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ABSTRACT. We study immersed surfaces in smooth 4-manifolds via singular banded un-
link diagrams. Such a diagram consists of a singular link with bands inside a Kirby
diagram of the ambient 4-manifold, representing a level set of the surface with respect
to an associated Morse function. We show that every self-transverse immersed surface in
a smooth, orientable, closed 4-manifold can be represented by a singular banded unlink
diagram, and that such representations are uniquely determined by the ambient isotopy
or equivalence class of the surface up to a set of singular band moves which we define
explicitly. By introducing additional finger, Whitney, and cusp diagrammatic moves, we
can use these singular band moves to describe homotopies or regular homotopies as well.

Using these techniques, we introduce bridge trisections of immersed surfaces in arbi-
trary trisected 4-manifolds and prove that such bridge trisections exist and are unique
up to simple perturbation moves. We additionally give some examples of how singu-
lar banded unlink diagrams may be used to perform computations or produce explicit
homotopies of surfaces.
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1. INTRODUCTION

Immersed surfaces are fundamental objects of in low—dimensional topology, show-
ing up frequently in the study of 4—manifolds. For example, immersed disks play a
key role in Freedman’s proof of the topological h—cobordism theorem and the homeo-
morphism classification of simply-connected smooth 4-manifolds [7]. One reason for
the prominent part they play lies in how abundant they are when compared to their
embedded counterparts. In particular, maps of surfaces into smooth 4-manifolds
can always be perturbed slightly to yield smooth immersions with transverse double
points.

Despite their importance, immersed surfaces and their isotopies are difficult to
describe explicitly outside of a few concrete examples. While diagrammatic tech-
niques have been developed to describe both smooth 4-manifolds and embedded
surfaces (see e.g., |3 14} [14] 117, 19} [26], 27, 29]), methods of studying immersed sur-
faces diagrammatically have not been established as fully in the literature, aside
from a few examples (see, e.g., [20] for a diagrammatic framework for representing
immersed surfaces in R* via marked graph diagrams).

In this paper we introduce a new diagrammatic system for describing immersed
surfaces in smooth, oriented, closed 4—manifolds called singular banded unlink dia-
grams. Such a diagram consists of a Kirby diagram for the ambient 4-manifold along
with a decorated singular (4-valent) link with bands attached away from vertices
(see Section for details). As a Kirby diagram of X is uniquely determined by a
Morse function h and its gradient Vh, given two singular banded unlink diagrams
in the same Kirby diagram (induced by the same Morse function on X), it makes
sense to ask whether they determine isotopic surfaces. Even with singular banded
unlink diagrams in two different Kirby diagrams of X, we can still ask whether they
describe equivalent surfaces. With this in mind, we define a set of moves called sin-
gular band moves in Figures [3| and [4], which allow us to relate the diagrams of any
two immersed surfaces which are ambiently isotopic. When combined with Kirby
moves to the ambient diagram, these moves are also sufficient to relate equivalent
surfaces. That is, we show the following equivalence.

{Singular banded unlink diagrams}

Singular band moves

I

{Self-transversely immersed surfaces in 4-manifolds}

Ambient diffeomorphism

We make this equivalence precise in Corollary @ (and for isotopy rather than
diffeomorphism in Theorem. This work generalizes earlier results in [14], where
the authors define banded unlink diagrams of smoothly embedded surfaces in smooth
4-manifolds, and present a family of moves (called band moves) to describe isotopies
between such surfaces. More precisely, given a smoothly embedded surface ¥ in a
smooth oriented closed 4-manifold X and a self-indexing Morse function h : X — R,
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we obtain a diagram D(X) which is well-defined up to band moves and depends only
on the ambient isotopy class of ¥ inside X. Furthermore, given the diagram D(X)
we may recover the pair (X,3) up to diffeomorphism. If, in addition, we also
specify the Morse function h : X — R then the surface ¥ C X is determined up
to isotopy. In the special case that X* = S* and h is a standard (i.e., h has no
index 1, 2, or 3 critical points), these results are originally due to Swenton [32] and
Kearton—Kurlin [22].

Unless otherwise stated we will assume that X is a closed, smooth, oriented 4-
manifold. Our main theorems are as follows.

Theorem Let ¥ be a smoothly immersed, self-transverse surface in a 4—
manifold X. Then any choice of a self-indexing Morse function h : X — R (with
one index 0 point) and a gradient-like vector field Vh on X induces a singular banded
unlink diagram D(X) of (X, %) that is well-defined up to singular band moves.

Furthermore, let D(X) and D(X') be singular banded unlink diagrams of immersed
surfaces 3 and ¥’ in X.

(i) The diagrams D(X) and D(X') are related by band moves and Kirby moves
if and only if there is a diffeomorphism (X,X) = (X, Y).

(ii) If D(X) and D(X') are induced by the same self-indexing Morse function h
and gradient-like vector field Vh (which are suitably generic so as to ensure
the underlying Kirby diagrams of D(X), D(X') agree), then D(X) and D(X')
are related by band moves if and only if ¥ and X' are ambiently isotopic.

In other words, if D(X) and D(X') are banded unlink diagrams whose

underlying Kirby diagrams are identified, then X,%' are smoothly ambiently
isotopic if and only if D(X) and D(X') are related by singular band moves.

In the opening paragraph of Theorem we say that D(X) is well-defined only
up to singular band moves, even though Vh is specified. This is because in order to
obtain D(X) we also need to choose a gradientlike vector field of h|y, which is not
canonically determined by (h, Vh,Y).

Note that part of Theorem clearly implies part so we will focus
on proving part Furthermore, since Kirby diagrams of two 4—manifolds can
be related by a sequence of Kirby moves if and only if they are diffeomorphic, we
obtain the following corollary.

Corollary Let D and D' be singular banded unlink diagrams of surfaces 2
and X' self-transversely immersed in diffeomorphic 4—manifolds X and X'. There
is a diffeomorphism taking (X,%) to (X',X) if and only if there is a sequence of
singular band moves and Kirby moves taking D to D'.

Without much extra work, we may also extend Theorem to consider homo-
topy instead of isotopy.

Corollary Let ¥ and Y be self-transverse surfaces smoothly immersed in
X, and let D(X) and D(X') be singular banded unlink diagrams in the same Kirby
diagram of X.
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(i) The surfaces ¥ and Y are reqularly homotopic if and only if D(X) and D(X')
can be related by a sequence of singular band moves and the finger/Whitney
moves illustrated in Figure [15.

(ii) The surfaces ¥ and X' are homotopic (without specifying regularity) if and
only if D(X) and D(X') are related by singular band moves, finger/Whitney
moves, and cusp moves as illustrated in Figure[I5.

One application of the authors’ results in [14] was to prove the uniqueness of
bridge trisections of surfaces in arbitrary trisected 4-manifolds up to perturbation.
In Section we define the notions of bridge position and bridge trisections for
immersed surfaces in trisected 4-manifolds, and in Section [3.5|we prove an analogous
uniqueness statement.

Theorem Let (X*,T) be a trisected 4-manifold. Let ¥ be a self-transverse
immersed surface in X*. Then ¥ can be isotoped into bridge position with respect
to T, yielding a bridge trisection of ¥ with respect to T. Moreover, any two bridge
trisections of 3 with respect to T are related by T —preserving isotopy, perturbations,
and vertex pertubations (and their inverses).

The moves referenced in Theorem [3.36] are defined in Section [3.1} For experts,
we will say now that the perturbation move is the standard perturbation move that
increases the number of disks of ¥ in one section of the trisection, while vertex
perturbation is supported in a neighborhood of the trisection surface and simply
passes a self-intersection of ¥ from one piece of the trisection to another.

Organization.

o In Section [2) we lay out the framework of singular banded unlink diagrams.

We begin in Section [2.1 with a discussion on marked singular banded
links. In Section [2.2, we describe how to use these decorated singular links
to obtain immersed surfaces. In Section [2.3 we discuss two subclasses of
immersed surfaces that will be needed to prove Theorem [2.39]and its corol-
laries in Section [2.4.

o In Section [3| we turn our attention to bridge trisections.

We review the theory of bridge trisections of embedded surfaces in Sec-
tion [3.1. In Section [3.2) we adapt the notions of trivial tangles and bridge
position to singular links, before defining bridge position for immersed sur-
faces in Section [3.3 and showing that every immersed surface in a smooth
4-manifold can be arranged in this position. It is here that we define the
various moves on immersed bridge trisections referenced in Theorem [3.36]
In Section [3.4 we then proceed to adapt the singular banded unlinks devel-
oped in Section [2 to bridge trisections, before using the uniqueness results
for singular banded unlinks to prove Theorem [3.36] in Section [3.5.
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o In Section 4 we give some additional sample applications of the usefulness
of singular banded unlink diagrams.

In Section [4.1 we show how one may compute the Kirk invariant (see [30])
of a spherical link using these diagrams. In Section [4.2) we prove that
homologous immersed oriented surfaces with the same number of positive
and negative self-intersections are stably isotopic (i.e., become isotopic after
surgery along some collection of arcs). Finally, in Section @We show that
certain 2-spheres embedded in S* can be trivialized by a single finger and
Whitney move (recovering a fact originally proved in [16]).

Acknowledgements. This project began in Spring 2019 when the second and third
authors visited the first at Brigham Young University.

MM thanks Peter Teichner and Mark Powell for useful discussions in Fall 2020,
which influenced the viewpoint of this paper, particularly in Sections and

2. SINGULAR BANDED UNLINK DIAGRAMS

2.1. Marked singular banded links. In this section we introduce marked sin-
gular banded links, which are the combinatorial objects we will use to describe
self-transverse immersed surfaces in 4—manifolds. In what follows, all manifolds and
maps between them should be assumed to be smooth. All isotopies of immersed (or
embedded) submanifolds are assumed to be ambient isotopies unless otherwise spec-
ified. Note that we are isotoping the images of immersions rather than immersions
themselves.

2.1.1. Marked singular links. We begin by defining special singular links with addi-
tional data recorded at their double points.

Definition 2.1. Let M? be an orientable 3-manifold. A singular link L in M is the
image of an immersion ¢ : S' LU --- U S' — M which is injective except at isolated
double points that are not tangencies. At every double point p we include a small
disk v & D? embedded in M such that (v,vNL) = (D? {(x,y) € D?|zy = 0}). We
refer to these disks as the vertices of L.

(Equivalently, a singular link is a 4—valent fat-vertex graph smoothly embedded
in M.) For now, our motivating idea is that M will correspond to some level set of
a 4—manifold X, and the double points of a singular link L in M will correspond to
the isolated double points an immersed surface in X. Because these double points
are isolated, we expect the singularities of L to be resolved away from the level set
M. We must make a choice of how to resolve each double point.

Definition 2.2. A marked singular link (L,o) in M is a singular link L along with
decorations o on the vertices of L, as follows: say that v is a vertex of L, with
Ov N (L \ v) consisting of the four points p1, p2, p3, p4 in cyclic order. Choose a co-
orientation of the disk v. On the positive side of v, add an arc connecting p; and
p3. On the negative side of v, add an arc connecting po and ps. See Figure [1| left.
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Figure 1: Left: A marked singular link (L,0). Middle and Right: The negative
and positive resolutions of (L, o), respectively.

A choice of ¢ involves making a fixed choice of decoration on v, for all vertices v of
L.

Note that if L has n vertices, there are 2™ choices of decorations o so that (L, o)
is a marked singular link.

Definition 2.3. Let (L, o) be a marked singular link in a 3-manifold M. Let v be
a vertex of L; say that on the positive side of v, there is an arc with endpoints pq
and ps and on the negative side of v there is an arc with endpoints py and py.

Let LT denote the link in M obtained from (L, o) by pushing the arc of L between
p1 and p3 off v in the positive direction, and repeating for each vertex in L. We call
L™ the positive resolution of (L,c) (see Figure|1).

Similarly, let L~ denote the link in M obtained from (L, o) by pushing the arc of
L between p; and ps off v in the negative direction, and repeating for each vertex
in L. We call L™ the negative resolution of (L,c) (see Figure[1).

Informally, LT is obtained from (L, o) by turning the decorations of o into new
overstrands while L~ is obtained by turning the decorations of ¢ into new under-
strands.

To ease notation, from now on we will always take singular links to be marked.
We will generally not specify the decorations o, and will instead write “L is a marked
singular link”, with ¢ implicitly fixed.

2.1.2. Banded singular links. Let L be a singular link, and let Aj denote the union
of the vertices of L. A band b attached to L is the image of an embedding ¢ :
Ix I < M\Ap, where I =[—1,1], and bN L = ¢({—1,1} x I). We call ¢(I x {3})
the core of the band b. Let L; be the singular link defined by

— (L\G{—1,1} x 1) Ug(I x {~1,1}).
Then we say that L is the result of performing band surgery to L along b. If B is
a finite family of pairwise disjoint bands for L, then we will let Lp denote the link
we obtain by performing band surgery along each of the bands in B. We say that
Lp is the result of resolving the bands in B. Note that the self-intersections of Lpg
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AN

\ LT x {1/2}

AN

\ S0 (M x {1/3})

/ L= x {0}
/

Figure 2: Left: A vertex v of a marked singular link (L, B). Right: Part of the
surface ¥ built from (L, B) near v.

naturally correspond to those of L, so a choice of markings for L yields markings
for L. A triple (L, 0, B), where (L, o) is a marked singular link and B is a family
of disjoint bands for L is called a marked singular banded link. To ease notation, we
may refer to the pair (L, B) as a singular banded link and implicitly remember that
L is actually a marked singular link.

2.2. Singular banded links describing surfaces. In this section, we use marked
singular banded links to describe surfaces in 4-manifolds. Thinking of M as a level
set of the 4-manifold X, we’ll begin by defining what the surface looks like in a
product tubular neighborhood of M.

2.2.1. Realizing surfaces in M3 x [0,1]. Let (L, B) be a marked singular banded link
in the oriented 3—manifold M. We will describe how to construct a surface ¥ in
M x [0,1] using (L, B).

Recall first that L~ is the (nonsingular) link obtained by negatively resolving
each vertex of L. Also notice that L~ differs from L™ only in a neighborhood of
the vertices of L, where at each vertex a single strand of L is pushed in the positive
direction to give L™, and the negative direction to give L~. For each vertex v of
L, these two opposite push-offs form a bigon in a neighborhood of v, which bounds
an embedded disk D,. This disk D, can be chosen so that its interior intersects
L transversely in a single point near v. For each vertex v select such a disk D,
(ensuring that all of these disks are pairwise disjoint), and let Dy denote the union
of all of these embedded disks.

We can then define the surface ¥ C M x [0, 1] as follows:
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YN (M x1[0,1/3)) = L™ x[0,1/3)
YN (M x{1/3}) = (L~ uDyg) x {1/3}
YN (M x(1/3,2/3)) = Lt x (1/3,2/3)
YN (M x{2/3}) = (LT UB) x {2/3}
SN (M x(2/3,1]) = L x (2/3,1].

In total, ¥ is a surface properly immersed in M x [0,1] with boundary (L~ X
{0}) U (LT g x {1}), and with isolated transverse self-intersections all contained in
M x {1/3} corresponding to the vertices of L.

Definition 2.4. Let X(L, B) be a surface properly immersed in M x [0, 1] obtained
from ¥ by smoothing corners. We refer to X(L, B) as a surface segment realizing
(L, B).

Proposition 2.5. Up to ambient isotopy of M x [0, 1], the surface segment %(L, B)
depends only on the singular banded link (L, B).

Proof. There is a unique way (up to isotopy) to smooth the corners of ¥ in a neigh-
borhood of M x{1/3,2/3}. The disks D, in M x{1/3} are determined up to isotopy
by the links L~ and L™, which are well-defined up to isotopy in M. No other choices
were made in constructing 3(L, B). O

Note that by rescaling the interval parameter, we can similarly define a surface
segment realizing (L, B) in any product of the form M x [t1,t2]. As above, the
ambient isotopy class of ¥(L, B) will depend only on (L, B).

2.2.2. Morse functions and projections between level sets. Before describing how to
construct a closed realizing surface in a 4—manifold from a singular banded unlink,
it will be convenient to take a brief detour to set up some useful notation. Let
X be a closed, oriented, 4-manifold equipped with a self-indexing Morse function
h : X — [0,4], where h has exactly one index 0 critical point. In what follows it
will be helpful to have a way of identifying subsets of distinct level sets h~1(¢;) and
hil(t2>.

Suppose then that t; < to, and let @1, ..., x;, denote the critical points of h which
satisfy t; < h(:vj) < to. Let Xj, 4, denote the complement in X of the ascending
and descending manifolds of the critical points 1,...,x,. Then the gradient flow
of h defines a diffeomorphism py, 1, : A1 (t1) N Xy 1, — B71(t2) N Xiy -

Definition 2.6. We call py, 1, the projection of h=1(t1) to h=1(ty). Similarly, we
call pt_hth the projection of h™1(t2) to h=1(t1), which we likewise denote by py, ¢, -

Note that despite calling p, ¢+, the projection from h=1(t1) to h=1(ts), it is only
defined on the complement of the ascending and descending manifolds of the critical
points that sit between ¢; and ¢3. These projection maps allow us to define local
product structures away from the ascending and descending manifolds of the critical
points of A.
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2.2.3. Singular banded unlinks and closed realizing surfaces. We are now able to
define a closed realizing surface associated to a given singular banded unlink, which
we define below. As above, let X be a closed, oriented, 4—manifold equipped with a
self-indexing Morse function h : X — [0, 4], with exactly one index 0 critical point.

Definition 2.7. Let (L, B) be a marked singular banded link in the 3-manifold
M := h=1(3/2), such that L, B C X1/2,5/2- Suppose furthermore that pz /o 1/9(L7)
bounds a collection of disjoint embedded disks D_ in h~'(1/2), and that p3/ 5/2(LF)
bounds a collection of disjoint embedded disks D4 in h~1(5/2). Then we say that
(L, B) is a singular banded unlink in the manifold X.

In plain English, (L, B) is a singular banded unlink when both

1. L~ is an unlink when viewed as a link in A~1(3/2) (“below the 2-handles”),
2. L}, is an unlink when viewed as a link in h=1(5/2) (“above the 2-handles”).

Fix € € (0,1/2). Given a singular banded unlink (L, B) in M = h=1(3/2), and
families of disks D, and D_ as in Definition we can construct an immersed
surface with corners ¥ C X as follows.

(i) Xnhtt)=0fort <1/20rt>5/2,
(i) Xnh~Y(1/2)=D_,
(ili) ENATY(t) = p1/2 (D) for t € (1/2,3/2 —¢),
(iv) N A 1((3/2 —€,3/2 + ¢)) is a realizing surface segment in the product
h=1((3/2—¢,3/2+¢)) = M x (3/2—¢,3/2+¢) for the singular banded link
(L,B) in M,
(v) ZNh7Ht) = p5/24(0Dy) for t € (3/24¢,5/2),

(vi) Xnh71(5/2) = D,.

That is, ¥ consists from bottom to top of minimum disks, a realizing surface
segment (which we recall has self-intersections and index 1 critical points), and
maximum disks.

Note that the identification of h=1((3/2—¢,3/2+¢)) with M x (3/2—¢,3/2+¢) in
part above is made using the projection maps p3/5; h=1(3/2) — h~1(t), which
is a diffeomorphism for t € (3/2 —¢,3/2 + ¢) and small . Under this identification
the boundary of the realizing surface segment will be precisely ps/23/24-(0Dy) U
P1/2,3/2—¢ (0D_), and hence the surface ¥ constructed above will be closed.

Definition 2.8. Let (L, B) be an immersed surface in X obtained from ¥ by
smoothing corners. We refer to X(L, B) as a (closed) realizing surface for the singular
banded unlink (L, B) in X.

The surface (L, B) is an immersed surface in X with isolated, transverse self-
intersections. Note that (L, B) is obtained (up to isotopy) by smoothing the result
of capping off the boundary components of (L, B) by horizontal disks, which is
possible exactly when (L, B) is a singular banded unlink.

Proposition 2.9. Any two realizing surfaces for the singular banded unlink (L, B)
are smoothly isotopic.
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Proof. We first note that choosing a different value for € changes ¥ by an isotopy
through realizing surfaces. Second, by Proposition [2.5] any two choices of surface
segment X(L,B) C h™1([3/2 — £,3/2 + ¢]) are isotopic, and this isotopy can be
extended to the rest of ¥ NA~1((1/2,5/2)) using the projection maps py, +,. Finally,
any choice of embedded disks XN h~1(1/2) and X Nh~1(5/2) are isotopic rel bound-
ary in h=1([0,1/2]) and h=1([5/2,4]) respectively, which follows from the fact that
h=1([0,1/2]) = B* and h~1([5/2,4]) = b¥(S' x B?). O

As the realizing surface (L, B) is determined by the singular banded unlink
(L, B) up to isotopy, we will often think of ¥(L, B) as representing an isotopy class
of immersed surfaces, rather than a particular representative.

2.2.4. Singular banded unlink diagrams and Kirby diagrams. We now make sense of
how to describe a realizing surface as in Section via a Kirby diagram. If one
is comfortable with these diagrams, then the contents of this subsection are clear
from Definition simply draw L and B inside a diagram for X in a natural way.
We now review some basic notions about Kirby diagrams.

Let h: X — R be a self-indexing Morse function with a unique index 0 critical
point, and let n be the number of index 1 critical points of h. Fix a gradient-like
vector field Vh for h. Let M = h=1(3/2), and let Ly be the intersection of M with
the descending manifolds of the index 2 critical points of h. Perturb Vh slightly
if necessary so that this intersection is transverse, so that Lo is a link in the 3—
manifold M = #,S! x §2. To each component of Ls, assign the framing induced
by the descending manifold of the associated index 2 critical point, so that Lo is
actually a framed link in M.

Fix an n-component unlink L; in S2. Let V denote the complement of the
unique (up to isotopy rel boundary) boundary-parallel disks bounded by L; in B*.
Then V is diffeomorphic to 4,S* x B3, and we can therefore find a diffeomorphism
¢V — h71([0,3/2]). By Laudenbach-Poenaru [24] and Laudenbach [23], the
choice of ¢ is natural up to isotopy and moves that correspond to slides of L; (as a
0-framed link) in S2. Moreover, OV can be naturally identified with the result of
performing 0-surgery on S® along L;, which we denote by S3(L1). By perturbing
Vh we may assume that ¢~ 1(Lg) C OV = S3(L,) is disjoint from the surgery solid
tori, and hence we can think of $~1(Ls) as a link in S3. By abuse of notation, we
will also refer to this link as L.

Definition 2.10. Let K := (L1, Ly) be a pair of disjoint links in S with L1 an unlink
and Lo framed. Suppose there is a 4—manifold X, a Morse function h : X — R, and
a gradient-like vector field Vh for h, so that h~1(3/2) may be identified with S3(L1),
and the descending manifolds of the index 2 critical points of h meet h=1(3/2) in
the framed link Lo. Then we call K a Kirby diagram of X corresponding to (h, Vh).

Remark 2.11. In [28], the third author and Naylor showed that a smooth, closed,
non-orientable 4-manifold X* is also determined up to diffeomorphism by (framed)
attaching regions of 0, 1, and 2-handles. If desired, one could thus make sense
of diagrams of closed (immersed) surfaces in Kirby diagrams of non-orientable 4-
manifolds. We choose not to pursue this explicitly in this paper for sake of simplicity.
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Remark 2.12. Given h and Vh, a Kirby diagram K corresponding to (h, Vh) is
well-defined up to isotopy and slides over L; as long as there is no flow line of VA
between two index 2 critical points of h. That is, generically we expect h and Vh
to determine a Kirby diagram.

Conversely, given K, the triple (X, h, Vh) is determined up to diffeomorphism.

Let E(K) denote the complement S®\v(K) of a small tubular neighborhood of
the links L1, Ly comprising a Kirby diagram K. Then given a link L C E(K) we
may think of L as describing a link in A~1(¢) for any ¢ € (0,3) via the projection
map p3/2.¢-

Definition 2.13. A singular banded unlink diagram in the Kirby diagram I =
(L1, L2) is a triple (K, L, B), where L C E(K) is a marked singular link and B C
E(K) is a finite family of disjoint bands for L, such that L~ bounds a family of
pairwise disjoint embedded disks in h~1(1/2), and L} bounds a family of pairwise
disjoint embedded disks in h=1(5/2).

By comparing Definition to Definition we see that a singular banded
unlink diagram describes an immersed realizing surface as follows. We first note
that we can identify F(KC) with a subset of h~1(3/2) in a natural way (i.e., via Vh).
Since the banded link L U B is disjoint from L1, it can be identified with a subset of
h=1(3/2), which we denote by L' U B’. This subset avoids the descending manifolds
of the index 2 critical points of h.

Since L'~ is disjoint from L, we can isotope it vertically downwards via the
projection map ps/5; from h~'(3/2) to h™*(1/2), where it can be capped off by a
family of disjoint embedded disks in h~1(1/2). Similarly, we can extend the surgered
link L, vertically upwards from h~*(3/2) to h='(5/2), where it can be capped off
by disks. As these families of disks are unique up to isotopy rel boundary, the surface
we obtain in this way from the banded unlink diagram (K, L, B) is well-defined up
to isotopy. (See also Proposition [2.9]) We denote this surface by (K, L, B).

Definition 2.14. We say that (K, L, B) is a realizing surface for (K,L,B), or
that (IC, L, B) describes the surface 3(K, L, B).

Definition 2.15. If X is a realizing surface of a singular banded unlink diagram
(K, L, B), then we say that (K, L, B) is a singular banded unlink diagram for 3, and
we write D(X) := (K, L, B). (In practice, we might drop the word “singular”, since
this will be clear when ¥ is immersed.) Note that ¥ determines D(X) uniquely up
to isotopy, assuming that ¥ is a realizing surface for some diagram.

Definition 2.16. Let X be a subset of X. Then we say that h|y is Morse if there
is a surface F' and an immersion f : F' — X such that ¥ = f(F), and such that
ho f is a Morse function on F. An index k critical point of h|y is a point of the
form f(p), where p is an index k critical point of ho f.

Lemma 2.17. Let X be a closed 4-manifold, and K a Kirby diagram for X. Then
any immersed surface ¥ in X is ambient isotopic to a realizing surface (K, L, B)
for some singular banded unlink diagram (K, L, B).
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Proof. After a small ambient isotopy we may assume that h|y is Morse. Isotope
all of the maxima of X vertically upward into h=1((5/2,4)) (generically, maxima
of ¥ do not lie in the descending manifolds of index 1 or 2 critical points of h).
Similarly isotope the minima of ¥ vertically downward into h~1((0,3/2)). Isotope
all of the index 1 critical points of h|y vertically into h=1((3/2,5/2)) (again, index
1 critical points of h|y generically do not lie in the ascending manifolds of index
3 critical points or the descending manifolds of index 1 critical points). Finally,
isotope the self-intersections of ¥ to lie in h=1((3/2,5/2)) in such a way that they
do not coincide with index 1 critical points of h|s.

Now flatten ¥ as in [21]. In words, notice that h and —Vh, when restricted to X,
generically induce a CW decomposition of 3 in which O—cells are the index 0 critical
points of hly, one point in the interior of each 1—cell is an index 1 critical point of
h|s, and one point in the interior of each 2—cell is an index 2 critical point of hly.
Perturb, if necessary, so that self-intersections of X all lie outside the descending
and ascending manifolds in ¥ of index 1 critical points of hlx.

The family of gradient flow lines of VA in X which originate on the ascending
manifolds of an index 1 critical point of hly is 2-dimensional, as is the family of
gradient flow lines of -Vh in X which originate on the descending manifolds of an
index 1 critical point of h|sy. Thus, we may generically take them all to be disjoint
and also disjoint from ascending and descending manifolds of index 2 points of h.
(We discuss this more in Section While this condition is generic, it is not
natural — this lack of generality precisely corresponding to the singular band moves
of Theorem [2.39})

Fix ¢ > 0, and let L~ = ¥ N h~1(3/2 — ¢). Isotope ¥ near height 3/2 so that
the intersection X N h~1([3/2 —¢,3/2 +€]) is of the form L™ x [3/2 —¢,3/2+¢]. A
neighborhood of each 1-cell of ¥ can be isotoped via —Vh to a band in h=1(3/2)
that is attached to a parallel copy of L~. Let B be the collection of all such bands
(one for each 1-cell in X).

Now isotope X near each self-intersection s of ¥ as in the right-hand side of
Figure[2] i.e., make one of the sheets of ¥ at s include a small region that is horizontal
with respect to h, and which contains s. Isotope this sheet via —Vh to push this
horizontal region to h=1(3/2), where it can be interpreted as a marked fat vertex
as in Figure [2] (left). Repeating for every self-intersection of 3, we obtain a marked
singular banded link L in h~!(3/2) whose negative resolution is L.

Now X intersects regions of X in the following way:

h71([0,3/2 — €]) in boundary parallel disks with boundary L~
h™1([3/2 — €,3/2 + ¢]) in the realizing surface segment for (L, B),
hH([3/2 +¢,5/2]
h=1([5/2,4]) in boundary parallel disks with boundary Lg.
We conclude that ¥ is isotopic to (K, L, B). 0

)
) in an embedded surface on which h has no critical points,
)

Remark 2.18. In the proof of Proposition [2.17, we made several references to
genericity. That is, we made several choices of how to perturb X in order to obtain
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(K, L, B). It may be helpful to imagine the lower-dimensional analogue of knots in
S3: every knot in S? is isotopic to one that projects to a knot diagram. However,
not every knot in S® actually projects to a knot diagram. An arbitrary knot may,
for example, have a projection that includes a cusp, self-tangency, or triple point.
These conditions are not generic and can be corrected by a slight perturbation, but
therein involves a choice that can yield diagrams differing by a Reidemeister move
(RI, RII, RIII, respectively). There are, of course, even “worse” conditions, such as
a knot whose projection involves a quadruple intersection. However, this condition
is even “less” generic, by which we mean:

o A generic knot in S admits a projection with no triple points.

o A generic 1-parameter family of smoothly varying knots in S admit pro-
jections with finitely many triple points but no quadruple points.

o A generic 2-parameter family of smoothly varying knots in S admit projec-
tions with 1-dimensional families of triple points and finitely many quadruple
points.

Thus in a 1-parameter family of knots (i.e., a knot isotopy), we expect to obtain
diagrams that differ by an RIII move (and similarly for RI and RII), but need never
consider moves involving quadruple intersections.

Moving back to the 4-dimensional world, in order to understand to what extent a
singular banded unlink diagram is well-defined up to isotopy of an immersed surface,
we must understand which nongeneric behaviors of projections we expect to see a
finite number of times in a 1-dimensional family of immersed surfaces. We discuss
this more formally in Sections and

2.2.5. Singular band moves. The Kirby diagram X only determines the described
4-manifold X up to diffeomorphism. Therefore, (K, L, B) only determines the pair
(X,%(K, L, B)) up to diffeomorphism; it does not make sense to say that (K, L, B)
determines X(IC, L, B) up to isotopy. However, if we have already identified X with
the manifold described by K, then we can consider (K, L, B) up to isotopy. In
particular, given another singular banded unlink diagram (K, L', B’) in the same
Kirby diagram K, there is a natural (up to isotopy) diffeomorphism between the 4—
manifolds containing (K, L', B") and X(K, L, B). Therefore, it does make sense to
ask whether X(KC, L, B') and (K, L, B) are ambiently isotopic, regularly homotopic,
or homotopic in X. In this section, we define moves of singular banded unlink dia-
grams that describe ambient isotopies of immersed surfaces; in Sections and
we show that indeed these moves are sufficient.

Definition 2.19. Let D := (K,L,B) and D’ := (K,L’, B’) be singular banded
unlink diagrams. Suppose that D’ is obtained from D by a finite sequence of the
moves in Figures |3| and [4. We call these moves singular band mowves, and say that
D' is related to D by singular band moves. (This relationship is clearly symmetric.)
Specifically, the singular band moves (illustrated in Figures [3| and [4) are:
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(i) Isotopy in E(K),
(ii) Cup/cap moves,
(iii) Band slides,
(iv) Band swims,
(v) Slides of bands over components of Lo
(band/2-handle slide),
(vi) Swims of bands about Lo (band/2-
handle swim),
(vii) Slides of unlinks and bands over Lq,
(viii) Sliding a vertex over a band (inter-
section/band slide),
(ix) Passing a vertex past the edge of a
band (intersection/band pass).

We may refer to moves|(i)H{(vii) (illustrated in Figure |3) as band moves (omitting
the word “singular”) since they do not involve the self-intersections of L. The
remaining moves are illustrated in Figure

Exercise 2.20. If D and D’ are related by singular band moves, then (D) and
Y(D’) are ambiently isotopic.

In the future, we will refer to moves by name rather than number to avoid con-
fusion.

In Figures we illustrate some other useful moves on singular banded unlink
diagrams that are achievable by a combination of singular band moves. We call
these moves x (Figure [5]), the intersection/band swim (Figure [6), the upside-down
intersection/band swim (Figure , the intersection pass (Figure , the intersec-
tion swim (Figures [J) and [10)), the intersection/2-handle slide (Figure and the
intersection/2-handle swim (Figure [12).

In an earlier version of this paper, we included the intersection/band swim of
Figure [6] as one of the singular band moves (as move (x)). Jablonowski [15] noticed
that this move is redundant, so we have modified the list accordingly.

Remark 2.21. While the length of the list in Definition may seem unwieldy,
there is a general principle at play: singular band moves allow us to isotope a
singular banded unlink (L, B) within K; or to push any vertex in L or band in B
slightly into the past or future, do further isotopy there, and then push the vertex
or band back into the present. In practice when using these diagrams, we do not
explicitly break a described isotopy into a sequence of the moves of Definition [2.19
just as how in practice one does not typically break an isotopy of a knot explicitly
into a sequence of Reidemeister moves.

2.3. Ascending/descending manifolds and 0— and 1-standard surfaces. So
far, we have only used singular banded unlink diagrams to describe realizing surfaces,
which are incredibly non-generic. One goal of this paper is to use singular banded
unlink diagrams to describe any self-transverse immersed surface 3. In Lemma[2.17]
we showed that any such X is isotopic to a realizing surface. However, it is not
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band/
2-handle

isotopy in F(K) C slide Vn
() .
(ii) (ii) | band/2-handle |
- swim —_
4 (Vi) kln

band
slide
- slides over dotted circles
(iii)
[

i

| <=
I band\

Figure 3: The band moves that do not involve the self-intersections of the described
surface.

A

intersection/band
slide

<>

(viii)

intersection/band
pass

«
I <>
— (ix)

Figure 4: The singular band moves that involve self-intersections of the described
surface.
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N

2
E >
=+ o
z 5
8 Rz

int/band int/band

slide slide
—_— —_—
/ / 4

Figure 5: The x move moves a vertex onto two new unlink components (or the

reverse). In Figures [7} [0} [L0] we see that the x-move can be used (in conjunction
with singular band moves) to achieve other seemingly natural moves.

intersection/band

swim

_C}_ -

Y

int /band int /band
cap

cap pass band swim pass

| oF & €&

Figure 6: We can achieve an intersection/band swim by performing singular band
moves. This sequence of moves was observed by Jablonowski [15].
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upside-down
intersection/band
swim

* *

/
/ isotopy band_sw»im Q\///\\///
25\

Figure 7: We can achieve the upside-down intersection/band swim by performing x
and singular band moves.

intersection ~—
pass
-
/
*

int /band

\
pass @ isotopy
—_— —_—

Figure 8: We can achieve an intersection pass by performing x and singular band
moves.

*

obvious that any two realizing surfaces isotopic to X have singular banded unlink
diagrams that are related by singular band moves. In order to prove this, we must
first restrict ourselves to understanding surfaces that intersect the ascending and
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\ intersgction \
M —~—— swim o
> PIAX
\_/ \

* *

int/band

g)}g{ \ swim % 1sotopy /\}—{
\ \

Figure 9: We can achieve an intersection swim by performing x and singular band
moves.

\ |
\ /

intersection
swim

\
/_% isotopy
\ }i/\
\

Figure 10: We achieve an alternate version of the intersection swim of Figure [9] in
which one marking and one crossing are changed, via isotopy and intersection swim.
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intersection/2-handle
J-l= slide Qﬁ/ :
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Figure 11: We achieve an intersection/2-handle slide by performing * and singular

band moves.
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Figure 12: We achieve an intersection/2-handle swim by performing singular band

moves.
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descending manifolds of critical points of h in prescribed ways, but yet are still
more generic than realizing surfaces.

We will now consider not only the ascending/descending manifolds of critical
points of h, but also the ascending and descending manifolds of critical points of the
restricted Morse function hl|y,. From now on, fix a gradient-like vector field Vh for
the Morse function h: X — R, and let Z denote X4\ v(%).

In order to obtain a gradient-like vector field on ¥ itself, we choose a splitting
TX|y =TYX & N and let projpy, : TX|s, — T'Y be the associated bundle projection.
We can assume that the splitting is chosen so that proj;s(Vh)|x is a gradient-like
vector field for h|y; on X, which we denote by V(h|s). Note that this is actually
not a vector field on the immersed surface ¥ (although we could pull it back to a
vector field on the abstract surface F'), since there are two associated vectors at each
point of self-intersection of ¥ (the projections of Vh onto the tangent planes of each
local sheet) — however, we think that the language “gradient-like vector field” is not
confusing in this context. The vector field V(h|x) is not canonically determined by
h,Vh, and X, since to obtain it we have to choose a splitting of T Xy.

In what follows we will often refer to the ascending or descending manifolds of
critical points of h|y, or of self-intersections of .. Unless we specify otherwise, assume
that this always refers to the corresponding manifolds in X with respect to Vi as
defined above, rather than ascending or descending manifolds in ¥ with respect to
V(h|y). These points are generally not critical points of h, but their ascending and
descending manifolds can be studied as usual.

2.3.1. 1-standard surfaces. Suppose that X is a self-transverse immersed surface in
X. The following definition will be important as we consider 1-parameter families
of immersed surfaces:

Definition 2.22. We say that 3 is 1-standard if the following are true:

(1) The surface ¥ is disjoint from the critical points of h.

(2) The restriction h|y; is Morse except for possibly at most one birth/death de-
generacy, i.e., a point of ¥ about which h|y; can be represented as h|x(z,y) =
z? — % in some local coordinates on X.

(3) For k > n + 1, the descending manifolds (with respect to Vh) of index n
critical points of h and index (n — 1) critical points of hly, are disjoint from
the ascending manifolds of index k critical points of h and index (k — 1)
critical points of h|s. Moreover, self-intersections of ¥ are disjoint from the
ascending manifolds of index 3 critical points of A and descending manifolds
of index 1 critical points of h. In other words, we ask for n—dimensional
descending manifolds to be disjoint from (4 —n — 1)—dimensional ascending
manifolds.

Remark 2.23. Deﬁnitionis essentially a list of all ascending/descending mani-
fold pairs that we expect to be disjoint in a 1-parameter family of immersed surfaces
by dimensional considerations, as explained in Proposition This motivates the
name “l-standard.”
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Proposition 2.24. Let ¥, be an isotopy between 1-standard surfaces Yo and 1.
After an arbitrarily small perturbation of the isotopy ¥, we can assume that X is
1-standard for all t.

Proof. We prove that after a small perturbation, ¥; satisfies each property of Defi-
nition 2.22] for all ¢.

(1)

(2)

The critical point set of h in X x [ is 1-dimensional, while the isotopy >
in X x I is 3—dimensional. Generically, we do not expect >; to intersect a
critical point of h for any ¢.

This follows from Cerf’s filtration on the space of surfaces (see, e.g., [9,
Chapter 1 §2]). This is a filtration on the space C(F) of all smooth maps
F — X%, for F a surface. The codimension-0 stratum consists of all maps
f:F — X* with h| 7(r) Morse with critical points at distinct heights. The
codimension—1 stratum includes f if either of the following is true:

o The restriction h|sp) is Morse with exactly two critical points at the

same height, but all other critical points sit at distinct heights.

o The restriction h|s(r) is Morse except for one birth or death degeneracy.

This degeneracy and all critical points are at distinct heights.

Suppose Yy has n points of self-intersection. Fix 2n points x1, ya,. .., Zn,
Yn in F' and choose f; : F — X so that fi(F) = ¥; and f(z;) = fi(y;) for all 4
and t. Now a small perturbation of the path f; from fy to fi in C(F) yields a
path g; that is completely contained in the codimension—0 and codimension—
1 strata of Cerf’s filtration with gy = fo, 91 = f1. Since g; lies in these strata,
g+(F') has the property of Definition for all t. Moreover, if the
perturbation is sufficiently small we may assume that g;(F") is an immersed
surface with n transverse double points for all ¢, all of which are contained
in a fixed small tubular neighborhood of ;. (Recall that smooth or PL self-
transversely immersed surfaces in 4-manifolds have tubular neighborhoods;
use local coordinates to choose a tubular neighborhood near each of the
finitely many self-intersections and then extend over the whole surface using
the tubular neighborhood theorem.)

While g; is a homotopy from gg to g1, we may view its image as an isotopy
between the singular submanifolds > and ¥; in X. We must now check
that this isotopy extends to an ambient isotopy of X. That is, while we have
argued that we may perturb f; to achieve property we must explain why
this perturbation may be achieved by perturbing the ambient isotopy from
Yo to X, since there is a distinction between the immersions f; and their
images f;(F) = ;. This is relatively standard (and indeed stated without
proof in e.g., [6]): choose small disjoint closed disks Dg,, Dy, (i =1,...,n)
in F', centered at x; and y; respectively. We can fix a family of coordinates
on a closed tubular neighborhood of g;(F') near the self-intersections so that
centered about g¢(x;) = g¢(y;), we have a closed ball B; = g;(Dy,) x g:(Dy,)
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intersecting ¢¢(F’) in

(9¢(Dy;) x {0}) U ({0} U ge(Dy,)
(ge(zi) x 0) ~ (0 x ge(yi))

Now we may extend the isotopy g — X1 that is the image of ¢; to
an isotopy ¢y of Yo U By U --- U B, by specifying that ¢(go(a), go(b)) =
(g¢(a), ge(b)) for all a € Dy,,b € D,,, since B; = go(Dy,;) X go(Dy,). Then
¢e(Bi) = gt(Dg,;) % g¢(Dy,). Since the B;’s are balls, the isotopy ¢¢|u,s;
extends to an ambient isotopy 1y of X. The composition 1, L$: then fixes
B; pointwise for each 1.

Now since Yo N (X \ int(B; U --- U B,)) is an embedded submanifold
(whose boundary is not tangent to the boundary of X \ int(B; U---U By,);
ie, XoN (X \int(BiU---LUDBy)) is neat in the sense of [12]) whose boundary
is fixed by 1, Loy, we may use usual isotopy extension to extend v, Loy to
an ambient isotopy. Then since v, 1'is an ambient isotopy (and hence a
diffeotopy starting at the identity map), we conclude that ¢; extends to a
diffeotopy starting at the identity map, i.e., an ambient isotopy.

We conclude that our original ambient isotopy from ¥ to ¥; may be

perturbed to another ambient isotopy of ¥ to 31 which satisfies property
of 1-standardness at all times.
Note that both ascending and descending manifolds are parallel to VA, so
rather than counting transverse intersections, we count the dimension of the
space of line intersections (parallel to Vh) of these ascending and descending
manifolds. (In other words, we count the dimension of the moduli space of
unparametrized flow lines of —Vh from one critical or intersection point to
another.) An n—dimensional descending manifold and a (4 — k)—dimensional
ascending manifold thus have expected dimension

n—1)+(A-k)-1)—-@4-1)=n—k—1

as a space of lines. For k > n + 1, this expected dimension is at most —2,
so we conclude that we may perturb ¥; (which by the previous item we see
may be obtained by perturbing a path of immersions f; in C(F)) to achieve
property

O

2.3.2. 0-standard surfaces. In Remark we explained that the definition of 1-
standardness comes from studying generic 1-parameter families. That is, the con-
ditions in Definition are generically true for 1-parameter families of surfaces.
We now define a slightly more restrictive condition on the surfaces we study, which
we expect to be violated a finite number of times in a generic 1-parameter family.

Definition 2.25. We say that ¥ is 0—standard if it is 1-standard and the following
are true:

(1)

The restriction hly is Morse.
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(2) Whenever p and ¢ are either index 2 critical points of h, index 1 critical
points of h|y, or self-intersections of 3 (not necessarily of the same type),
and p # ¢, the descending manifold of p is disjoint from the ascending
manifold of ¢g. In short: 2-dimensional descending manifolds are disjoint
from 2—-dimensional ascending manifolds.

Remark 2.26. Roughly speaking, a surface X is O-standard if its index 1 criti-
cal points (viewed as bands) and self-intersections do not lie above each other, or
above or below any index 2 critical points of h. This is all with respect to Vh;
we are not discussing V(h|x). These forbidden conditions, allowed in a 1-standard
surface, would cause a projection of ¥ to a singular banded unlink diagram to not
be well-defined, motivating the cup/cap moves, band swims, band/2-handle slides
and swims. Most the other singular band moves are related to the choice of V(h|x)
(specifically the band slide, intersection/band slide and pass, and intersection pass).
Isotopy in E(K) and slides over L; correspond to horizontal isotopy.

Proposition 2.27. Let X; be an isotopy between O-standard surfaces Yo and 1.
After an arbitrarily small perturbation of the isotopy X, it is true that X is 1-
standard for all t, and O-standard for all but finitely many t.

Proof. It follows from Proposition that 1-parameter families 3; of surfaces are
generically 1-standard for all . We now consider the conditions of Definition [2.25]
separately.
(1) This is well-known by Cerf (see, e.g., [9, Chapter 1 §2]).
(2) A pair of complementary-dimension descending and ascending manifolds
meet with expected dimension —1 (as a space of lines parallel to Vh). There-
fore, Property is generically true at all but finitely many times during a
1-parameter family of surfaces.

0

Proposition 2.28. Suppose ¥ is O—standard. Fiz ¥V (h|x) with the property that for
p,q distinct index-1 points of hls or self-intersections of ¥, the descending mani-
fold of p with respect to V(h|x) is disjoint from the ascending manifold of q with
respect to V(h|s). Then there is a singular banded unlink diagram D determined by
Y, Vh,V(h|s) up to isotopy and slides over the 1-handle circles L.

Proof. Since ¥ is 0-standard (and hence 1-standard), we may vertically isotope %
so that the minima of h|x; lie below h~1(3/2), the maxima of h|x, lie above h=1(5/2),
and the self-intersections/bands of ¥ lie in h=1((3/2,5/2)).

By assumption, the descending manifolds (using V(h|y)) of index 1 critical points
of h|y end at index 0 points of h|y, without meeting any index 1 points or self-
intersections of 3. Similarly, flow lines of —V(h|y) originating at self-intersections
of ¥ also end at index 0 points of h|y, without meeting any other index 1 critical
points or self-intersections of X.

Now let S be the 1-skeleton of ¥ determined by V(h|x), i.e., the 1-complex with:

1) O—cells at index 0 points of hly,
2) 1-cells along the descending manifolds of index 1 critical point of hlx,
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3) Additional 1-cells consisting of pairs of flow lines of —V (h|x) glued together
at self-intersections of .

Isotope X vertically so that the index 1 critical points of h|y, and self-intersections
of ¥ lie disjointly in h=1(3/2). (Here we are implicitly using the fact that since ¥
is O-standard, these points do not lie directly above one another nor above index
2 critical points of h.) Flatten ¥ near h=1(3/2) to turn index 1 points of hly into
bands whose cores are contained in 1-cells of S.

Since X is O-standard, the bands and self-intersections of X Nh~1(3/2) are disjoint
from the descending manifolds of index 2 critical points of h, i.e., they are disjoint
from the attaching circles Lo of the 2—handles in K.

Then ¥ N h~1(3/2) is a singular banded link (L, B), where L~ is isotopic to
Y Nh7Y(3/2—¢), and L}, is isotopic to XN h~1(3/2 + ). We conclude that (L, B)
is well-defined up to isotopy in h=1(3/2) \ (descending manifolds of index 2 critical
points of h). Therefore, (IC, L, B) is well-defined up to slides of L and B over the
dotted circles Ly of K. ]

Corollary 2.29. Let %9 and X1 be 0-standard surfaces. Suppose there is an isotopy
¢ from ¥g to ¥y that is 0-standard for all t, with V(h|s,) obtained from V(h|s,)
by the isotopy-induced map on TY.. Then the singular banded unlink diagrams Dy
and Dy for Ky and K1 produced by Proposition@ are related by isotopy in E(K)
and slides over Lq.

We can improve Proposition[2.28/by considering the difference between two choices
for V(h|x). First note that if Vp, V} are two such vector fields, then by considering
the expected dimension of the space of flowlines between critical points of a Morse
function on a surface, we find that Vj and V; are isotopic through a sequence V;
of gradientlike vector fields for V(h|y) with the property that for all but finitely
many t, V; satisfies the conditions of Proposition We can take the exceptional
Viyy ..., Vi, to each satisfy the conditions of Proposition except for one unal-
lowed flowline from an index-1 point or self-intersection to another (not necessarily
the same type).

Proposition 2.30. Suppose V; satisfies the conditions of Proposition [2.28 except
for t # 1/2. Let Dy, Dy be the singular banded unlink diagrams obtained from %
as in Proposition [2.28 using Vi, Vi respectively. Then Dy and Dy are related by
isotopy in E(K), slides over Ly, and possibly a band slide, intersection/band slide,
intersection/band pass, or intersection pass.

Proof. Let p, q be the index-1 or self-intersection points in X with a flowline of —V /5
from p to q. The proof of Proposition 2.28 fails for ¥, precisely because p lying
above ¢ in ¥ causes indeterminacy in the 1-skeleton S. There are then two choices
(up to small isotopy through O-standard surfaces) in how to perturb ¥ near p to
obtain a O-standard surface. See Figure The resulting two singular banded
unlink diagrams differ by one of the following moves.
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Figure 13: The cases of Proposition At the left of each quadrant we draw a
local model about the flow line of —V/(hl[s, ,) that causes Proposition to not
apply. At the top right of each quadrant, we draw a schematic of the projection
of ¥y /9 to E(K), where two bands, two self-intersections, or one of each coincide.
We draw arrows to indicate the two diagrams that arise if we perturb X/, to be
O—standard.

band slide p and ¢ are index 1 points
intersection/band slide " p is a self-intersection; ¢ is an index 1 point
intersection/band pass 1 p is an index 1 point; ¢ is a self-intersection
intersection pass p and ¢ are self-intersections.

Letting D, denote the diagram obtained using V; for ¢t # 1/2, we conclude that
Dy 5— and D /5. are either isotopic or isotopic after one of the above moves. The
same is then true of Dy and Dy by Corollary O

The following Proposition and Corollary now follow immediately from Proposi-

tions [2.28] and [2.30L

Proposition 2.31. Suppose 3 is O—-standard. Then there is a singular banded unlink
diagram D determined by ¥, Vh up to isotopy in E(K), slides over Ly, band slides,
intersection/band slides, intersection/band passes, and intersection passes.

Corollary 2.32. Let Xy and X1 be O0-standard surfaces. Suppose there is an isotopy
Y from ¥g to ¥ that is O-standard for all t, with V(h|s,) obtained from V(h|s,)
by the isotopy-induced map on TX. Then Dy and D1 are related by isotopy in E(K),
slides over Ly, band slides, intersection/band slides, intersection/band passes, and
intersection passes.
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2.4. Conclusion: uniqueness of singular banded unlink diagrams.

2.4.1. Singular band moves and isotopy. We are now in a position to prove our main
results.

Theorem 2.33. Let Yo, 31 be O-standard self-transverse immersed surfaces. Sup-
pose there exists an isotopy ¥ so that Xy is 1-standard for all t, and 0-standard for
all t #1/2.

Set Dy :=D(X;). Then Dy and Dy are related by singular band moves.

We break Theorem into Propositions [2.34 in which we separately con-
sider different ways in which 3, may fail to be O-standard.

Proposition 2.34. Suppose that 31 ;5 would be 0-standard if not for a single birth or
death degeneracy. Then Dy and Dy are related by the singular band moves appearing
in Proposition |2.30 and possibly a cup or cap mowve.

Proof. Combined with Proposition|2.32, this is a standard fact about the local model
of a degenerate critical point appearing in a generic 1-parameter family of Morse
functions. See, e.g., [1]. O

Proposition 2.35. Suppose that 31 o would be O-standard if not for the descending
manifold of p with respect to Vh meeting the ascending manifold of q with respect to
Vh, where p and q are each index 1 critical points of hls, or self-intersections of ¥,
and their ascending/descending manifolds intersect in their interiors (rather than
in just 3, as in Proposition @ Then Dy and Dy are related by the singular band
moves appearing in Proposition @ and possibly a band swim, intersection/band
swim, upside-down intersection/band swim, or intersection swim.

Proof. The proof of Proposition fails for 3/, because when we attempt to
project the 1-skeleton of ¥ to h™(3/2), the edges corresponding to p and ¢ will
intersect. There are then two choices (up to small isotopy through O-standard
surfaces) in how to perturb X near p to obtain a O-standard surface. See Figure
The resulting two singular banded unlink diagrams differ by one of the following
moves.

band swim p and ¢ are index 1 points
intersection/band swim i p is a self-intersection; ¢ is an index 1 point
upside-down intersection/band swim p is an index 1 point; ¢ is a self-intersection
intersection swim p and ¢ are self-intersections

We conclude that Dy, and Dy py. are either isotopic or isotopic after one of
the above moves. The same is then true of Dy and D; (up to the relevant moves)

by Corollary d

Proposition 2.36. Suppose that 315 would be 0-standard if not for the descending
manifold of p intersecting the ascending manifold of q, where p is an index 1 critical
point of h|s, or a self-intersection of ¥ and q is an index 2 critical point of h. Then
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Figure 14: The cases of Proposition At the left of each quadrant we draw
a local model about the flow line that causes 3,5 to not be O-standard. At the
top right of each quadrant, we draw a schematic of the projection of ¥; 5 to E(K),
where two bands, two self-intersections, or one of each coincide. We draw arrows to
indicate the two diagrams that arise if we perturb ¥, /5 to be 0-standard.

Do and Dy are related by the singular band moves appearing in Proposition|2.30 and
possibly a band/2-handle slide or intersection/2-handle slide.

Proof. The proof of Proposition fails because we cannot project the edge of
the 1-skeleton of ¥ corresponding to p to the level A~1(3/2). There are then two
choices (up to small isotopy through O-standard surfaces) in how to perturb ¥ near
p to obtain a O-standard surface, with resulting singular banded unlink diagrams
differing by a slide over a 2-handle. That is, the resulting two singular banded unlink
diagrams differ by one of the following moves.

band/2-handle slide p is an index 1 point

intersection/2-handle slide p is a self-intersection

We conclude that Dy/;_. and Dy, are either isotopic or isotopic after one of
the above moves. The same is then true of Dy and D; (up to the relevant moves)

by Corollary O

Proposition 2.37. Suppose that ¥ /5 would be 0-standard if not for the descending
manifold of p intersecting the ascending manifold of q, where p is an index 2 critical
point of h and q is either an index 1 critical point of h|y, or a self-intersection of .
Then Dy and Dy are related by the singular band moves appearing in Proposition[2.30
and possibly a band/2-handle swim or intersection/2-handle swim.
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Proof. The proof of Proposition fails for 3/, because after we project the 1-
skeleton of ¥ to h~1(3/2), the edge corresponding to ¢ will intersect the component of
Ly C K corresponding to p. There are then two choices (up to small isotopy through
O-standard surfaces) in how to perturb 3 near p to obtain a 0-standard surface, with
resulting singular banded unlink diagrams differing by a swim through a 2-handle
attaching circle. That is, the resulting two singular banded unlink diagrams differ
by one of the following moves.

band/2-handle swim el P is an index 1 point
i

intersection/2-handle swim p is a self-intersection

We conclude that D;/;_. and Dy, are either isotopic or isotopic after one of
the above moves. The same is then true of Dy and D; (up to the relevant moves)

by Corollary O

This completes the proof of Theorem since Propositions [2.34H2.37| cover all
of the cases in which ¥/, is 1-standard and not O-standard (of course, if ¥ /5 is
O—-standard then Theorem follows from Corollary except for the case that
there are flow lines of —Vh between index 2 critical points. However, h and Vh are
fixed during the isotopy so this does not happen. O

Corollary 2.38. Let Xg, X1 be O-standard self-transverse immersed surfaces. Sup-
pose there exists an isotopy ¥ and values t1 < ty < -+ < t, € (0,1) so that Xy is
0-standard for all t & {t1,ta,...,tn}, and Xy, is 1-standard for each i =1,2,...,n.

Let Dy := D(Xy). Then Dy and Dy are related by a sequence of singular band
moves.

Proof. For each i =1,...,n — 1, let s; be a value in (¢;,t;11). By Corollary [2.32]

o Dy is related to Ds, by singular band moves,
o Dy, is related to Ds,,, by singular band moves for i =1,...,n — 1,
o Ds, , is related to Dy by singular band moves.

We conclude that Dy and D; are related by singular band moves. O

2.4.2. Proof of uniqueness theorems. We finally prove that singular banded unlink
diagrams of isotopic (resp. regularly homotopic, homotopic) surfaces exist for ar-
bitrary immersed self-transverse surfaces and are well-defined up to singular band
moves. At this point, not much is left to do — the material in Section [2.4]is essentially
the whole proof that diagrams exist and are unique up to singular band moves.

Theorem 2.39. Let 3 be a self-transverse smoothly immersed surface in X. Then
there is a singular banded unlink diagram D(X), well-defined up to singular band
moves, so that 3 is isotopic to the closed realizing surface for D(X). Moreover, if %
is isotopic to ', then D(X) and D(X') are related by singular band moves.

We say that D(X) is a singular banded unlink diagram for X, or simply that D(X)
s a diagram for Y.
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Proof. Via a small perturbation, ¥ is isotopic to a O-standard surface ¥g. Set
D(X) := D(Xg). To show that D(X) is well-defined, suppose that ¥ is another 0—
standard surface that is isotopic to 3, and hence isotopic to ¥g. By Proposition[2.27]
there is an isotopy X; from X to X1 so that ¥, is 1-standard for all ¢ and O-standard
for all but finitely many ¢. By Corollary D(3p) and D(X) are related by
singular band moves.

Since this argument applies to any O-standard surface ¥; isotopic to >, we con-
clude that if ¥ and ¥’ are isotopic, then D(X) and D(X') are related by singular
band moves. O

Corollary 2.40. Let D and D' be singular banded unlink diagrams of surfaces ¥ and
Y immersed in diffeomorphic J—manifolds X and X'. There is a diffeomorphism
taking (X, %) to (X',%) if and only if there is a sequence of singular band moves
and Kirby moves taking D to D'.

In addition, we can use these moves to describe homotopies of surfaces in terms
of singular banded unlink diagrams.

Corollary 2.41. Let D and D’ be singular banded unlink diagrams for surfaces Y
and ¥’ immersed in X. If ¥ and X' are homotopic, then D and D' are related
by a finite sequence of singular band moves and the following moves (illustrated in
Figure @
o Introducing or cancelling two oppositely marked vertices (a “finger move” or
“Whitney move”) as illustrated,
o replacing a nugatory crossing with a vertex, or vice versa, (a “cusp move”)
as wllustrated.

In addition, if ¥ and X' are regularly homotopic, then D and D' are related by
a finite sequence of singular band moves, finger moves, and Whitney moves (i.e., a
sequence of the given moves that does not include any cusp moves.)

Proof. Say ¥ and Y’ are homotopic and have self-intersection numbers s and s,
respectively. By work of Hirsch [11] and Smale [31], 3 and X/ are regularly homotopic
if and only if s = ¢'.

After performing a cusp move on D, a realizing surface for the resulting diagram
has self-intersection s+ 1, with sign depending on the choice of cusp move. Perform
|s" — s| cusp moves of the appropriate sign to D to obtain a diagram D, whose
realizing surface Y2 has self-intersection number s’. Now ¥ and Y are regularly
homotopic.

We recommend the reference [6] for exposition on regular homotopy of surfaces.
In brief, there exists a sequence of finger moves on Y5 along framed arcs 71, ...,7,
yielding a surface X3, and a sequence of finger moves on Y’ along framed arcs
Ny, .., N, yielding a surface ¥, so that 33 and 3" are ambiently isotopic.

We isotope 71 to lie completely in A=1(3/2) (which may involve isotopy of ¥
inducing singular band moves on its singular banded unlink diagram according to
Theorem and then shrink 7; to be short and contained in a neighborhood
identical to the top left of Figure Twist the diagram as necessary so that
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finger move
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Figure 15: The new moves describing homotopy of a surface in a 4—manifold. There
are two versions of the cusp move. One involves a positive self-intersection and one
involves a negative self-intersection of the described immersed surface. To describe
regular homotopy we only need finger and Whitney moves.

the framing of 7 is untwisted. Then we perform a finger move to Dy in that
neighborhood. Repeat for each ¢ = 2,...,n, and call the resulting diagram Ds. A
realizing surface for Djs is isotopic to Xs.

Now repeat for ¥’ by performing singular band moves and finger moves to its
diagram D’ until obtaining a diagram D" whose realizing surface is isotopic to ”.
Since ¥ and Y3 are isotopic, by Theorem [2.39]it follows that D3 and D” are related
by singular band moves.

We thus conclude that D can be transformed into D’ by a sequence of singular
band moves, cusp moves, finger moves, and Whitney moves (which are the inverses
to finger moves). O

Remark 2.42. When performing a finger move to a singular banded unlink dia-
gram, there are seemingly two choices (related by a local symmetry) of how to mark
the new vertices. However, the choices yield diagrams related by singular band
moves, as shown in Figure

3. BRIDGE TRISECTIONS

3.1. Bridge trisections of embedded surfaces. In Section we prove that
self-transverse immersed surfaces in 4-manifolds can be put into bridge position, a
notion introduced for embedded surfaces by Meier and Zupan [26, 27]. Meier and
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Figure 16: There are two seemingly different finger moves (differing in the decora-
tions on the relevant vertices), but they yield singular banded unlink diagrams that
differ by singular band moves.

Zupan showed that a bridge trisection of a surface in S* (with respect to a standard
trisection of $*) is unique up to perturbation [26], using the work of Swenton [32] and
Kearton-Kurlin [22] on banded unlink diagrams in S*. The authors of this paper
then used a general version of this theorem in arbitrary 4—manifolds to show that
bridge trisections of surfaces in any trisected manifold are unique up to perturbation.
In what follows, we will apply Theorem to prove an analogous uniqueness
result for bridge trisections of immersed surfaces. In this section, we will review the
situation where the surface is embedded.

First, we recall the definition of a trisection of a closed 4-manifold. Similar ex-
position can be found in [14]. We do not require much knowledge of trisections; for
more detailed exposition, the interested reader may refer to [8].

Definition 3.1 ([8]). Let X* be a connected, closed, oriented 4-manifold. A (g, k)
trisection of X% is a triple (X1, X2, X3) where

(i) X1UXoU X3 = X4,
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(ii) Xi = hszl X B3,

(111) X; N Xj =0X;N OX] = hgsl X B2,

(iV) XiNXoNX3g= Eg,
where ¥, is a closed orientable surface of genus g. Here, g is an integer while
k = (ki, ko, k3) is a triple of integers. If k; = ko = k3, then the trisection is said to
be balanced.

Briefly, a trisection is a decomposition of a 4-manifold into three elementary
pieces, analogous to a Heegaard splitting of a 3—manifold into two elementary pieces.

Theorem 3.2 ([8]). Any smooth, connected, closed, oriented 4-manifold X* admits
a trisection. Moreover, any two trisections of X* are related by a stabilization
operation.

Note that from the definition, X, is a Heegaard surface for 0X;, inducing the
Heegaard splitting (X; N X;, X; N X;). By Laudenbach and Poénaru [24], X* is
specified by its spine, 3y U;-; (X; N X;). Therefore, we usually describe a trisection
(X1, X2, X3) by a trisection diagram (X4;, 3,7). Here each of a, 5, and 7 consist
of g independent curves on ¥, (abusing notation to take 3, as both an abstract
surface and the surface X1 N X5 N X3 in X), which bound disks in the handlebodies
X1 N X9, X9 N X3, X7 N X3 respectively. Given (X7, Xo, X3), such a diagram is
well-defined up to slides of a, 8,y and automorphisms of ¥,.

Definition 3.3. Let X* be a 4-manifold with trisection 7 = (X1, Xa, X3). We say
that an isotopy f; of X% is T -regular if f;(X;) = X; for each i = 1,2,3 and for all ¢.

Definition 3.4. The standard trisection of S* is the unique (0,0)-trisection (X9,
X9, X9). View S* = R* U oo, with coordinates (x,y,r,6) on R*, where (z,y) are
Cartesian planar coordinates and (r, @) are polar planar coordinates. Up to isotopy,
XY =1{0 € 2r/3-i,2n/3 - (i + 1)]} Uoo. Then X? = B* X9nN X?H = {0 =
27/3 - (i+1)} Uoo = B?, and X) N XJ) N XY = {r =0} Uoco = 52,

From a trisection (X7, X2, X3) of X*, we can obtain a handle decomposition of
X% in which X; contains the 0— and 1-handles, X5 is built from (X; N X3) x [
by attaching the 2-handles, and X3 contains the 3— and 4-handles. The following
definition encapsulates this construction.

Definition 3.5. Let 7 = (X1, Xo, X3) be a trisection of a 4-manifold X*. Let
h: X* — [0,4] be a self-indexing Morse function. We say that h is T -compatible if
both of the following are true.
(i) Xy = h~1([0,3/2]),
(i) Xo C h7Y([3/2,5/2)) contains all of the index 2 critical points of h,
(iii) X1 U X5 contains the descending manifolds of all index 2 critical points of h.

Given any trisection 7, there always exists a Morse function compatible with 7
(see [8] or [25]).

Meier and Zupan used trisections to give a new way of describing a surface
smoothly embedded in a 4-manifold.
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Definition 3.6 (|26 27]). Let 7 = (X1, X2, X3) be a trisection of a closed 4-
manifold X*. Let S be a surface embedded in X*. We say that S is in (b, ¢)-bridge
position with respect to T if for every ¢ # j € {1,2,3},

(i) SN X; is a disjoint union of ¢; boundary parallel disks,
(ii) SN X; N X is a trivial tangle of b arcs.

Here b is an integer and ¢ = (c1,c2,c¢3) is a triple of integers. Note that x(S5) =
Z C; — b.

Theorem 3.7 ([26, 27]). Let S be a surface embedded in a f-manifold X* with
trisection T = (X1, X2, X3). Then for some ¢ and b, S can be isotoped into (b,c)—
bridge position with respect to T. We may take c¢; = ca = c3.

Because a collection of boundary parallel disks in §(S! x B?) is uniquely deter-
mined by its boundary (up to isotopy rel boundary), a surface S in bridge position
is determined up to isotopy by S N (U;x; X; N Xj).

There is a natural perturbation of a surface in bridge position, analogous to
perturbation of a knot in bridge position within a 3-manifold. We define the simplest
version of Meier—Zupan’s original perturbation operation [26] 27].

Definition 3.8. Let S C X* be a surface in (b, c)-bridge position with respect to
T = (X1, X2, X3). Let S be the surface obtained from S as in Figure In words,
we take a small disk D contained in S N X7 whose boundary consists of an arc ¢; in
the interior of X7, an arc d, in X7 N X9, and an arc d3 in X3NX;. We take a parallel
copy A of D pushed off S away from §1, so A meets S in the arc §; C JA and the
remaining boundary of A is an arc ¢’ in X that meets X; N X5 N X3 transversely
in one point. Using the direction from which we obtained A from D, we frame A
and isotope S along A to introduce two more intersection points between S and
X1NX5NX3. We call the resulting surface S’ and say that S’ is obtained from S by
elementary perturbation. We likewise say that S is obtained from S’ by elementary
deperturbation.

We may exchange the roles of X1, X2, and X3 cyclically when performing this
operation, i.e., alternatively obtain S’ from this compression operation in either X5
or X3. We still say S’ is obtained from S by elementary perturbation and that S is
obtained from S’ by elementary deperturbation.

Proposition 3.9. [27, Lemma 5.2] Let S be a surface in (b, c)-bridge position with
respect to a trisection T = (X1, X2, X3), with ¢ = (c1,¢ca,c3). Let S’ be obtained from
S by elementary perturbation, using a disk in X;. Then S’ is in (¢, b+ 1)-bridge
position with respect to T, with ¢; = c¢; for j # i and ¢; = ¢; + 1.

In previous work the authors of this paper showed that any two bridge trisections
of a surface are related by elementary perturbations.

Theorem 3.10 ([14]). Let S and S" be surfaces in bridge position with respect to a
trisection T of a 4-manifold X*. Suppose S is isotopic to S'. Then S can be taken
to S’ by a sequence of elementary perturbations and deperturbations, followed by a
T —regular isotopy.
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Figure 17: Left: A surface S in (b, c)-bridge position with respect to a trisection
T. We draw a neighborhood of an intersection of S with the central surface of 7.
Right: We perturb S to obtain a surface S” in (¢/,b + 1)-bridge position.

When 7 is the standard trisection of S*, Theorem is a result of Meier and
Zupan [26].

3.2. Basic definitions for singular links and immersed surfaces. In Defini-
tion of a bridge trisection of an embedded surface, we cut a 4-manifold into
simple pieces so that an embedded surface is cut into systems of boundary-parallel
disks. To describe immersed surfaces, we need to describe this notion with slightly
different language.

Definition 3.11. Let Cy,...,C) be arcs properly immersed in a 3-manifold M3.
Assume that all intersections (including self-intersections) of C1, . .., C} are isolated
points that are not tangencies. Let V = (OM?) x I be a collar neighborhood of M3
and let h : V — I be projection onto the second factor.
We say that (C1,...,Cy) is a trivial immersed tangle if the following are satisfied.
(i) Each C; is contained in V.
(ii) All self-intersections of C; and intersections of C; with C; are contained in
the interior of M.
(ili) There is an immersed tangle (C1,...,C}) that is isotopic rel boundary to
(Ci,...,Ck) so that h|C! is Morse with a single critical point for all .

Definition 3.12. Let Dq,..., D) be 2-dimensional disks properly immersed in a
4-manifold X*. Assume that all intersections (including self-intersections) of Dy,. . .,
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Figure 18: A singular link in bridge position.

Dy, are isolated, transverse intersections contained in 9X* (so d(UD;) is a singular
link in 0X). Let V = 0X X I be a neighborhood of 0X and let h : V' — I be
projection onto the second factor.

We say that (D1,...,Dy) is a trivial immersed disk system if the following are
satisfied (up to isotopy rel boundary).

(i) Each D; is contained in V.
(ii) The restriction h|D; is Morse with a single critical point for all i.

Trivial immersed tangles and disk systems are the immersed analogue to systems
of boundary parallel embedded tangles and disks. With immersed tangles we can
easily define an analogue of bridge position for singular links.

Definition 3.13. Let L be a singular link in a 3-manifold M with a Heegaard
splitting (Hl, HQ) Let F:= Hi N Ho.

We say that L is in bridge position with respect to F'if LN H; is a trivial immersed
tangle for i = 1,2. See Figure If (L,0) is a marked singular link, then we say
that (L, o) is in bridge position if L is in bridge position.

We can perturb immersed tangles just as we perturb embedded tangles, but we
must also account for vertices.

Definition 3.14. Let L be a marked singular link in a 3—manifold M with Heegaard
splitting (H;, H2). Suppose L is in bridge position with respect to ¥ := Hy U Ho.

Let L’ be a marked singular link obtained from L by perturbation near X, as in
Figure Note that we allow up to one vertex of L to be between the original
intersection of L with ¥ and the newly created pair of intersections. Then we say
L' is obtained from L by elementary perturbation, and L is obtained from L’ by
elementary deperturbation.
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Figure 19: An elementary perturbation of a marked singular link in bridge position.
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Figure 20: A vertex perturbation of a marked singular link in bridge position.

Let L” be a marked singular link obtained from L by moving a vertex in L through
>} as in the local model shown in Figure Then we say L” is obtained from L
(and vice versa) by vertex perturbation.

Theorem 3.15. Let L and L' be isotopic marked singular links in a 3—manifold
M with Heegaard splitting (Hy, Ha). Assume L and L' are in bridge position with
respect to ¥ := Hy N Hy. Then there exists a marked singular link L" that can
be obtained from L and from L' by sequences of elementary perturbations, vertex
perturbations, and isotopies fixing X setwise.

Proof. When L and L’ are nonsingular, this is a theorem of Hayashi and Shimokawa [10].Jj
We will apply a version of this theorem for nonsingular banded links due to Meier
and Zupan [26] 27] by using the following observation. First, recall from Section [2.1]
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that if L is a marked singular link, then L™ denotes the nonsingular link obtained
by positively resolving the vertices of L.

Observation 3.16. There exist disjoint framed arcs ay,...,a, with endpoints on
LT so that contracting L™ along a1, ...,a, yields L.

Similarly let a},...,a/, be framed arcs with endpoints on L'" so that contracting
L't along d), ..., d, yields L.

Now by Meier and Zupan |26} [27], there exists a link J that can be obtained from
L* and from L'" by elementary perturbations and isotopies fixing ¥ setwise. More-
over, these isotopies and perturbations may be chosen to carry a; and a) to framed
arcs b;, b} (respectively) with endpoints on J, so that b;, b, are parallel to ¥ with
surface framing, and are parallel to each other (though possibly on opposite sides of
Y)). In Meier and Zupan’s construction, during this sequence of perturbations and
isotopies of L™ (resp. L’ +), a; (resp. a}) never intersect X, so these perturbations
and isotopies may be achieved by perturbations and isotopies of L (resp. L'). Let
J and J’ be the marked singular links obtained by contracting J along Ub; and
Ub,, respectively, and with markings induced by those of L and L’. Then J’ can
be transformed into .J by isotopy fixing . and a vertex perturbation for each pair
a;, a; separated in different components of M \ X. Therefore, the claim holds with
L"=J. O

3.3. Bridge trisections of immersed surfaces. We now use the definitions from
Section to define bridge trisections of self-transverse immersed surfaces.

Definition 3.17. Let 7 = (X1, X2, X3) be a trisection of a closed 4-manifold X*.
Let S be a self-transverse immersed surface in X4. We say that S is in (b, ¢)-bridge
position with respect to 7T if for each i # j € {1, 2,3},

(i) SN X; is a trivial immersed disk system of ¢; disks,
(ii) SN X; N X; is a trivial immersed tangle of b strands.

Here, b is a positive integer and ¢ = (c1, ¢2,c3) is a triple of positive integers.

In Figure we give some small examples of bridge trisections of 2—spheres
immersed in S*.

There is again a natural notion of perturbing an immersed surface in (b, ¢)-bridge
position. More precisely, the notion of perturbing an embedded surface in bridge
position works perfectly well for an immersed surface in bridge position. We write
the definition below, believing that the value of transparency outweighs the cost of
redundancy.

Definition 3.18. Let S be a self-transverse immersed surface in bridge position
with respect to a trisection 7 = (X1, X2, X3). In Figure we depict a small
neighborhood of a point in SN Y, for ¥ := X; N X2 N X3. Let S’ be the surface
obtained from S as in Figure We say that S’ is obtained from S by elementary
perturbation, and that S is obtained from S’ by elementary deperturbation.
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J m@

Figure 21: Two ((2,1,1),2)-bridge trisections of immersed 2-spheres in S*. Left:
This 2—sphere has a pair of self-intersections of opposite sign. Right: This 2—sphere
has a single self-intersection.

If S is in bridge position with respect to a trisection 7 = (X1, X2, X3), then
elementary perturbation and 7-regular isotopy cannot move a self-intersection of
S from X; to X; for @ # j. Thus, we introduce one new kind of perturbation for
immersed surfaces in bridge position, based on the most elementary way one might
move a self-intersection of S from X; to Xj.

Definition 3.19. Let v be a vertex of the singular link SNX;NX;; for some i (where
the indices are understood to be taken mod 3), so that v is a self-intersection of S.
Suppose v has a neighborhood as in Figure so that v is near ¥ := X1 N Xo N X3.
We may isotope S to move v into ¥ and then into either X;.1 N X;40 or X; 1N X,
producing a new surface S’ in (b, ¢)-bridge position. See Figures and We say
that S’ is obtained from S (and vice versa) by vertex perturbation.

Remark 3.20. Let S be an immersed surface in (b; ¢y, co, c3)-bridge position with
respect to T = (X1, Xo, X3).
(1) If S’ is obtained from S by elementary perturbation along a disk in X;, then
S"is in (b+1; ¢}, ch, c3)-bridge position with ¢; = ¢;+1 and ¢} = ¢; for j # i.
(2) If S’ is obtained from S by vertex perturbation, then S’ is in (b; 1, co,c3)—
bridge position.

Definition 3.21. If a surface S’ in bridge position with respect to a trisection T
is obtained from a surface S in bridge position with respect to 7 by a sequence
of elementary and vertex perturbations, then we simply say that S’ is obtained
from S by perturbation (with 7 implicit). If S’ is obtained from S by a sequence of
elementary perturbations and deperturbations and vertex perturbations, then we say
that S is obtained from S (or “related to S”) by perturbation and deperturbation.
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X, NX; X; N X XpN X,
vertex
perturbation

L A A,

Figure 22: A vertex perturbation of a triplane diagram.

Theorem 3.22. Let S be a self-transverse immersed surface in a 4-manifold X*
with trisection T = (X1, X2, X3). Then for some ¢ and b, S can be isotoped into
(b, ¢)-bridge position with respect to T .

Proof. Let h be a self-indexing Morse function of X* that is 7-compatible. Let
(L, B) be a singular banded unlink diagram for S, so L is a singular link in M :=
h=%(3/2), and B is a set of bands for L in M. Let Hy := X3N Xy, and Hy := X1NXo,
so that ¥ := Hy N Hy is a Heegaard surface for M.

By dimensionality, we may isotope L, B to be contained in ¥ x [-1,1] ¢ M
(i.e., we isotope L and B to avoid a 1-skeleton of H; and Hs), with ¥ x [—1,0] C
Hq,% x [0,1] C Hs. Isotope L so that the vertices of L are disjoint from X, and so
that B consists of short straight bands parallel to ¥ in Hy that are far from each
other, as in Figure 24| (ii). Let 7 : ¥ x [0, 1] — [0, 1] be the projection, and perform
a small isotopy of L so that 7|f, is Morse. Isotope the index 0 critical points of 7|z,
vertically with respect to m to be contained in H;, and the index 1 critical points of
m|, vertically with respect to 7 to be contained in Ha, isotoping horizontally first if
necessary to avoid introducing self-intersections of L or intersections of L with B.
Now L is in bridge position with respect to 3. Perturb L near again near 0B as in
Figure [24] (iv), and isotope all bands in B to lie in Ho.

By Theorem S is isotopic to S := X(L, B). We investigate the intersections
of S’ with the pieces of T.

(i) 8N X; = S Nnh1(3/2) consists of the minimum disks of S’. All self-
intersections of S’ are contained in 9X;.
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Figure 23: Pushing a self-intersection point from X; N X; to X; N X}, during a vertex
perturbation.

(ii) S’ N X5 contains the index 1 critical points of h|g. This surface is built
from the singular tangle L N Hs by extending vertically and then attaching
bands according to B. By construction, these bandings are trivial and the
components of S’ N X5 are boundary-parallel away from the intersections.

(iii) S’ N X3 contains the maximum disks of h|g/. In particular, (X3, S’ N X3) can
be strongly deformation retracted to (h=1([5/2,4]), S’ N h=1([5/2,4])).

(iV) S'"NXi1NXy=LNHs.

(v) 8N X5 N X3 is equivalent to the tangle obtained from Lt N Hy by surgery
on B.

(vi) "N X3N X, = LN H;. Note the reversed orientation; this is because H;
is oriented as being in the boundary of X7, but X3 N X; is oriented as the
boundary of Xj.

We conclude that S’ is in (b, ¢)-bridge position with respect to 7 for some b,c. [
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3.4. Bridge splittings of singular banded links. The proof of Theorem [3.22
motivates the following definition.

Definition 3.23. Let L be a singular link in a 3-manifold M, and let B = by,...,b,
be a set of bands for L. Let F' be a Heegaard surface for M. We say that the singular
banded link (L, B) is in bridge position with respect to F' if L is in bridge position
with respect to F', and each band b; is contained in a 3-ball U; as in Figure with
UiﬂUj:@fori#j.

The proof of Theorem [3.22] can be broken down into the following two lemmas,
which are useful to state directly.

Lemma 3.24. Let L be a singular link in a 3—manifold M, and let B be a set of
bands for L. Fixz a Heegaard surface F' for M. Then (L, B) can be isotoped to lie in
bridge position with respect to F.

Lemma 3.25. Let T = (X1, X2, X3) be a trisection of a 4-manifold X*. Let h
be a T —compatible Morse function on X*, and K a Kirby diagram induced by h
and a gradient-like vector field Vh. Then Hi = X3N X1 and Hy = X1 N Xo give
a Heegaard splitting (Hy, Ha) for h=1(3/2), in which ¥ := Hy N Hy C E(K) is a
Heegaard surface.

Suppose a banded unlink (IC, L, B) is in bridge position with respect to ¥. Then
a realizing surface X(KC, L, B) is in bridge position with respect to T .

Definition 3.26. Let S be a self-transverse immersed surface in a 4-manifold X4
with trisection 7 = (X7, X2, X3). Assume S is in (b, ¢)-bridge position. We call the
triple of singular marked tangles (77, T2, T3) = (SNX1NX2, SNX2NX3, SNX3NX7)
a bridge trisection diagram of S. The markings of each tangle should be chosen so
that:

o In Xj;, cross-sections of S are the negative resolution of S N X; N X; 1.
o In Xj, cross-sections of S are the positive resolution of SN X;_1 N X;.

Note that we choose the marking convention to be symmetric with respect to
the trisection, even though in the construction of Theorem we used a Morse
function h in which the pieces X1, X, X3 were not symmetric. If (L, B) is a singular
banded unlink diagram for S and we follow the construction of Theorem then
we obtain a bridge trisection diagram (77, 7%, T3) of S with:

(i) Ty = L N Hy with markings agreeing with those of L,
(ii) T = (L N Ha)$,

(iii) T3 = L N H; with markings opposite those of L.

We include a local example in Figure

From a bridge trisection diagram of S, we can reconstruct a surface that is am-
biently isotopic to S as usual. For convenience (to mirror the construction in The-
orem , it is more convenient to assume all self-intersections lie in H; and Ho
(i.e., in 0X; and not in Xy N X3).
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(i) (K, L,B) (i4) B C Hy parallel to ¥

(24i) L in bridge position with respect to ¥ (iv) extra perturbations at OB

Hy =X1NX, Hs; = XoNX3

F1=X30X1

(change markings)

Figure 24: We illustrate how a surface that realizes a banded unlink diagram
(K, L, B) may be isotoped to lie in bridge position. See the proof of Theorem
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F

Figure 25: If a singular banded link (L, B) is in bridge position with respect to a
Heegaard surface F', then every band in B has a neighborhood as pictured here.
That is, every band in B has a neighborhood U containing two components C7, Cy
of L'\ F' (on which B has ends), meeting F' in a disk, and not meeting any other
bands in B or other components of L\ F. Moreover, C; U Cs U B may be isotoped
rel (C1 U Cy) in U to lie in F.

Lemma 3.27. Let S be a self-transverse immersed surface in a 4—manifold X* that
is in bridge position with respect to a trisection T = (X1, X9, X3). Assume that S
has no self-intersections in Xo N X3.

Let h be a T —compatible Morse function on X4, and fix a gradient-like vector field
Vh inducing a Kirby diagram K. Then there is a singular banded unlink diagram
(K,L,B) so that (L, B) is in bridge position with respect to the Heegaard surface
Y=X1NXoNX3 C E(K), and S is T -regularly isotopic to the surface (K, L, B).

Proof. Isotope S to be O-standard (with respect to h, Vh). Since S is in bridge
position, we may take this isotopy to be T-regular.

Let L:=SNh=(3/2). (Recall h~(3/2) = 0X; = Hy U Hs, where H; = X3N X
and Hy = X7 N X2). Then L is a singular link whose vertices are either in Hj or
H;. Mark L so that the negative resolutions of the vertices in H; and the positive
resolutions of the vertices in Hy correspond to the resolutions of the immersed disk
system S N X;. Then L is a marked singular link and L~ is an unlink.

NQVW S N Xy is a trivial immersed disk system with all intersections in X7 N Xo.
Let X3 be obtained from X3 by deleting a small neighborhood of each intersection,
so that X is still a Zbdimensional Phandlebodyl but S N X5 is a trivial embedded
disk system D. Let Hs denote the closure of (0X3) \ (X2 N X3).

Now D is a collection of boundary parallel disks in )~(2, and 8)?2 has a Heegaard
splittings (Hs, X5 N X3), which in respect to dD is in bridge position. We proceed
as in 26, Lemma 3.3]: for each component D; of D, let a; be one component of
0D \ (X2 N X3). Then let y; be an arc in 0Xo parallel to 9D; \ a; with endpoints on
0D, with framing induced by D;. Isotope y; in X5 into the Heegaard surface for
0Xy, twisting y; around 0D as necessary so that the framing of y; agrees with the
framing induced by the Heegaard surface. Finally, project y; to 0Xs, push slightly
into Ho, and thicken (according to the framing of y;) to obtain a band attached to
SN Hy (i.e., a band b; in h~1(3/2) attached to L, with b; in Hy parallel to Hy N Hy).

Repeat this for every component of D to obtain a collection B of bands for L. By
construction, L} is an unlink when projected to h=1(5/2). More specifically, in K
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Figure 26: Top row: Part of a singular banded unlink in bridge position. Second
row: We obtain the singular tangles 17,75, T3 as in Definition Third row:
The singular links that are the intersection of the associated bridge trisected surface
with 0X1,0X5,0X3. Bottom row: We draw the resolutions of these tangles in the
interiors of X7, X9, X3. Note that vertices in X; N X; 41 are resolved negatively into
X, while vertices in X;_1 N X; are resolved positively into Xj.

the link L}; (projected to h~1(5/2)) can be made to agree with the link SNh~1(5/2)
via an isotopy rel boundary in Hs and slides in Hy over curves in K.

We conclude immediately that (K, L, B) is a singular banded unlink for some
surface S’ := X(K, L, B) in X. Moreover, S’ is in bridge position with respect to T,
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and by the above paragraph can be T-regularly isotoped so that it agrees with S
in X; N X; for all 4 # j. Therefore, S and S’ are T-regularly isotopic. O

Remark 3.28. Fix a trisection 7 = (X1, X2, X3) of X, a T—compatible Morse
function h, and a gradient-like vector field Vh, so that (h,Vh) induce a Kirby
diagram K of X in which ¥ := X; N Xo N X3 is a Heegaard surface. Definition
and Lemma [3.27 can be combined to form the following equivalence.

{bridge trisections w.r.t 7 with no self-intersections in Xo N X3}

T -regular isotopy

!

{SBUDs in K in bridge position w.r.t X}
singular band moves preserving > setwise

The restriction of bridge position to not include self-intersections in Xo N X3 is
merely a diagrammatic convenience from the viewpoint of singular banded unlinks
diagrams (SBUDs).

Lemma 3.29. Let S be in bridge position with respect to T = (X1, Xo, X3). There
exists a sequence of perturbations of S yielding a surface S’ in bridge position so
that S" has no self-intersections in Xo N X3.

To inductively prove Lemma it is clearly sufficient to prove the following
proposition.

Proposition 3.30. Suppose there are n > 0 self-intersections of S in XoaNXs. Then
after T —reqular isotopy of S, there is a surface S’ obtained from vertex perturbation
on S so that S" has n — 1 self-intersections in Xo N X3.

Proof. Following from Definition of a trivial immersed tangle, some T-regular
isotopy of S can arrange for the tangle T" = S N X5 N X3 to lie inside a collar
neighborhood ¥ x I € X2 N X3 of (X3 N X3) = 3, so that projection to the I
factor is Morse on 7" with one maximum on each arc component. Further isotope
so that the self-intersections of S in X x [ lie at different values of the I factor.
In particular, one self-intersection c¢ lies strictly closest to . Then by 7-regular
isotopy of S near ¥ (sometimes called “mutual braid transposition” when performed
diagramatically), we can arrange for ¢ to have a neighborhood as in Figure and
thus apply a vertex perturbation to S to obtain a surface S’ with one fewer self-
intersection in Xo N X3. ]

3.5. Uniqueness of bridge trisections of immersed surfaces. Perturbation of
bridge trisections is conveniently very similar to perturbation of a banded link in
bridge position. When perturbing a banded link (L, B) with respect to a Heegaard
surface 3, we allow at most one band and one vertex to be between the intersec-
tion of L and > at which the perturbation is based and the two newly introduced
intersections. See Figure
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Figure 27: When performing a perturbation on the diagram in the top left we allow
the blue arc to intersect at most one band and one vertex, as shown in the other
three diagrams.

Lemma 3.31. Let T = (X1, X2, X3) be a trisection of a 4-manifold X*. Let h be
a T —compatible Morse function on X*, and K a Kirby diagram induced by h. Let
H, := X3N X1 and Hy := X1 N Xo give the usual Heegaard splitting (Hy, Ha) for
IC, in which ¥ := Hy N Hy is the Heegaard surface.

Suppose a singular banded unlink diagram (IC,L,B) is in bridge position with
respect to .. Let (K, L', B') be obtained from (K, L, B) by perturbation near L N 3.
Then (K, L', B') can be obtained from (K, L, B) by perturbation followed by T -
regular isotopy.

Proof. See Figure 28| (top). O

Lemma 3.32. Let T = (X1, X2, X3) be a trisection of a 4-manifold X*. Let h be
a T —compatible Morse function on X*, and K a Kirby diagram induced by h. Let
Hy := X3N Xy and Hy := X1 N Xo give the usual Heegaard splitting (Hq, Hy) for
IC, in which 3 := Hy N Hy is the Heegaard surface.

Suppose a singular banded unlink diagram (IKC,L,B) is in bridge position with
respect to ¥ and that v is a vertex of L that is close to ¥ as in Figure [20. Let
(K, L',B") be obtained from (K,L,B) by isotoping v through ¥. (We call this a
vertex perturbation of the banded link (L, B)). Then (K, L', B") can be obtained
from X(K, L, B) by one vertex perturbation followed by T —regular isotopy.

Proof. See Figure |28 (bottom). O

The following uniqueness of bridge splittings of banded links motivates the unique-
ness of bridge trisections.

Theorem 3.33. Let (L, B) and (L', B') be isotopic banded singular marked links in
a 8-manifold M that has a Heegaard splitting (Hy, Hy). Assume that both (L, B)
and (L', B') are in bridge position with respect to ¥ := Hy N Hy, and that B and B’
are both contained in Hy. Then there exists a banded singular marked link (L, B")
in bridge position with respect to ¥ that can be obtained from both (L, B) and (L', B)
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Figure 28: Perturbation of a singular banded unlink (L, B) in bridge position in-
duces perturbation of ¥(L, B). Top: Elementary perturbation. Bottom: Vertex
perturbation.

by sequences of elementary perturbations, vertex perturbations, and isotopies that fix
> setwise.

Theorem [3.33] is similar to a theorem for nonsingular banded links due to Meier
and Zupan [26, 27].
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Remark 3.34. Meier and Zupan study banded links by viewing each band as a
framed arc with endpoints on a link. They give moves to perturb a link in order
to make these framed arcs parallel to a bridge surface with correct framing. In the
setting of singular banded links, we are able to use their proof by viewing both self-
intersections and bands as framed arcs, applying the theorem, and then contracting
the self-intersection arcs to yield a singular link in bridge position.

Proof. Asin Theorem [3.15] there exist disjoint framed arcs aq, . . ., a,, with endpoints

on L™ so that contracting L™ along a1, ..., a, yields L. Similarly, there exist framed
arcs al, ..., al, with endpoints on L't so that contracting L'" along a/, . .., a/, yields
L.

Now by Meier and Zupan [26, [27], there exists a link J that can be obtained
from L1 and from L't by elementary perturbations and isotopies fixing ¥ setwise.
Moreover, these isotopies and perturbations carry a; and a to framed arcs b; and b}
(respectively) with endpoints on J, so that b;, b} are each parallel to ¥ with surface
framing, and either agree or could be isotoped to agree if the endpoints of b were
allowed to pass through ¥ (i.e., b; and b are parallel and both lie close to X, but
potentially on opposite sides). Moreover, during the perturbations and isotopies of
Lt (resp. L'Y), a; (resp. a}) never intersect X, so these perturbations and isotopies
may be achieved by perturbations and isotopies of L (resp. L').

Meier—Zupan’s proof allows us to not only control the framed arcs a;, af, but
also the framed arcs that are the cores of the bands B and B’. That is, by perhaps
perturbing J even further, we may also assume that B and B’ are taken to bands By,
and B’; whose i-th bands either agree or are parallel and close to X but on opposite
sides, and that (J, By), (J, B) are both in bridge position. Let J and J’ be the
marked singular links obtained by contracting J along b; and b}, respectively, and
with markings induced by L and L’. Then J' can be transformed into J by isotopy
fixing ¥ and a vertex perturbation for each pair a;,a; in different components of

M \ X. Therefore, the claim holds with L” = J, and B" = By. O

Corollary 3.35. If D = (L,B) and D' = (L', B’) are isotopic banded unlink di-
agrams that are each in bridge position with respect to %, then S := X(D) and
S’ := (D) are related by elementary perturbation and deperturbation, vertex per-
turbation, and T —regular isotopy.

Proof. By Theorem @, D and D’ are related by a sequence of elementary pertur-
bations and deperturbations, vertex perturbations, and isotopies fixing ¥ setwise.
It is therefore sufficient to show that the claim is true if D’ is obtained from D by a
single one of these moves. We have already shown the claim to be true when D’ is
obtained from D by either a perturbation/deperturbation (Lemma, or a vertex
perturbation (Lemma . So suppose that D’ is obtained from D by an isotopy
ft of M that fixes X setwise.

The surface Y35 := X is a separating surface in M = h=1(3/2). For every
t € [0,4], there is a separating surface ¥; in h=1(¢) that is vertically above or below
Y. Then f; can be extended to a horizontal isotopy of the whole 4-manifold X*
that fixes every >; horizontally. Since all index 2 critical points of h are contained
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in one component of X4\ U;3;, this isotopy can be chosen to take S to S’. Since
this isotopy is horizontal, it fixes X1 = h=%(]0,3/2]) and Xo U X3 = h~1([3/2,4])
setwise. Since this isotopy fixes Xo N X3 = U3/ 43¢ setwise, it also fixes X5 and
X3 setwise. Therefore, this is a 7—regular isotopy. O

The main theorem of this section is that bridge position and hence bridge trisec-
tion diagrams are essentially unique. The proof uses Theorem [2.39

Theorem 3.36. Let S and S’ be self-transverse immersed surfaces in bridge position
with respect to a trisection T = (X1, X2, X3) of a closed 4-manifold X*. Suppose S
is ambiently isotopic to S'. Then S can be taken to S’ by a sequence of elementary
perturbations and deperturbations, vertex perturbations, and T —regular isotopy.

Proof. Let h : X — [0,4] be a T-compatible Morse function on X*. Let K be
a Kirby diagram for X induced by h and a fixed choice of Vh. As usual, we view
¥ = X1NXsNXj3 as a Heegaard surface for the ambient space of K, with the dotted
circles of IC contained in one handlebody H; of this splitting and the 2-handle circles
of JC contained in the other handlebody Ho.

By Lemma we may T -regularly isotope and perturb S and S’ so that they
do not include self-intersections in X9 N X3. Then by Lemma there are banded
unlink diagrams D := (K, L, B) and D’ := (K, L', B') so that (L, B) and (L', B) are
in bridge position with respect to ¥ and so that S and S’ are T-regular isotopic to
Y(D) and X(D'), respectively.

By Theorem D and D’ are related by a sequence of singular band moves.
By Corollary if D and D’ are isotopic, then the theorem holds.

Assume that D’ is obtained from D by one singular band move (other than iso-
topy). We will show that S’ and S become T-regular isotopic after some sequence
of perturbations and deperturbations. The theorem will then hold via induction on
the length of a sequence of band moves relating D and D’.

Meier and Zupan [26] previously showed that the claim holds when the move
turning D into D’ is a cup, cap, band swim, or band slide. The authors of this
paper [14] showed the claim is true when the move is a 2-handle/band slide, 2-
handle/band swim, or dotted circle slides. These arguments were technically only
made for nonsingular banded unlinks, so we repeat them in the singular setting for
clarity, often repeating Meier and Zupan’s arguments. In the following paragraphs,
we now consider every singular band move that might transform D into D’.

1. Intersection/band pass. Suppose D’ is obtained from D by an intersection/band
pass along a framed arc z in L between a vertex of L and a band in B. Isotope
(L, B) so that z is as in the top left of Figure Then isotope the rest of L and
B outside a neighborhood of z to obtain a banded link (L”, B”) in bridge position.
This banded singular link is isotopic to (L, B), so by Corollary[3.35/5" := X(L", B")
is obtainable from S by (de)perturbations and T -regular isotopy. Let (L, B"") be
obtained from (L”, B”) by performing the intersection/band pass along z, and let
S" = X(L",B"). Now the intersection of S"” with each X; N X is isotopic rel
boundary to the intersection of S” with X; N X, so S is T-regular isotopic to
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Figure 29: Left: The singular banded unlink (L, B") is obtained from (L”, B”)
by an intersection/band pass. Right: We show that X(L", B”) (bottom) may be
obtained from X (L”, B") (top) by two vertex perturbations and 7 -regular isotopy.

S”.  Finally, by Corollary we find that S” can be transformed into S’ by
(de)perturbations and T-regular isotopy.

2. Intersection/band slide. Suppose D’ is obtained from D by an intersection/band
slide along a framed arc z in L between a vertex of L and a band in B. Isotope
(L, B) so that z is short and contained in Hs in a neighborhood as in Figure
Then isotope the rest of L and B outside this neighborhood to obtain a banded
link (L”,B"”) in bridge position. This banded singular link is isotopic to (L, B),
so by Corollary [3.35 S” := X(L”,B”) is obtainable from S by (de)perturbations
and T-regular isotopy. Let (L, B"") be obtained from (L”, B”) by performing the
intersection/band slide along z, and let S := %(L”, B"). In Figure [30, we show
that S” can be obtained from S” by perturbation and T-regular isotopy. Finally, by
Corollary [3.35/ S” can be transformed into S’ by (de)perturbations and 7-regular
isotopy.

3. Cup. Suppose D' is obtained from D by a cup move. It does not matter in which
direction we take the move, so assume that L’ is obtained from L by adding a new
unlink component O contained in a ball not meeting L or B, and B’ is obtained
from B by adding a trivial band bo from L to O. By isotopy and intersection/band
passes, we may take O to be in 1-bridge position with respect to X, and bp to
be in Hs, contained in a neighborhood as in Figure Performing the cup move
yields a diagram D” that is related to D’ by isotopy and intersection/band passes;
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Figure 30: Left: The singular banded unlink (L, B"') is obtained from (L”, B")
by an intersection/band slide. Right: We show that X(L"”, B”") (bottom) may be
obtained from X (L”, B") (top) by two vertex perturbations and 7 -regular isotopy.

by Corollary [3.35 and the already-considered intersection/band pass case, %(D")
can be transformed into S’ by perturbation and 7-regular isotopy. Finally, we
observe that X(D") is obtained from the (perturbed) surface S by perturbation (see

Figure .

4. Cap. Suppose D’ is obtained from D by a cap move. Again, it does not matter
in which direction we take the move, so assume that L' = L and B’ is obtained
from B by adding a trivial band b. By isotopy and intersection/band passes, we
may take b to have a neighborhood as in Figure Performing the cap move yields
a diagram D" that is related to D’ by isotopy and intersection/band passes; by
Corollary @ and the case for intersection/band pass, ¥.(D”) can be transformed
into S” by perturbation and 7-regular isotopy. Finally, we observe that (D) is
obtained from the (perturbed) surface S by perturbation and deperturbation (see

Figure .

5. Band swim. Suppose D' is obtained from D by a band swim. Isotope D to obtain
a diagram in which the band swim looks as in Figure Perform the band swim
to obtain a diagram D” that is related to D’ by isotopy; by Corollary [3.35 and the
intersection/band swim case, (D) can be transformed into S’ by perturbation and
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Figure 31: Left: The singular banded unlink (L, B"') is obtained from (L”, B")
by a cup move. Right: We show that X(L"”, B”) (bottom) may be obtained from
Y(L", B") (top) by an elementary perturbation and 7T -regular isotopy.

XsN Xy X1 N Xo XoN X3
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> ||
l perturb along a disk in X3
H2 \ perturb along a disk in X,
LA lnl nm &

A

Figure 32: Left: The singular banded unlink D” is obtained from D by a cap move.
Right: We show that X(D”) (bottom) may be obtained from (D) (top) by an
elementary perturbation and deperturbation and 7-regular isotopy.
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Figure 33: Left: The singular banded unlink D” is obtained from D by a band
swim. Right: We show that X(D") (bottom) may be obtained from (D) (top) by
T-regular isotopy.

T-regular isotopy. Finally, we observe that X(D”) is obtained from the (perturbed)
surface S by T-regular isotopy (see Figure .

6. Band slide. Suppose D’ is obtained from D by a band slide. Isotope D to obtain
a diagram in bridge position in which the desired band slide looks like Figure By
Corollary [3.35, the effect on S can be achieved by (de)perturbation and 7-regular
isotopy. Call the result of the band slide D”; by Corollary [3.35 the surface $(D”)
can be transformed into S’ by (de)perturbation and 7-regular isotopy. In F igure@],
we observe that ¥(D”) is obtained from S by perturbation and deperturbation.

7. 2-handle/band slide. Suppose D’ is obtained from D by sliding a band over a
2-handle via a framed arc z between a band in B and a 2-handle attaching circle
in KC. As in the band slide case, we may perturb D so that z is contained in Hy (See
Figure [35). Now performing the slide along z yields a diagram D" that is related
to D’ by isotopy; by Corollary [3.35] the surface X(D”) can be transformed into S’
by perturbation and 7-regular isotopy. Finally, we observe that 3(D") is obtained
from the (perturbed) surface S by T-regular isotopy supported in Xy and Xs.

8. 2-handle/band swim. Suppose D’ is obtained from D by swimming a 2-handle
through a band. Isotope D’ so that the swim looks like the one in Figure By
Corollary this can be achieved by (de)perturbations and 7 -regular isotopy
of S. Now performing the swim along z yields a diagram D” that is related to
D' by isotopy; by Corollary [3.35 the surface X(D”) can be transformed into S’ by
perturbation and 7T-regular isotopy. Finally, we observe that X(D”) is obtained
from the (perturbed) surface S by T-regular isotopy supported in Xy and Xs.
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Figure 34: Left: The singular banded unlink D” is obtained from D by a band
slide. Right: We show that X(D") (bottom) may be obtained from (D) (top) by
an elementary perturbation and deperturbation and T-regular isotopy.
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Figure 35: Left: The singular banded unlink D” is obtained from D by a 2-
handle/band slide. Right: We show that 3(D”) (bottom) may be obtained from
¥(D) (top) by T-regular isotopy.
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X530 X, XN X XoN Xs

Figure 36: Left: The singular banded unlink D” is obtained from D by a 2-
handle/band swim. Right: We show that 3(D") (bottom) may be obtained from
¥(D) (top) by T-regular isotopy.

9. Slide of a band or L over a dotted circle. This follows from Theorem [3.33] as
slides over dotted circles are simply isotopies of the banded link (L, B) in Msz/,. [

4. SOME EXAMPLE APPLICATIONS

In this (comparatively short) section, we give a few sample applications of the
diagrammatic theory of singular banded unlink diagrams.

4.1. Calculating the Kirk invariant. In [30], Schneiderman and Teichner clas-
sified all 2-component spherical links in S* up to link homotopy using the Kirk
invariant o;(Fy, Fp) = X(F;, F}). Here ¢ € {1,2}, F/ is a parallel push off of Fj,
and A(Fj, F}) is Wall’s intersection invariant. Furthermore, F; denotes an oriented
immersed 2-sphere in S%, with F} and F, disjoint. The Kirk invariant takes values
in Z[Z) = Z[z*).

Schneiderman—Teichner showed that the set of all 2-component spherical links
in S* up to link homotopy is a free R-module, where R = Z[z1, 22]/(2122) is freely
generated by the Fenn—Rolfsen link F'R depicted in Figure

In this subsection, we show how to compute the Kirk invariant of F'R. This
computation can be adapted to compute Wall’s self-intersection invariant for general
2—component spherical links in arbitrary closed orientable 4-manifolds. Since F'R
has a symmetry between its two components that reverses the orientation on one
component, we have 0o = —o; and thus only compute o;.

Consider the singular banded unlink diagram of FR = F} L F5 as in Figure
Choose a basepoint p far away from F'R and an arc v from p to a point ¢ in F.
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Figure 37: The Fenn—Rolfsen link. At the indicated points with arrows, a positive
basis of the normal bundle is (wy, w2), where w; is the drawn arrow pointing upward
and w9 points out of the page toward the reader.

Figure 38: A parallel pushoff F| of F} that intersects Fj transversely in 4 points
yielding vertices vy, vo,vs, v4 in the singular banded unlink diagram. The intersec-
tions respectively have signs s,, =1, 84, = —1, 8y, = —1, 5y, = 1.

Take a pushoff F| of Fj that transversely intersects F; simultaneously push off v
to obtain an arc 4’ from p to a point ¢’ of F}.

We thus have two parallel arcs 7/ and + from p to FJ and from p to Fy, respectively
(as in Figure . Now delete a neighborhood of F» as in Figure

Pick a vertex v between the diagrams of Fy and F}, and choose arcs 1,7’ contained
in Fy and FY| (respectively), from ¢ and ¢’ (respectively) to v. Let C, be the based
loop obtained by concatenating ~y, n, —n’, —7'. There are four vertices vy, vy, v3, v4
shared between the diagrams of Fj, and FY; see Figure for potential loops C),
for all © = 1,2, 3,4. Note that each loop might pass through the other intersections
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Figure 39: We delete a neighborhood of F5. The resulting singular banded unlink
diagram of F} U F] is in a Kirby diagram with one 1-handle and one 2-handle.

Figure 40: The loops Cy,,Cy,, Cy,, and C,, respectively represent the elements
0,1,—1, and 0 in Hy(S*\ ) = Z.

in the singular banded unlink diagram, but we always can perturb each loop a little
bit on the actual surface F'R to miss the intersections.

Now each loop C,, represents some element of Hy(S*— F,) = Z. In addition, each
vertex has a sign s,, € {—1,+1} given by the sign of the corresponding intersection
of Fy and Fy, which agrees with the sign of the crossing when the marking is resolved
negatively. The values of [C),] and s,, are as follows:
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The Kirk invariant o; is then given by
4
AFR) = Y sl = s w2

i=1
The above computation generalizes for any singular banded unlink diagram of a
2-component spherical link (Fy, Fp) in S%; use whiskers from a basepoint p to F}
and a parallel pushoff F] intersecting Fj in vy, ..., v, to form a loop C,, for each v;
representing [Cy,] € H1(S \ Fy) = Z. Then oy (Fy, Fy) = 37 sy, 2[Cuil.

4.2. Immersed surfaces and stabilization. Hosokawa and Kawauchi [13] showed

that any pair of embedded oriented surfaces in S* become isotopic after some number
of stabilizations.

Definition 4.1. Let F' be a connected, self-transversely immersed genus g oriented
surface in S*. Let v be an arc with endpoints on F' and which is normal to F near
0v, but with the interior of v disjoint from F. Frame v so that v x D? is a 3—
dimensional 1-handle with ends on F', and so that surgering F' along this 1-handle
yields an oriented genus (g + 1) surface F’. Then we say F’ is obtained from F by
stabilization.

Remark 4.2. In Definition there are two distinct ways to frame v to obtain a
3—dimensional 1-handle with ends on F. However, one of these choices will yield a
non-orientable surface after surgery, so in fact the framing of v need not be specified.

More generally, Baykur and Sunukjian [2] extended this result for any pair of
homologous embedded oriented surfaces in a closed orientable 4-manifold, and Ka-
mada [18] extended it to immersed oriented surfaces in S* using singular braid
charts. In this subsection, we extend these above results in full generality, i.e., for
any pair of homologous immersed surfaces in a closed orientable 4—manifold.

Theorem 4.3. Let F' and F’' be oriented self-transversely immersed surfaces in a
closed, orientable J—manifold X which are homologous and have the same number
of transverse double points of each sign. Then F and F' become isotopic after a
sequence of stabilizations.

To prove Theorem [4.3], we rely on the following diagrammatic lemma.

Lemma 4.4. Let I’ be an oriented self-transversely immersed surface in a closed,
orientable 4—manifold. Suppose F has p positive and n negative self-intersections.
After some number of stabilizations, F' becomes isotopic to the connected-sum of an
embedded surface with p copies of Uy and n copies of U_, where Uy denotes the
result of performing a cusp move to the embedded unknotted 2—sphere to create a +
self-intersection.



BAND DIAGRAMS OF IMMERSED SURFACES IN 4-MANIFOLDS 59

Fi+1#Uei

Figure 41: Top left: F; is an oriented surface with & — ¢ > 0 transverse self-
intersections. Here we draw part of a singular banded unlink diagram for F; near
a vertex v; representing a self-intersection of F;. (In this drawing, it is a negative
self-intersection. Changing the marking at v; yields a positive self-intersection.) We
draw a positive normal basis (w1, ws) along each local sheet of F; and indicate an
arc v along which we may stabilize F;. From left to right following the arrows:
We stabilize F; to obtain a surface GG;, and then isotope G; to realize a connect sum
of a surface Fj,1 with U.:, where €' is the sign of the self-intersection represented
by (UN

Proof of Lemmal{.4 Let (K, L, B) be a singular banded unlink diagram of Fj := F.
Suppose that F' has k = p + n > 0 self-intersections. Fix a vertex vy of L. Stabilize
Fy as in Figure i.e., along an arc in h=!(3/2) that lies close to vy. Call the
resulting surface Gy. Now perform singular band moves as in Figure 41| to see that
G is isotopic to a connect sum Fj#U.0, where ¥ is the sign of vy, and F; is a
self-transverse immersed surface with k — 1 self-intersections.

If K—1 > 0 then repeat this argument on F} near another vertex vy, stabilizing F}
to obtain a surface G; that is isotopic to Fo#U,1, where F5 has k—2 self-intersections.
Note F' is then stably isotopic to Fo#U1#U.o.

Repeat inductively to find that F' is stably isotopic to Fi#(#,U)#(#nU-) for
F. an embedded surface, as desired. O
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Proof of Theorem[{.3. By Lemma F may be stabilized to a surface isotopic
to F# (#,U4) # (#,U_) where F is an embedded surface and p and n are (re-
spectively) the numbers of positive and negative self-intersections of F. Applying
the lemma also to F’ (recalling that F’ also has p positive and n negative self-
intersections), we find that after suitable stabilizations F” becomes isotopic to

F' (#,U) # (#aU-)

for some embedded surface F’. Since Uy is nullhomologous, F and F" are homol-
ogous to F and F’ and hence to each other. Then by [2], we know that F' and F’
(and hence F' and F”) are stably isotopic. O

4.3. Unknotting 2—-knots with regular homotopies. In [16], Joseph, Klug,
Ruppik, and Schwartz introduced the notion of the Casson—Whitney number of
a 2—knot, which is half the minimal number of finger and Whitney moves needed to
change a given 2-knot to an unknot. They showed that the Casson—Whitney num-
ber of any non-trivial twist spin of a 2-bridge knot is one; i.e., that any non-trivial
twist spin of a 2-bridge knot can be unknotted via one finger move followed by one
Whitney move. In this subsection, we explicitly realize such a regular homotopy via
singular banded unlink diagrams.

Theorem 4.5. [16] The Casson—Whitney number of the n—twist spin (In| #1) 7" K
of a 2-bridge knot K is one.

Proof. First, as in [16], we assume that the 2-bridge knot K is in normal form [5]
with the number of half-twists in each twist region even, as in Figure (That is,
using the standard correspondence between 2-bridge link diagrams and continued
fraction expansion, we arrange for a diagram of K to correspond to a continued
fraction (ay, b, ..., am,by) of all even integers. We write K = K(a1,b1,. .., am,bny).

Apply a finger move to the diagram of 7" K in Figure [42|to obtain the first frame
of Figure 43| (the visible twists are contained in the +a; twist boxes). In Figure
and Figure we show how to perform singular band moves with the result of
decreasing |a;| by one. Repeating this sequence, we eventually arrange for a; to
become 0.

In Figure 45 we give another sequence of band moves (now assuming a; = 0) that
decrease |b1| by one. Repeating this sequence, we eventually arrange for a; = b; = 0.

We repeat these sequences of band moves to undo the twist boxes labelled +as,
+bs,. .., *am, Tby, and then finally apply a Whitney move to remove the two
vertices and obtain a singular banded unlink diagram for the n-twist spin of the
unknot. This is an unknotted sphere, so we conclude that the Casson—Whitney
number of 7" K is one. O

REFERENCES

[1] V.I. Arnol’d, A. N. Varchenko, and S. M. Gusein-Zade. = OcobGennoctr nuddhepeHunpyemnIx
orobpaskenun. “Nauka”, Moscow, 1982. Kiaccudpuranms kpurudeckux Todek, KAyCTUK U
BoaHOBLIX (pponToB. [Classification of critical points, caustics and wave fronts].



BAND DIAGRAMS OF IMMERSED SURFACES IN 4-MANIFOLDS 61

C—
bmﬁ — ooe — blﬁ
( am* ai

C— )

bm b1 —bl _bm
C e el = T =D

Figure 42: Top: A 2-bridge knot K in normal form. Here, a; and b; indicate signed
numbers of whole twists (so each box has an even number of half-twists). Bottom:
The n-twist spin 7" K of K.

OCEIDO0OC —~ X000 D000C

L isotopy L isotopy

OO

int/band
slide

!

isotopy

Figure 43: The first frame is (a portion of the diagram) obtained from Figure
(bottom) by a finger move. We begin applying singular band moves with the goal of
decreasing |a1| by one. In the last frame we indicate three band/intersection passes
that yield the first frame of Figure



62

MARK HUGHES, SEUNGWON KIM, AND MAGGIE MILLER

D00~ o] f

¢isot0py ¢is0topy
o N 0, é Ué g H o 0, éa
\\r =D
R e
: B
¢band/mt = ¢isotopy
passes

00

¢isotopy

Figure 44: Continuing from Figure we perform more singular band moves. In
the last frame, the two vertices can be removed by a Whitney move, yielding the
diagram from Figure [42| (bottom) but with |a;| decreased by one.

2]
3]
[4]
[5]
[6]

[7]

[9]

R. Inan¢ Baykur and Nathan Sunukjian. Knotted surfaces in 4-manifolds and stabilizations.
J. Topol., 9(1):215-231, 2016.

J. Scott Carter and Masahico Saito. Reidemeister moves for surface isotopies and their inter-
pretation as moves to movies. J. Knot Theory Ramifications, 2(3):251-284, 1993.

J. Scott Carter and Masahico Saito. Knotted surfaces and their diagrams, volume 55 of Math-
ematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1998.
John H Conway. An enumeration of knots and links, and some of their algebraic properties. In
Computational problems in abstract algebra, pages 329-358. Elsevier, 1970.

Michael H. Freedman and Frank Quinn. Topology of 4-manifolds, volume 39 of Princeton
Mathematical Series. Princeton University Press, Princeton, NJ, 1990.

Michael Hartley Freedman et al. The topology of four-dimensional manifolds. J. Differential
Geom, 17(3):357-453, 1982.

David Gay and Robion Kirby. Trisecting 4-manifolds. Geom. Topol., 20(6):3097-3132, 2016.
Allen Hatcher and John Wagoner. Pseudo-isotopies of compact manifolds. Société
Mathématique de France, Paris, 1973. With English and French prefaces, Astérisque, No.
6.



BAND DIAGRAMS OF IMMERSED SURFACES IN 4-MANIFOLDS 63

p—

¢ int /band | band

passes swims

isoto

mt /band

| int /band
shde

slide

O X A
\ -
1ntersect10n ¢ int /band
passes pass

\W .

Figure 45: The first frame agrees with the last frame of Figure after |ap| is
decreased to zero. We can then perform singular band moves to the diagram to
decrease |b1| by one.

(10]

(1]
(12]

(13]
(14]
(15]
(16]

(17]

(18]

Chuichiro Hayashi and Koya Shimokawa. Heegaard splittings of trivial arcs in compression
bodies. J. Knot Theory Ramifications, 10(1):71-87, 2001.

Morris W. Hirsch. Immersions of manifolds. Trans. Amer. Math. Soc., 93:242-276, 1959.
Morris W. Hirsch. Differential topology, volume 33 of Graduate Texts in Mathematics. Springer-
Verlag, New York, 1994. Corrected reprint of the 1976 original.

Fujitsugu Hosokawa and Akio Kawauchi. Proposals for unknotted surfaces in four-spaces. Os-
aka Math. J., 16(1):233-248, 1979.

Mark C Hughes, Seungwon Kim, and Maggie Miller. Isotopies of surfaces in 4-manifolds via
banded unlink diagrams. Geometry € Topology, 24(3):1519-1569, 2020.

Michal Jablonowski. Minimal generating sets of moves for surfaces immersed in the four-space,
preprint. ArXiV:2208.08244 [math.GT], Aug. 2022.

Jason M. Joseph, Michael R. Klug, Benjamin M. Ruppik, and Hannah R. Schwartz. Unknotting
numbers of 2-spheres in the 4-sphere. J. Topol., 14(4):1321-1350, 2021.

Seiichi Kamada. 2-dimensional braids and chart descriptions. In Topics in knot theory (Erzu-
rum, 1992), volume 399 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 277-287.
Kluwer Acad. Publ., Dordrecht, 1993.

Seiichi Kamada. Unknotting immersed surface-links and singular 2-dimensional braids by 1-
handle surgeries. Osaka journal of mathematics, 36(1):33-49, 1999.



64
(19]

20]

(21]
(22]
23]
(24]
(25]
(26]
27]
(28]

29]

(30]
(31]

32]

MARK HUGHES, SEUNGWON KIM, AND MAGGIE MILLER

Seiichi Kamada. Braid and knot theory in dimension four, volume 95 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 2002.

Seiichi Kamada, Akio Kawauchi, Jieon Kim, and Sang Youl Lee. Presentation of immersed
surface-links by marked graph diagrams. Journal of Knot Theory and Its Ramifications,
27(10):1850052, 2018.

Akio Kawauchi, Tetsuo Shibuya, and Shin’ichi Suzuki. Descriptions on surfaces in four-space.
I. Normal forms. Math. Sem. Notes Kobe Univ., 10(1):75-125, 1982.

Cherry Kearton and Vitaliy Kurlin. All 2-dimensional links in 4-space live inside a universal
3-dimensional polyhedron. Algebr. Geom. Topol., 8(3):1223-1247, 2008.

F. Laudenbach. Sur les 2-sphéres d’une variété de dimension 3. Ann. of Math. (2), 97:57-81,
1973.

Francois Laudenbach and Valentin Poénaru. A note on 4-dimensional handlebodies. Bull. Soc.
Math. France, 100:337-344, 1972.

Jeffrey Meier, Trent Schirmer, and Alexander Zupan. Classification of trisections and the
generalized property R conjecture. Proc. Amer. Math. Soc., 144(11):4983-4997, 2016.

Jeffrey Meier and Alexander Zupan. Bridge trisections of knotted surfaces in S*. Trans. Amer.
Math. Soc., 369(10):7343-7386, 2017.

Jeffrey Meier and Alexander Zupan. Bridge trisections of knotted surfaces in 4-manifolds. Proc.
Natl. Acad. Sci. USA, 115(43):10880—-10886, 2018.

Maggie Miller and Patrick Naylor. Trisections of non-orientable 4-manifolds. To appear in
Michigan Math. J., 2023. arXiv:2010.07433 [math.GT].

Dennis Roseman. Reidemeister-type moves for surfaces in four-dimensional space. In Knot
theory (Warsaw, 1995), volume 42 of Banach Center Publ., pages 347-380. Polish Acad. Sci.
Inst. Math., Warsaw, 1998.

Rob Schneiderman and Peter Teichner. The group of disjoint 2-spheres in 4-space. Ann. of
Math. (2), 190(3):669-750, 2019.

Stephen Smale. A classification of immersions of the two-sphere. Trans. Amer. Math. Soc.,
90:281-290, 1958.

Frank J. Swenton. On a calculus for 2-knots and surfaces in 4-space. J. Knot Theory Ramifi-
cations, 10(8):1133-1141, 2001.

BriGHAM YOUNG UNIVERSITY, PrROvO, UT, 84602 USA
E-mail address: hughes@mathematics.byu.edu

SUNGKYUNKWAN UNIVERSITY, SUWON, SOUTH KOREA
E-mail address: seungwon.kim@skku.edu

STANFORD UNIVERSITY, STANFORD, CA, 94305 USA
E-mail address: maggie.miller.math@gmail.com



	1. Introduction
	Organization
	Acknowledgements

	2. Singular banded unlink diagrams
	2.1. Marked singular banded links
	2.2. Singular banded links describing surfaces
	2.3. Ascending/descending manifolds and 0– and 1–standard surfaces
	2.4. Conclusion: uniqueness of singular banded unlink diagrams

	3. Bridge trisections
	3.1. Bridge trisections of embedded surfaces
	3.2. Basic definitions for singular links and immersed surfaces
	3.3. Bridge trisections of immersed surfaces
	3.4. Bridge splittings of singular banded links
	3.5. Uniqueness of bridge trisections of immersed surfaces

	4. Some example applications
	4.1. Calculating the Kirk invariant
	4.2. Immersed surfaces and stabilization
	4.3. Unknotting 2–knots with regular homotopies

	References

