeon Gold 6246R 3.4GHz CPU. For detailed
profiling, we use Linux Perf [30] and Intel VTune profiler [31].

Algorithm 1 Path-Guided Pangenome Graph Layout
Input: pangenome graph G = (P, V, E), SGD schedule S,
total iteration count N,

Output: a 2D layout L consisting of line segments. L[n]
returns an array of 2 vectors pointing to its endpoints given
nev.

Nsteps + 10 x ZPEP |p‘

> |pl|: # of nodes in path p

1:
2: for iter < 0 t0 Njiers do
3: n < Sliter] > learning rate
4: for step < 0 to Neps do in parallel
5: p < RandomSelect(P, prob « |p|)
6: cooling < (iter > Njiers/2) or FlipCoin()
7 if cooling then
8: ni, n; < RandomSelect(p, Powerlaw)
9: else
10 n;,n; < RandomSelect(p, Uniform)
11: end if
12: v; + FlipCoin() ? L[n;].start : L[n;].end
13: v; « FlipCoin() ? L[n;].start : L[n;].end
14: stressij < ((|[vi — vjl| — dreg)/dref)* > loss
15: (vi, V) « (vi,Vj) — nVstress;; > update
16: end for
17: end for
Path p
ch’,\v n; e /\%o _nw
Ostress;; 2y
P b

Vi d,;=|ACGTA|+|TTAC| =9

Fig. 3: Layout update within one step — n; and n; are
two nodes representing the nucleotide sequences “ACGTA”
and “TTAC”, respectively.

We evaluate the layout computation on three representative
pangenomes of varying sizes, as detailed in Table I.

TABLE I: Properties of representative pangenomes —
Nuc. is the number of nucleotides.

Pangenome | # Nuc. # Nodes # Edges # Paths
HLA-DRBI | 2.2 x 10* 5.0x10® 6.8 x 103 12
MHC 59x 106 23 x10° 3.2 x10° 99
Chr.1 1.1x10° 1.1x107 1.5x107 2,262

Our analysis highlights three key observations: (1) the
algorithm exhibits high data-level parallelism; (2) it is highly
memory-bound; (3) randomness is critical to the layout quality.
In the following, we delve deeper into each of them.

A. Data-level Parallelism

The multi-threaded CPU implementation of odgi-layout
runs the inner loop in parallel and updates the layout asyn-
chronously in a Hogwild! [32] manner. This means that the

for loop at line 4 in Alg. 1 has high data-level parallelism
for a graph with a large number of nodes. While the intrinsic
race condition between parallel threads could introduce errors,
the layout quality is barely affected since pangenome graphs
are so sparse that the probability of multiple threads updating
the same nodes simultaneously is low.

%‘3.2 ;@64 732

g16 e ‘316

8 Ete b

208 v g g s

£ E =

F0.4 E 4 < 4

s EI &

®025 54 § 16 32 1 3 4 8 16 32 21 2 4 8 16 32
Number of Threads (#) Number of Threads (#) Number of Threads (#)

(a) HLA-DRBI. (b) MHC. (c) Chr.1.

Fig. 4: Scaling of odgi-layout.

Fig. 4 reveals a linear scaling pattern of odgi-layout with
CPU threads. However, the CPU cannot fully take advantage
of the high degree of data-level parallelism that exists in
the inner loop, particularly for larger graphs. For instance,
the pangenome graph of the human chromosome 1 (Chr.1)
requires six billion node pair updates per iteration, making it
less ideal for a CPU with a limited number of threads.

B. Memory-Bound

We use the top-down approach proposed in [33] to identify
the performance bottleneck. Fig. 5 displays the results of
the bottleneck analysis. It is apparent that odgi-layout uses
a significant portion of the microarchitecture’s pipeline slots
for memory operations on all three graphs, demonstrating its
memory-bound nature. We then profile the memory stall and
cache performance of odgi-layout. As illustrated in Table II,
workload performance is bottlenecked by a high percentage
of memory stall cycles and a significant miss rate of last-
level cache (LLC) loads. As a result, the memory operations
dominate the run time of the layout process.

Memory
%77 Bound

e /// R &

(b) MHC.

Speculation

(a) HLA-DRBI. (c) Chr.1.

Fig. 5: Microarchitecture bottleneck analysis with VTune.

TABLE II: Memory stall and cache performance of odgi-
layout profiled by Perf.

Pangenome | HLA-DRBI MHC Chr.1

Run Time (h:mm:ss) 0:00:00.4 0:01:47 2:32:38
Memory Stall Cycle Percentage 67.67% 78.07% 77.38%
LLC-load Miss Rate 75.09% 77.84% 89.88%

We observe that the random memory accesses to L (lines 12,
13) and obtaining d,.; outweigh the computational part (lines
14, 15). Given the massive size of these data structures, e.g.,
the graph of Chr.1 is composed of 11.1M nodes, the scope for

data reuse is severely limited due to random memory access.
This leads to the unusually high LLC load miss rate.

Additionally, the repeated use of pseudo-random number
generator (PRNG) (lines 35, 6, 8, 10, 12, 13) increases memory
traffic. odgi-layout uses Xoshiro256+ [34], a PRNG utilizing
linear-feedback shift registers (LFSR). LFSR-based PRNG is
known for its low computational requirements, which adds to
the memory-bound nature of the layout process.

C. Randomness & Layout Quality

Randomness is essential for fast convergence and high-
quality layout generation in this path-guided SGD algorithm.
This is consistent with the discussion in the paper by Zheng
et al. [24], from which the path-guided SGD algorithm was
adopted. Random path and node pair selections (lines 5, 8, 10)
are performed in each step to ensure the layout quality, as a
naive iteration could cause the algorithm to get stuck in local
minima due to biases. Fig. 6 shows a non-converged layout
created by forcing all selected pairs of nodes to be 10 hops
away. This node pair selection scheme significantly reduces
randomness in node selection and does not converge within the
same number of iterations. In contrast, the optimized layout
of the same gene shown in Fig. 2 clearly reveals the variants,
which are the primary targets of pangenome graph layout.

Fig. 6: Layout of poor quality — the yellow box captures
the “Large Structural Variant” region in Fig. 2.

IV. PANGENOME GRAPH LAYOUT IN PYTORCH

As previously discussed, CPUs cannot fully exploit the
substantial data-level parallelism within the pangenome graph
layout algorithm. Since the algorithm relies on SGD-based op-
timization, adopting PyTorch [35], a deep learning framework
optimized for gradient computation, is an attractive option for
implementing the layout algorithm on GPUs.

In this section, we introduce a PyTorch-based implementa-
tion of the algorithm and assess its performance on the MHC
pangenome graph with an NVIDIA RTX A6000 GPU. We
employ NVIDIA Nsight Systems [36] for detailed profiling.
Our analysis not only reveals the limitations of a basic
PyTorch implementation but also underscores the challenges in
achieving effective GPU acceleration of the pangenome layout.

A. Implementation and Performance Analysis

We utilize PyTorch to solve the layout optimization problem
following the neural network training procedure — Each data
instance is a node pair (n;,n;), with its ground-truth label as
dres. The layout coordinates L act as the adjustable weights
that are updated in each step based on the gradient of the stress
function. We process a batch of node pairs simultaneously to
leverage the data-level parallelism of the algorithm.

The performance of the PyTorch implementation on the
MHC pangenome is shown in Table III, where we measure the
GPU run time and compare it to the 32-thread CPU baseline,
which completes in 107 seconds. The run time decreases as the
batch size increases, up to a batch size of 1 million. Beyond
this point, there is no further linear scaling.

We also assess the layout quality to understand the impact
of larger batch sizes by visual inspection. As mentioned
in Sec. III-A, excessive asynchronous updates by too many
threads could reduce the effectiveness of these updates, re-
sulting in layout quality degradation. This is reflected in
the increasing node stress with larger batch sizes. By visual
inspection, the design with a batch size of 10M has some
layout quality degradation, and the design with a batch size
of 100M does not converge to a valid layout.

TABLE III: Performance of the PyTorch implementation
— the speedup is compared to the 32-thread CPU baseline.

Batch Size | Run Time (s) Speedup Quality
10K 702.2 0.2x Good
100K 67.3 1.6x Good
IM 15.6 6.8x Good
10M 14.3 7.5x Satisfying
100M 11.8 9.1x Poor

The PyTorch implementation achieves a 6.8 speedup over
the CPU baseline on MHC. However, this approach does not
fully exploit the potential of the GPU due to the lack of tailored
optimizations for the memory-bound nature of the application
and the GPU architecture.

Fig. 7 presents the breakdown of kernel time for the
PyTorch implementation when using different batch sizes,
demonstrating that the indexing kernel consumes the most
time. Taking into account the profiling results in Sec. III-B,
it is evident that memory operations are the primary time-
consuming operations on both the CPU and GPU. Given
the algorithm’s inherent randomness leading to a random
memory access pattern, combined with this memory operation
dominance, an effective data layout is crucial to enhance
performance on both hardware platforms. However, neither the
CPU baseline nor the current PyTorch implementation have a
customized data layout.

other add

other other add

reduction

where
add where

where 36.0% 34.0%

index index index

mul

pow pow pow

(a) Batch size = 100K. (b) Batch size = 1M. (c) Batch size = 10M.

Fig. 7: Kernel time breakdown of the PyTorch implemen-
tation, profiled by NVIDIA Nsight Systems — only kernels
accounting for over 2% of total GPU time are included. The
shaded index is the memory operation.

Another challenge arises from PyTorch’s tensor-based pro-
gramming model. The implementation groups multiple node

pairs into long tensors for computation and memory opera-
tions. Due to the large number of node pairs, multiple batches
are needed per iteration, resulting in numerous CUDA kernel
launches, as shown in Table IV. This leads to significant
overhead in kernel launches and unnecessary implicit synchro-
nization between kernels, which is not needed for this specific
application that permits asynchronous Hogwild! style updates.

TABLE IV: CUDA kernel launching overhead.

Batch Size 100K IM 10M
CUDA kernels launched (#) 6,562,860 651,480 64,080
Time percentage of CUDA API 76.4% 20.2% 2.1%

Furthermore, using PyTorch, a high-level framework, makes
it challenging to implement low-level, customized optimiza-
tions tailored to the GPU architecture. The highly-optimized
kernels that PyTorch relies on come from its backend libraries.
These are fixed and not tailored for our specific workload,
which means that issues like conditional branching (lines
7, 9 in Alg. 1) and uncoalesced memory access can still
significantly impair GPU performance.

B. Challenges to Efficient GPU Offloading

By characterizing the pangenome graph layout workload
and implementing a basic PyTorch implementation, we have
identified several challenges that must be addressed in order
to fully leverage the power of GPUs.

o Numerous CUDA kernels launched by PyTorch lead to a
notable overhead due to redundant memory operations and
synchronization. This is addressed in Sec. V-A.

« The application is memory-bound on both CPUs and GPUs.
Dominant memory operations and irregular access patterns
necessitate an effective data layout to minimize memory
traffic. This is addressed in Sec. V-B1.

o The conditional branching and uncoalesced memory ac-
cess can degrade GPU performance. This is addressed in
Sec. V-B2 and Sec. V-B3.

V. OPTIMIZED GPU IMPLEMENTATION

In this section, we describe our GPU design with cus-
tomized optimizations to address the challenges highlighted
in Sec. IV-B. First, we introduce a base CUDA kernel for
pangenome graph layout to exploit the high degree of data-
level parallelism. Then, we detail three optimization tech-
niques: a cache-friendly data layout for the pangenome graph,
coalesced random states, and warp merging.

A. CUDA Kernel for Pangenome Graph Layout

Our base CUDA kernel design for pangenome graph layout
is shown in Fig. 8. Each GPU thread runs the update steps
(lines 4-16 in Alg. 1) in parallel. Within a single CUDA kernel
launch, all GPU threads collectively contribute to completing
the Ngeps Steps required per iteration.

The memory-bound nature of the algorithm would lead to
frequent memory stalls. When a warp is stalled, the GPU
warp scheduler attempts to switch to another available warp

[:] R] I CHs

N threads

Nithreads

sdiem yano

Fig. 8: CUDA kernel execution — one update step includes
pseudo random number generation (R), node pair loading (L),
computing the updated value (C), and storing the result (S).

to hide memory latency. The abundant data-level parallelism
in our design ensures the amount of available warps, thereby
improving streaming multiprocessors (SM) utilization.

In our method, a single CUDA kernel is launched per
iteration, with inter-block synchronization occurring only after
all steps in an iteration are completed. Therefore, with the
default setting of Nj.rs of 30, a total of 31 CUDA kernels
are launched, including one additional kernel launch for initial-
ization. This achieves implicit kernel fusion compared to our
preliminary PyTorch implementation, which greatly reduces
the overhead due to the numerous CUDA kernels launched,
as discussed in Table IV.

Here, we also build a lean data structure specifically for the
pangenome graph layout application. As a part of the com-
prehensive pangenome analysis framework ODGI, the current
SOTA odgi-layout uses the ODGI data structure. Therefore,
the data structure includes numerous fields, some of which
are not relevant to odgi-layout, resulting in a suboptimal data
structure for pangenome graph layout.

The lean data structure in our CUDA kernel retains only the
data fields used in the pangenome graph layout process. For
instance, the ODGI data structure represents the nucleotide
sequence as a string, and invoking the .size () method
returns the size; our lean data structure directly stores the
sequence length since the content of the string is not used in
the pangenome graph layout. Note that this lean data structure
can be easily transformed from the ODGI data structure,
leading to an easy integration into the ODGI framework.

Since odgi-layout and the external libraries used [21] were
developed for the multi-core CPU, the data structures are
heavily dependent on the use of dynamic containers such
as vectors. The GPU provides limited support for dynamic
data constructs, so we manually implement the necessary data
structures and functions in our CUDA kernel.

B. Kernel Optimizations

To address the memory-bound nature of the application, we
introduce three kernel optimization methods: a cache-friendly
data layout for pangenome graphs to improve cache locality,
coalesced random states to enable coalesced memory accesses,
and warp merging to reduce warp divergence.

1) Cache-friendly Data Layout: Our data structure for the
pangenome graph layout includes node data and path data.
The node data includes the sequence length of each node and
the coordinates of the start and end points of the visualization,

while the path data consists of the node ID, path ID, position,
and orientation of each node as it traverses the paths.

ODGI maintains its core data structure for pangenome graph
and develops auxiliary structures for the tools built upon it. For
instance, the x and y coordinates, which are used exclusively
in odgi-layout, are organized into two arrays separate from
the primary graph data structure. The data structure of our
base CUDA kernel follows this design, resulting in a struct-
of-arrays (SoA) layout. This has a negative impact on cache
performance for the pangenome graph layout workload. To
solve this problem, we propose a cache-friendly data layout by
repacking data to match the memory access pattern of Alg. 1.

Fig. 9 compares the proposed cache-friendly data layout
with the original one in terms of access to node data during
an update step. When using the original data layout, updating
a single node requires three separate memory accesses for
three different arrays. This is illustrated in Fig. 9a. Although
neighboring node data is cached, there is a high chance of
eviction due to the random selection of node pairs.

Blalal—{elu 2 [a]]]
X Coordinate |sx0|ex0|sx1|ex1|sx2 |ex2 I—P{sxo‘exo
Y Coordinate Isyo‘eyo ‘ sylleyl‘sy2 ‘ey2 |—>{ sy0 ‘eyo

Memory Cache

Node Length | L0 ‘ Ll ‘ L2 [L3

sx1|exl sx2‘ ‘

sy1|eyl syZ‘ ‘

(a) Original data layout. Every node incurs three memory accesses;
the majority of cached data are not used due to randomness.

LO ‘sxo‘syo‘exo‘eyo Ll Issd-|—>{ LO ‘sxolsyolexo‘eyol Ll I

Node 0
Memory

Nodes

Node 1
Cache

(b) Cache-friendly data layout. One memory access for one node.

Fig. 9: Cache-friendly data layout — Li is the length of
node i; sxi, syi, exi, eyi are the x and y coordinates of
the start and end points of the line segment for node i.

In contrast, we use an array-of-structs (AoS) layout for
node-related data, ensuring a cache-friendly design. Only one
memory access is necessary for each node’s data retrieval, as
shown in Fig. 9b. Since memory accesses to the start and end
point coordinates are contiguous (lines 12, 13 in Alg. 1), this
packing scheme improves spatial locality, thus removing traffic
to higher-level caches and DRAM. The same principle applies
to the path data which is not discussed in detail here.

2) Coalesced Random States: Pseudo random number gen-
erator (PRNG) is heavily used in the algorithm. The CUDA
cuRAND library [37] utilizes the xorshift PRNG [38], a type
of LFSR with low computational requirements.

To maintain layout quality, we map a set of random states to
each SM, enabling each thread within a block to have its own
random state. This ensures that threads generate uncorrelated
random numbers, eliminating potential biases. However, this
approach leads to a large number of memory accesses to the
random states with concurrent running threads, which becomes
the primary bottleneck for PRNG. As the GPU cache is

shared by multiple warps running asynchronously, one warp’s
pangenome graph data may displace another warp’s random
states in the cache, increasing the risk of eviction.

The cuRAND implementation represents each random state
by a structure consisting of six 32-bit fields. This object-
oriented design forms an AoS data layout, with each thread
having its own random state. However, this data layout results
in uncoalesced memory access to the random state, since the
same field in different threads is not in contiguous memory.
Uncoalesced memory access to any random state requires
much more frequent cache refills if some cache lines (e.g.,
cache line 3 in Fig. 10a) are evicted. This pattern amplifies
global memory accesses and causes memory stalls.

need s1 waiting for line 3 to be refilled need s1 no stalls

line 0|s0|si|s2!s3!sa!s5| (NN line 0[s0!s0!s0!s0!s0is0| (NN
line 1|sosifs2!s3lsaiss| | AAANANS| 1ine 1[siisiisiisi|siisi| | VAN
line 2|s0|si|s2is3isais5| [NNAANNNP| line 2(s2is2is2is2is2is2| |V
line 3 L NANANANNNAS) line 3 VNN
Cache Warp Cache Warp

(a) Original random states. (b) Coalesced random states.

Fig. 10: Coalesced random states — in (a), a refill is required
for any evicted cache line; in (b), a refill only happens when
the warp accesses exactly the evicted cache line.

To solve this problem, we introduce a coalesced random
states method by transforming the AoS data layout into the
SoA data layout. As shown in Fig. 10b, this switch facilitates
coalesced memory accesses to random states within a warp,
storing the same field from multiple threads within the same
cache line. In this way, a cache is only refilled from global
memory when a warp requires an evicted cache line.

3) Warp Merging: The conditional branching (lines 7, 9 in
Alg. 1) is crucial for generating a high quality pangenome
graph layout. The non-cooling branch uniformly selects node
pairs to create the coarse-grained layout, while the cooling
branch selects node pairs at closer proximity with a power
law distribution to refine the layout. However, this conditional
branching structure leads to warp divergence. Since all 32
threads within a warp execute the same instruction, divergence
forces some threads to idle, degrading GPU performance.

To solve this problem, we introduce the warp merging
method. As indicated in Fig. 11, all threads within a warp
select the same branch in an update step, keeping the threads
constantly active. This method is achieved by using a control
thread within each warp to randomly select the branch. The
selection is then stored in shared memory, accessible to all
threads within the same warp.

While warp merging causes threads within a single warp
to select the same branch, resulting in reduced intra-warp ran-
domness, the presence of multiple concurrently running warps
on various SMs ensures different branches are chosen across
warps. Consequently, the overall distribution of threads taking
each branch remains consistent with the original algorithm,
thereby preserving layout quality.

E in cooling branch in non-cooling branch inactive E
A A+ NN A A o SUNNNN A A H
step 1 step 2 step 1 step 2
VNN || N\NANND NS ([NN
VNN || NN NN\ ([NN
N\NANND (| N\NANND NS ([NN
N\NNAND || NNANAND NN | NN
time time

(a) No warp merging. (b) With warp merging.

Fig. 11: Warp merging — in (a), conditional branches cause
warp divergence, leading to suboptimal thread utilization; in
(b), all threads within a warp are active by selecting the same
branch in an update step.

VI. A QUANTITATIVE METRIC FOR PANGENOME LAYOUTS

In our GPU implementation, we leverage a notably higher
degree of data-level parallelism in comparison to the CPU
baseline. As detailed in Section III-A and examined through
experiments in Section IV-A, excessive parallelism may chal-
lenge the sparsity assumption underlying the Hogwild! asyn-
chronous update, potentially compromising layout quality.
Visual inspection, while useful, is subjective and not scalable
since it relies on human evaluation of the results. Conse-
quently, there is a crucial need to quantify the quality of the
GPU-generated layouts.

In this section, we incorporate the stress metric, widely used
in general graph layouts, into the pangenome graph to propose
the path stress with a GPU implementation, and then further
apply sampling to solve the scalability issue.

A. Path Stress

Prior studies [39], [40] have introduced various quantitative
metrics to evaluate the aesthetic quality of general graph
layouts, including stress, the number of edge crossings, the
uniformity of edge lengths. However, each metric focuses on
a single aspect, while some criteria contradict each other [41].
So far, there is no agreement on the most effective metric [42],
and the metric selection highly depends on which features of
the graph you want to highlight in each use case [40], [43].

Therefore, since the pangenome graph layout algorithm is
based on the popular energy-based algorithms by minimizing
stress [24], [44], [45], we incorporate stress (line 14 in
Alg. 1) with the unique path property of the pangenome graph,
forming the path stress, defined in Equation 1.

ZPGP Zni,nj Ep Stress(ni: nj)

Ntotal_node_pai'r’s

path_stress = (1)

Here stress(n;,n;) is the average stress of all four com-
binations of the start and end points of node n; and n;. The
path stress is calculated by averaging the stress across all node
pairs on all paths. The key distinction between path stress and
the standard stress used for general graphs is that path stress
only considers node pairs on the same path. This aligns with

the layout algorithm, as d,.; only considers distances within
the same path.

We implement the path stress with a CUDA kernel to
speedup the computation by mapping a pair of nodes to
each GPU thread, and then aggregating partial results with a
reduction tree. Fig. 12 shows how path stress can differentiate
between pangenome graph layouts of varying qualities. The
layout with a lower path stress is considered more legible
and aesthetically sound, thereby more effectively revealing the
structural information of the pangenome graph.

(a) Path stress: 142.2.

(d) Path stress: 0.07.

(b) Path stress: 22.4.

(c) Path stress: 1.3.
Fig. 12: Layouts of HLA-DRBI1 of different qualities.

B. A Scalable Metric: Sampled Path Stress

Although path stress can effectively present layout quality,
it has a quadratic computational complexity in terms of nodes.
This poses a significant challenge on scalability even with
the compute power of GPUs. As shown in Table V, it would
require 194 GPU hours with an NVIDIA RTX A6000 GPU to
compute the path stress of a human Chr.1 pangenome graph
layout, which is impractical. Therefore, there is a need for a
metric scalable to chromosomal pangenome graphs.

TABLE V: Run time of metrics computation.

Pangenome | # of Nodes | RT of Path Stress ~ RT of Sampled Path Stress

HLA-DRBI 5.0 x 103 1.6 sec 0.3 sec
MHC 2.3 x 10° 53.0 min 6.5 sec
Chr.1 1.1 x 107 (Est.) 194.0 hour 5.5 min

We propose a more scalable metric, sampled path stress,
which estimates overall path stress by randomly sampling
a total of n pairs of visualization nodes (vj,v;j), whose
corresponding nodes are on the same path. Equation 2 defines
sampled path stress, where S stands for the set of sampled
nodes. By default, we sample n = 100|p| node pairs in each
path, where |p| is the number of nodes in path p; each node
is expected to be sampled 100 times within its path.

2peP 2vivyes S1ressij(vi, v;)

n

2)

sampled_path_stress =

Sampled path stress, which is the mean of the sample (noted
as p), would converge to a normal distribution based on the
central limit theorem [46], [47]. Therefore, we also compute
the 95% confidence interval to validate the sampling coverage.
This is computed by another pass through the sampled stress

terms to get the standard deviation o, and derived from
Clysy = 1+ 1.960 /1/n.

Applying sampling makes the metric computation linear in
complexity, allowing the metric computation for chromosomal
pangenome graphs with millions of nodes to be done in
minutes, as shown in Table V.

To check the correctness of sampled path stress, we compare
it against path stress with 1824 small-sized pangenome graph
layouts, where path stress computation is feasible. Fig. 13
demonstrates that sampled path stress closely approximates
path stress with a correlation of 0.995. We also verify that
sampled path stress remains consistent with different random
seeds for a given layout.

Correlation = 0.995

>
10? » o
A
g ”
] e
£ 10 s
& Ve
8 ’
o 10° ’.
E o
] /
S,
07 g

1071 10° 10! 10?2
Path Stress
Fig. 13: Linear correlation — sampled path stress closely
approximates the entire path stress.

Thus, we adopt sampled path stress as the scalable quanti-
tative metric for evaluating layout quality.

VII. EVALUATION

A. Experiment Setup

‘We utilize a 32-core Intel Xeon Gold 6246R CPU@3.4GHz,
an NVIDIA RTX A6000 GPU, and an NVIDIA A100 GPU
for hardware setup, with GCC 10.2.1 for compilation.

For overall performance analysis, our GPU design is tested
on both an NVIDIA RTX A6000 with CUDA 11.7 and
an NVIDIA A100 with CUDA 12.2. The ablation study
is conducted only on the NVIDIA RTX A6000, utilizing
NVIDIA Nsight Compute [48] 2022.2 and Linux Perf [30]
as profiling tools. We perform another case study to explore
the performance-quality trade-off with the RTX A6000. The
multi-threaded CPU baseline is odgi-layout [20].

We use the human pangenome reference dataset released
by the HPRC [7], composed of 24 chromosomal pangenome
graphs, from Chr.1 to Chr.22, Chr.X, and Chr.Y. As detailed
in Table VI, these graphs contain millions of nodes and are
characterized by their notably low node degree and density.

TABLE VI: Properties of the human pangenome graphs.

| # Nuc. # Nodes # Edges #Paths deg Density
Min | 88 x107 3.2 x 10° 307 4.4x10* 1.4 1.3x10°7
Max | 1.1 x10° 1.1 x 107 3,029 5.0x10° 14 44x10°6
Mean | 3.0 x 108 4.0 x 106 1,295 23x10° 1.4 35x10°7

TABLE VII: Run time and speedup — the run time format is in h:mm:ss.

Pan. CPU A6000 Speedup A100 Speedup | Pan. CPU A6000 Speedup A100 Speedup | Pan. CPU A6000 Speedup A100 Speedup
Chr.l 2:32:38 0:04:59 30.6x 0:02:42 56.5x Chr.9 1:16:49 0:02:53 26.6x 0:00:55 83.8x Chr.17 1:03:45 0:02:01 31.7x 0:01:07 57.1x
Chr2 1:17:03 0:03:33 21.7x 0:01:01 75.8x Chr.10 0:48:34 0:02:22 20.6x 0:00:44 66.2x Chr.18 0:50:29 0:01:50 27.6x 0:01:08 44.6x
Chr3 1:28:41 0:03:27 25.7x 0:01:31 58.5x Chr.11 0:56:25 0:02:07 26.7x 0:00:37 91.5x Chr.19 0:40:23 0:01:29 27.3x 0:00:27 89.8x
Chr4 1:47:32 0:03:40 29.3x 0:02:06 51.2x Chr.12 0:44:05 0:02:07 20.9x 0:00:49 54.0x Chr20 0:51:34 0:01:30 34.3x 0:01:01 50.7x
Chr5 1:41:09 0:03:19 30.5x 0:01:07 90.6x Chr.13 1:03:32 0:02:22 26.8x 0:00:53 71.9x Chr21 0:44:18 0:01:26 30.9x 0:00:38 69.9x
Chr.6 1:13:55 0:02:49 26.3x 0:01:27 51.0x Chr.14 0:51:21 0:02:04 24.9x 0:00:46 67.0x Chr22 0:39:59 0:01:37 24.8x 0:00:30 80.0x
Chr.7 1:16:46 0:03:00 25.6x 0:01:34 49.0x Chr.15 1:11:33 0:02:52 25.0x 0:01:16 56.5x Chr.X 1:04:06 0:01:49 35.4x 0:00:49 78.4x
Chr.8 1:17:27 0:02:57 26.3x 0:01:41 46.0x Chr.16 2:19:47 0:04:56 28.3x 0:12:58 10.8x ChrY 0:01:55 0:00:03 36.9x 0:00:04 28.7x
Geometric Mean 27.7x 573x |

TABLE VIII: Layout quality comparison with sampled path stress (SPS)

— SPS ratio is computed by GPUgps /CPUgps.

Pan. CPU Clgsy, A6000 Clgsy, SPSratio A100 Clgsy, SPSratio | Pan. CPU Clggy, A6000 Clgze; SPS ratio AL00 Clggy, SPSratio | Pan. CPU Clgsy, A6000 Clgsy, SPSratio AL00 Clgg, SPS ratio
Chrl [0.77, 1.72] [0.86, 1.28] 0.86 [0.88, 1.28] 0.87 Chr9 [058,293] [0.73, 1.34] 059 [-0.15, 3.05] 0.83 Chrl7 [045,045] [0.60, 0.61] 1.34 [0.58, 0.58] 1.29
Chr2 [0.31,0.76] [0.21, 0.29] 0.47 [0.35, 0.56] 0.85 Chr.10 [0.13,0.17] [0.14, 0.19] 113 [0.13, 0.17] 1.04 Chrl8 049, 0.61] [0.53, 0.63] 1.05 [0.54, 0.57) 1.00
Chr3 [0.26,028] [0.29, 031] L12 [0.29, 0.30] 1.09 Chrll [0.12,032] [0.14,0.18] 0.72 [0.14, 0.19] 0.75 Chrl9 [0.17,0.19] [0.22, 0.26] 1.30 [0.19, 0.21] LIl
Chr4 [0.28,031] [0.28, 0.30] 1.00 [0.28, 0.30] 1.00 Chr.l2 [0.12,0.17) [0.13,0.14] 0.96 [0.13, 0.16] 0.99 Chr20 [0.19,097] [038, 0.41] 0.68 [0.38, 0.41] 0.67
Chr5 [0.18,020] [0.22,0.27] 126 [0.20, 0.23] 113 Chr.13 [0.38, 0.39] .S 1.26 [0.41, 0.48] 1.16 Chr21 [0.36,047] [0.41, 0.54] 115 [0.36, 0.72] 131
Chr6 [0.30,031] [0.32,033] 1.05 [031, 0.32] 1.03 Chr.l4 [0.19, 0.33] 0. 211 [0.15, 0.61] 1.48 Chr22 [037,042] (023, 1.14] 173 [0.43, 0.50] 117
Chr7 [0.28,0.29] [0.29, 0.30] 1.04 [0.29, 0.33] 1.08 Chr.15 [0.85, 1.60] 1.24 [1.13, 1.67] 114 ChrX [0.49,0.51] [0.58, 0.61] 1.19 [0.58, 0.60] 1.17
Chr8 [0.27,027] [0.27,0.28] 1.02 [0.27, 0.28] 1.02 Chr.l6 [0.67, 0.68] 1.03 [0.71, 0.72] 1.05 ChrY — [058,0.89] [-0.26, 3.66] 231 [0.63, 0.75) 0.94

Geometric Mean 1.08

B. Overall Performance

Table VII shows the overall performance for all human
chromosomes. Our optimized GPU design achieves a 57.3x
speedup on A100, and a 27.7x speedup on RTX A6000
over the 32-thread CPU baseline odgi-layout. This reduces the
average computation time from 1-2 hours down to just a few
minutes.

We evaluate the layout quality of GPU-generated layouts
using both quantitative and qualitative methods. Quantitatively,
we measure sampled path stress, as shown in Table VIII,
where the average ratio of sampled path stress between GPU
and CPU layouts is close to 1, indicating no quality loss
in the GPU-generated layouts. Qualitatively, visual inspection
confirms that GPU-generated layouts do not have noticeable
differences compared to CPU-generated layouts, as demon-
strated in Fig. 14 for Chr.7. Additionally, we conduct 15
runs for each pangenome and confirm the consistency and
repeatability of these layouts.

(a) CPU-generated layout.

(b) GPU-generated layout.

Fig. 14: CPU and GPU-generated layouts of Chr.7 — only
the central, most complex parts are displayed, as the entire
chromosome is too long.

The 27.7x speedup achieved by our optimized GPU design
on the same NVIDIA RTX A6000 GPU is significantly higher

than the 6.8 x improvement achieved by our initial PyTorch
implementation, as discussed in Sec. IV. This demonstrates
that the custom optimizations in our GPU design effectively
exploit the GPU’s computing power.

Our design can be seamlessly integrated into the ODGI [28]
framework to facilitate the adoption of our GPU implementa-
tion. To enable it, a user can simply add the ——gpu argument,
making the solution effortlessly accessible.

We also perform a scalability study on human pangenome
graphs. Fig. 15 demonstrates linear scaling in both CPU and
GPU implementations. This result aligns with the expectation,
as the number of updates is proportional to the total path
length, which is the sum of the nodes in each path.

N 300 °« o
N
__8oo0 250
))
2 R bl . .
S 6000 a § 200 . °
@ a 9 e g°
< PRV <150
@ 3 o .o
£ 4000 A £ -~
= 2 = oo
c S c 100 e
3 a =1
& 2000 &
50
(S ol
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Total Path Length (in Million) Total Path Length (in Million)
(a) CPU. (b) RTX A6000 GPU.

Fig. 15: Scalability study on the size of pangenomes.

C. Ablation Study

Fig. 16 shows the incremental performance gains achieved
with each optimization. Our approach begins with a base
CUDA kernel to exploit the data-level parallelism. Building
on this, we develop an optimized CUDA kernel by introducing
three kernel optimization methods.

In the following sections, we evaluate the effects of the
individual kernel optimizations. We apply the methods to
the base CUDA kernel individually and evaluate its effects,
demonstrating improvements in both run time and key per-
formance metrics. Since we find similar improvements in all
chromosomes, we show here only the results for Chr.1.

1.0x
CPU Baseline
. 14.6x 6.8x

3.1x
CPU w/ Cache-
[Men dly Data Layout [Base CUDA J [Base PyTorch J
Kernel Optimizations

Coalesced Random .
States [] [Warp Merging]

Fig. 16: Speedup through successive optimizations — the
baseline is odgi-layout on CPU.

27.7x

Cache-friendly
Data Layout

1) Cache-friendly Data Layout (CDL): Since CDL is effec-
tive across both CPU and GPU, we apply it on both the base
CUDA kernel and the CPU baseline. As shown in Table IX,
the improved spatial locality with CDL significantly reduces
Last Level Cache (LLC) loads and LLC misses on CPU, and
reduces DRAM access on GPU.

TABLE IX: Effects of cache-friendly data layout.

Method | w/o CDL w/ CDL Improv.
LLC-loads (#) 3.0 x 1012 9.4 x 10! 3.2x
CPU | LLC-load-misses (#) | 2.7 x 1012 8.1 x 10! 3.3x
CPU Run Time (s) 9,158.4 2,935.2 3.1x
Gpu | DRAM access (GB) 5,191.9 3,974.4 1.3x
GPU Run Time (s) 569.4 393.1 1.4%

2) Coalesced Random States (CRS): Table X reports the
effects of CRS. The “L1 sectors per request” metric reflects
the level of memory request coalescence within a warp. Here,
a request denotes a single instruction requesting a memory
operation, and a sector represents an aligned 32B chunk of
memory. Each request may access one or more sectors. Hence,
fewer sectors per request indicate improved coalescence of
memory requests. The CRS method notably decreases the L1
sectors per request, thereby reducing memory accesses to L1,
L2 caches, and DRAM.

TABLE X: Effects of coalesced random states.

Method | wio CRS w/CRS Improv.
L1 Sectors / Req (#) 26.8 9.9 2.7X
L1 Cache Access (GB) 8,686.7 4,787.7 1.8%
L2 Cache Access (GB) 7,498.9 4,339.3 1.7x
DRAM Access (GB) 5,191.9 4,077.8 1.3x
GPU Run Time (s) 569.4 471.7 1.2x

3) Warp Merging (WM): As seen in Table XI, using WM
significantly reduces the number of instructions executed. The
average number of active threads is increased to 27.9, which
is close to the full complement of 32 threads within a warp,
indicating a considerable reduction in warp divergence.

D. A Case Study: Explore the Performance-Quality Trade-off
with Sampled Path Stress

Sampled path stress proposed in Sec. VI-B allows us
to evaluate a chromosomal layout quantitatively in minutes,

TABLE XI: Effects of warp merging.

Method | wio WM w/ WM Improv.
Executed Instructions (# in billions) 131.3 90.1 1.5%
Avg. Active Threads Per Warp (#) 20.5 27.9 1.4x
GPU Run Time (s) 569.4 527.4 1.1x

enabling the exploration of the effects of algorithmic changes
on the layout quality of large-scale pangenomes.

While randomness is crucial for achieving high-quality lay-
outs, it limits data reuse, which adversely affects performance.
We conduct a case study by applying warp-level data reuse on
top of the optimized GPU design to explore the performance-
quality trade-off with sampled path stress.

1) Methods: We aim to increase data reuse with minimal
randomness degradation. This is accomplished by shuffling
node data within the same warp using CUDA warp-level prim-
itives, enabling direct data sharing between thread registers
within the same warp without using shared or global memory.

The data reuse scheme consists of data reuse factor (DRF)
and step reduction factor (SRF). This modified approach
increases the number of updates per step by DRF, and reduces
the number of steps by SRF. Each step involves selecting one
node pair but performing multiple updates via warp shuffling.
Through warp shuffling, we reuse the cached data to randomly
form a new node pair. This method reduces randomness of
node selection, potentially affecting the layout quality.

2) Results: Fig. 17 illustrates the study of the trade-off
between performance (represented by normalized speedup)
and quality (represented by sampled path stress) in Chr.1 and
Chr.2. Layouts with stress less than twice that of baseline
layouts are considered as “good”, less than ten times as
“satisfying”, and more than ten times as “poor”.

An increase in both DRF and SRF generally leads to an
increase in sampled path stress, indicating a loss of layout
quality. This trend is consistent for most input data. Overall,
schemes with DRF of 2 usually produce good or satisfying
layouts, while schemes with a DRF of 8 tend to produce poor
layouts in many cases. This is due to reusing data 8 times
within a warp’s 32 threads, which greatly reduces randomness
in node pair selection.

. Good Satisfying . Poor
[] o
16 (2,1.75) (8,2.5) 22 PR (8,2.5)
o o ,1.75) (4,2)
> (4,2) 3520
B 3 o2 15)
v [
&1 gt (8,2)
(2,1.5) (4, 1.5) ’
T3 L4 o B1e L
= (8,2) N
212 @415 214
<] <]
Z11 Z12
10{@ (L. 1) 10{@ L1
10! 102 10° 10!
Sampled Path Stress Sampled Path Stress
(a) Chr.1. (b) Chr.2.

Fig. 17: Design space exploration on data reuse schemes
— each datapoint represents a scheme = (DRF, SRF).

Leveraging scalable sampled path stress allows us to explore
the trade-offs between performance and layout quality. Tested
on the RTX A6000 GPU across all 24 human pangenome
graphs, we discover that it is possible to achieve an additional
1.5x speedup over the optimized GPU implementation, while
still maintaining good layout quality.

VIII. RELATED WORK

Several widely-used graph layout tools include Gephi [23],
NetworkX [49], and Graphviz [50]. Efforts have been made
to accelerate these tools on GPUs, as seen in works like [51],
[52]. However, the distinct biological meaning of nodes and
paths in pangenome graphs limit these tools’ suitability.

Numerous pangenome graph layout tools have been devel-
oped to better understand the intricate relationships and varia-
tions among genomes [3]. AGB [18] and VG view [21] employ
the rank-based layout algorithm on the Graphviz backend.
GfaViz [22] and BandageNG [19] adopt the force-directed lay-
out algorithm on the OGDF [53] backend. SGTK [54] applies
the force-directed layout algorithm on the Cytoscape.js [55]
backend. Despite their approaches, none have demonstrated
scalability to the giga-basepair level, as highlighted in a com-
prehensive review [3] of pangenome graph visualization tools.
Among the available tools, odgi-layout [20] stands to be the
only tool capable of scaling to whole-chromosome pangenome
graphs containing millions of nodes. Despite taking hours, it
far surpasses the prior leading tool, BandageNG, which fails
to produce a layout within 7 days [20].

Many efforts have focused on accelerating genomics appli-
cations, from GPU-accelerated sequence alignment [56]—[60],
metagenome assembly [61] and classification [62], to custom
hardware for read assembly [63] and read mapping [64]. Yet,
there is a noticeable gap in acceleration work for pangenome
graphs, presenting ample opportunity.

IX. CONCLUSION AND FUTURE WORK

We present a fast GPU-based pangenome graph layout
solution, achieving a 57.3x speedup on average over the cur-
rent state-of-the-art multi-threaded CPU baseline, and 18.5x
speedup over our own optimized version of the CPU solu-
tion. We leverage the compute power of GPUs with custom
optimizations to address the memory-bound and randomness
challenges. Our work enables the layout of the entire human
pangenome dataset in just a few minutes, which greatly
facilitates pangenomics research. For future work, we believe
scaling our work to a multi-GPU setup is essential to meet
the rapid increase in genome data, and extending to other
pangenome analysis applications in the face of increasing data
availability.

ACKNOWLEDGMENT

For LLM usage disclosure, ChatGPT was utilized to assist
and provide suggestions on polishing the text of this paper.

We are grateful to all the reviewers for their valuable
comments. This research is supported in part by NSF Awards
#2118709 and #2118743.

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]

REFERENCES

H. Cheng, M. Asri, J. Lucas, S. Koren, and H. Li, “Scalable telomere-
to-telomere assembly for diploid and polyploid genomes with double
graph,” arXiv preprint arXiv:2306.03399, 2023.

M. Rautiainen, S. Nurk, B. P. Walenz, G. A. Logsdon, D. Porubsky,
A. Rhie, E. E. Eichler, A. M. Phillippy, and S. Koren, “Telomere-
to-telomere assembly of diploid chromosomes with verkko,” Nature
Biotechnology, pp. 1-9, 2023.

J. M. Eizenga, A. M. Novak, J. A. Sibbesen, S. Heumos, A. Ghaf-
faari, G. Hickey, X. Chang, J. D. Seaman, R. Rounthwaite, J. Ebler,
M. Rautiainen, S. Garg, B. Paten, T. Marschall, J. Sirén, and E. Garrison,
“Pangenome graphs,” Annual review of genomics and human genetics,
vol. 21, pp. 139-162, 2020.

B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison, “Genome graphs
and the evolution of genome inference,” Genome research, vol. 27, no. 5,
pp. 665-676, 2017.

A. A. Golicz, P. E. Bayer, P. L. Bhalla, J. Batley, and D. Edwards,
“Pangenomics comes of age: from bacteria to plant and animal applica-
tions,” Trends in Genetics, vol. 36, no. 2, pp. 132—145, 2020.

S. Ballouz, A. Dobin, and J. A. Gillis, “Is it time to change the reference
genome?” Genome biology, vol. 20, no. 1, pp. 1-9, 2019.

W.-W. Liao, M. Asri, J. Ebler, D. Doerr, M. Haukness, G. Hickey,
S. Lu, J. K. Lucas, J. Monlong, H. J. Abel, , S. Buonaiuto, X. H.
Chang, H. Cheng, J. Chu, V. Colonna, J. M. Eizenga, X. Feng,
C. Fischer, R. S. Fulton, S. Garg, C. Groza, A. Guarracino, W. T.
Harvey, S. Heumos, K. Howe, M. Jain, T.-Y. Lu, C. Markello, F. J.
Martin, M. W. Mitchell, K. M. Munson, M. N. Mwaniki, A. M. Novak,
H. E. Olsen, T. Pesout, D. Porubsky, P. Prins, J. A. Sibbesen, J. Sirén,
. Tomlinson, F. Villani, M. R. Vollger, L. L. Antonacci-Fulton, G. Baid,
. A. Baker, A. Belyaeva, K. Billis, A. Carroll, P-C. Chang, S. Cody,
. E. Cook, R. M. Cook-Deegan, O. E. Cornejo, M. Diekhans, P. Ebert,
Fairley, O. Fedrigo, A. L. Felsenfeld, G. Formenti, A. Frankish,
Gao, N. A. Garrison, C. G. Giron, R. E. Green, L. Haggerty,
Hoekzema, T. Hourlier, H. P. Ji, E. E. Kenny, B. A. Koenig,
. Kolesnikov, J. O. Korbel, J. Kordosky, S. Koren, H. Lee, A. P. Lewis,
. Magalhdes, S. Marco-Sola, P. Marijon, A. McCartney, J. McDaniel,
J. Mountcastle, M. Nattestad, S. Nurk, N. D. Olson, A. B. Popejoy,
D. Puiu, M. Rautiainen, A. A. Regier, A. Rhie, S. Sacco, A. D. Sanders,
V. A. Schneider, B. 1. Schultz, K. Shafin, M. W. Smith, H. J. Sofia, A. N.
Abou Tayoun, F. Thibaud-Nissen, F. F. Tricomi, J. Wagner, B. Walenz,
J. M. D. Wood, A. V. Zimin, G. Bourque, M. J. P. Chaisson, P. Flicek,
A. M. Phillippy, J. M. Zook, E. E. Eichler, D. Haussler, T. Wang, E. D.
Jarvis, K. H. Miga, E. Garrison, T. Marschall, I. M. Hall, H. Li, and
B. Paten, “A draft human pangenome reference,” Nature, vol. 617, no.
7960, pp. 312-324, 2023.

J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G.
Sutton, H. O. Smith, M. Yandell, C. A. Evans, R. A. Holt, J. D. Gocayne,
P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang,
C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D.
Thomas, J. Zhang, G. L. G. Miklos, C. Nelson, S. Broder, A. G. Clark,
J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts,
M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher,
I. Dew, D. Fasulo, M. Flanigan, L. Florea, A. Halpern, S. Hannenhalli,
S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-
Threideh, E. Beasley, K. Biddick, V. Bonazzi, R. Brandon, M. Cargill,
I. Chandramouliswaran, R. Charlab, K. Chaturvedi, Z. Deng, V. D.
Francesco, P. Dunn, K. Eilbeck, C. Evangelista, A. E. Gabrielian,
W. Gan, W. Ge, F. Gong, Z. Gu, P. Guan, T. J. Heiman, M. E. Higgins,
R.-R. Ji, Z. Ke, K. A. Ketchum, Z. Lai, Y. Lei, Z. Li, J. Li, Y. Liang,
X. Lin, F. Lu, G. V. Merkulov, N. Milshina, H. M. Moore, A. K. Naik,
V. A. Narayan, B. Neelam, D. Nusskern, D. B. Rusch, S. Salzberg,
W. Shao, B. Shue, J. Sun, Z. Y. Wang, A. Wang, X. Wang, J. Wang, M.-
H. Wei, R. Wides, C. Xiao, C. Yan, A. Yao, J. Ye, M. Zhan, W. Zhang,
H. Zhang, Q. Zhao, L. Zheng, F. Zhong, W. Zhong, S. C. Zhu, S. Zhao,
D. Gilbert, S. Baumhueter, G. Spier, C. Carter, A. Cravchik, T. Woodage,
F. Ali, H. An, A. Awe, D. Baldwin, H. Baden, M. Barnstead, I. Barrow,
K. Beeson, D. Busam, A. Carver, A. Center, M. L. Cheng, L. Curry,
S. Danaher, L. Davenport, R. Desilets, S. Dietz, K. Dodson, L. Doup,
S. Ferriera, N. Garg, A. Gluecksmann, B. Hart, J. Haynes, C. Haynes,
C. Heiner, S. Hladun, D. Hostin, J. Houck, T. Howland, C. Ibegwam,
J. Johnson, F. Kalush, L. Kline, S. Koduru, A. Love, F. Mann, D. May,
S. McCawley, T. McIntosh, I. McMullen, M. Moy, L. Moy, B. Murphy,
K. Nelson, C. Pfannkoch, E. Pratts, V. Puri, H. Qureshi, M. Reardon,

=wnonn

T R

[9]

[10]

(1]

[12]

[13]

[14]

[15]

R. Rodriguez, Y.-H. Rogers, D. Romblad, B. Ruhfel, R. Scott, C. Sitter,
M. Smallwood, E. Stewart, R. Strong, E. Suh, R. Thomas, N. N. Tint,
S. Tse, C. Vech, G. Wang, J. Wetter, S. Williams, M. Williams, S. Wind-
sor, E. Winn-Deen, K. Wolfe, J. Zaveri, K. Zaveri, J. F. Abril, R. Guigé,
M. J. Campbell, K. V. Sjolander, B. Karlak, A. Kejariwal, H. Mi,
B. Lazareva, T. Hatton, A. Narechania, K. Diemer, A. Muruganujan,
N. Guo, S. Sato, V. Bafna, S. Istrail, R. Lippert, R. Schwartz, B. Walenz,
S. Yooseph, D. Allen, A. Basu, J. Baxendale, L. Blick, M. Caminha,
J. Carnes-Stine, P. Caulk, Y.-H. Chiang, M. Coyne, C. Dahlke, A. D.
Mays, M. Dombroski, M. Donnelly, D. Ely, S. Esparham, C. Fosler,
H. Gire, S. Glanowski, K. Glasser, A. Glodek, M. Gorokhov, K. Graham,
B. Gropman, M. Harris, J. Heil, S. Henderson, J. Hoover, D. Jennings,
C. Jordan, J. Jordan, J. Kasha, L. Kagan, C. Kraft, A. Levitsky,
M. Lewis, X. Liu, J. Lopez, D. Ma, W. Majoros, J. McDaniel, S. Murphy,
M. Newman, T. Nguyen, N. Nguyen, M. Nodell, S. Pan, J. Peck,
M. Peterson, W. Rowe, R. Sanders, J. Scott, M. Simpson, T. Smith,
A. Sprague, T. Stockwell, R. Turner, E. Venter, M. Wang, M. Wen,
D. Wu, M. Wu, A. Xia, A. Zandieh, and X. Zhu, “The sequence of the
human genome,” science, vol. 291, no. 5507, pp. 1304-1351, 2001.

T. Wang, L. Antonacci-Fulton, K. Howe, H. A. Lawson, J. K. Lucas,
A. M. Phillippy, A. B. Popejoy, M. Asri, C. Carson, M. J. Chaisson,
, X. Chang, R. Cook-Deegan, A. L. Felsenfeld, R. S. Fulton, E. P.
Garrison, N. A. Garrison, T. A. Graves-Lindsay, H. Ji, E. E. Kenny,
B. A. Koenig, D. Li, T. Marschall, J. F. McMichael, A. M. Novak,
D. Purushotham, V. A. Schneider, B. 1. Schultz, M. W. Smith, H. J.
Sofia, T. Weissman, P. Flicek, H. Li, K. H. Miga, B. Paten, E. D. Jarvis,
I. M. Hall, E. E. Eichler, D. Haussler, and the Human Pangenome Ref-
erence Consortium, “The human pangenome project: a global resource
to map genomic diversity,” Nature, vol. 604, no. 7906, pp. 437446,
2022.

M. Eisenstein, “Every base everywhere all at once: Pangenomics comes
of age,” Nature, vol. 616, no. 7957, pp. 618-620, 2023.

C. Groza, C. Schwendinger-Schreck, W. A. Cheung, E. G. Farrow,
I. Thiffault, J. Lake, W. B. Rizzo, G. Evrony, T. Curran, G. Bourque,
and T. Pastinen, ‘“Pangenome graphs improve the analysis of rare genetic
diseases,” medRxiv, pp. 2023-05, 2023.

Z. Yang, A. Guarracino, P. J. Biggs, M. A. Black, N. Ismail, J. R. Wold,
T. R. Merriman, P. Prins, E. Garrison, and J. de Ligt, “Pangenome graphs
in infectious disease: a comprehensive genetic variation analysis of
neisseria meningitidis leveraging oxford nanopore long reads,” Frontiers
in Genetics, vol. 14, 2023.

A. Guarracino, S. Buonaiuto, L. G. de Lima, T. Potapova, A. Rhie,
S. Koren, B. Rubinstein, C. Fischer, H. J. Abel, L. L. Antonacci-Fulton,
M. Asri, G. Baid, C. A. Baker, A. Belyaeva, K. Billis, G. Bourque,
A. Carroll, M. J. P. Chaisson, P.-C. Chang, X. H. Chang, H. Cheng,
J. Chu, S. Cody, D. E. Cook, R. M. Cook-Deegan, O. E. Cornejo,
M. Diekhans, D. Doerr, P. Ebert, J. Ebler, E. E. Eichler, J. M. Eizenga,
S. Fairley, O. Fedrigo, A. L. Felsenfeld, X. Feng, P. Flicek, G. Formenti,
A. Frankish, R. S. Fulton, Y. Gao, S. Garg, N. A. Garrison, C. G.
Giron, R. E. Green, C. Groza, L. Haggerty, I. Hall, W. T. Harvey,
M. Haukness, D. Haussler, S. Heumos, G. Hickey, K. Hoekzema,
T. Hourlier, K. Howe, M. Jain, E. D. Jarvis, H. P. Ji, E. E. Kenny,
B. A. Koenig, A. Kolesnikov, J. O. Korbel, J. Kordosky, H. Lee, A. P.
Lewis, H. Li, W.-W. Liao, S. Lu, T.-Y. Lu, J. K. Lucas, H. Magalhies,
S. Marco-Sola, P. Marijon, C. Markello, T. Marschall, F. J. Martin,
A. McCartney, J. McDaniel, K. H. Miga, M. W. Mitchell, J. Monlong,
J. Mountcastle, K. M. Munson, M. N. Mwaniki, M. Nattestad, A. M.
Novak, S. Nurk, H. E. Olsen, N. D. Olson, B. Paten, T. Pesout, A. B.
Popejoy, D. Porubsky, P. Prins, D. Puiu, M. Rautiainen, A. A. Regier,
S. Sacco, A. D. Sanders, V. A. Schneider, B. I. Schultz, K. Shafin,
J. A. Sibbesen, J. Sirén, M. W. Smith, H. J. Sofia, A. N. A. Tayoun,
F. Thibaud-Nissen, C. Tomlinson, F. F. Tricomi, F. Villani, M. R.
Vollger, J. Wagner, B. Walenz, T. Wang, J. M. D. Wood, A. V.
Zimin, J. M. Zook, J. L. Gerton, A. M. Phillippy, V. Colonna, and
E. Garrison, “Recombination between heterologous human acrocentric
chromosomes,” Nature, vol. 617, no. 7960, pp. 335-343, May 2023.
[Online]. Available: https://doi.org/10.1038/s41586-023-05976-y

S. Hiibner, “Are we there yet? driving the road to evolutionary graph-
pangenomics,” Current Opinion in Plant Biology, vol. 66, p. 102195,
2022.

J. M. Eizenga, A. M. Novak, E. Kobayashi, F. Villani, C. Cisar,
S. Heumos, G. Hickey, V. Colonna, B. Paten, and E. Garrison, “Efficient
dynamic variation graphs,” Bioinformatics, vol. 36, no. 21, pp. 5139-
5144, 2020.

[16]

(17]

[18]

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]
(31]

[32]

[33]

[34]

[35]

T. Shiina, K. Hosomichi, H. Inoko, and J. K. Kulski, “The hla genomic
loci map: expression, interaction, diversity and disease,” Journal of
human genetics, vol. 54, no. 1, pp. 15-39, 2009.

D. J. Langton, S. C. Bourke, B. A. Lie, G. Reiff, S. Natu, R. Darlay,
J. Burn, and C. Echevarria, “The influence of hla genotype on the
severity of covid-19 infection,” Hla, vol. 98, no. 1, pp. 14-22, 2021.
A. Mikheenko and M. Kolmogorov, “Assembly graph browser: interac-
tive visualization of assembly graphs,” Bioinformatics, vol. 35, no. 18,
pp- 3476-3478, 2019.

R. R. Wick, M. B. Schultz, J. Zobel, and K. E. Holt, “Bandage:
interactive visualization of de novo genome assemblies,” Bioinformatics,
vol. 31, no. 20, pp. 3350-3352, 2015.

S. Heumos, A. Guarracino, J.-N. M. Schmelzle, J. Li, Z. Zhang,
J. Hagmann, S. Nahnsen, P. Prins, and E. Garrison, “Pangenome graph
layout by Path-Guided Stochastic Gradient Descent,” Bioinformatics,
vol. 40, no. 7, p. btae363, 07 2024. [Online]. Available: https:
//doi.org/10.1093/bioinformatics/btae363

E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, E. T. Daw-
son, W. Jones, S. Garg, C. Markello, M. F. Lin, B. Paten, and R. Durbin,
“Variation graph toolkit improves read mapping by representing genetic
variation in the reference,” Nature biotechnology, vol. 36, no. 9, pp.
875-879, 2018.

G. Gonnella, N. Niehus, and S. Kurtz, “Gfaviz: flexible and interactive
visualization of gfa sequence graphs,” Bioinformatics, vol. 35, no. 16,
pp- 2853-2855, 2019.

M. Bastian, S. Heymann, and M. Jacomy, “Gephi: an open source
software for exploring and manipulating networks,” in Proceedings of
the international AAAI conference on web and social media, vol. 3,
no. 1, 2009, pp. 361-362.

J. X. Zheng, S. Pawar, and D. F. Goodman, “Graph drawing by stochastic
gradient descent,” IEEE transactions on visualization and computer
graphics, vol. 25, no. 9, pp. 2738-2748, 2018.

T. M. Fruchterman and E. M. Reingold, “Graph drawing by force-
directed placement,” Software: Practice and experience, vol. 21, no. 11,
pp. 1129-1164, 1991.

M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “Forceatlas2,
a continuous graph layout algorithm for handy network visualization
designed for the gephi software,” PloS one, vol. 9, no. 6, p. €98679,
2014.

Y. Hu, “Efficient, high-quality force-directed graph drawing,” Mathe-
matica journal, vol. 10, no. 1, pp. 37-71, 2005.

A. Guarracino, S. Heumos, S. Nahnsen, P. Prins, and E. Garrison, “Odgi:
understanding pangenome graphs,” Bioinformatics, vol. 38, no. 13, pp.
3319-3326, 2022.

E. Garrison, A. Guarracino, S. Heumos, F. Villani, Z. Bao, L. Tattini,
J. Hagmann, S. Vorbrugg, S. Marco-Sola, C. Kubica, D. G. Ashbrook,
K. Thorell, R. L. Rusholme-Pilcher, G. Liti, E. Rudbeck, S. Nahnsen,
Z. Yang, M. N. Moses, F. L. Nobrega, Y. Wu, H. Chen, J. de Ligt,
P. H. Sudmant, N. Soranzo, V. Colonna, R. W. Williams, and P. Prins,
“Building pangenome graphs,” bioRxiv, pp. 2023-04, 2023.

L. Community, “Perf: Linux profiling with performance counters,” https:
//github.com/torvalds/linux/tree/master/tools/perf, accessed: 2023-09-17.
Intel, “Intel vtune profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html, accessed: 2023-09-17.

B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent,” Advances in neural
information processing systems, vol. 24, 2011.

A. Yasin, “A top-down method for performance analysis and counters
architecture,” in 2014 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 1EEE, 2014, pp. 35-44.
D. Blackman and S. Vigna, “Scrambled linear pseudorandom number
generators,” ACM Transactions on Mathematical Software (TOMS),
vol. 47, no. 4, pp. 1-32, 2021.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala, “Pytorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing
Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc.,
2019. [Online]. Available: https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

NVIDIA, “Nvidia nsight systems,”
nsight-systems, accessed: 2023-09-17.
——, “Nvidia curand library,” https://developer.nvidia.com/curand, ac-
cessed: 2023-09-17.

G. Marsaglia, “Xorshift rngs,” Journal of Statistical Software, vol. 8,
no. 14, p. 1-6, 2003. [Online]. Available: https://www.jstatsoft.org/
index.php/jss/article/view/v008i14

H. Purchase, “Which aesthetic has the greatest effect on human under-
standing?” in International Symposium on Graph Drawing. Springer,
1997, pp. 248-261.

H. Gibson, J. Faith, and P. Vickers, “A survey of two-dimensional
graph layout techniques for information visualisation,” Information
visualization, vol. 12, no. 3-4, pp. 324-357, 2013.

H. Haleem, Y. Wang, A. Puri, S. Wadhwa, and H. Qu, “Evaluating the
readability of force directed graph layouts: A deep learning approach,”
IEEE computer graphics and applications, vol. 39, no. 4, pp. 40-53,
2019.

T. Dwyer, B. Lee, D. Fisher, K. I. Quinn, P. Isenberg, G. Robertson,
and C. North, “A comparison of user-generated and automatic graph
layouts,” IEEE transactions on visualization and computer graphics,
vol. 15, no. 6, pp. 961-968, 2009.

J. Blythe, C. McGrath, and D. Krackhardt, “The effect of graph layout
on inference from social network data,” in International symposium on
graph drawing. Springer, 1995, pp. 40-51.

T. Kamada, S. Kawai et al., “An algorithm for drawing general undi-
rected graphs,” Information processing letters, vol. 31, no. 1, pp. 7-15,
1989.

E. R. Gansner, Y. Koren, and S. North, “Graph drawing by stress
majorization,” in Graph Drawing: 12th International Symposium, GD
2004, New York, NY, USA, September 29-October 2, 2004, Revised
Selected Papers 12. Springer, 2005, pp. 239-250.

L. Le Cam, “The central limit theorem around 1935,” Sratistical science,
pp. 78-91, 1986.

S. G. Kwak and J. H. Kim, “Central limit theorem: the cornerstone of
modern statistics,” Korean journal of anesthesiology, vol. 70, no. 2, p.
144, 2017.

NVIDIA, “Nvidia nsight compute,”
nsight-compute, accessed: 2023-09-17.
A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull,
“Graphviz—open source graph drawing tools,” in Graph Drawing: 9th
International Symposium, GD 2001 Vienna, Austria, September 23-26,
2001 Revised Papers 9. Springer, 2002, pp. 483-484.

G. G. Brinkmann, K. F. Rietveld, and F. W. Takes, “Exploiting gpus for
fast force-directed visualization of large-scale networks,” in 2017 46th
International Conference on Parallel Processing (ICPP). 1EEE, 2017,
pp- 382-391.

A. Fender, B. Rees, and J. Eaton, “Rapids cugraph,” in Massive Graph
Analytics. Chapman and Hall/CRC, 2022, pp. 483-493.

M. Chimani, C. Gutwenger, M. Jinger, G. W. Klau, K. Klein, and
P. Mutzel, “The open graph drawing framework (ogdf).” Handbook of
graph drawing and visualization, vol. 2011, pp. 543-569, 2013.

O. Kunyavskaya and A. D. Prjibelski, “Sgtk: a toolkit for visualization
and assessment of scaffold graphs,” Bioinformatics, vol. 35, no. 13, pp.
2303-2305, 2019.

M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader,
“Cytoscape. js: a graph theory library for visualisation and analysis,”
Bioinformatics, vol. 32, no. 2, pp. 309-311, 2016.

E. F. de Oliveira Sandes, G. Miranda, X. Martorell, E. Ayguade,
G. Teodoro, and A. C. M. Melo, “Cudalign 4.0: Incremental speculative
traceback for exact chromosome-wide alignment in gpu clusters,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 10, pp.
2838-2850, 2016.

S. D. Goenka, Y. Turakhia, B. Paten, and M. Horowitz, “Segalign:
A scalable gpu-based whole genome aligner,” in SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis. 1EEE, 2020, pp. 1-13.

K. Zhao and X. Chu, “G-blastn: accelerating nucleotide alignment by
graphics processors,” Bioinformatics, vol. 30, no. 10, pp. 1384-1391,
2014.

A. Zeni, G. Guidi, M. Ellis, N. Ding, M. D. Santambrogio, S. Hofmeyr,
A. Bulug, L. Oliker, and K. Yelick, “Logan: High-performance gpu-

https://developer.nvidia.com/

https://developer.nvidia.com/

[60]

[61]

[62]

[63]

[64]

based x-drop long-read alignment,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 1EEE, 2020, pp. 462—
471.

A. Miiller, B. Schmidt, R. Membarth, R. Leila, and S. Hack, “Any-
seq/gpu: a novel approach for faster sequence alignment on gpus,” in
Proceedings of the 36th ACM International Conference on Supercom-
puting, 2022, pp. 1-11.

M. G. Awan, S. Hofmeyr, R. Egan, N. Ding, A. Buluc, J. Deslippe,
L. Oliker, and K. Yelick, “Accelerating large scale de novo metagenome
assembly using gpus,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1-11.

R. Kobus, A. Miiller, D. Jiinger, C. Hundt, and B. Schmidt, “Metacache-
gpu: ultra-fast metagenomic classification,” in Proceedings of the 50th
International Conference on Parallel Processing, 2021, pp. 1-11.

L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of
long read pairwise overlapping in genome sequencing: A race between
fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). 1EEE,
2019, pp. 127-135.

D. S. Cali, K. Kanellopoulos, J. Lindegger, Z. Bingol, G. S. Kalsi,
Z. Zuo, C. Firtina, M. B. Cavlak, J. Kim, N. M. Ghiasi ef al., “Segram:
A universal hardware accelerator for genomic sequence-to-graph and
sequence-to-sequence mapping,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, 2022, pp. 638-655.

	Introduction
	Background
	Variation Graph
	Pangenome Graph Layout
	Path-Guided SGD Algorithm

	Workload Characterization
	Data-level Parallelism
	Memory-Bound
	Randomness & Layout Quality

	Pangenome Graph Layout in PyTorch
	Implementation and Performance Analysis
	Challenges to Efficient GPU Offloading

	Optimized GPU Implementation
	CUDA Kernel for Pangenome Graph Layout
	Kernel Optimizations
	Cache-friendly Data Layout
	Coalesced Random States
	Warp Merging

	A Quantitative Metric for Pangenome Layouts
	Path Stress
	A Scalable Metric: Sampled Path Stress

	Evaluation
	Experiment Setup
	Overall Performance
	Ablation Study
	Cache-friendly Data Layout (CDL)
	Coalesced Random States (CRS)
	Warp Merging (WM)

	A Case Study: Explore the Performance-Quality Trade-off with Sampled Path Stress
	Methods
	Results

	Related Work
	Conclusion and Future Work
	References

