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We adapt Seifert’s algorithm for classical knots and links to the setting of tri-plane
diagrams for bridge trisected surfaces in the 4–sphere. Our approach allows for the
construction of a Seifert solid that is described by a Heegaard diagram. The Seifert
solids produced can be assumed to have exteriors that can be built without 3–handles; in
contrast, we give examples of Seifert solids (not coming from our construction) whose
exteriors require arbitrarily many 3–handles. We conclude with two classification
results. The first shows that surfaces admitting doubly-standard shadow diagrams are
unknotted. The second says that a b–bridge trisection in which some sector contains
at least b � 1 patches is completely decomposable, thus the corresponding surface is
unknotted. This settles affirmatively a conjecture of the second and fourth authors.

1 Introduction

One of the most important avenues available for studying in knotted surfaces in 4–space is
the analysis of the 3–dimensional Seifert solids bounded by such surfaces. There are many
situations in which information about such a Seifert solid gives rise to useful information
about the corresponding knotted surface. Examples, ranging from classical to modern,
include Gordon’s proof that 2–knots are not determined by their complements [Gor76],
Cochran’s characterization of fibered, homotopy-ribbon 2-knots [Coc83], and recent work
analyzing the relevance of homology cobordism invariants of Seifert solids [DM23].

In this paper, we show how topological information about a knotted surface can be recovered
from a bridge trisection of the surface, which allows for the diagrammatic study of knotted
surfaces and their Seifert solids. A bridge trisection of a surface S in S4 is a certain
decomposition of (S4,S) into three trivial disk systems (B4

1,D1), (B4
2,D2), (B4

3,D3) that can
be encoded diagrammatically either as a triple of tangles called a tri-plane diagram or as a
corresponding shadow diagram.

In Section 3, we give a version of Seifert’s algorithm for bridge-trisected surfaces, showing
how a tri-plane diagram can be used to produce a 3–manifold bounded by a connected
surface S with normal Euler number zero.

http://www.ams.org/mathscinet/search/mscdoc.html?code=%5C@secclass%2520
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Theorem 3.4 If S is connected and e(S) = 0, then there is a procedure to produce a

Seifert solid for S that takes as input a tri-plane diagram for S .

In Subsection 3.2, we give an explicit procedure for constructing a Heegaard diagram for
such a 3–manifold when S ⇠= S2 . As a corollary of the work in building Seifert solids,
we recover a combinatorial proof of the existence of Seifert solids. Although the literature
already contains a method for producing a Heegaard diagram for a Seifert solid – namely,
the work in [CS97] – the procedure described here is a bit more practical. In Section 3
of [CS97], the authors employ their methods to take a broken surface diagram and produce a
genus 21 Heegaard diagram for a punctured L(3, 1)#

�
#3(S1 ⇥ S2)

�
bounded by the 2-twist

spun trefoil, noting that this solid is non-minimal, since the same 2-knot also bounds a
punctured L(3, 1). In contrast, in Subsection 3.3 we use our procedure to find genus three
Heegaard diagrams for Seifert solids bounded by the spun trefoil and 1-twist spun trefoil,
where these solids are minimal. For the 2-twist spun trefoil, the procedure yields a genus
four Heegaard diagram for a Seifert solid (calculations omitted here). The 2-dimensional
data contained in a tri-plane diagram can often be easier to manipulate and simplify than
the data in a broken surface diagram; as such, both the solids and their Heegaard diagrams
produced by Theorem 3.4 are likely to be less complicated.

We also show that certain bridge trisected surfaces are unknotted.

Theorem 3.3 If a surface S has a doubly-standard shadow diagram, then S is unknotted.

In practice, Theorem 3.3 offers a new and effective method to show unknottedness for
bridge trisected surfaces. The doubly-standard criterion has considerable potential to aid in
the tabulation of low-complexity knotted surfaces, since verifying that a shadow diagram is
doubly-standard can be much easier than proving unknottedness via other methods.

One of the key features of trisection theory is that it provides a vehicle to adapt 3–dimensional
ideas to dimension four, and in Section 4, we prove another result that fits into this line of
research. It is well-known that the complement of every canonical Seifert surface (i.e. one
obtained from Seifert’s algorithm) is a handlebody. Thus, it is natural to attempt to extend
this notion to dimension four. In this vein, we call a Seifert solid canonical if it is obtained
from the procedure presented in Section 3, and we call a Seifert solid spinal if its exterior
in S4 can be built without 3–handles. We prove the following two results relating (and
distinguishing) these concepts.

Theorem 4.1 If a surface-knot S admits a Seifert solid, then it admits a canonical Seifert

solid that is spinal.

In fact, modulo some additional, easily satisfied connectivity conditions, every canonical
Seifert solid is spinal. The next result shows that some Seifert solids (in contrast to canonical
Seifert solids and many standard examples) are “far” from being spinal.



Bridge trisections and Seifert solids 3

Theorem 4.2 Given any n 2 N, there exists a 2–knot K that bounds a Seifert solid Y
homeomorphic to (S1⇥S2)� such that S4\⌫(Y) requires at least n 4–dimensional 3–handles.

Finally, in Section 5 we prove the following standardness result, affirmatively settling
Conjecture 4.3 of [MZ17].

Theorem 5.2 Let T be a (b; c)–bridge trisection with ci = b � 1 for some i 2 Z3 .

Then, T is completely decomposable, and the underlying surface-link is either the unlink of

min{ci} 2–spheres or the unlink of min{ci} 2–spheres and one projective plane, depending

on whether |ci�1 � ci+1| = 1 or 0.

The proof relies on theorems of Scharlemann and Bleiler-Scharlemann regarding planar
surfaces in 3–manifolds [BS88, Sch85]. The methods of the proof are somewhat unrelated to
the methods used in the preceding sections and may be of independent interest. The second
and fourth authors previously handled this case when ci = b for some i 2 Z3 [MZ17,
Proposition 4.1]. Theorem 5.2 can be seen as the analogue for bridge trisections of Theorem
1.2 of [MSZ16], which establishes a similar standardness result for trisections of closed
manifolds; as such, our theorem fills an important gap in the trisections literature and
provides yet another avenue to verify that a surface in S4 is unknotted.
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2 Preliminaries

We work in the smooth category. This section includes an abbreviated introduction to
the concepts relevant to this paper, but the interested reader is encouraged to consult the
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reference [GK16] for further information about 4–manifold trisections and the references
[MZ17] and [JMMZ22, Section 2] for more detailed discussions of bridge trisections. We
limit our work here to surfaces in S4 , but there is also a theory of bridge trisections in
arbitrary 4–manifolds; see [MZ18].

2.1 Bridge trisections

Let S be an embedded surface in S4 , let b be a positive integer, and let c = (c1, c2, c3) be
a triple of positive integers. A (b; c)–bridge trisection of (S4,S) is a decomposition

(S4,S) = (X1,D1) [ (X2,D2) [ (X3,D3)

such that

(1) Each Di is a collection of ci boundary-parallel disks in the 4–ball Xi ;

(2) Each intersection Ti = Di�1 \ Di a boundary-parallel tangle in the 3–ball Hi =
Xi�1 \ Xi (with indices considered mod 3);

(3) The triple intersection D1 \ D2 \ D3 is a collection of b points in the 2–sphere
⌃ = X1 \ X2 \ X3 .

In [MZ17], it was proved that every surface S admits a (b; c)–bridge trisection for some
(b; c). We choose orientations so that @(Xi,Di) = (Hi, Ti)[ (Hi+1, Ti+1). When we wish to
be succinct, we use T to represent a bridge trisection, with components labeled as above.

2.2 Diagrams for bridge trisections

The existence of bridge trisections gives rise to a new diagrammatic theory for surfaces in
S4 , using an object called a tri-plane diagram, a triple D = (D1,D2,D3) of trivial planar
diagrams with the additional condition that each Di [ Di+1 is a classical diagram for an
unlink. In [MZ17], it was shown that every tri-plane diagram determines a bridge trisection
T. Conversely, given a bridge trisection T of (S4,S), we can choose a triple of disks Ei ⇢ Hi

with common boundary and project the tangles Ti onto Ei to obtain a tri-plane diagram. Of
course, the choices of disks and projections are not unique, but any two tri-plane diagrams
corresponding the same bridge trisection T are related by a finite collection of interior
Reidemeister moves and mutual braid transpositions, while any two bridge trisections T
and T0 for the same surface S are related by perturbation and deperturbation moves.

In addition, bridge trisections yield another type of diagram: Each trivial tangle Ti can be
isotoped rel-boundary into the surface ⌃, yielding a triple (A,B,C) of pairwise disjoint
collections of arcs called a shadow diagram, which has the property that @A = @B = @C ,
and the pairwise unions of any two of the tangles TA , TB , TC determined by the arcs are
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unlinks. As with tri-plane diagrams, any shadow diagram determines a bridge trisection.
Further details about shadow diagrams can be found in [MTZ20].

Here we consider special types of shadow diagrams. We say that a pair of collections of
arcs in a shadow diagram is standard if their union is embedded. Any bridge trisection
admits a shadow diagram (A,B,C) in which one of the pairs is standard. If two or three
pairs of shadows in a shadow diagram (A,B,C) are standard, then we say that (A,B,C) is
doubly-standard or triply-standard, respectively. Theorem 3.3 says that doubly-standard
(and thus triply-standard) diagrams always describe unknotted surfaces.

2.3 Unknotted surfaces

In this subsection, we review standard notions of unknottedness for surfaces in S4 . A closed,
connected, orientable surface S in S4 is unknotted if it bounds an embedded 3–dimensional
handlebody H ⇢ S4 . For nonorientable surfaces, the definition is slightly more involved.
We define the two unknotted projective planes, P± , to be the two standard projective planes
in S4 , pictured via their tri-plane diagrams in Figure 1, where e(P±) = ±2.

Figure 1: Tri-plane diagrams for P+ and P� .

In general, for a nonorientable surface S , we say that S is unknotted if S is isotopic to a
connected sum of some number of copies of P+ and P� . See [JMMZ22, Remark 2.6] for
a detailed discussion of the orientation conventions used here.

3 Seifert solids

Classical results of Gluck [Glu62] (resp., Gordon-Litherland [GL78]) assert that every
orientable surface S (resp., surface S with e(S) = 0) in S4 bounds an embedded 3–
manifold, called a Seifert solid in the orientable case. In the setting of broken surface
diagrams, Carter and Saito provided a procedure that in many respects mimics Seifert’s
algorithm for classical knots [CS97]. In this section, we describe an extension of Seifert’s
algorithm that takes an oriented tri-plane diagram D and produces a Seifert solid whose
intersection with @Xi agrees with the classical Seifert’s algorithm performed on the oriented
unlink diagram Di [ Di+1 . We also obtain alternative proofs of the theorems of Gluck and
Gordon-Litherland mentioned above.
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3.1 Existence of Seifert solids

Given a spanning surface F for an unlink U , we define the cap-off F of F to be the closed
surface F ⇢ S4 obtained by gluing a collection of trivial disks in B4

� to F along U . (There
is a unique such choice of disks up to isotopy rel-boundary in B4

� by e.g. [KSS82] or
[Liv82].) Let F+ ⇢ S3 denote the Möbius band bounded by the unknot so that F+ contains
a positive half-twist and has boundary slope +2, and let F� ⇢ S3 denote the Möbius band
bounded by the unknot with a negative half-twist and boundary slope �2. For n > 0, let
Fn be the connected surface obtained by attaching n � 1 trivial bands to the split union of
n copies of F+ ; that is, Fn is obtained by taking the boundary connected sum of n copies
of F+ . For n < 0, let Fn be obtain by taking the boundary connected sum of (�n) copies
of F� . Finally, let F0 be the disk bounded by the unknot in S3 . Additionally, let Fn be the
cap-off of Fn . In Figure 1, the negative Möbius band is shown to cap off into B4

+ to obtain
P+ . (See also [JMMZ22, Figure 2].) Here, we are capping off into B4

� , so that by definition
the cap-off F�1 of the negative Möbius band F� is P� . In contrast, the cap-off F1 of
the positive Möbius band F+ is P+ . (Recall that P+ and P� denote the two unknotted
projective planes in S4 ; see Subsection 2.3.) It follows that

Fn =

8
>><

>>:

a connected sum of n copies of P+, if n > 0
a connected sum of �n copies of P� if n < 0
an unknotted 2–sphere if n = 0

,

The intent of the cap-off notation is to emphasize the way in which Fn can be obtained from
a specific surface in S3 , which will be useful in the rest of this section – especially given the
following lemma.

Lemma 3.1 Every incompressible spanning surface F for the unknot is isotopic to Fn for

some n 2 Z.

Proof First, we argue that Fn is incompressible for all n. This follows from [Tsa92], but
we include a proof here. Certainly, F0 and F±1 are incompressible, since a compression
increases Euler characteristic by two. Suppose now that Fn is compressible for some
n > 1, and let F0

n be the component of the surface obtained by compressing Fn such that
@F0

n = @Fn . In addition, let F 0
n ⇢ S4 be the cap-off of F0

n . Then the embedded surface
Fn can be obtained from F 0

n by a 1–handle attachment, and thus e(F 0
n) = e(Fn) = 2n.

However, since the nonorientable genus of F 0
n is strictly less than n, this contradicts

the Whitney–Massey Theorem (see discussion in [JMMZ22]). We conclude that Fn is
incompressible.

On the other hand, suppose that F is an arbitrary incompressible spanning surface for the
unknot U . The exterior of U is a solid torus V , and every simple closed curve c ⇢ @V
is homotopic to a (p, q)–curve, where a (0, 1)–curve is the boundary of a meridian disk of
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V and a (1, 0)–curve is the boundary of a meridian disk of N(U). The boundary of F is
a (2k, 1)–curve for some integer k . (The spanning surface F intersects the disk bounded
by U in some number of arcs, the endpoints of which correspond to the intersections of
the (p, q)–curve with the (0, 1)–curve.) If F is orientable, then it is well-known that F is
isotopic to the meridian disk F0 .

Suppose that F is nonorientable. By [Tsa92, Corollary 12], the nonorientable genus of F is
equal to |k|. Assuming that @F and @F0 meet efficiently, isotope F so that it intersects F0
minimally. By standard cut-and-paste arguments, an arc of F \ F0 which is outermost in
F0 gives rise to a boundary-compressing disk � for F . Since @F and @F0 meet efficiently,
the result F0 of boundary-compressing F along � has a single boundary component and
nonorientable genus k�1. Reversing the process, we see that F can be obtained from F0 by
attaching a boundary-parallel band to F0 along opposite sides of @F0 . Note that @V \@F0 is
an annulus and the band is determined by a spanning arc. Working rel-boundary, all choices
of spanning arcs are related by Dehn twists about @F0 , and so it follows that up to isotopy,
there is a unique band taking F0 to F .

Finally, we claim that F is isotopic to Fk , and we prove this fact by inducting on k . If
k = ±1, then F has genus one and is obtained from the disk F0 = F0 by a single boundary
tubing. By the above argument, there is precisely one way to do this, and thus F = F±1 .
Now, suppose that k > 1 and the claim holds for j = k�1. As above, isotope F to meet F0
minimally, and since k > 1, there are at least two arcs a0 and a1 of F\F0 that are outermost
in F0 . Let ` be a (0, 1)-curve that meets @F in a single point contained in a0 . Then, a1
gives rise to a boundary-compressing disk �1 and the result F0 of boundary-compressing F
along �1 also satisfies |@F0 \ `| = 1, since the modification was carried out away from the
arc a0 . We conclude that F0 has genus k�1 and boundary slope (2(k�1), 1). By induction
F0 = Fk�1 , and since there is a unique way to obtain F from F0 by boundary-tubing, it
follows that F = Fk . The case k < �1 follows symmetrically, completing the proof of the
lemma.

In the next proposition, we use Lemma 3.1 to understand the cap-off of any spanning surface
F for an unlink in S3 .

Proposition 3.2 Let F be a spanning surface for an unlink U in S3
.

(1) If every component of @F has slope 0, then the cap-off F bounds a (possibly

nonorientable, possibly disconnected) handlebody V ⇢ B4
such that V \ @B4 = F .

(2) The normal Euler number e(F) is equal to the sum of the slopes of the boundary

components of F .

(3) The cap-off F is a split union of unknotted surfaces in S4
.
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Proof Suppose F and F0 are two spanning surfaces for an unlink U in S3 such that F0 is
isotopic relative to U to the surface obtained by surgering F along a compressing disk D
for F . Then there is a compression body C ⇢ S3 ⇥ [0, 1] such that

• C \ (S3 ⇥ {1}) = F ⇥ {1},

• C \ (S3 ⇥ {0}) = F0 ⇥ {0}, and

• @C = (F ⇥ {1}) [ (F0 ⇥ {0}) [ (U ⇥ [0, 1]),

and C has a single critical point (of index 1) with respect to the Morse function S3⇥[0, 1] !
[0, 1], which we assume lies in S3 ⇥

� 1
2
 

. Note that C is a product cobordism above and
below S3 ⇥

� 1
2
 

.

Any spanning surface F for U can be reduced to F0 , a union of 2–spheres and incompressible
spanning surfaces for components of U via a sequence of compressions and isotopies. If
each component of @F has slope 0, then F0 is a collection of disks and spheres. Applying
the compression body construction described above for each compression taking F to F0

and stacking the results, we get a compression body C co-bounded by F and F0 . Since F0

is a collection of disks and spheres, there is a handlebody with boundary F = F[D , where
D = F0 [ (U ⇥ [0, 1]) is a collection of properly embedded disks in B4 : simply cap-off the
sphere components of C with 3–balls whose interiors are pushed sufficiently deep into B4 .
This handlebody is non-orientable (resp., disconnected) if and only if F is. This establishes
part (1).

Let F be any spanning surface for an unlink U =
Fn

i=1 Ui . Let B =
Fn

i=1 Bi be a collection
of disjoint 3–balls with Ui ⇢ Int(Bi). Let F0 =

Fn
i=1 Fi be a split union of incompressible

spanning surfaces for the components of U , with Fi ⇢ Int(Bi), so that the slopes of F and
F0 agree at each component of U . Let F00 be the result of surgering F0 along a collection of
arcs so that F00 and F have the same homeomorphism type relative to U ; moreover, assume
that every arc of the collection intersects each component of @B in at most one point. It
follows that F00 decomposes as a split union of connected sums of surfaces, each summand
of which is either a torus or an incompressible spanning surface for an unknot. Therefore,
the cap-off F 00 is the split union of connected sums of surfaces, each summand of which is
an unknotted surface in S4 . Livingston showed that F and F00 are isotopic rel-boundary in
B4 [Liv82]. It follows that the cap-off F will isotopic to the cap-off F 00 , which completes
the proof of part (3). Since (2) holds for F1 and F�1 , and since the normal Euler number
is additive under connected sum, part (2) follows, as well.

Recall that a shadow diagram is doubly-standard if two of the pairings of arcs yield embedded
curves. We can use Proposition 3.2 to obtain the following classification result for doubly-
standard diagrams.

Theorem 3.3 If S has a doubly-standard shadow diagram, then S is unknotted.
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Note that Theorem 3.3 also applies to surfaces with triply-standard shadow diagrams, as a
special class of doubly-standard shadow diagrams.

Proof Suppose S has a shadow diagram (A,B,C) such that the pairings (A,B) and (B,C)
are standard. Consider the standard Heegaard splitting @X3 = S3 = H+ [⌃ H� , and let
⌃± be a parallel copy of ⌃ pushed slightly into H± . Note that A [ B may have nested
components (so that components of A [ B don’t necessarily bound a collection of disjoint
disks). After a sequence of arc slides, however, performed only on the arcs in A, we obtain
arcs A0 such that the embedded curves A0 [ B bound a pairwise disjoint collection of disks.
We perform a similar procedure with B [ C to obtain B [ C0 . Now, embed parallel copies
A0
+ [ B+ of the curves A0 [ B in ⌃+ so that they bound a pairwise disjoint collection D+

of disks in ⌃+ , and embed parallel copies B� [ C0
� of the curves B [ C0 in ⌃� so that

they bound a pairwise disjoint collection D� of disks in ⌃� . In H+ , there is an isotopy of
B+ to B ⇢ ⌃ taking the disks D+ to disks D1 ⇢ H+ such that D1 \ ⌃ = B. The tangle
T1 = S \ (H+) is the image of A0

+ under this isotopy. Similarly, in H� there is an isotopy
of B� to B taking the disks D� to disks D2 ⇢ H� such that D2 \ ⌃ = B. The tangle
T3 = S \ H� is the image of C0

� under this isotopy. See Figure 2.

By construction D1 \ D2 = B, so that F = D1 [ D2 is a spanning surface for the unlink
T1 [ T3 . Note further that D1 is a trivial disk system for T1 [ B, and D2 is a trivial disk
system for B [ T3 ; hence, S is the union of D1,D2 , and D3 , where D3 is a trivial disk
system for T1 [ T3 pushed into B4 . However, since F = D1 [ D2 ⇢ S3 , it follows that S
is also isotopic to the cap-off F of F , which is unknotted by Proposition 3.2.

We are now ready to prove our main result.

Theorem 3.4 If S is connected and e(S) = 0, then there is a procedure to produce a

Seifert solid for S that takes as input a tri-plane diagram for S .

Proof The proof follows from the proofs of Propositions 3.5 and 3.6 below.

In Section 3.2, we show that there is a procedure to produce a Heegaard splitting for the
Seifert solid when S is a 2–knot.

In addition to providing the proof of the above theorem, the next two propositions provide
alternate proofs of the results in [Glu62] and [GL78] mentioned above.

Proposition 3.5 Every orientable surface-link S bounds a Seifert solid in S4
.

Proof Let D be a tri-plane diagram for S , with induced orientation on the bridge points
x. Perform mutual braid transpositions so that the bridge points alternate sign (orientation).
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Figure 2: Left: a doubly standard shadow diagram (A,B,C). The pairings (A,B) and (B,C)
are standard. Middle: disks in ⌃+ and ⌃� bounded by parallel copies of A[B and B[C ,
respectively. Right: A spanning surface F for T1 [ T2 in @X3 = S3 .

Then there are b pairwise disjoint arcs " contained in the equator e connecting bridge points
of opposite signs, so that Di [ " is an oriented link diagram. Let Fi be the Seifert surface
obtained by performing Seifert’s procedure on the diagram Di[", and let bFi = Fi[Fi+1 be
the spanning surface obtained by gluing Fi to Fi+1 along ". By Proposition 3.2, there exists
a handlebody Vi ⇢ Xi such that @Vi = bFi[Di and Vi\@Xi = bFi . Finally, Y = V1[V2[V3
is an embedded 3–manifold whose boundary is D1 [ D2 [ D3 = S , and so Y is a Seifert
solid for S .

Proposition 3.6 If S is connected and e(S) = 0, then S bounds a spanning solid in S4
.

Proof Consider a bridge trisection T of S , with Ui = @Di and ⌧ = T1 [ T2 [ T3 . By
taking, for example, a tri-plane diagram D and compatible checkerboard surfaces in Di , we
can produce spanning surfaces bFi for Ui such that bFi \ Hi = bFi�1 \ Hi . Let Fi denote
bFi \ Hi . For each component J of Ui = @bFi , let ◆bF(J) denote the induced boundary slope
on the curve J by the surface bFi . Then by Proposition 3.2, we have

X

J⇢U1[U2[U3

◆bF(J) = 0.

Choose a triple of spanning surfaces bFi such that
P

|◆bF(J)| is minimal over all possible
choices. We claim that

P
|◆bF(J)| = 0. If not, then there exist boundary curves J+ and

J� such that ◆bF(J+) > 0 and ◆bF(J�) < 0. Noting that the surface S contains all curves
J ⇢ Ui ⇢ ⌧ , push each curve J ⇢ Ui slightly off of ⌧ into the corresponding disk component
of Di , so that the collection of curves J is embedded in S and disjoint from ⌧ . Choose
a path � ⇢ S from J+ to J� , avoiding the bridge points, noting that |� \ ⌧ | > 0. At
each point of � \ ⌧ , modify the the corresponding component of Fi by taking the boundary
connected sum of Fi with a trivial Möbius band to obtain new surfaces bF0

i and F0
i , so that

the corresponding boundary curves satisfy ◆bF0(J0+) = ◆bF(J+)�2, ◆bF0(J0�) = ◆bF(J�)+2, and
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◆bF0(J0) = ◆bF(J) for all other curves J0 . It follows that
P

|◆bF0(J0)| <
P

|◆bF(J)|, contradicting
our assumption of minimality. (Note that ◆bF(J) is always even, since it represents the
number of intersection points between the boundary curves of spanning surfaces; see the
proof of Lemma 3.1.)

We conclude that ◆bF(J) = 0 for all curves J , and thus by Proposition 3.2, each spanning
surface bFi cobounds a (possibly) nonorientable handlebody Vi ⇢ Xi with the disks Di . It
follows that V1 [ V2 [ V3 is a spanning solid for S in S4 .

3.2 Procedure to find a Heegaard diagram for a Seifert solid

In this subsection, we describe a procedure for finding a Heegaard diagram for the Seifert
solid coming from a bridge trisection T of a 2–knot S . We use labels consistent with those
appearing above in the proof of Proposition 3.5. The process is illustrated in Figures 3
through 6.

Step 1: Given a tri-plane diagram D for S perform interior Reidemeister moves and mutual
braid transpositions so that the induced Seifert surfaces satisfy the following conditions:

(a) Each of F1 , F2 , and bF1 is a collection of disks.

(b) Surfaces bF2 and bF3 are connected.

(c) g(bF2) = g(F3).

See Figure 3. Note that attaining condition (a) is possible since any tri-plane diagram can
be converted to one in which two of the tangles have no crossings. Condition (b) can be
attained by performing interior Reidemeister moves on the diagram D3 . Attaining condition
(c) is possible since we can arrange so that F2 is a collection of b bridge disks, in which
case bF2 deformation retracts onto F3 (although in general, we need not assume that F2 has
b components, as shown below).

Step 2: Following the proof of Proposition 3.2, the surfaces bF2 and bF3 compress completely
to disks in S3 . Let ↵ be a complete collection of pairwise disjoint compressing curves in
bF3 , and let � be a complete collection of pairwise disjoint compressing curves in bF2 . See
Figure 4 (top row).

Step 3: If necessary, slide the curves � over the components of @D2 to obtain a collection of
curves �0 ⇢ F3 . Note that since g(F3) = g(bF2), as curves in F2 = bF2 [D2 , the collection
� can be isotoped to be contained in F3 , and any isotopy of a curve over a disk component
of D2 can be realized as a slide over @D2 . Thus, such a sequence of slides exists. See
Figure 4 (middle row).

Step 4: Let P = D1 [ D2 , so that P is a planar surface with c3 boundary components, let
Q be the surface obtained by gluing P to bF3 along their boundaries, and let ↵⇤ be a choice
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F1 F2 F3
Figure 3: To perform the Seifert solid procedure on a tri-plane diagram, we first perform
mutual braid transposition until the tangle diagrams in V1 and V2 have no crossings. Then
we perform the usual Seifert’s procedure for knot diagrams to obtain surfaces F1 , F2 , F3
that agree in the bridge sphere ⌃, with F1 and F2 and bF1 all collections of disks and
g(bF2) = g(F3).

of c3 � 1 boundary components of P and some minimal number of curves in ↵ so that ↵⇤

forms a cut system for Q.

Step 5: Let �⇤ be the union of �0 and a collection of curves in Q obtained by the following
instructions: For each component of J of @D1 , suppose that J meets d disk components
of F2 . Choose d � 1 of these components, isotope them off of F2 in F2 = F2 [ F3 [D2 ,
and add these d � 1 curves to �⇤ . Discard any superfluous curves of �0 so that �⇤ is a cut
system for Q.

Proposition 3.7 Using the procedure described above, S bounds a punctured copy of the

3–manifold determined by the Heegaard diagram (Q;↵⇤,�⇤).

Proof Suppose that D is a tri-plane diagram satisfying conditions (a), (b), and (c) given
in Step 1 above. Following the proofs of Proposition 3.2 and Proposition 3.5, we have
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↵ �

↵0 �0

⇠=

Figure 4: Top: we find complete sets of compressing curves ↵,� for bF3 and bF2 , respectively.
Middle: We slide ↵,� (with slides indicated in top row) over @bF3, @bF2 to obtain curve
systems ↵0,�0 that are each completely within F3 . Bottom: We obtain ↵⇤ (red and purple
curves) by adding boundary curves as in Step (4) of §3.2. We obtain �⇤ by adding arcs as
in Step (5). Then (Q;↵⇤,�⇤) is a Heegaard diagram for a (closure of a) Seifert solid for the
2–knot described by the initial tri-plane diagram.

that for each i, the surface bFi [ Di bounds a handlebody Vi , where V1 is a collection of
3–balls, say B1, . . . ,Bn , and V2 and V3 are connected. Moreover, ↵ contains a cut system
for V3 and � contains a cut system for V2 . Since �0 is homotopic to � in @V2 , it follows
that �0 also contains a cut system for V2 . Thus, the Seifert solid bounded by S is equal
to V2 [ V3 [ B1 [ · · · [ Bn . Let Y be the closed 3–manifold obtained by capping off the
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bF3 bF2

Figure 5: We start performing the Seifert solid procedure (§3.2) on the tri-plane diagram in
the top row.

boundary S of this Seifert solid with an abstract 3–ball B0 . We will show that (Q;↵⇤,�⇤)
is a Heegaard diagram for Y .

To this end, consider W = V3 [ B0 and W 0 = V2 [ B1 [ · · · [ Bn . Considering that
@V2 = F2 [ F3 [D2 and @(B1 [ · · · [ Bn) = F1 [ F2 [D1 , we have that

@W 0 = F3 [ F1 [D2 [D1 = bF3 [ P = Q.

Additionally, the 3–balls Bi are attached to V2 along F2 , which is a collection of disks by
condition (a). It follows that the curves �0[@F2 bound compressing disks in W 0 cutting W 0

into a collection of 3–balls, so W 0 is a handlebody. In addition, choosing all but one curve
of @F2 for each component Bi and a subset of �0 as in Step 5 above yields a cut system �⇤

for W 0 .

Turning our attention to W , we have @V3 = bF3 [ D3 and @B0 = D1 [ D2 [ D3 , so that
@W = bF3 [ D1 [ D2 = Q, and in addition, the curves ↵ and @D3 bound disks cutting W
into 3–balls. Choosing ↵⇤ to contain all but one curve of @D3 and a subset of ↵ as in Step
4, we have that the curves in ↵⇤ bound disks cutting W into a single 3–ball, so ↵⇤ is a cut
system for W . We conclude that (Q;↵⇤,�⇤) is a Heegaard diagram for Y , as desired.

Remark 3.8 It may be the case that the surface F3 compresses in H3 , in which case ↵ and
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� could have one or more curves in F3 in common. Following the procedure with such ↵
and � produces one or more extra S1 ⇥ S2 summands for the 3–manifold Y , and a simpler
Seifert solid can be obtained by first compressing F3 maximally in H3 .

Remark 3.9 The procedure above can be generalized: We can relax conditions (a), (b),
and (c) from Step 1; the only assumption necessary to ensure that V1 [ V2 is a handlebody
is that their intersection F2 is a collection of disks. However, the weaker conditions make
it somewhat more difficult to draw the diagram, since we are no longer guaranteed the
existence of the slides of Step 3 – it may be the case that � curves necessarily intersect the
disks D1 and D2 .

Remark 3.10 The observant reader might notice that we call our process the Seifert solid
procedure, rather than algorithm. An algorithm gives an output completely determined from
the input, independent of further choices. A procedure may require additional choices for
the output to be determined. In the procedure we give in this section to find a description of
a Seifert solid for a 2–knot, we are forced to choose compressing circles for surfaces in S3 .
These circles are generally not unique (and in fact, different choices can determine different
Seifert solids), so we do not refer to this procedure as an algorithm.

3.3 Some examples

In this subsection, we carry out the procedure described above for a couple of specific
examples. The first is the spun trefoil. In Figure 3, we see a tri-plane diagram for the spun
trefoil coming from [MZ17], followed by the result of performing tri-plane moves so that
the induced Seifert surfaces Fi satisfy conditions (a), (b), and (c) from Step 1 above.

↵0 �0

⇠=

Figure 6: Leftmost: The curves ↵0 in F3 . Second: The curves �0 in F2 . Third: we add
some boundary curves of F2 to ↵ to obtain ↵⇤ and some arc to �0 to obtain �⇤ . Rightmost:
we simplify the resulting Heegaard diagram (⌃;↵⇤,�⇤) to see that it is a diagram of S3 .
Thus, the initial 2–knot bounds a copy of B3 in S4 , so is unknotted.

In the top panel of Figure 4, we find the compressing curves ↵ on bF3 and � on bF2 . Note that
in this case D3 contains two disks, so that P = D1 [D2 is an annulus, and Q = bF3 [P can
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be obtained by identifying the two boundary components of bF3 . Under this identification,
the identified boundary components constitute the third curve in the cut system ↵⇤ . In
the second panel at left, we slide the two curves of ↵ over the third curve of ↵⇤ in Q.
In the second panel at right, we slide the two curves of � over a boundary component as
shown to get the curves �0 ⇢ F3 (which are identical to the image of ↵ under the slides
described above). Finally, the third curve of �⇤ consists of the teal arc depicted in F3 and a
spanning arc in the annulus A, or equivalently, we can identify the endpoints of the teal arc.
In the lower panel, we see the diagram for the Seifert solid, the standard (once-stabilized)
Heegaard diagram for #2(S1 ⇥ S2).

Remark 3.11 These diagrams and arguments easily generalize to produce the Seifert solid
#p�1(S1 ⇥ S2) for the spun (p, 2)-torus knot. Miyazaki proved that the degree of the
Alexander polynomial (over Q[t, t�1]) is a lower bound for the second Betti number of any
Seifert solid [Miy86]. Since the degree of the Alexander polynomial of T(2, p) is p � 1,
these solids are minimal in the sense that the corresponding 2–knots cannot bound any
3-manifold with a smaller second Betti number, e.g. a fewer number of S1 ⇥ S2 summands.

For the second example, we find a Seifert solid for the 1-twist spun trefoil (which is unknotted
by [Zee65]). In Figure 5, we include a simplified tri-plane diagram for the 1-twist spun
trefoil along with the surfaces bF2 and bF3 this diagram generates.

Next, we find the compressing curves ↵ for bF3 and � for bF2 . As in the spun trefoil example
above, P = D1 [D2 is an annulus, so we view Q as being obtained by identifying the two
boundary components of bF3 , with this identified boundary the third curve in ↵⇤ . Figure 6
shows the curves ↵ , � , and the union of the sets in Q, yielding the standard diagram for
S3 , in which the third curve of �⇤ appears as a teal arc with boundary points identified (as
above). Note that the existence of the curves ↵ and � is guaranteed by Proposition 3.2; in
practice, however, these curves are found using ad hoc methods.

4 Spinal Seifert solids

A natural aspect of the study of Seifert surfaces for links in the 3–sphere is the consideration
of their exteriors. We call a Seifert surface F for L canonical if it is isotopic to a surface
obtained by applying Seifert’s procedure to a diagram for L . We call a Seifert surface F free
if its exterior S3 \ ⌫(F) is a 3–dimensional handlebody – equivalently, has free fundamental
group. It is an easy exercise to see that a canonical Seifert surface is free, provided that
it is connected; so every link admits a free Seifert surface, by the application of Seifert’s
algorithm to a non-split diagram. However, such a surface can be far from minimal genus.
M. Kobayashi and T. Kobayashi showed that the difference between the genus of a knot
and the minimal genus of a free Seifert surface for the knot can be arbitrarily large, and that
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moreover the difference between the minimal genus of a free Seifert surface for a knot and
the minimal genus of a canonical Seifert surface can also be arbitrarily large [KK96]. (In
fact, they show that both of these differences can be made arbitrarily large at the same time.)

In this section, we introduce 4–dimensional analogues of the notions of canonical and free
Seifert surfaces. Going forward, let S ⇢ S4 be a surface-link admitting a Seifert solid. (This
is equivalent to the condition that S be orientable or have normal Euler number zero.) We
call a Seifert solid Y canonical if it is isotopic to a Seifert solid obtained by the procedure
given in Section 3.1 (see Propositions 3.5 and 3.6). We call a Seifert solid Y spinal if
S4 \ ⌫(Y) deformation retracts onto a finite 2–complex. Equivalently, S4 \ ⌫(Y) can be built
with handles of index at most two.

Theorem 4.1 If a surface-knot S admits a Seifert solid, then it admits a canonical Seifert

solid that is spinal.

Proof First, note that in the proof of Propositions 3.5 and 3.6, it is possible to arrange that
each Seifert surface Fi is connected: For example, this is assured if each Di [ " is non-split.
Let Y be a canonical Seifert solid for S given by Proposition 3.5 or Proposition 3.6 such
that the canonical surface Fi = Y \ Hi is connected for each i 2 Z3 . We make use of the
notation of the proof of Proposition 3.5 in what follows.

Recall that Vi = Xi \ Y is a handlebody with @Vi = bFi [Di . Moreover, Vi is built relative
to bFi by attaching 3–dimensional 2–handles and 3–handles. It follows that Xi \ ⌫(Vi) can
be built with 4–dimensional 0–, 1–, and 2–handles.

Next, recall that Fi is a canonical Seifert surface for the link Di [ ", considered in S3 =
Hi [⌃ B3 . Since we have assumed Fi is connected, we have that Fi is free in Hi [⌃ B3 .
Since " ⇢ @Hi , it follows that Hi \ Fi is also a 3–dimensional handlebody.

Finally, we can build S4 \⌫(Y) by taking the Xi \⌫(Vi) and gluing them along the Hi \⌫(Fi).
Since the three gluings occur along 3–dimensional handlebodies, it follows that S4 \ ⌫(Y)
is obtained from the disjoint union of the Xi \ ⌫(Vi) by attaching 4–dimensional 1– and
2–handles. Because each of the Xi \ ⌫(Vi) were built with 4–dimensional handles of index
at most two, the same is true for S4 \ ⌫(Y). This shows that Y is spinal, as desired.

When studying Seifert surfaces, the genus of the surface is the obvious measure of com-
plexity that one might try to minimize. In contrast, there are many ways one might try to
quantify the complexity of a Seifert solid Y for a surface-knot; indeed, any complexity one
might associate to a 3–manifold could be interesting to consider. Here, we content ourselves
to give some examples showing that there is at least one sense in which a simple Seifert
solid for a surface-knot can be arbitrarily far from being spinal.

Theorem 4.2 Given any n 2 N, there exists a 2–knot K that bounds a Seifert solid Y
homeomorphic to (S1⇥S2)� such that S4\⌫(Y) requires at least n 4–dimensional 3–handles.
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Proof Let J be an arbitrary knot, and let K = Wh0(J#J) be the untwisted Whitehead
double of the connected sum of J with its mirror. Let F be the standard genus one Seifert
surface for K , and let � be the curve on F that is isotopic to J#J . (Alternatively, F is
obtained by taking a 0–framed annular thickening of a curve � isotopic to J#J and plumbing
on a Hopf band.)

Let E be the standard ribbon disk for � , so that (B4,E) = (S3, J)� ⇥ I . The surface F can
be surgered along E in the 4–ball to get a slice disk D for K , and the trace of this surgery
yields a solid torus V with @V = F [ D.

Let K = D[K D be the 2–knot obtained by doubling D, and let Y = V [F V be the double
of V along F . Then, Y is a Seifert solid for K and Y ⇠= (S1 ⇥ S2)� .

We claim that ⇡1(S4 \ ⌫(Y)) ⇠= ⇡1(S3 \ ⌫(J)). First, we have ⇡1(S4 \ ⌫(Y)) ⇠= ⇡1(B4 \ V),
since the former exterior is the double of the latter exterior along the exterior of F in S3

and ⇡1(S3 \ ⌫(F)) surjects onto ⇡1(B4 \ V) under inclusion. Next, by construction, V is
obtained by thickening the slice disk E and attaching a trivial 3–dimensional 1–handle. It
follows that

⇡1(B4 \ ⌫(V)) ⇠= ⇡1(B4 \ ⌫(E)) ⇠= ⇡1(S3 \ ⌫(J)),

as desired.

To complete the proof, let n 2 N be given, and choose J to be any knot with rank(⇡1(S3 \
⌫(J))) � n + 2 (e.g. take J to be a connected sum of n + 1 trefoils [Wei98]). The exterior
S4 \ ⌫(Y) can be built relative to @(S4 \ ⌫(Y)) ⇠= (S1 ⇥ S2)#(S1 ⇥ S2) with some number
of 4–dimensional 1–, 2–, 3–, and 4–handles. Since the 1–handles correspond to generators
of the fundamental group, at least n are required; the boundary @(S4 \ ⌫(Y)) contributes
only two to the rank of the fundamental group. Similarly, since we can obtain another
presentation of ⇡1(S4 \ ⌫(Y)) with generators corresponding to 3–handles, the number of
3–handles in this decomposition is at least n + 2.

We note that the construction of K given in the above proof is closely related to an interesting
construction of 2–knots given by Cochran [Coc83].

Next, we observe that many important examples of Seifert solids are, in fact, spinal:

(1) Every ribbon 2–knot bounds a Seifert solid Y that is homeomorphic to (#m(S1⇥S2))�

for some m [Yan69]. The manifold Y is obtained by taking a Seifert surface F for
some ribbon knot in an equatorial S3 , thickening it, and attaching trivial 2–handles
above and below the equator. By attaching tubes to F (at the cost of increasing m),
we can arrange for F to be free. Then Y is spinal.

(2) If K is fibered with fiber Y , then S4\⌫(Y) ⇠= Y⇥ I is an spinal, since Y is a punctured
3–manifold.
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(3) Connected Seifert solids arising from broken surface diagrams via the construction
given by Carter and Saito [CS97] are spinal. Recall that a connected, canonical Seifert
surface is free because it deformation retracts to a graph so that on each edge, there
is one local maximum and no local minima with respect to the radial height function
on S3 . (Here, the vertices of the graph correspond to the disks produced in Seifert’s
procedure while the edges correspond to the half-twisted bands.) This ensures that
the exterior of a canonical surface can be built with 0– and 1–handles. Similarly, a
Seifert solid constructed à la [CS97] deformation retracts to a 2–complex with one
local maximum and no other critical points in the interior of each 1– and 2–cell. Thus,
the exterior of such a Seifert solid can be built with 0–, 1–, and 2–handles.

Finally, we can formulate a question analogous to the 3–dimensional results in [KK96] in
the setting of surface-knots.

Question 4.3 Define the genus of an orientable surface-knot S in S4
to be the minimal first

Betti number of any Seifert solid bounded by S , and define the spinal genus and canonical
genus similarly, using spinal Seifert solids and canonical Seifert solids, respectively. Do

there exist surface-knots for which these three measures of complexity differ?

We remark that using techniques as in the proof of Theorem 4.2, one can show that for
some of the known classical knots K whose genus and free genus are sufficiently different
(see [Mor87], for example), the spun knots S(K) admit low-complexity non-spinal Seifert
solids, whereas the obvious spinal and canonical Seifert solids have greater complexity.
However, it is likely to be considerably more difficult to obstruct the existence of low-
complexity spinal or canonical Seifert solids, even for these examples.

5 On standardness of bridge trisections

The goal of this section is to prove Theorem 5.2, which states that a (b; c1, c2, c3)–bridge
trisection that satisfies ci � b � 1 for some i 2 Z3 can be completely decomposed into
standard pieces. This proves Conjecture 4.3 of [MZ17], and the theorem can be viewed
as the bridge trisection analog of the main result in [MSZ16], which states that every
(g; k1, k2, k3)–trisection with ki � g � 1 for some i is standard in that it decomposes into
genus one summands.

We encourage the reader to recall the notions of perturbation and connected summation for
bridge trisections. The former was first introduced in Section 6 of [MZ17], where it was
referred to as stabilization, and the latter can be reviewed in Subsection 2.2 of [MZ17]. See
also [MTZ20, Section 3] for a succinct description of these concepts.

We call a surface-link an unlink if it is the split union of unknotted surface-knots, though we
allow the topology of each component to vary. For example, one might have a 2–component
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unlink that is the split union of an unknotted 2–sphere and an unknotted projective plane.
(See Subsection 2.2 of [MTZ20] and Subsection 2.3 above for a brief discussion of unknotted
surface-knots.)

Before proving Theorem 5.2 in generality, we recall the case in which ci = b for some
i 2 Z3 . This was addressed as Proposition 4.1 of [MZ17]. A bridge trisection is called
completely decomposable if it is a disjoint union of perturbations of one-bridge and two-
bridge trisections.

Proposition 5.1 [MZ17, Proposition 4.1] Let T be a (b; c1, c2, c3)–bridge trisection with

ci = b for some i 2 Z3 . Then, T is completely decomposable, and the underlying

surface-link is the unlink of mini{ci} 2–spheres.

Note that if ci = b for some i 2 Z3 , then ci�1 = ci+1 . Similarly, in what follows we will
see that if ci = b � 1 for some i 2 Z3 , then |ci�1 � ci+1|  1. We now present and prove
the main result of this section.

Theorem 5.2 Let T be a (b; c1, c2, c3)–bridge trisection with ci = b� 1 for some i 2 Z3 .

Then, T is completely decomposable, and the underlying surface-link is either the unlink of

min{ci} 2–spheres or the unlink of min{ci} 2–spheres and one projective plane, depending

on whether |ci�1 � ci+1| = 1 or ci�1 = ci+1 .

The key ingredient in the proof of the theorem is a pair of results of Scharlemann and Bleiler-
Scharlemann about planar surfaces in 3–manifolds [Sch85, BS88]. We refer the reader to
Section 1 of each of these papers, as we will adopt the notation of [Sch85, Theorem 1.1]
and [BS88, Theorem 1.3] in the proof below.

Proof of Theorem 5.2 We induct on the bridge number b of the bridge trisection. When
b = 1 or b = 2, there is an easy classification of b–bridge trisections [MZ17, Subsec-
tion 4.3], which we take as the base case. Assume the theorem holds when the bridge
number is less than b, and let T be a (b; c1, c2, c3)–bridge trisection. Assume without loss
of generality that c3 = b � 1.

Suppose that T1 , T2 , and T3 are the three tangles comprising the spine of the bridge
trisection. Every b–bridge splitting of a c–component unlink with b > c is a perturbation
of the standard c–bridge splitting of the c–component unlink, which is itself unique up to
isotopy [MZ17, Proposition 2.3]. It follows that there exist collections �1 and �3 of bridge
disks for T1 and T3 , respectively, so that the shadows �⇤

1 = �1 \ ⌃ and �⇤
3 = �3 \ ⌃

have the property that �⇤
1 [ �⇤

3 is an embedded collection of b � 2 bigons and a single
quadrilateral. Let ↵⇤

0 denote one of the arcs of �⇤
1 in the quadrilateral.

Let L = T2 [ T 3 , and let b be the band for L that is framed by ⌃ and whose core is ↵⇤
0 .

Then the data (⌃, L, b) encodes a banded b–bridge splitting, since the resolution Lb is the
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unlink L0 = T2 [ T 1 . (Here, we think of b as being slightly perturbed to lie in the 3–ball
containing T3 .) We refer the reader to Section 3 of [MZ17], especially Lemma 3.3, for more
details about banded bridge splittings and how they arise from bridge trisections.

Assume without loss of generality that c2 = |L| is greater than or equal to c1 = |L0|. We
break the remainder of the proof into two cases: Either c2 > c1 or c2 = c1 . Note that since
there is only one band present, we must have c2 � c1  1. The proofs of the two cases
are very similar, except that we apply [Sch85, Theorem 1.1] in the first case and [BS88,
Theorem 1.3] in the second.

Case 1. If c2 = c1+1, then b connects distinct components K1 and K2 of L . Let K0 denote
the component of L0 obtained as the resolution (K1 [ K2)b . We now translate this set-up
into the notation of [Sch85, Section 1]. Let N = ⌫(K1 [ b [ K2), a genus two handlebody,
and let M = S3 \ ⌫(L \ (K1 t K2)). Let E1 denote the spanning disk bounded by K1 .
Let P0 = @⌫(E1), a 2–sphere disjoint from K1 t K2 in M . Let Q0 denote a spanning disk
bounded by K0 in M . Let P = P0 \ N , and let Q = Q0 \ N .

It is clear from this set-up that P \ @N is a collection of m parallel separating curves
Am for some odd m, since P0 was disjoint from K1 and K2 , but intersects b transversely.
(See [Sch85, Fig. 1].) Similarly, we have Q\@N agrees with the curves Bn , since @Q0 = K0

and Q0 may crash through b in arcs parallel to its core. Thus, M , N , P, and Q satisfy
the hypotheses of [Sch85, Theorem 1.1]. The relevant conclusion is that A1 and B0 bound
embedded disks E and F in M \ N that intersect in a single arc. (Compare with the proof
of [Sch85, Main Theorem].)

Translating this conclusion back into the setting of interest, we find that the disk E is
properly embedded in S3 \ ⌫(b) and that F is a spanning disk for K0 . This implies that
the pair (B3, T) = (S3, L) \ (⌫(b), ⌫(L \ b)) is the split union of a trivial tangle and an
unlink: The strands of the trivial tangle are parallel into push-offs of E via the components
of F \ ⌫(E), at which point they are parallel into @⌫(b) via the push-offs of E .

The bridge sphere ⌃ induces a bridge splitting (B3, T). By Theorem 2.2 of [Zup13], ⌃
is either minimal for (B3, T) or perturbed1. If the splitting were minimal, we would have
b = c2 , so T would be completely decomposable by Proposition 5.1. If the splitting is
perturbed, then T is perturbed, since each bridge arc of T3 that is disjoint from ⌫(b) is a
strand of a 1–bridge splitting of a component of L3 = T3 [ T 1 . After de-perturbing T, we
find that T is completely decomposable, by the inductive hypothesis.

Case 2. If c2 = c1 , then b connects a component K of L to itself. Let K0 = Kb . We now
translate this set-up into the notation of [BS88, Section 1], abbreviating the discourse where
it is overly repetitive of the previous case. Let M = S3 \ ⌫(L \ K), and let N = ⌫(K [ b).

1Although Theorem 2.2 of [Zup13], as stated, applies to a closed 3–manifold M and a link K
in M , a verbatim proof establishes the more general case where the 3–manifold M is replaced by a
punctured 3–manifold and the link K is a tangle.
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Let P0 be a spanning disk bounded by K in M , and let Q0 be a spanning disk bounded by
K0 in M . Let P = P0 \ N , and let Q = Q0 \ N .

It is clear from the set-up that the hypotheses of [BS88, Theorem 1.3] are satisfied, so we can
conclude that some A0 and B0 bound embedded disks EP and EQ , respectively, in M \ N .
Moreover, there is a properly-embedded disk D in M \ N , disjoint from EP and EQ , that
runs once over one of the handles of N and is disjoint from the other handle. We can extend
EP to a spanning disk F for K . (Compare with the proof of [BS88, Theorem 1.8].)

The strands of K \ ⌫(b) are parallel into push-offs of D via the components of EP \ ⌫(D),
at which point they are parallel into @⌫(b) via the push-offs of D. It follows that the tangle
(B3, T) = (S3, L) \ (⌫(b), ⌫(b \ K)) is the split union of a trivial tangle and an unlink, and
⌃ gives rise to a bridge splitting of (B3, T). As before, this splitting is either minimal or
perturbed. The case that the splitting is perturbed has the same consequence as in Case 1
above.

If the splitting is minimal, then it is a split union of a 2–bridge splitting of the trivial
tangle and a (b � 2)–bridge splitting of an unlink. It follows that the bridge trisection is
a split union: T = T0 t T00 , where T0 is a (2, 1)–bridge trisection (of a projective plane,
necessarily), and T00 is a (b � 2; c1 � 1, c2 � 1, b � 2)–bridge trisection (of an unlink of
2–spheres, necessarily). The latter is completely decomposable by Proposition 5.1.

We can also use Theorem 5.2 to understand surface-links with particular banded link pre-
sentations, where a banded link presentation (L, v) consists of an unlink L ⇢ S3 and a
collection of bands v such that the resolution Lv of L along v is also an unlink. Every
banded link presentation gives rise to a surface S in S4 , and conversely, every surface-link
S in S4 can be presented by a banded link [KSS82].

In [MZ17, Section 3], the authors introduced the notion of banded bridge splitting of (L, v),
a bridge splitting of L such that the bands v are isotopic into the bridge sphere with the
surface framing and are dual to a collection of bridge disks on one side. They showed that
(S4,S) admits a (b; c)–bridge trisection if and only if a banded link presentation (L, v) of
S admits a banded b-bridge splitting such that |L| = c1 , |v| = b � c2 , |Lv| = c3 . As a
corollary to Theorem 5.2, we obtain the following, which states, in essence, that a surface
is unknotted if the bands are attached in a relatively simple way to the maxima or minima
disks.

Corollary 5.3 Suppose a surface-link S in S4
is presented by a banded link (L, v) with a

banded b–bridge splitting such that b = |L| + 1 or b = |Lv| + 1. Then S is an unlink of

2–spheres or an unlink of 2–spheres and an unknotted projective plane.

The corollary exploits a feature of trisection theory called handle triality: If (L, v) admits a
banded bridge splitting as in the corollary, then it admits a (b, c)–bridge trisection such that



Bridge trisections and Seifert solids 23

c1 = b�1 or c3 = b�1. By the three-fold symmetry of the trisection setup, we can extract
a different banded link presentation with a single band, as in the proof of Theorem 5.2, and
now we rely on known results about surface-links built with a single band to classify S . The
result can be interpreted as an analog for knotted surfaces of Theorem 1.2 from [MSZ16].
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