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We adapt Seifert’s algorithm for classical knots and links to the setting of tri-plane
diagrams for bridge trisected surfaces in the 4—sphere. Our approach allows for the
construction of a Seifert solid that is described by a Heegaard diagram. The Seifert
solids produced can be assumed to have exteriors that can be built without 3—handles; in
contrast, we give examples of Seifert solids (not coming from our construction) whose
exteriors require arbitrarily many 3-handles. We conclude with two classification
results. The first shows that surfaces admitting doubly-standard shadow diagrams are
unknotted. The second says that a b—bridge trisection in which some sector contains
at least b — 1 patches is completely decomposable, thus the corresponding surface is
unknotted. This settles affirmatively a conjecture of the second and fourth authors.

1 Introduction

One of the most important avenues available for studying in knotted surfaces in 4—space is
the analysis of the 3—dimensional Seifert solids bounded by such surfaces. There are many
situations in which information about such a Seifert solid gives rise to useful information
about the corresponding knotted surface. Examples, ranging from classical to modern,
include Gordon’s proof that 2-knots are not determined by their complements [Gor76],
Cochran’s characterization of fibered, homotopy-ribbon 2-knots [Coc83], and recent work
analyzing the relevance of homology cobordism invariants of Seifert solids [DM23].

In this paper, we show how topological information about a knotted surface can be recovered
from a bridge trisection of the surface, which allows for the diagrammatic study of knotted
surfaces and their Seifert solids. A bridge trisection of a surface S in S* is a certain
decomposition of (S%, S) into three trivial disk systems (B}, D1), (B3, D2), (B3, D3) that can
be encoded diagrammatically either as a triple of tangles called a tri-plane diagram or as a
corresponding shadow diagram.

In Section 3, we give a version of Seifert’s algorithm for bridge-trisected surfaces, showing
how a tri-plane diagram can be used to produce a 3—manifold bounded by a connected
surface S with normal Euler number zero.
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Theorem 3.4 If S is connected and ¢(S) = 0, then there is a procedure to produce a
Seifert solid for S that takes as input a tri-plane diagram for S.

In Subsection 3.2, we give an explicit procedure for constructing a Heegaard diagram for
such a 3-manifold when S = S?. As a corollary of the work in building Seifert solids,
we recover a combinatorial proof of the existence of Seifert solids. Although the literature
already contains a method for producing a Heegaard diagram for a Seifert solid — namely,
the work in [CS97] — the procedure described here is a bit more practical. In Section 3
of [CS97], the authors employ their methods to take a broken surface diagram and produce a
genus 21 Heegaard diagram for a punctured L(3, 1)# (#3(51 X S2)) bounded by the 2-twist
spun trefoil, noting that this solid is non-minimal, since the same 2-knot also bounds a
punctured L(3,1). In contrast, in Subsection 3.3 we use our procedure to find genus three
Heegaard diagrams for Seifert solids bounded by the spun trefoil and 1-twist spun trefoil,
where these solids are minimal. For the 2-twist spun trefoil, the procedure yields a genus
four Heegaard diagram for a Seifert solid (calculations omitted here). The 2-dimensional
data contained in a tri-plane diagram can often be easier to manipulate and simplify than
the data in a broken surface diagram; as such, both the solids and their Heegaard diagrams
produced by Theorem 3.4 are likely to be less complicated.

We also show that certain bridge trisected surfaces are unknotted.
Theorem 3.3 If a surface S has a doubly-standard shadow diagram, then S is unknotted.

In practice, Theorem 3.3 offers a new and effective method to show unknottedness for
bridge trisected surfaces. The doubly-standard criterion has considerable potential to aid in
the tabulation of low-complexity knotted surfaces, since verifying that a shadow diagram is
doubly-standard can be much easier than proving unknottedness via other methods.

One of the key features of trisection theory is that it provides a vehicle to adapt 3—dimensional
ideas to dimension four, and in Section 4, we prove another result that fits into this line of
research. It is well-known that the complement of every canonical Seifert surface (i.e. one
obtained from Seifert’s algorithm) is a handlebody. Thus, it is natural to attempt to extend
this notion to dimension four. In this vein, we call a Seifert solid canonical if it is obtained
from the procedure presented in Section 3, and we call a Seifert solid spinal if its exterior
in $* can be built without 3—handles. We prove the following two results relating (and
distinguishing) these concepts.

Theorem 4.1 If a surface-knot S admits a Seifert solid, then it admits a canonical Seifert
solid that is spinal.

In fact, modulo some additional, easily satisfied connectivity conditions, every canonical
Seifert solid is spinal. The next result shows that some Seifert solids (in contrast to canonical
Seifert solids and many standard examples) are “far” from being spinal.
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Theorem 4.2 Given any n € N, there exists a 2-knot K that bounds a Seifert solid Y
homeomorphic to (S 1'% $%)° such that S4\1/(Y ) requires at least n 4-dimensional 3—handles.

Finally, in Section 5 we prove the following standardness result, affirmatively settling
Conjecture 4.3 of [MZ17].

Theorem 5.2 Let T be a (b;c)-bridge trisection with ¢; = b — 1 for some i € 7Z3.
Then, T is completely decomposable, and the underlying surface-link is either the unlink of
min{c;} 2-spheres or the unlink of min{c;} 2—spheres and one projective plane, depending
on whether |c;—; — ¢i+1| =1 or 0.

The proof relies on theorems of Scharlemann and Bleiler-Scharlemann regarding planar
surfaces in 3—manifolds [BS88, Sch85]. The methods of the proof are somewhat unrelated to
the methods used in the preceding sections and may be of independent interest. The second
and fourth authors previously handled this case when ¢; = b for some i € Z3 [MZ17,
Proposition 4.1]. Theorem 5.2 can be seen as the analogue for bridge trisections of Theorem
1.2 of [MSZ16], which establishes a similar standardness result for trisections of closed
manifolds; as such, our theorem fills an important gap in the trisections literature and
provides yet another avenue to verify that a surface in §* is unknotted.
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2 Preliminaries

We work in the smooth category. This section includes an abbreviated introduction to
the concepts relevant to this paper, but the interested reader is encouraged to consult the
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reference [GK16] for further information about 4—manifold trisections and the references
[MZ17] and [JMMZ22, Section 2] for more detailed discussions of bridge trisections. We
limit our work here to surfaces in S*, but there is also a theory of bridge trisections in
arbitrary 4-manifolds; see [MZ18].

2.1 Bridge trisections

Let S be an embedded surface in $*, let b be a positive integer, and let ¢ = (¢, ¢2, ¢3) be
a triple of positive integers. A (b; ¢)—bridge trisection of (S*,S) is a decomposition

(5*,8) = (X1,D1) U (X2, D2) U (X3, D3)
such that

(1) Each D; is a collection of ¢; boundary-parallel disks in the 4-ball X;;

(2) Each intersection 7; = D;_; N D; a boundary-parallel tangle in the 3-ball H; =
X;_1 NX; (with indices considered mod 3);

(3) The triple intersection D; N D, N Ds is a collection of b points in the 2—sphere
X=XiNXxNXs.

In [MZ17], it was proved that every surface S admits a (b; ¢c)-bridge trisection for some
(b; ¢). We choose orientations so that d(X;, D;) = (H;, T)) U (H;11, Tix1). When we wish to
be succinct, we use ¥ to represent a bridge trisection, with components labeled as above.

2.2 Diagrams for bridge trisections

The existence of bridge trisections gives rise to a new diagrammatic theory for surfaces in
S*, using an object called a tri-plane diagram, a triple D = (D1, D,, D3) of trivial planar
diagrams with the additional condition that each ID; U D;; is a classical diagram for an
unlink. In [MZ17], it was shown that every tri-plane diagram determines a bridge trisection
T. Conversely, given a bridge trisection T of (5%, S), we can choose a triple of disks E; C H;
with common boundary and project the tangles 7; onto E; to obtain a tri-plane diagram. Of
course, the choices of disks and projections are not unique, but any two tri-plane diagrams
corresponding the same bridge trisection T are related by a finite collection of interior
Reidemeister moves and mutual braid transpositions, while any two bridge trisections T
and ¥’ for the same surface S are related by perturbation and deperturbation moves.

In addition, bridge trisections yield another type of diagram: Each trivial tangle 7; can be
isotoped rel-boundary into the surface 3., yielding a triple (A, B, C) of pairwise disjoint
collections of arcs called a shadow diagram, which has the property that 0A = 0B = 9C,
and the pairwise unions of any two of the tangles 74, 7p, T¢ determined by the arcs are
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unlinks. As with tri-plane diagrams, any shadow diagram determines a bridge trisection.
Further details about shadow diagrams can be found in [MTZ20].

Here we consider special types of shadow diagrams. We say that a pair of collections of
arcs in a shadow diagram is standard if their union is embedded. Any bridge trisection
admits a shadow diagram (A, B, C) in which one of the pairs is standard. If two or three
pairs of shadows in a shadow diagram (A, B, C) are standard, then we say that (A, B, C) is
doubly-standard or triply-standard, respectively. Theorem 3.3 says that doubly-standard
(and thus triply-standard) diagrams always describe unknotted surfaces.

2.3 Unknotted surfaces

In this subsection, we review standard notions of unknottedness for surfaces in S*. A closed,
connected, orientable surface S in §* is unknotted if it bounds an embedded 3—dimensional
handlebody H C S$*. For nonorientable surfaces, the definition is slightly more involved.
We define the two unknotted projective planes, P4, to be the two standard projective planes
in §*, pictured via their tri-plane diagrams in Figure 1, where e(P1) = +2.

nn (0 (MY nn 0 (1)

P, P

Figure 1: Tri-plane diagrams for P4 and P_.

In general, for a nonorientable surface S, we say that S is unknotted if S is isotopic to a
connected sum of some number of copies of P, and P_. See [JMMZ22, Remark 2.6] for
a detailed discussion of the orientation conventions used here.

3 Seifert solids

Classical results of Gluck [Glu62] (resp., Gordon-Litherland [GL78]) assert that every
orientable surface S (resp., surface S with e(S) = 0) in $* bounds an embedded 3—
manifold, called a Seifert solid in the orientable case. In the setting of broken surface
diagrams, Carter and Saito provided a procedure that in many respects mimics Seifert’s
algorithm for classical knots [CS97]. In this section, we describe an extension of Seifert’s
algorithm that takes an oriented tri-plane diagram D and produces a Seifert solid whose
intersection with JX; agrees with the classical Seifert’s algorithm performed on the oriented
unlink diagram ID; U D;, 1. We also obtain alternative proofs of the theorems of Gluck and
Gordon-Litherland mentioned above.
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3.1 Existence of Seifert solids

Given a spanning surface F for an unlink U, we define the cap-off F of F to be the closed
surface 7 C S* obtained by gluing a collection of trivial disks in B* to F along U. (There
is a unique such choice of disks up to isotopy rel-boundary in B* by e.g. [KSS82] or
[Liv82].) Let F, C S denote the Mobius band bounded by the unknot so that F contains
a positive half-twist and has boundary slope 42, and let F_ C $> denote the M6bius band
bounded by the unknot with a negative half-twist and boundary slope —2. For n > 0, let
F,, be the connected surface obtained by attaching n — 1 trivial bands to the split union of
n copies of F ; that is, F), is obtained by taking the boundary connected sum of n copies
of F. For n < 0, let F,, be obtain by taking the boundary connected sum of (—n) copies
of F_. Finally, let F be the disk bounded by the unknot in §*. Additionally, let F;, be the
cap-off of F,,. In Figure 1, the negative Mobius band is shown to cap off into Bi to obtain
P . (See also [J]MMZ22, Figure 2].) Here, we are capping off into B* , so that by definition
the cap-off F_; of the negative Mobius band F_ is P_. In contrast, the cap-off F; of
the positive Mobius band F is P4. (Recall that P, and P_ denote the two unknotted
projective planes in S*; see Subsection 2.3.) It follows that

a connected sum of n copiesof P, ifn >0
Fn = { aconnected sum of —n copiesof P_  ifn <0,
an unknotted 2—sphere ifn=20

The intent of the cap-off notation is to emphasize the way in which F,, can be obtained from
a specific surface in $3, which will be useful in the rest of this section — especially given the
following lemma.

Lemma 3.1 Every incompressible spanning surface F for the unknot is isotopic to F, for
some n € 7.

Proof First, we argue that F), is incompressible for all n. This follows from [Tsa92], but
we include a proof here. Certainly, Fy and Fy; are incompressible, since a compression
increases Euler characteristic by two. Suppose now that F, is compressible for some
n > 1, and let F), be the component of the surface obtained by compressing F, such that
OF! = OF,. In addition, let F, C S* be the cap-off of F!. Then the embedded surface
F. can be obtained from F, by a 1-handle attachment, and thus e(F,) = e(F,) = 2n.
However, since the nonorientable genus of F, is strictly less than n, this contradicts

the Whitney—Massey Theorem (see discussion in [JMMZ22]). We conclude that F), is
incompressible.

On the other hand, suppose that F is an arbitrary incompressible spanning surface for the
unknot U. The exterior of U is a solid torus V, and every simple closed curve ¢ C 0V
is homotopic to a (p, g)—curve, where a (0, 1)—curve is the boundary of a meridian disk of
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V and a (1,0)—curve is the boundary of a meridian disk of N(U). The boundary of F is
a (2k, 1)—curve for some integer k. (The spanning surface F intersects the disk bounded
by U in some number of arcs, the endpoints of which correspond to the intersections of
the (p, g)—curve with the (0, 1)—curve.) If F is orientable, then it is well-known that F is
isotopic to the meridian disk Fj.

Suppose that F is nonorientable. By [Tsa92, Corollary 12], the nonorientable genus of F is
equal to |k|. Assuming that OF and OF, meet efficiently, isotope F' so that it intersects Fy
minimally. By standard cut-and-paste arguments, an arc of F' N Fy which is outermost in
Fy gives rise to a boundary-compressing disk A for F. Since OF and OF, meet efficiently,
the result F' of boundary-compressing F along A has a single boundary component and
nonorientable genus k — 1. Reversing the process, we see that F' can be obtained from F’ by
attaching a boundary-parallel band to F’ along opposite sides of OF’. Note that 9V \ F" is
an annulus and the band is determined by a spanning arc. Working rel-boundary, all choices
of spanning arcs are related by Dehn twists about OF’, and so it follows that up to isotopy,
there is a unique band taking F’ to F.

Finally, we claim that F is isotopic to Fj, and we prove this fact by inducting on k. If
k = +1, then F has genus one and is obtained from the disk F/ = F|) by a single boundary
tubing. By the above argument, there is precisely one way to do this, and thus F = F;.
Now, suppose that k > 1 and the claim holds for j = k— 1. As above, isotope F to meet Fy
minimally, and since k > 1, there are at least two arcs ag and a; of FNFj that are outermost
in Fy. Let ¢ be a (0, 1)-curve that meets OF in a single point contained in ag. Then, a;
gives rise to a boundary-compressing disk A; and the result F’ of boundary-compressing F
along A also satisfies |OF' N ¢| = 1, since the modification was carried out away from the
arc ag. We conclude that F’ has genus k — 1 and boundary slope (2(k— 1), 1). By induction
F' = F;_1, and since there is a unique way to obtain F from F’ by boundary-tubing, it
follows that F' = F}. The case k < —1 follows symmetrically, completing the proof of the
lemma. |

In the next proposition, we use Lemma 3.1 to understand the cap-off of any spanning surface
F for an unlink in S°.

Proposition 3.2 Let F be a spanning surface for an unlink U in S°.

(1) If every component of OF has slope 0, then the cap-off F bounds a (possibly
nonorientable, possibly disconnected) handlebody V C B* such that V N OB* = F.

(2) The normal Euler number e(F) is equal to the sum of the slopes of the boundary
components of F.

(3) The cap-off F is a split union of unknotted surfaces in S*.
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Proof Suppose F and F’ are two spanning surfaces for an unlink U in S such that F’ is
isotopic relative to U to the surface obtained by surgering F' along a compressing disk D
for F. Then there is a compression body C C §* x [0, 1] such that

s CN(S*x {1})=F x {1},
« CN(S?x {0})=F' x {0}, and
e 9C = (Fx {1HUF x {0} U x [0,1]),

and C has a single critical point (of index 1) with respect to the Morse function 3 x [0, 1] —
[0, 1], which we assume lies in S° x {%} Note that C is a product cobordism above and
below S x {%}

Any spanning surface F for U can be reduced to F’, a union of 2—spheres and incompressible
spanning surfaces for components of U via a sequence of compressions and isotopies. If
each component of JF has slope 0, then F’ is a collection of disks and spheres. Applying
the compression body construction described above for each compression taking F to F’
and stacking the results, we get a compression body C co-bounded by F and F’. Since F’
is a collection of disks and spheres, there is a handlebody with boundary 7 = FUD, where
D = F' U (U x [0, 1)) is a collection of properly embedded disks in B*: simply cap-off the
sphere components of C with 3—-balls whose interiors are pushed sufficiently deep into B*.
This handlebody is non-orientable (resp., disconnected) if and only if F is. This establishes
part (1).

Let F be any spanning surface for an unlink U = | |, U;. Let B =| |, B; be a collection
of disjoint 3-balls with U; C Int(B;). Let F/ = | |, F; be a split union of incompressible
spanning surfaces for the components of U, with F; C Int(B;), so that the slopes of F and
F’ agree at each component of U. Let F” be the result of surgering F’ along a collection of
arcs so that F” and F have the same homeomorphism type relative to U; moreover, assume
that every arc of the collection intersects each component of JB in at most one point. It
follows that F”’ decomposes as a split union of connected sums of surfaces, each summand
of which is either a torus or an incompressible spanning surface for an unknot. Therefore,
the cap-off F” is the split union of connected sums of surfaces, each summand of which is
an unknotted surface in §*. Livingston showed that F and F” are isotopic rel-boundary in
B* [Liv82]. It follows that the cap-off F will isotopic to the cap-off F”, which completes
the proof of part (3). Since (2) holds for F; and F_;, and since the normal Euler number
is additive under connected sum, part (2) follows, as well. O

Recall that a shadow diagram is doubly-standard if two of the pairings of arcs yield embedded
curves. We can use Proposition 3.2 to obtain the following classification result for doubly-
standard diagrams.

Theorem 3.3 If S has a doubly-standard shadow diagram, then S is unknotted.
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Note that Theorem 3.3 also applies to surfaces with triply-standard shadow diagrams, as a
special class of doubly-standard shadow diagrams.

Proof Suppose S has a shadow diagram (A, B, C) such that the pairings (A, B) and (B, C)
are standard. Consider the standard Heegaard splitting 0X3 = S° = H, Us, H_, and let
>4+ be a parallel copy of X pushed slightly into Hy. Note that A U B may have nested
components (so that components of A U B don’t necessarily bound a collection of disjoint
disks). After a sequence of arc slides, however, performed only on the arcs in A, we obtain
arcs A’ such that the embedded curves A’ U B bound a pairwise disjoint collection of disks.
We perform a similar procedure with B U C to obtain B U C’. Now, embed parallel copies
A, UB, of the curves A’ U B in 3 so that they bound a pairwise disjoint collection D,
of disks in X, and embed parallel copies B_ U C’_ of the curves BU C’ in ¥_ so that
they bound a pairwise disjoint collection D_ of disks in 2_. In H, there is an isotopy of
B, to B C X taking the disks D to disks Dy C Hy such that D; N Y = B. The tangle
Ti = SN (H) is the image of A’, under this isotopy. Similarly, in H_ there is an isotopy
of B_ to B taking the disks D_ to disks D, C H_ such that D, N ¥ = B. The tangle
T3 = S N H_ is the image of C”_ under this isotopy. See Figure 2.

By construction D; N D, = B, so that F = D U D5 is a spanning surface for the unlink
71 U T3. Note further that D, is a trivial disk system for 7; U B, and D, is a trivial disk
system for B U T3; hence, S is the union of Dy, D,, and D3, where Dj is a trivial disk
system for 7; U 73 pushed into B*. However, since F = D; U D, C $3, it follows that S
is also isotopic to the cap-off F of F, which is unknotted by Proposition 3.2. a

We are now ready to prove our main result.

Theorem 3.4 If S is connected and e¢(S) = 0, then there is a procedure to produce a
Seifert solid for S that takes as input a tri-plane diagram for S.

Proof The proof follows from the proofs of Propositions 3.5 and 3.6 below. |

In Section 3.2, we show that there is a procedure to produce a Heegaard splitting for the
Seifert solid when S is a 2—knot.

In addition to providing the proof of the above theorem, the next two propositions provide
alternate proofs of the results in [Glu62] and [GL78] mentioned above.

Proposition 3.5 Every orientable surface-link S bounds a Seifert solid in S*.

Proof Let D be a tri-plane diagram for S, with induced orientation on the bridge points
x. Perform mutual braid transpositions so that the bridge points alternate sign (orientation).
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Figure 2: Left: a doubly standard shadow diagram (A, B, C). The pairings (A, B) and (B, C)
are standard. Middle: disks in X and 3_ bounded by parallel copies of AUB and BUC,
respectively. Right: A spanning surface F for 7; U 7T; in 0X3 = S3.

Then there are b pairwise disjoint arcs € contained in the equator e connecting bridge points
of opposite signs, so that ID; U ¢ is an oriented link diagram. Let F; be the Seifert surface
obtained by performing Seifert’s procedure on the diagram ID; Ue, and let F;=F; UF;;1 be
the spanning surface obtained by gluing F; to F;y; along . By Proposition 3.2, there exists
ahandlebody V; C X; such that V; = EUD,- and V;NOX; = 1?7,-. Finally, Y = ViU V,UV;
is an embedded 3—-manifold whose boundary is D; U D, U D3 = S, and so Y is a Seifert
solid for S. |

Proposition 3.6 If S is connected and e(S) = 0, then S bounds a spanning solid in S*.

Proof Consider a bridge trisection ¥ of S, with U; = 0D; and 7 = 7 U T, U T3. By
taking, for example, a tri-plane diagram D and compatible checkerboard surfaces in ID;, we
can produce spanning surfaces F ; for U; such that F N H; = Al-,l N H;. Let F; denote
F ; N H;. For each component J of U; = OF i» let 13(J) denote the induced boundary slope
on the curve J by the surface F;. Then by Proposition 3.2, we have

>y =0.

JCUUUL,UU3

Choose a triple of spanning surfaces F; such that 5 |tz(J)| is minimal over all possible
choices. We claim that ) [¢tz(J)| = 0. If not, then there exist boundary curves J; and
J_ such that (z(J4+) > 0 and ¢z(J-) < 0. Noting that the surface S contains all curves
J C U; C 7,pusheachcurve J C U; slightly off of 7 into the corresponding disk component
of D;, so that the collection of curves J is embedded in S and disjoint from 7. Choose
a path v C S from J; to J_, avoiding the bridge points, noting that |y N 7| > 0. At
each point of v N 7, modify the the corresponding component of F; by taking the boundary
connected sum of F; with a trivial Mdbius band to obtain new surfaces F! and F!, so that
the corresponding boundary curves satisfy ¢z, (Jﬁr) =13(J1) =2, 13 J) = t(J-)+2,and
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17(J") = 13(J) for all other curves J'. It follows that ) |tz (J' , contradicting
our assumption of minimality. (Note that ¢x(J) is always even, since it represents the
number of intersection points between the boundary curves of spanning surfaces; see the
proof of Lemma 3.1.)

We conclude that ¢(J) = 0 for all curves J, and thus by Proposition 3.2, each spanning
surface F; cobounds a (possibly) nonorientable handlebody V; C X; with the disks D;. It
follows that V| U V, U V3 is a spanning solid for S in S4. O

3.2 Procedure to find a Heegaard diagram for a Seifert solid

In this subsection, we describe a procedure for finding a Heegaard diagram for the Seifert
solid coming from a bridge trisection ¥ of a 2-knot S. We use labels consistent with those
appearing above in the proof of Proposition 3.5. The process is illustrated in Figures 3
through 6.

Step 1: Given a tri-plane diagram 1D for S perform interior Reidemeister moves and mutual
braid transpositions so that the induced Seifert surfaces satisfy the following conditions:

(a) Each of Fy, F», and F 1 18 a collection of disks.

(b) Surfaces 1/52 and ?3 are connected.
(©) g(F2) = g(F3).

See Figure 3. Note that attaining condition (a) is possible since any tri-plane diagram can
be converted to one in which two of the tangles have no crossings. Condition (b) can be
attained by performing interior Reidemeister moves on the diagram D3. Attaining condition
(c) is possible since we can arrange so that F» is a collection of b bridge disks, in which
case 1?72 deformation retracts onto F3 (although in general, we need not assume that F, has
b components, as shown below).

Step 2: Following the proof of Proposition 3.2, the surfaces F> and F3 compress completely
to disks in S3. Let o be a complete collection of pairwise disjoint compressing curves in
F 3, and let 3 be a complete collection of pairwise disjoint compressing curves in F>. See
Figure 4 (top row).

Step 3: If necessary, slide the curves 3 over the components of 9D, to obtain a collection of
curves 3’ C F3. Note that since g(F3) = g(fz), as curves in Jf, = 772 U D,, the collection
B can be isotoped to be contained in F3, and any isotopy of a curve over a disk component
of D, can be realized as a slide over 9D,. Thus, such a sequence of slides exists. See
Figure 4 (middle row).

Step 4: Let P = D; U D,, so that P is a planar surface with ¢3 boundary components, let
0 be the surface obtained by gluing P to F3 along their boundaries, and let o* be a choice
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Figure 3: To perform the Seifert solid procedure on a tri-plane diagram, we first perform
mutual braid transposition until the tangle diagrams in V; and V, have no crossings. Then
we perform the usual Seifert’s procedure for knot diagrams to obtain surfaces Fy, F», F3
that agree in the bridge sphere >, with F; and F, and F, all collections of disks and

g(F) = g(F3).

of ¢3 — 1 boundary components of P and some minimal number of curves in « so that o*
forms a cut system for Q.

Step 5: Let 8* be the union of 3’ and a collection of curves in Q obtained by the following
instructions: For each component of J of 0D;, suppose that J meets d disk components
of F. Choose d — 1 of these components, isotope them off of F, in F, = Fr, UF3UD;,
and add these d — 1 curves to 3*. Discard any superfluous curves of 5’ so that 3* is a cut
system for Q.

Proposition 3.7 Using the procedure described above, S bounds a punctured copy of the
3-manifold determined by the Heegaard diagram (Q; o*, 8*).

Proof Suppose that D is a tri-plane diagram satisfying conditions (a), (b), and (c) given
in Step 1 above. Following the proofs of Proposition 3.2 and Proposition 3.5, we have
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l12

Figure 4: Top: we find complete sets of compressing curves «, 5 for Fsand Fs, respectively.
Middle: We slide «, 8 (with slides indicated in top row) over 81?“3, OF, to obtain curve
systems o/, 8 that are each completely within F3. Bottom: We obtain o* (red and purple
curves) by adding boundary curves as in Step (4) of §3.2. We obtain 5* by adding arcs as
in Step (5). Then (Q; o*, 5*) is a Heegaard diagram for a (closure of a) Seifert solid for the
2-knot described by the initial tri-plane diagram.

that for each i, the surface I?i U D; bounds a handlebody V;, where V) is a collection of
3-balls, say Bj,...,B,,and V, and V3 are connected. Moreover, o contains a cut system
for V3 and 3 contains a cut system for V,. Since /3’ is homotopic to 3 in dV;, it follows
that /3’ also contains a cut system for V,. Thus, the Seifert solid bounded by S is equal
to VoUV3UByU---UB,. Let Y be the closed 3—manifold obtained by capping off the
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Figure 5: We start performing the Seifert solid procedure (§ 3.2) on the tri-plane diagram in
the top row.

boundary S of this Seifert solid with an abstract 3—ball By. We will show that (Q; a*, 5*)
is a Heegaard diagram for Y.

To this end, consider W = V3 U By and W = V, UB; U---U B,. Considering that
OV, =F, UF;UD, and O(B; U ---UB,;,) = F; UF, UD;, we have that

OW = F;UF,UD,UD; =F;UP=0Q.

Additionally, the 3-balls B; are attached to V, along F,, which is a collection of disks by
condition (a). It follows that the curves 3’ UdF, bound compressing disks in W’ cutting W’
into a collection of 3-balls, so W’ is a handlebody. In addition, choosing all but one curve
of OF, for each component B; and a subset of 3" as in Step 5 above yields a cut system 3*
for W'.

Turning our attention to W, we have V3 = 1/‘\73 U D3 and 9By = D; U D, U D3, so that
OW =FsUD,UD, = Q, and in addition, the curves o and 9D3 bound disks cutting W
into 3-balls. Choosing «* to contain all but one curve of 9D3 and a subset of « as in Step
4, we have that the curves in o bound disks cutting W into a single 3-ball, so o* is a cut
system for W. We conclude that (Q; o, 5*) is a Heegaard diagram for Y, as desired. O

Remark 3.8 It may be the case that the surface 3 compresses in Hs, in which case « and
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B could have one or more curves in F3 in common. Following the procedure with such «
and /3 produces one or more extra S' x §? summands for the 3—manifold Y, and a simpler
Seifert solid can be obtained by first compressing F3 maximally in H3.

Remark 3.9 The procedure above can be generalized: We can relax conditions (a), (b),
and (c) from Step 1; the only assumption necessary to ensure that V| U V, is a handlebody
is that their intersection F» is a collection of disks. However, the weaker conditions make
it somewhat more difficult to draw the diagram, since we are no longer guaranteed the
existence of the slides of Step 3 — it may be the case that 5 curves necessarily intersect the
disks D; and D,.

Remark 3.10 The observant reader might notice that we call our process the Seifert solid
procedure, rather than algorithm. An algorithm gives an output completely determined from
the input, independent of further choices. A procedure may require additional choices for
the output to be determined. In the procedure we give in this section to find a description of
a Seifert solid for a 2—knot, we are forced to choose compressing circles for surfaces in 3.
These circles are generally not unique (and in fact, different choices can determine different
Seifert solids), so we do not refer to this procedure as an algorithm.

3.3 Some examples

In this subsection, we carry out the procedure described above for a couple of specific
examples. The first is the spun trefoil. In Figure 3, we see a tri-plane diagram for the spun
trefoil coming from [MZ17], followed by the result of performing tri-plane moves so that
the induced Seifert surfaces F; satisfy conditions (a), (b), and (c) from Step 1 above.

DEE

Figure 6: Leftmost: The curves o’ in F3. Second: The curves 3’ in F,. Third: we add
some boundary curves of F, to « to obtain o and some arc to 3 to obtain $*. Rightmost:
we simplify the resulting Heegaard diagram (X; o*, %) to see that it is a diagram of S3.
Thus, the initial 2-knot bounds a copy of B3 in $*, so is unknotted.

In the top panel of Figure 4, we find the compressing curves « on F3 and 3 on F. Note that
in this case D3 contains two disks, so that P = D; UD; is an annulus, and Q = F3 U P can
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be obtained by identifying the two boundary components of F3. Under this identification,
the identified boundary components constitute the third curve in the cut system «*. In
the second panel at left, we slide the two curves of « over the third curve of o* in Q.
In the second panel at right, we slide the two curves of 5 over a boundary component as
shown to get the curves 3’ C F3 (which are identical to the image of « under the slides
described above). Finally, the third curve of 8* consists of the teal arc depicted in F3 and a
spanning arc in the annulus A, or equivalently, we can identify the endpoints of the teal arc.
In the lower panel, we see the diagram for the Seifert solid, the standard (once-stabilized)
Heegaard diagram for #2(S! x $2).

Remark 3.11 These diagrams and arguments easily generalize to produce the Seifert solid
#~1(S! x S§?) for the spun (p,2)-torus knot. Miyazaki proved that the degree of the
Alexander polynomial (over Q[z,7~']) is a lower bound for the second Betti number of any
Seifert solid [Miy86]. Since the degree of the Alexander polynomial of T(2,p) is p — 1,
these solids are minimal in the sense that the corresponding 2-knots cannot bound any
3-manifold with a smaller second Betti number, e.g. a fewer number of S' x §? summands.

For the second example, we find a Seifert solid for the 1-twist spun trefoil (which is unknotted
by [Zee65]). In Figure 5, we include a simplified tri-plane diagram for the 1-twist spun
trefoil along with the surfaces F> and F; this diagram generates.

Next, we find the compressing curves « for F3 and B for F>. Asinthe spun trefoil example
above, P = D; UD; is an annulus, so we view Q as being obtained by identifying the two
boundary components of F3, with this identified boundary the third curve in o*. Figure 6
shows the curves «, (3, and the union of the sets in Q, yielding the standard diagram for
S$3, in which the third curve of 3* appears as a teal arc with boundary points identified (as
above). Note that the existence of the curves « and ( is guaranteed by Proposition 3.2; in
practice, however, these curves are found using ad hoc methods.

4 Spinal Seifert solids

A natural aspect of the study of Seifert surfaces for links in the 3—sphere is the consideration
of their exteriors. We call a Seifert surface F for L canonical if it is isotopic to a surface
obtained by applying Seifert’s procedure to a diagram for L. We call a Seifert surface F free
if its exterior S \ v(F) is a 3-dimensional handlebody — equivalently, has free fundamental
group. It is an easy exercise to see that a canonical Seifert surface is free, provided that
it is connected; so every link admits a free Seifert surface, by the application of Seifert’s
algorithm to a non-split diagram. However, such a surface can be far from minimal genus.
M. Kobayashi and T. Kobayashi showed that the difference between the genus of a knot
and the minimal genus of a free Seifert surface for the knot can be arbitrarily large, and that
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moreover the difference between the minimal genus of a free Seifert surface for a knot and
the minimal genus of a canonical Seifert surface can also be arbitrarily large [KK96]. (In
fact, they show that both of these differences can be made arbitrarily large at the same time.)

In this section, we introduce 4—dimensional analogues of the notions of canonical and free
Seifert surfaces. Going forward, let S C S* be a surface-link admitting a Seifert solid. (This
is equivalent to the condition that S be orientable or have normal Euler number zero.) We
call a Seifert solid Y canonical if it is isotopic to a Seifert solid obtained by the procedure
given in Section 3.1 (see Propositions 3.5 and 3.6). We call a Seifert solid Y spinal if
§*\ v(Y) deformation retracts onto a finite 2—complex. Equivalently, $*\ v(¥) can be built
with handles of index at most two.

Theorem 4.1 If a surface-knot S admits a Seifert solid, then it admits a canonical Seifert
solid that is spinal.

Proof First, note that in the proof of Propositions 3.5 and 3.6, it is possible to arrange that
each Seifert surface F; is connected: For example, this is assured if each ID; U € is non-split.
Let Y be a canonical Seifert solid for S given by Proposition 3.5 or Proposition 3.6 such
that the canonical surface F; = Y N H; is connected for each i € Z3. We make use of the
notation of the proof of Proposition 3.5 in what follows.

Recall that V; = X; N'Y is a handlebody with 0V; = F ; U D;. Moreover, V; is built relative
to F; by attaching 3—dimensional 2-handles and 3-handles. It follows that X; \ v(V;) can
be built with 4—dimensional O—, 1—, and 2-handles.

Next, recall that F; is a canonical Seifert surface for the link ID; U &, considered in S° =
H; Us, B3. Since we have assumed F; is connected, we have that F; is free in H; Uy, B>.
Since ¢ C OH;, it follows that H; \ F; is also a 3—dimensional handlebody.

Finally, we can build $*\ v(Y) by taking the X;\ v(V;) and gluing them along the H; \ v/(F;).
Since the three gluings occur along 3—dimensional handlebodies, it follows that $* \ v(¥)
is obtained from the disjoint union of the X; \ v(V;) by attaching 4—dimensional 1- and
2-handles. Because each of the X; \ v(V;) were built with 4—dimensional handles of index
at most two, the same is true for $* \ v(Y). This shows that Y is spinal, as desired. O

When studying Seifert surfaces, the genus of the surface is the obvious measure of com-
plexity that one might try to minimize. In contrast, there are many ways one might try to
quantify the complexity of a Seifert solid Y for a surface-knot; indeed, any complexity one
might associate to a 3—manifold could be interesting to consider. Here, we content ourselves
to give some examples showing that there is at least one sense in which a simple Seifert
solid for a surface-knot can be arbitrarily far from being spinal.

Theorem 4.2 Given any n € N, there exists a 2—-knot K that bounds a Seifert solid Y
homeomorphic to (S 1'% $%)° such that S4\1/(Y ) requires at least n 4-dimensional 3—handles.
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Proof Let J be an arbitrary knot, and let K = Who(J#J) be the untwisted Whitehead
double of the connected sum of J with its mirror. Let F' be the standard genus one Seifert
surface for K, and let v be the curve on F that is isotopic to J#J. (Alternatively, F is
obtained by taking a O—framed annular thickening of a curve ~ isotopic to J#J and plumbing
on a Hopf band.)

Let E be the standard ribbon disk for ~, so that (B*, E) = (53,J)° x I. The surface F can
be surgered along E in the 4-ball to get a slice disk D for K, and the trace of this surgery
yields a solid torus V with 0V = F U D.

Let K = D Uk D be the 2-knot obtained by doubling D, and let Y = V Ug V be the double
of V along F. Then, Y is a Seifert solid for X and ¥ = (S' x §?)°.

We claim that 7 (S* \ v(Y)) = m(S? \ v(J)). First, we have 71(S* \ v(Y)) = 7(B*\ V),
since the former exterior is the double of the latter exterior along the exterior of F in §°
and 7 (S> \ v(F)) surjects onto T (B* \ V) under inclusion. Next, by construction, V is
obtained by thickening the slice disk E and attaching a trivial 3—dimensional 1-handle. It
follows that

B\ v(V) = m (B \ v(E) = m(S? \ v()),
as desired.

To complete the proof, let n € N be given, and choose J to be any knot with rank(r(S° \
v(J))) > n—+ 2 (e.g. take J to be a connected sum of n + 1 trefoils [Wei98]). The exterior
$*\ v(Y) can be built relative to d(S* \ v(Y)) = (S' x S)#(S' x §?) with some number
of 4—dimensional 1-, 2—, 3—, and 4-handles. Since the 1-handles correspond to generators
of the fundamental group, at least n are required; the boundary 9(S* \ v(Y)) contributes
only two to the rank of the fundamental group. Similarly, since we can obtain another
presentation of m1(S* \ v(Y)) with generators corresponding to 3—handles, the number of
3-handles in this decomposition is at least n + 2. a

We note that the construction of C given in the above proof is closely related to an interesting
construction of 2-knots given by Cochran [Coc83].

Next, we observe that many important examples of Seifert solids are, in fact, spinal:

(1) Every ribbon 2-knot bounds a Seifert solid Y that is homeomorphic to #™(S' x §2))°
for some m [Yan69]. The manifold Y is obtained by taking a Seifert surface F' for
some ribbon knot in an equatorial S, thickening it, and attaching trivial 2-handles
above and below the equator. By attaching tubes to F (at the cost of increasing m),
we can arrange for F to be free. Then Y is spinal.

(2) If K is fibered with fiber Y, then $* \v(Y) 2 Y x [ is an spinal, since Y is a punctured
3—manifold.
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(3) Connected Seifert solids arising from broken surface diagrams via the construction
given by Carter and Saito [CS97] are spinal. Recall that a connected, canonical Seifert
surface is free because it deformation retracts to a graph so that on each edge, there
is one local maximum and no local minima with respect to the radial height function
on S3. (Here, the vertices of the graph correspond to the disks produced in Seifert’s
procedure while the edges correspond to the half-twisted bands.) This ensures that
the exterior of a canonical surface can be built with O— and 1-handles. Similarly, a
Seifert solid constructed a la [CS97] deformation retracts to a 2—complex with one
local maximum and no other critical points in the interior of each 1— and 2—cell. Thus,
the exterior of such a Seifert solid can be built with O—, 1—, and 2-handles.

Finally, we can formulate a question analogous to the 3—dimensional results in [KK96] in
the setting of surface-knots.

Question 4.3 Define the genus of an orientable surface-knot S in S* to be the minimal first
Betti number of any Seifert solid bounded by S, and define the spinal genus and canonical
genus similarly, using spinal Seifert solids and canonical Seifert solids, respectively. Do
there exist surface-knots for which these three measures of complexity differ?

We remark that using techniques as in the proof of Theorem 4.2, one can show that for
some of the known classical knots K whose genus and free genus are sufficiently different
(see [Mor87], for example), the spun knots S(K) admit low-complexity non-spinal Seifert
solids, whereas the obvious spinal and canonical Seifert solids have greater complexity.
However, it is likely to be considerably more difficult to obstruct the existence of low-
complexity spinal or canonical Seifert solids, even for these examples.

5 On standardness of bridge trisections

The goal of this section is to prove Theorem 5.2, which states that a (b; ¢y, ¢2, c3)-bridge
trisection that satisfies ¢; > b — 1 for some i € Z3 can be completely decomposed into
standard pieces. This proves Conjecture 4.3 of [MZ17], and the theorem can be viewed
as the bridge trisection analog of the main result in [MSZ16], which states that every
(g: k1, ko, kz)—trisection with k; > g — 1 for some i is standard in that it decomposes into
genus one summands.

We encourage the reader to recall the notions of perturbation and connected summation for
bridge trisections. The former was first introduced in Section 6 of [MZ17], where it was
referred to as stabilization, and the latter can be reviewed in Subsection 2.2 of [MZ17]. See
also [MTZ20, Section 3] for a succinct description of these concepts.

We call a surface-link an unlink if it is the split union of unknotted surface-knots, though we
allow the topology of each component to vary. For example, one might have a 2—component



20 Joseph, Meier, Miller and Zupan

unlink that is the split union of an unknotted 2—sphere and an unknotted projective plane.
(See Subsection 2.2 of [MTZ20] and Subsection 2.3 above for a brief discussion of unknotted
surface-knots.)

Before proving Theorem 5.2 in generality, we recall the case in which ¢; = b for some
i € Z3. This was addressed as Proposition 4.1 of [MZ17]. A bridge trisection is called
completely decomposable if it is a disjoint union of perturbations of one-bridge and two-
bridge trisections.

Proposition 5.1 [MZ17, Proposition 4.1] Let ¥ be a (b; c1, ¢z, c3)—bridge trisection with
ci = b for some i € Z3. Then, T is completely decomposable, and the underlying
surface-link is the unlink of min;{c;} 2—spheres.

Note that if ¢; = b for some i € Z3, then ¢;—; = c;j+1. Similarly, in what follows we will
see that if ¢; = b — 1 for some i € Z3, then |c;—; — ci+1| < 1. We now present and prove
the main result of this section.

Theorem 5.2 Let T be a (b; cy, ¢z, c3)—bridge trisection with c; = b — 1 for some i € Z3.
Then, T is completely decomposable, and the underlying surface-link is either the unlink of
min{c;} 2-spheres or the unlink of min{c;} 2—spheres and one projective plane, depending
on whether |ci—1 — ¢it1| =1 or ¢i—1 = ¢it1.

The key ingredient in the proof of the theorem is a pair of results of Scharlemann and Bleiler-
Scharlemann about planar surfaces in 3—manifolds [Sch85, BS88]. We refer the reader to
Section 1 of each of these papers, as we will adopt the notation of [Sch85, Theorem 1.1]
and [BS88, Theorem 1.3] in the proof below.

Proof of Theorem 5.2 We induct on the bridge number b of the bridge trisection. When
b =1 or b = 2, there is an easy classification of b—bridge trisections [MZ17, Subsec-
tion 4.3], which we take as the base case. Assume the theorem holds when the bridge
number is less than b, and let ¥ be a (b; ¢y, c3, ¢3)-bridge trisection. Assume without loss
of generality that cz = b — 1.

Suppose that 77, 7>, and 73 are the three tangles comprising the spine of the bridge
trisection. Every b-bridge splitting of a c—component unlink with b > ¢ is a perturbation
of the standard c-bridge splitting of the c—component unlink, which is itself unique up to
isotopy [MZ17, Proposition 2.3]. It follows that there exist collections A and A3 of bridge
disks for 71 and 73, respectively, so that the shadows A7 = AjN¥ and A} = A3NXE
have the property that A} U A% is an embedded collection of b — 2 bigons and a single
quadrilateral. Let c; denote one of the arcs of A} in the quadrilateral.

Let L = 7, U T3, and let b be the band for L that is framed by ¥ and whose core is ag.
Then the data (X, L, b) encodes a banded b-bridge splitting, since the resolution Ly is the
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unlink L' = 75 U T 1. (Here, we think of b as being slightly perturbed to lie in the 3—ball
containing 73.) We refer the reader to Section 3 of [MZ17], especially Lemma 3.3, for more
details about banded bridge splittings and how they arise from bridge trisections.

Assume without loss of generality that ¢, = |L| is greater than or equal to ¢; = |L'|. We
break the remainder of the proof into two cases: Either ¢, > ¢; or ¢; = ¢;. Note that since
there is only one band present, we must have ¢; — ¢y < 1. The proofs of the two cases
are very similar, except that we apply [Sch85, Theorem 1.1] in the first case and [BS88,
Theorem 1.3] in the second.

Case 1. If ¢; = ¢; + 1, then b connects distinct components K; and K, of L. Let K’ denote
the component of L’ obtained as the resolution (K; U K>),. We now translate this set-up
into the notation of [Sch85, Section 1]. Let N = v(K; U b U K3), a genus two handlebody,
and let M = S\ v(L \ (K| UK,)). Let E; denote the spanning disk bounded by K.
Let P' = Ov(E)), a 2-sphere disjoint from K; LU K, in M. Let Q' denote a spanning disk
bounded by K’ in M. Let P=P'\ N,andlet Q = Q' \ N.

It is clear from this set-up that P N ON is a collection of m parallel separating curves
A, for some odd m, since P’ was disjoint from K; and K5, but intersects b transversely.
(See [Sch85, Fig. 1].) Similarly, we have QNN agrees with the curves By, since 9Q' = K’
and Q' may crash through b in arcs parallel to its core. Thus, M, N, P, and Q satisfy
the hypotheses of [Sch85, Theorem 1.1]. The relevant conclusion is that A; and By bound
embedded disks E and F in M \ N that intersect in a single arc. (Compare with the proof
of [Sch85, Main Theorem].)

Translating this conclusion back into the setting of interest, we find that the disk E is
properly embedded in S \ v(b) and that F is a spanning disk for K’. This implies that
the pair (B3, T) = (S°,L) \ (v(b), (L N b)) is the split union of a trivial tangle and an
unlink: The strands of the trivial tangle are parallel into push-offs of E via the components
of F\ v(E), at which point they are parallel into Jv(b) via the push-offs of E.

The bridge sphere ¥ induces a bridge splitting (B>, T). By Theorem 2.2 of [Zupl3], &
is either minimal for (B3, T) or perturbed!. If the splitting were minimal, we would have
b = ¢, so T would be completely decomposable by Proposition 5.1. If the splitting is
perturbed, then ¥ is perturbed, since each bridge arc of 73 that is disjoint from v(b) is a
strand of a 1-bridge splitting of a component of L3 = 73 U T . After de-perturbing T, we
find that ¥ is completely decomposable, by the inductive hypothesis.

Case 2. If ¢, = ¢y, then b connects a component K of L to itself. Let K’ = K. We now
translate this set-up into the notation of [BS88, Section 1], abbreviating the discourse where
it is overly repetitive of the previous case. Let M = s3 \»(L\ K),and let N = v(K U b).

'Although Theorem 2.2 of [Zup13], as stated, applies to a closed 3—manifold M and a link K
in M, a verbatim proof establishes the more general case where the 3—manifold M is replaced by a
punctured 3—manifold and the link K is a tangle.
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Let P’ be a spanning disk bounded by K in M, and let Q' be a spanning disk bounded by
K inM.Let P=P \N,andlet 0 = Q' \ N.

It is clear from the set-up that the hypotheses of [BS88, Theorem 1.3] are satisfied, so we can
conclude that some Ag and By bound embedded disks Ep and Ep, respectively, in m
Moreover, there is a properly-embedded disk D in M \ N, disjoint from Ep and Eg, that
runs once over one of the handles of N and is disjoint from the other handle. We can extend
Ep to a spanning disk F for K. (Compare with the proof of [BS88, Theorem 1.8].)

The strands of K \ v(b) are parallel into push-offs of D via the components of Ep \ (D),
at which point they are parallel into Jv(b) via the push-offs of D. It follows that the tangle
(B3, T) = ($3,L) \ (v(b), v(b N K)) is the split union of a trivial tangle and an unlink, and
¥ gives rise to a bridge splitting of (B>, T). As before, this splitting is either minimal or
perturbed. The case that the splitting is perturbed has the same consequence as in Case 1
above.

If the splitting is minimal, then it is a split union of a 2-bridge splitting of the trivial
tangle and a (b — 2)-bridge splitting of an unlink. It follows that the bridge trisection is
a split union: ¥ = ¥ U T”, where T’ is a (2, 1)-bridge trisection (of a projective plane,
necessarily), and " is a (b — 2;¢; — 1,¢5 — 1,b — 2)-bridge trisection (of an unlink of
2—spheres, necessarily). The latter is completely decomposable by Proposition 5.1. a

We can also use Theorem 5.2 to understand surface-links with particular banded link pre-
sentations, where a banded link presentation (L,v) consists of an unlink L C S3 and a
collection of bands v such that the resolution L, of L along v is also an unlink. Every
banded link presentation gives rise to a surface S in S*, and conversely, every surface-link
S in §* can be presented by a banded link [KSS82].

In [MZ17, Section 3], the authors introduced the notion of banded bridge splitting of (L, v),
a bridge splitting of L such that the bands v are isotopic into the bridge sphere with the
surface framing and are dual to a collection of bridge disks on one side. They showed that
(5%, S) admits a (b; ¢)-bridge trisection if and only if a banded link presentation (L, v) of
S admits a banded b-bridge splitting such that |L| = ¢, |[v| = b — ¢z, |L,| = ¢3. Asa
corollary to Theorem 5.2, we obtain the following, which states, in essence, that a surface
is unknotted if the bands are attached in a relatively simple way to the maxima or minima
disks.

Corollary 5.3 Suppose a surface-link S in S* is presented by a banded link (L, v) with a
banded b-bridge splitting such that b = |L| + 1 or b = |L,| + 1. Then S is an unlink of
2—spheres or an unlink of 2—spheres and an unknotted projective plane.

The corollary exploits a feature of trisection theory called handle triality: If (L,v) admits a
banded bridge splitting as in the corollary, then it admits a (b, ¢)—bridge trisection such that
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¢y = b—1or c3 = b—1. By the three-fold symmetry of the trisection setup, we can extract
a different banded link presentation with a single band, as in the proof of Theorem 5.2, and
now we rely on known results about surface-links built with a single band to classify S. The
result can be interpreted as an analog for knotted surfaces of Theorem 1.2 from [MSZ16].
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