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Bounding the Kirby–Thompson invariant of spun knots

ROMÁN ARANDA
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A bridge trisection of a smooth surface in S4 is a decomposition analogous to a bridge splitting of a link
in S3. The Kirby–Thompson invariant of a bridge trisection measures its complexity in terms of distances
between disk sets in the pants complex of the trisection surface. We give the first significant bounds for
the Kirby–Thompson invariant of spun knots. In particular, we show that the Kirby–Thompson invariant
of the spun trefoil is 15.

57K45

1 Introduction

Every smooth surface in the 4–sphere S4 (or indeed any 4–manifold) admits a certain kind of decomposi-
tion known as a bridge trisection. These bridge trisections are analogous to bridge positions of classical
knots in S3. They give rise to the fundamental notion of the bridge number b.S/ of a knotted smooth
surface S. Bridge trisections and bridge number were defined by [Meier and Zupan 2017] and are closely
related to the trisections of smooth 4–manifolds of Gay and Kirby [2016]. The major advantage of both
bridge trisections and trisections of 4–manifolds is that the handle structure of the knotted surface or
4–manifold is captured using 2–dimensional data on the trisection surface †. They also give rise to
certain diagrammatic representations of knotted surfaces. In recent years, many authors have connected
(bridge) trisections to major open problems in the theory of 2–knots and 4–manifolds [Lambert-Cole
2020; Lambert-Cole et al. 2021; Gay and Meier 2022].

One pressing problem has been to develop new 2–knot or 4–manifold invariants using trisections. Kirby
and Thompson [2018] defined a nonnegative integer-valued 4–manifold invariant L.M/ using the cut
complex of †. Blair et al. [2022] adapted Kirby and Thompson’s definition to create an nonnegative
integer-valued invariant L.S/ of a smooth surface in S4. They showed that, for orientable S, if L.S/D 0

then S is an unlink. They also showed that, for a connected, irreducible surface S, L.S/> b.S/�g.S/�2,
where g.S/ is the genus of S. Using spun knots, Meier and Zupan show that b.S/ can be arbitrarily large
for 2–knots S ; consequently, L.S/ can be as well. However, for spun 2–bridge knots, the only previously
known lower bound is that L.S/ is nonzero. Calculating L.S/ for specific surfaces remains a challenging
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problem, as does showing that, for a fixed bridge number, L.S/ can be arbitrarily large. We take steps
toward those questions by showing:

Theorem 1.1 Let K � S3 be a 2–bridge knot. If K is the numerator closure of a 2–string trivial tangle
with Conway number p=q, then

15� L.S.K//� minf6d.p=q; 0/C 6; 6d.p=q;1/C 9g:

In particular , if K is a trefoil knot 3=1, then L.S.K//D 15.

Proof The lower and upper bounds are proven in Corollaries 3.17 and 4.5, respectively.

More generally, we construct estimates for any spun knot. For a trivial N –tangle T, we define Pcomp.T /

and Pc.T / to be the sets of pants decompositions in the pants complex p 2 P.†2N / such that all loops
in p bound compressing disks and c–disks, respectively.

Theorem 1.2 Let K D TC

K [T �
K be a knot in b–bridge position. Let d � 0 be the distance in P.†2b/

between the sets Pc.T
C

K / and Pcomp.T
�

K /. Then

6b� 8� L.S.K//� 6.d C b� 1/:

Proof The upper bound is proven in Theorem 4.3 for a particular minimal bridge trisection of S.K/. Since
L.S.K// is the minimum value of L.T/ along all minimal bridge trisections of S.K/ (see Section 2.4),
the upper bound holds. The lower bound is [Blair et al. 2022, Theorem 6.3].

The invariant L.T/ for a bridge trisection T with trisection surface † is defined using the pants complex
of T and the associated disk complexes (see Section 2.4). Most of the delicate combinatorial work in this
paper consists of a careful analysis of paths in the pants complex. Our techniques may, therefore, also
be of interest to those working on surface dynamics. In fact, most of our work in Section 3 consists in
understanding the combinatorics of .4; 2/–bridge trisections. We show:

Theorem 3.16 Let T be a .4; 2/–bridge trisection for a knotted connected surface F in S4. Then

L.T/� 15:

Meier and Zupan [2017] described bridge trisection diagrams TMZ for twist spun knots. Even though
.˙1/–twist 2–bridge knots are unknotted, it is unclear whether their bridge trisections TMZ are stabilized.
They form a family of candidates of nonstabilized nonminimal bridge trisections. In order to disprove
this, one could try to build upper bounds for L.TMZ/ of .˙1/–twist spun knots and use Theorem 3.16 to
see they are stabilized.

Acknowledgements Taylor was partially supported by NSF grant DMS-2104022. Aranda and Pong-
tanapaisan were partially supported by a grant from the Berger Fund and Colby College. Pongtanapaisan
acknowledges the Pacific Institute for the Mathematical Sciences for its support. We are grateful to
Nathaniel Ferguson for helpful conversations and to Jeffrey Meier for suggesting this project.
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2 Preliminaries

In this section, we introduce terminology and recall the definitions of the pants complex, a genus-0
trisection of S4 and bridge trisections, and the invariant L. For more detailed explanations please refer to
[Meier and Zupan 2017; Blair et al. 2022]

2.1 The pants complex

Suppose that † is a compact surface with punctures. A simple closed curve 
 �† is called essential if it
is disjoint from the punctures, does not bound an unpunctured or once-punctured disk in †, and does
not cobound an unpunctured annulus in † with @†. If † is a sphere, we define the inside of a simple
closed curve in † to be the sides with the fewest punctures and the outside to be a side that is not an
inside. Some curves have two inside regions and no outside region. We say that a simple closed curve in
a sphere † is an odd curve if the number of punctures on each side is odd and an even curve otherwise.

A pair of pants is a sphere with three punctures, an annulus with one puncture, or a disk with two
punctures. A pants decomposition of † is a collection of pairwise disjoint essential curves cutting † into
pairs of pants. Pants decompositions are considered up to isotopy. If † is a sphere with 2b � 4 punctures,
then each pants decomposition of † has 2b�3 curves. Define P.†/, the pants complex1 of †, as follows.
Each pants decomposition of † is a vertex of P.†/. Two vertices are connected by an edge if the two
corresponding pants decompositions have all but one (isotopy class of) curve in common and the two
curves where they differ (have representatives that) intersect minimally in exactly two points. We say
that the two endpoints of an edge differ by an A–move. The distance d.x; y/ between two collections
of vertices x and y in P.†/ is the minimum number of edges in a path in P.†/ between a vertex of x
and a vertex of y. For a path ˛ in P.†/, we say that a curve 
 �† is unmoved on ˛ if it (up to isotopy)
belongs to every vertex of ˛. On the other hand, if we have a path from vertex a to vertex b and if c is
a curve in a pants decomposition x that is a vertex of the path, then, if the edge of the path leaving x
corresponds to an A–move replacing c with c0, we say that c is moved by the path and write c 7! c0.
Clearly, the length of the path is at least the number of curves moved by the path; some curves may be
moved multiple times, so it need not be equal to the number of curves that are moved.

A trivial tangle .Bı ; ı/ is a 3–ball Bı containing properly embedded arcs ı such that, fixing the endpoints
of ı, we may isotope ı into @Bı . We consider the endpoints of ı on †D @Bı to be punctures on †. A
c–disk in .Bı ; ı/ is a properly embedded diskD�Bı transverse to ı, with @D essential in the (punctured)
surface †, and with jD \ ıj � 1. The c–disk D is a compressing disk if jD \ ıj D 0 and a cut disk
otherwise. The disk set D.Bı ; ı/ for .Bı ; ı/ consists of the vertices v of P.†/ such that each curve in
the pants decomposition v bounds a c–disk in .Bı ; ı/.

Each arc ı0 of a trivial tangle .Bı ; ı/ admits a disk D such that @D is the endpoint union of ı0 with an
arc on @Bı and with interior disjoint from ı. Such a disk is called a bridge disk and the arc on @Bı is a

1It is possible to define higher-dimensional simplices of P.†/, but we will not make use of them.
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shadow arc. There is a collection of pairwise disjoint bridge disks such that each arc of ı belongs to a
bridge disk. The union of all the shadow arcs for such a collection of bridge disks is a complete shadow
arc collection.

For a link L� S3, a decomposition .S3; L/D .B�; �/[† .B� ; �/, where each pair .Bı ; ı/ is a trivial
tangle, is called a bridge splitting. The surface †D @Bi for i D �; � is the bridge sphere of the splitting.
An efficient defining pair is a pair-of-pants decomposition .D� ;D�/ with x 2 D� and y 2 D� such that
d.x; y/ D d.D� ;D�/. Zupan [2013] uses this distance to define a knot invariant for knots in S3. We
need the following well-known result (see [Bachman and Schleimer 2005; Zupan 2013]):

Lemma 2.1 Suppose that † is a bridge sphere for an unlink L� S3; then:

(1) If jLj � 2, there is a sphere P � S3 intersecting † in a single essential simple closed curve and
separating components of L. Such a sphere is called a reducing sphere for †.

(2) If L0 is a component of L such that jL0 \†j D 2, then there is a disk with boundary equal to L0

and interior disjoint from L such that L0 \† is a single arc. Furthermore , given a collection of
pairwise disjoint reducing spheres , there is such a disk disjoint from them.

(3) If L0 is a component of L such that jL0 \†j � 4, then there exist disks D1 and D2 on opposite
sides of † such that :

(a) For i D 1; 2, @Di is the endpoint union of a strand of L n† and an arc on †.

(b) For i D 1; 2, the interior of Di is disjoint from L[†.

(c) D1 \D2 is a single point (necessarily a puncture of †).

In this case, we say that L is perturbed and call the disks D1 and D2 a perturbing pair. Further-
more, given a collection of pairwise disjoint reducing spheres, there exists a perturbing pair disjoint
from them.

Definition 2.2 For a link L in S3 with bridge sphere †, the intersection of a reducing sphere with † is
called a reducing curve for .S3; L/ on †. Notice that an essential curve is a reducing curve if and only if
it bounds compressing disks for † in both of the trivial tangles on either side of †. Similarly, if 
 �† is
a curve bounding cut disks on both sides of †, then 
 is a cut-reducing curve for .S3; L/ on †.

2.2 Bridge trisections

Suppose that S is a smooth, closed surface in S4. A bridge trisection T with trisection surface † (a
sphere) is defined as follows.2 Suppose that W1, W2 and W3 are 4–balls in S4 such that Wi \Wj is a
3–ball Bij (for i ¤ j ) and that

W1 \W2 \W3 D B12 \B23 \B31

2It is possible to define higher-genus bridge trisections [Meier and Zupan 2018], but we will not need them in this paper.
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is a smooth 2–sphere †. Then we say that S4 DW1 [W2 [W3 is a 0–trisection of S4 [Gay and Kirby
2016]. Suppose also that each of B12, B23 and B31 are transverse to S and that † and S intersect
transversally in 2b points and that, for each fi; j; kg 2 f1; 2; 3g:

(1) S \Wi is a trivial disk system.

(2) In Bij [Bjk , the sphere † is a bridge surface for the link S \ .Bij [Bjk/.

(3) The link S \ .Bij [Bjk/ is an unlink of cj components.

We call S D .B12; T12/[ .B23; T23/[ .B31; T31/ the spine of the bridge trisection and † the bridge
surface of S. The numbers c1; c2; c3 are the patch numbers of the bridge trisection. The bridge number
b.T/ of the trisection is b.T/D 1

2
jS \†j and the bridge number b.S/ of S is the minimum of b.T/ over

all bridge trisections T for S. We say that a trisection T with bridge number b and patch numbers c1,
c2 and c3 is a .bI c1; c2; c3/–bridge trisection. As we mentioned, the definitions of bridge trisection and
bridge number are due to Meier and Zupan, who also proved that every smooth surface admits a bridge
trisection. We let Dij � P.†/ be the disk set of the tangle .Bij ; Tij /.

Meier and Zupan [2017] also introduce the notion of a triplane diagram, a triple of planar tangle diagrams
whose pairwise unions are unlinks. Since a bridge trisection is determined by its spine consisting of
a triple of 3–balls .B12; B23; B31/ with trivial tangles .T12; T23; T31/, one can project each tangle Tij

onto a vertical disk in Bij and obtain three planar tangle diagrams. In particular, every knotted surface
in S4 can be represented by a triplane diagram which is unique up to interior Reidemeister moves, bridge
sphere braiding, and perturbation and deperturbation. See [Meier and Zupan 2017, Section 2] for details.

Lemma 2.3 Suppose that S � S4 is a topologically knotted sphere with a .4I c1; c2; c3/–trisection and
4D b.S/. Then ci D 2 for all i .

Proof Since S is topologically knotted, ci � 2 for all i by [Meier and Zupan 2017, Corollary 1.12]. The
result follows since 2D �.S/D c1 C c2 C c3 � 4.

Henceforth, we abbreviate the phrase “.4I 2; 2; 2/–trisection” to .4; 2/–trisection.

2.3 Spun knots

We now recall a construction of spun knots from a knot K � S3 due to Artin [1925]. Let .B3; Kı/ be the
result of removing a small, open ball centered on a point in K, so that K is a knotted arc with endpoints
on the north and south poles, labeled n and s, respectively. Then the spin S.K/ of K is the knotted
surface given by

.S4; S.K//D ..B3; Kı/�S1/[ ..S2; fn; sg/�D2/:

Meier and Zupan also showed that every spun b–bridge knot S.K/2S4 has bridge number at most 3b�2
by providing an explicit .3b�2; b/–bridge trisection, whose corresponding triplane diagram is shown in
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12 23 31

Figure 1: A .3b�2; b/–bridge triplane diagram for the spin S.K/ of the b–bridge knot K given
in bridge position (left). We will denote the tangles by T12; T23, and T31 from left to right.

Figure 1. From now on, we will denote this particular bridge trisection by TMZ and, for that trisection,
define Tij as indicated for i; j 2 f1; 2; 3g with i ¤ j.

Remark 2.4 For this particular trisection TMZ for a spun b–bridge knot, since bD b.TMZ/D 3b�2 and
ci D b for all i 2 f1; 2; 3g, the corresponding bridge sphere is 2b–punctured, and each pants decomposition
pi

ij has exactly 2b�3D 2.3b�2/�3D 6b�7 curves. Thus, it follows from Lemma 2.7 that there exist
pi

ij 2 Dij and pi
ki

2 Dik with d.pi
ij ; p

i
ki
/D b� ci D .3b� 2/� b D 2b� 2.

We note the following:

Theorem 2.5 [Meier and Zupan 2017] If K � S3 has b.K/D 2, then b.S.K//D 4. Consequently, if
T is a .4I c1; c2; c3/–trisection for a spun 2–bridge knot , then each ci D 2.

Proof We defer to [Meier and Zupan 2017, Section 5] for details. Let T be a .bI c1; c2; c3/–bridge
trisection of a spun 2–bridge knot S.K/. By [Meier and Zupan 2017, Corollary 5.3 and Theorem 5.5],

min.c1; c2; c3/� mrk.S.K//D mrk.K/;

where mrk is the “meridional rank” of the 2–knot or knot. By [Boileau and Zimmermann 1989],
mrk.K/D 2, so ci � 2 for all i . Also,

2D �.S.K//D c1 C c2 C c3 � b � 6� b:

Thus, b � 4. Since Meier and Zupan have constructed trisections of spun 2–bridge knots of bridge
number 4, b.S.K//D 4. Since the meridional rank of S.K/D 2, S.K/ is topologically knotted. The
result follows from Lemma 2.3.

2.4 The Kirby–Thompson invariant

We now define the Kirby–Thompson invariant of a bridge trisection. For a schematic diagram of the
efficient defining pairs for a trisection, see Figure 2.

Definition 2.6 (Kirby–Thompson invariant L) Suppose that S � S4 is knotted surface with bridge
trisection T having trisection surface † and spine S D .B12; T12/ [ .B23; T23/ [ .B31; T31/. For
fi; j; kg D f1; 2; 3g, let .pj

ij ; p
j

jk
/ be an efficient defining pair for .Bij ; Tij /[† .Bjk; Tjk/. If † is a

Algebraic & Geometric Topology, Volume 24 (2024)
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T12

T23

T31

p2
12

p1
12

p1
31

p2
23

p3
23

p3
31

b.T/� c
1

b.T
/�

c2

b.T/� c3

Figure 2: Defining L.T / via efficient defining pairs. The ellipses represent the disk sets. The line
joining pi

ij to pj
ij represents a geodesic path in the pants complex, which has length b.T/� ci for

a .b.T/; c1; c2; c2/–bridge trisection.

sphere with strictly fewer than four punctures, define L.T/D 0. Otherwise, define the Kirby–Thompson
invariant L.T/ to be the minimum of

d.p1
12; p

2
12/C d.p

2
23; p

3
23/C d.p

1
31; p

3
31/

over all such choices of efficient defining pairs. Define the Kirby–Thompson invariant L.S/ to be the
minimum of L.T/ over all trisections T of S with b.T/D b.S/.

The distance between an efficient defining pair in the setting of Definition 2.6 is determined:

Lemma 2.7 [Blair et al. 2022, Lemma 5.6] If T is a .b.T/; c1; c2; c3/–bridge trisection , then every
efficient defining pair satisfies

d.pi
ij ; p

i
ik/D b.T/� ci :

2.5 Reducibility and stabilization of bridge trisection

We provide two related ways in which a bridge trisection may have higher bridge number than necessary:
reducibility and stabilization.

Definition 2.8 Given two trisections Ti for surfaces Si (i D 1; 2) in distinct copies of S4, their distant
sum is the trisection obtained by taking the connected sum of the two copies of S4 using a point on each
trisection surface disjoint from the surfaces. Their connected sum is the trisection obtained by taking the
connected sum of the two copies of S4 using punctures on the two trisection surfaces. For more details,
see [Meier and Zupan 2017]. A trisection with trisection surface † is reducible if there exists an essential
simple closed curve in † bounding a c–disk in each tangle forming the spine.

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 3: The arrangement of arcs from Lemma 2.12.

Lemma 2.9 If S is a knotted 2–sphere with b.S/� 7, then no bridge trisection of minimal bridge number
is reducible.

Proof As explained in [Blair et al. 2022], if a trisection T is a reducible .4; 2/–bridge trisection for S,
then it is the connected sum of two other trisections T1 and T2 such that b.T1/Cb.T2/D b.T/C1� 7

and each has bridge number at least 2. In particular, either T1 or T2 has bridge number at most 3,
implying that the corresponding surface is unknotted by [Meier and Zupan 2017, Theorem 1.8]. In this
case, the other trisection is a trisection for S of smaller bridge number than T.

Lemma 2.10 Suppose that T is a bridge trisection with spine
S

i¤j .Bij ; Tij /. Then T is reducible or
stabilized if and only if there is an essential curve 
 bounding a c–disk in each .Bij ; Tij /. Furthermore ,
such a curve is a reducing or cut-reducing curve (respectively) for each link Lj D Tij [Tjk .

Proof This follows easily from Lemma 2.1.

Meier and Zupan [2017, Section 6] define what it means for a bridge trisection to be stabilized. This is the
analogous to a “perturbed bridge surface” for knots in 3–manifolds or to “stabilized Heegaard splittings”
of 3–manifolds. While we do not need the precise definition of stabilization, we need the following two
results, both from [Meier and Zupan 2017].

Lemma 2.11 If S � S4, then no stabilized bridge trisection of S has minimal bridge number.

Lemma 2.12 (stabilization criterion [Meier and Zupan 2017, Lemma 6.2]) Let T be a bridge trisection
with spine

.B12; T12/[ .B23; T23/[ .B31; T31/:

If , for some fi; j; kg D f1; 2; 3g, there exists a collection of shadow arcs ˛ for .Bij ; Tij / and ˇ for
.Bjk; Tjk/ and a single shadow arc 
 for .Bik; Tik/ such that the interiors of all the shadow arcs are
disjoint and the following two conditions hold , then T is stabilized :

(1) The union ˛[ˇ is a simple closed curve (ignoring the punctures).

(2) Exactly one endpoint of 
 lies on ˛[ˇ.

Noting that the union of an arc with an isotopic copy having interior disjoint from the original is a circle
produces the following criterion, which we’ll use repeatedly:

Algebraic & Geometric Topology, Volume 24 (2024)
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Lemma 2.13 Let T be a bridge trisection with spine

.B12; T12/[ .B23; T23/[ .B31; T31/:

Suppose that there exist fi; j; kg D f1; 2; 3g such that there is a shadow arc ˛ for both .Bij ; Tij / and
.Bjk; Tjk/ and a shadow arc 
 for .Bik; Tik/ sharing exactly one endpoint with ˛ and with interior
disjoint from ˛. Then T is stabilized.

We note that Blair et al. [2022] show that,if a .bI c1; c2; c3/–bridge trisection T of a knotted surface S is
not reducible, then

L.T/� 2.c1 C c2 C c3/� 8:

If T is a .4; 2/–bridge trisection, this inequality translates to L.T/� 2 � 6� 8D 4. The goal of Section 3
is to further improve this estimate in Theorem 3.16.

3 Combinatorics of .4; 2/–bridge trisections

This section studies relations among pairs-of-pants decompositions of a trisection surface † having 8
punctures. For each fi; j; kg D f1; 2; 3g, the link Li D Tij [ Tik is a 2–component unlink in 4–bridge
position. We define an inside of a simple closed curve in † to be a side with � 4 punctures and an
outside to be a side with > 4 punctures. Note that curves with four punctures on each side have two inside
regions and no outside region. We say that a puncture or set of punctures is enclosed by such a curve if
the curve does not separate them and they are all inside the curve. Analyzing which curves in a pants
decomposition can enclose which others, produces the next lemma:

Lemma 3.1 Let .pi
ij ; p

i
ik
/ be an efficient defining pair for Li . Then we may choose notation pi

ij D

f
1; 
2; 
3; f1; f2g and pi
ik

D f
1; 
2; 
3; f
0

1; f
0

2g so that all of the following hold :

� 
1 is a reducing curve for Li .

� Both 
2 and 
3 are cut-reducing curves for Li .

� f1 and f2 bound compressing disks for Tij and f 0
1 and f 0

2 bound compressing disks for Tik .

� Every geodesic from pi
ij to pi

ik
moves f1 to f 0

1 and f2 to f 0
2, and 
1, 
2, and 
3 are unmoved.

Proof Recall that † has eight punctures, so each pants decomposition has five curves. Let .pi
ij ; p

i
ik
/ be

an efficient defining pair. By Lemma 2.7, the distance from pi
ij to pi

ik
is equal to b.T/� ci D 2. Thus,

at least three curves are unmoved by any geodesic in the pants complex joining pi
ij to pi

ik
. Let 
1, 
2

and 
3 be three such curves, and let f1 and f2 be the other two. Curves in † bounding cut disks in one
of the tangles in the spine, enclose an odd number of punctures in †, while those bounding compressing
disks enclose an even number of punctures. Thus, each of 
1, 
2 and 
3 is either a reducing curve or a
cut-reducing curve for Li .
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It is impossible for 
1, 
2 and 
3 to all bound cut disks to both sides, because there are only eight
punctures and the three curves are pairwise nonparallel. Thus, at least one is a reducing curve. Without
loss of generality, we may assume it is 
1. Since ci D 2, all reducing curves for Li enclose the same
punctures. Thus, 
2 and 
3 must be cut-reducing curves. Each encloses exactly three punctures. Since
pi

ij is a pants decomposition, all other curves of pi
ij enclose an even number of punctures. Consequently,

both f1 and f2 must be moved by every geodesic between pi
ij and pi

ik
. Thus, each geodesic moves the

pair .f1; f2/ to the pair .f 0
1; f

0
2/, which are the curves of pi

ik
that are not 
1, 
2 or 
3.

Furthermore, one of 
2 or 
3 encloses three punctures as well as either f1 or f2. Since no geodesic
between pi

ij and pi
ik

moves 
2 or 
3, there are not two geodesics one of which moves f1 to f 0
1 and the

other of which moves it to f 0
2 . Thus, we may assume the notation was chosen so that every such geodesic

moves f1 to f 0
1 and f2 to f 0

2.

Remark 3.2 We will often consider efficient defining pairs .pi
ij ; p

i
ik
/ and .pj

ij ; p
j

jk
/, in which case we

choose notation pi
ij D f
1; 
2; 
3; f1; f2g and pj

ij D f 1;  2;  3; h1; h2g as in Lemma 3.1. We refer to
any of 
1, 
2 or 
3 as a 
n–loop and any of  1,  2 or  3 as a  n–loop.

A configuration of either Tij , Tjk or Li is the partition �ij , �jk or �i (respectively) of the set of the
labeled punctures LDf1; 2; 3; 4; 5; 6; 7; 8g on † built as follows: two punctures are related if they belong
to the same connected component of Tij , Tjk or Li , respectively. We will often abbreviate the string
“3; 4; 5; 6; 7; 8” as 3–8, and so forth. An element of a configuration with exactly n elements is called an
n–cycle.

We are interested in the triplet of configurations .�1; �2; �3/ for L1, L2 and L3. Up to relabeling,
.4; 2/–bridge trisection has essentially three options for such triplets. This is formalized in Lemma 3.3:

Lemma 3.3 Let S be a connected surface in S4 with a .4; 2/–bridge trisection T. Up to permutation of
L and choice fi; j; kg D f1; 2; 3g, there are three possible configurations for �i , �j and �k:

(1) �i D ff1; 2g; f3–8gg, �j D ff1–5; 8g; f6; 7gg and �k D ff3; 4g; f1; 2; 5–8gg.

(2) �i D ff1; 2g; f3–8gg, �j D ff1; 2; 6; 7g; f3; 4; 5; 8gg and �k D ff3; 4g; f1; 2; 5–8gg.

(3) �i D ff1–4g; f5–8gg, �j D ff1; 4; 5; 8g; f2; 3; 6; 7gg and �k D ff1; 2; 7; 8g; f3–6gg.

Proof The fact that T is a .4; 2/–bridge trisection implies that �1, �2 and �3 each have either one
2–cycle and one 6–cycle or exactly two 4–cycles.

Case 1 (�j has one 2–cycle) After relabeling, we can assume that �ij D ff1; 2g; f3; 4g; f5; 6g; f7; 8gg

and �jk D ff1; 2g; f3; 8g; f4; 5g; f6; 7gg. By connectivity of F, we have that f1; 2g …�ik . We have two
cases: either �ik shares a common 2–cycle with �ij (or �jk) or not.

Subcase 1a (�ij and �ik have a common 2–cycle, say f3; 4g 2 �ij \�ik) Suppose f6; 7g 2 �ik .
Since jLkjD 2, the labels 5 and 8 must lie in the same component of�ik as 1 and 2. This yields option (1)
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of the statement. Suppose now that f6; 7g …�ik; in particular, �ik and �jk have no common 2–cycle.
Focusing on �k , observe that, if f5; 8g …�ik , then �ik must contain one of f1; 2g or f6; 7g, which is a
contradiction to the previous sentence. Thus, we have f5; 8g 2�ik , concluding that �ik must relate the
labels 1 and 2 to 6 and 7 somehow. This yields the configuration in option (2) of the statement.

Subcase 1b (�ik has no common 2–cycle with either �ij and �jk) We will see that this case cannot
occur. Here, �ik is forced to relate 1 and 2 to labels in f3–8g. After relabeling, we can assume that
f2; 3g 2 �ik . We have five remaining options for x such that f1; xg 2 �ik . If x D 4, in order to
have j�kj D 2, it must be that contains f7; 8g 2 �jk . Thus, �jk and �ik have a common 2–cycle, a
contradiction. Similarly, we rule out xD 5; 6; 7. If xD 8, then, as �ik does not share a 2–cycle with �jk ,
it must be the case that �ik contains either f4; 6g or f4; 7g. The first possibility implies �i is a single
8–cycle, while the second implies �ik and �ij share a 2–cycle. Both are impossibilities in this subcase.

Case 2 (�j contains two 4–cycles) We can assume that �ij D ff1; 2g; f3; 4g; f5; 6g; f7; 8gg and �jk D

ff1; 4g; f2; 3g; f5; 8g; f6; 7gg without loss of generality. Observe that, if�i or�j has one 2–cycle, then we
can permute the symbols fi; j; kg and continue as in Case 1, yielding the configurations (1) and (2) in the
statement. In particular, if fx; yg2�ik , then we must have fa; bg; fc; dg2�ik , where fx; ag; fy; bg2�ij

and fx; cg; fy; dg 2�jk .

Subcase 2a (�ik relates 1 and 2 to 3 and 4) By the previous paragraph, we are forced to have
�ik D ff1; 3g; f2; 4g; f5; 7g; f6; 8gg. Thus,

�j D�k D�i D ff1–4g; f5–8gg;

which contradicts the fact that F is connected.

Subcase 2b (�ij does not relate 1 and 2 to 3 and 4) After relabeling, we can assume that f4; 5g 2�ik .
The fact that j�kj D j�i j D 2 forces �ik D ff4; 5g; f3; 6g; f2; 7g; f1; 8gg. This yields configuration (3)
in the statement.

It is easy to see that (MZ–)bridge trisections for (twist) spun 2–bridge knots have configurations as in
configuration (2).

Question 3.4 Are there nonstabilized .4; 2/–bridge trisections of the other types?

A positive answer to Question 3.4 could lead to new examples of .3; 1/–trisections which have been
sought after in the literature.

Remark 3.5 The following combinatorial properties of reducing curves are direct consequences of
Lemma 3.3; let  1 and 
1 be reducing curves in �j and �i , respectively:

� If fx; yg are punctures enclosed by 
1 and if one of them is also enclosed by  1, then both are
enclosed by  1.

� Suppose  1 and 
1 both bound four punctures and that 
1 bounds fx; y; z; wg. Then, after
relabeling,  1 separates fx; yg from fz; wg.
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3.1 Reducing curves

Reducing curves play a special role in trisections. In the case of .4; 2/–bridge trisections, they restrict
the pants decompositions near pi

ij in P.†/. Lemmas 3.6 and 3.7 show that, in certain circumstances,
reducing curves for different links must intersect at least four times. Lemma 3.9 compares the 
n–curves
in pi

ij with the ones (called  n–curves, for convenience) in pj
ij . Lemmas 3.10 and 3.11 imply that

A–moves of the form 
1 7! n and 
n 7! 1 cannot occur near pi
ij . We rely heavily on theorems of [Lee

2017], governing the relationship between perturbations of a bridge position with bridge disks.

Lemma 3.6 Suppose Li has one component intersecting † exactly twice and Lj has no such component.
Let 
 in † be a reducing curve for Li and suppose  �† is either a reducing curve or cut-reducing curve
for Lj . Then the following hold :

(1) If  is a reducing curve , then j
 \ j � 4.

(2) If  is a cut-reducing curve , and  and 
 are disjoint , then 
 lies inside a 3–punctured disk
bounded by  .

Proof Let 
 and  be as in the statement and assume that they have been isotoped so as to intersect
minimally. LetQ be a sphere separating the components of Lj such thatQ\†D . Let Li .1/ and Li .3/

be the 1–bridge and 3–bridge components of Li and let L0
j and L00

j be the two components of Lj .

Since 
 is a reducing curve for Li , it is isotopic to the boundary of a regular neighborhood of an arc ˛�†
joining the punctures Li .1/\†. The arc ˛ is the intersectionD\† of a diskD such that @DDLi .1/ and
the interior ofD is disjoint fromLi . Observe that there is a shadow arc ˛0 for .Bik; Tik/ that is a copy of ˛.

Suppose that 
 \ D∅. We may, therefore, assume that D is disjoint from Q\Bij .

Observe that E1 D D \ Bij is a bridge disk for an arc of Tij . Let Kj � Bij [ Bjk be the link that
results from isotoping this arc along E1 and across †. The link Kj is isotopic to Lj , and is, therefore,
an unlink of two components. One component is equal to a component of Lj . The result of @–reducing
.Bjk; Tjk/ along the c–disk E DQ\Bjk is the disjoint union of two trivial tangles; call them .U1; �1/

and .U2; �2/. The result of @–reducing .Bjk; Kj \Bjk/ along E is two tangles, one of which is either
.U1; �1/ or .U2; �2/. Without loss of generality, we may assume it is .U2; �2/. Call the other one .U 0

1; �
0
1/.

If .U 0
1; �

0
1/ is a trivial tangle, then so is .Bjk; Kj \Bjk/. If  is a reducing curve, then � 01 is a single

strand; it must be unknotted, as Kj is an unlink. Otherwise,  separates the punctures of † into one set
with three punctures and the other with five punctures. If 
 is on the side with five punctures, we have our
theorem, so assume 
 is on the side with three punctures. Thus, without loss of generality, .U1; �1/ has
two strands and .U2; �2/ has three strands. Thus, .U 0

1; �
0
1/ has a single strand and, as before, we see that

it is a trivial tangle. Thus, .Bjk; Kj \Bjk/ is a trivial tangle and † is a bridge sphere for Kj .

By [Lee 2017, Theorem 1.1], there is a bridge disk E2 for a strand of Tjk in Bjk such that the arcs ˛ and
ˇ DE2 \† intersect in a single point. The three shadow arcs ˛, ˛0 and ˇ show that † is stabilized as in
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Lj Q �1 �2

Figure 4: How to build the links �1 and �2.

Lemma 2.13. This contradicts our assumption on †. Thus, j
 \ j> 0 when  is a reducing curve and

 is on the side with five punctures if  is a cut-reducing curve and j
 \ j D∅.

Consider the twice-punctured disk D �† bounded by 
 . If j \ 
 j> 0, then  \D consists of parallel
arcs separating the punctures. If  is a reducing curve, then it bounds disks in † each containing an even
number of punctures, in which case j \Dj is even and j \ 
 j is a multiple of 4. Consequently, if  is
a reducing curve, j
 \ j � 4.

Lemma 3.7 Suppose Li has one component intersecting † exactly twice. That is , Li is a 2–component
link , where one component is in 1–bridge position and the other component is in 3–bridge position. Let

 �† be a reducing curve for Li and suppose  �† is a cut-reducing curve for Lj .

(1) Suppose that both components of Lj are in 2–bridge position. Then j
 \ j ¤ 2.

(2) Suppose Lj has one component in 3–bridge position. If j
 \  j D 2, then the two punctures
corresponding to the 1–bridge component of Lj lie inside a 3–punctured disk bounded by  .

Proof Let Q be a cut-reducing sphere such that Q \† D  . Cut open .S3; Lj / along Q and glue
in (3–ball, unknotted arc) pairs .B3; ˛1/ and .B3; ˛2/ to obtain .S3; �1/ and .S3; �2/ (See Figure 4.)
In the 3–balls that we glued in we may find once-punctured disks whose boundaries coincide with
the images of  . Attach those disks to the remnants of † to obtain bridge spheres †1 and †2 for
.S3; �1/ and .S3; �2/, respectively. We can recover .S3; Lj ; †/ by taking the connected sum of the
triples .S3; �1; †1/ and .S3; �2; †2/. In particular, �1 and �2 are unlinks. Since we are decomposing a
2–component unlink Lj via a cut-reducing sphere, we can assume that �1 has one component and �2 has
two components. There are a few cases to consider (see Figure 5). In all of these cases, the strategy is the

˛ Q
˛

Q
˛

Q

Figure 5: The link Lj D Tij [Tjk in bridge position. The arc ˛ is a shadow for arcs in Tij and Tik .
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following. Using the same notation as in Lemma 3.6, there is a shadow arc ˛0 for .Bik; Tik/ that is a copy
of ˛ for .Bij ; Tij /. We then use [Lee 2017] to find a shadow in .Bjk; Tjk/ intersecting ˛ only in one
endpoint (and no interior points). By Lemma 2.13, this implies that T is stabilized, contrary to hypothesis.

Let D as in Lemma 3.6. The intersection D \† is a shadow ˛ for arcs in both Tij and Tik . Since
j
 \ j D 2, the disk Q0 DQ\Bij intersects the disk E DD\Bij in a single arc. Thus, E persists to
bridge disks E1 for �1 and E2 for �2.

Case 1 (each component of Lj is in 2–bridge position, ie intersects † four times) Suppose for the sake
of contradiction that j
 \ j D 2. Only one component of Lj intersects Q. Without loss of generality,
we may assume it is L0

j. Furthermore, all of the punctures L00
j \† must lie in †2 as jL0

j \†j D 4. Thus,
�1 is an unknot intersecting †1 exactly four times. Recall E1 is a bridge disk for �1. Let E 0

1 be another
bridge disk for �1, on the same side of †1 as E1, but disjoint from E1. Observe that, in the 4–punctured
sphere†1, the frontiers of the arcsE1\†1 andE 0

1\†1 are isotopic. Since a reduction along a bridge disk
of the 2–bridge unknot is an unknot in 1–bridge position, Theorem 1.2 of [Lee 2017] tells us that each arc
of �1n†1 on the opposite side of†1 fromE1 andE 0

1 has a bridge disk intersecting bothE1 andE2 only in
one endpoint (and no interior points). Let � be such a disk for the strand of �1n†1 that does not contain ˛1.
Then � is also a bridge disk for Lj and it intersects ˛ only in one endpoint (and no interior points).

Case 2 (a component of Lj is in 1–bridge position, ie intersects† only twice) Suppose that j
\ jD 2.
If �1 is an unknot intersecting †1 exactly 4 times, then we have the situation with the schematic shown
in Figure 5, center. In this case, the shadow we seek for .Bjk; Tjk/ is found as in Case 1. That is, there is
a shadow arc ˛0 for .Bik; Tik/ that is a copy of a shadow arc ˛ for .Bij ; Tij /. Since �1 is a 2–bridge
unknot, Lee [2017] tells us that there is a shadow in .Bjk; Tjk/ intersecting ˛ only in one endpoint (and
no interior points). On the other hand, if �1 is an unknot intersecting †1 exactly 6 times, we have the
second conclusion of our lemma (see Figure 5, right).

Remark 3.8 Our proofs of Lemmas 3.6 and 3.7 above do not work for higher bridge numbers, as there
is a 4–bridge position of the unknot with no complete canceling disk system (see [Lee 2017]).

For the remainder of this section, let pi
ij and pj

ij be pants decompositions belonging to defining pairs for
Li D Tij [Tik and Lj D Tkj [Tij , respectively. Denote their curves by pi

ij D f
1; 
2; 
3; f1; f2g and
p

j
ij D f 1;  2;  3; h1; h2g as in Lemma 3.1.

Lemma 3.9 No  n–loop is equal to fm for any m 2 f1; 2g. Similarly, no 
n–loop is equal to hm for any
m 2 f1; 2g.

Proof The second statement follows from the first by reversing the roles in the proof below. We prove
the first statement.

By Lemma 3.1,  2 and  3 bound cut disks and f1 and f2 bound compressing disks, so the number of
punctures they enclose is different modulo 2. Thus,  n ¤ f1; f2 for nD 2; 3.

Algebraic & Geometric Topology, Volume 24 (2024)



Bounding the Kirby–Thompson invariant of spun knots 3377

E

n

p

f 0
1

f1

f 0
1

2


1
q p

f1 
3

D


1

q
new c0
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Figure 6: Various subsurfaces of †.

Suppose now that  1 D f1. In particular, 
1 and  1 are disjoint reducing curves. By Lemma 3.6, the
number of punctures enclosed by 
1 and  1 must be the same. For if 
1 bounds two punctures and
 1 bounds four punctures, then the two curves will intersect. But 
1 and f1 are distinct curves in the
pants decomposition pi

ij , so they cannot both enclose four punctures. We conclude that  1 D f1 and 
1

enclose two punctures each. Let f 0
1 and f 0

2 be simple closed curves such that pi
ik

D f
1; 
2; 
3; f
0

1; f
0

2g

completes a defining pair .pi
ij ; p

i
ik
/ for Tij [ Tik . Focus our attention on the A–move corresponding

to f1 7! f 0
1, which happens inside a 4–holed sphere E. The boundaries of E correspond to boundaries

of small neighborhoods of punctures or to some 
n–curves. Notice that one or two boundaries of E
correspond to some 
n–curves.

Case 1 (@E has exactly one 
n–loop) After a surface homeomorphism, we can draw E as in the
Figure 6, left. Here, after choosing coordinates for the 4–punctured sphere, f1 is depicted as a separating
curve of slope 1=0. The conditions jf1 \f

0
1j D 2 and f 0

1 \ 
n D∅ imply that f 0
1 is a separating simple

closed curve in E of slope n=1 for some n 2 Z. In other words, f1 D @�.c/ and f 0
1 D @�.c0/ for some

properly embedded arcs c; c0 in E such that c is an arc disjoint from 
n, and c \ c0 D @c \ @c0 is exactly
one puncture. We pick c0 so that the end disjoint from c corresponds to the puncture p on the same side
of f1 as 
n (see Figure 6, left). Now, recall that f 0

1 bounds a compressing disk for Tik , and so c0 is a
shadow for some arc in Tik . Similarly, c is a shadow for arcs in both Tij and Tkj because f1 D  1 is a
compressing disk for both tangles. By Lemma 2.13, these three shadow arcs with one common endpoint
imply that the bridge trisection is stabilized. This concludes Case 1.

Case 2 (@E has two 
n–loops) Both must bound cut disks. After a surface homeomorphism, the curves
in pi

ij can be depicted as in Figure 6, center. Observe here that f 0
1 must surround four punctures on each

side. Let D be the 4–holed sphere inside † cobounded by f 0
1 , 
1, @�.p/ and @�.q/; see Figure 6, center

and right. By construction, there exists an arc x in D with endpoints in p and E such that x is disjoint
from f 0

1 \D. Since 
1 and f 0
1 both bound compressing disks for Tik , it follows that there is an arc in Tik

connecting p and q. Furthermore, such arc has a shadow arc c0 in † with interior disjoint from f 0
1 and 
1.

Regarded as a subset of D, the arc c0 connects E and 
1. We can slide c0 over 
1 several times and choose
a shadow arc c with interior disjoint from x. In particular, c intersects f1 in one point. This, together
with the fact that f1 D  1 bounds reducing curve for Tkj [Tij , implies the existence of a shadow arc c
for both Tkj and Tij with c \ c0 D @c \ @c0 D fpg. By Lemma 2.13, we conclude that T is stabilized.
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1


2 
3

f1 f2

Figure 7: When the reducing curve bounds four punctures, the two cut curves lie on distinct sides.

Lemma 3.10 If e is an edge in P.†/ with initial endpoint at pi
ij , then e does not move 
1 to any  n–loop

in pj
ij . Similarly , if e is an edge in P.†/ with terminal endpoint at pj

ij , then e does not move any 
n–loop
of pi

ij to  1.

Proof The second statement follows from the first by interchanging the roles of 
1 and  1, and so we
prove only the first statement. Suppose, to establish a contradiction, that 
1 is moved to some n–loop by e.

First we show that e does not move 
1 to  1. Suppose 
1 bounds a twice-punctured disk D. If e moves

1 to  1, then j
1\ 1j D 2, soD\ 1 consists of a single arc. It follows that the two punctures of D are
on opposite sides of  1, contradicting Remark 3.5. Similarly,  1 does not bound a twice-punctured disk.

Consequently, if e moves 
1 to  1, then both 
1 and  1 enclose four punctures. This sets us in the third
configuration of Lemma 3.3. First, observe that f1 and f2 must be separated by 
1. This holds since
pi

ij D f
1; 
2; 
3; f1; f2g is a pants decomposition for †, and only 
1, f1 and f2 bound an even number
of punctures. Thus, after a surface homeomorphism, we can draw † and pi

ij as in Figure 7. We see,
therefore, that if e moves 
1 to  1, then 
1 and  1 will both bound the same three (out of four) punctures,
contradicting Lemma 3.3. Hence, 
1 cannot be moved first to  1.

We will now see that, due to parity constraints, if e moves 
1, then 
1 is moved to a curve bounding
an even number of punctures. In particular, 
1 is not moved to  n for n D 2; 3. In order to do this,
we focus on the 4–holed sphere, denoted by E, corresponding to the first A–move. The four boundary
components of E are loops (or punctures), f@1; @2; @3; @4g. If 
1 bounds four punctures, up to surface
homeomorphism, then † can be depicted as in Figure 7 and we see that each component of @E is an odd
curve. On the other hand, if 
1 encloses exactly two punctures, then two components of @E are single
punctures. The other two boundaries, say @3 and @4, will enclose punctures 1 and 5, 2 and 4, or 3 and 3,
respectively. Notice that they cannot enclose punctures 2 and 4, since that will force the existence of a
fourth curve in pi

ij bounding an even number of punctures. Thus, in any case, all the components of @E
are either a single puncture or enclose an odd number of punctures. Consequently, e moves 
1 to a curve
enclosing an even number of punctures, as desired.

Lemma 3.11 If e is an edge in P.†/ with initial endpoint at pi
ij , then e does not move any 
n–loop

of pi
ij to  1. Similarly, if e is an edge in P.†/ with terminal endpoint at pj

ij then e does not move 
1 to
any  n–loop.
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Figure 8: A close look at the A–move 
1 7!  2.

Proof As we did in Lemma 3.10, it is enough to show the first statement. The case  1 7! 
1 has been
discussed in the proof of Lemma 3.10.

We study the case 
1 7!  2. In particular, 
1 and  1 must be disjoint because the endpoint of e is pj
ij .

Thus, Lemma 3.6 forces both 
1 and  1 to bound two punctures each. The 4–holed sphere corresponding
to e is drawn in Figure 8, left. Observe that we are forced, by Lemma 3.1, to have one cut curve inside @4

and one compressing curve x. Here, the sets of curves fx; @2; @4g and fh1; h2;  1g agree. Since  1

bounds two punctures, we can assume @4 D h1. Moreover, Lemma 3.7(2) implies that  1 D @2, leaving
us with x D h2.

Focus on h01 2p
j

jk
. If h01 bounds two punctures, we can proceed as in the previous paragraph and conclude

that the bridge trisection is stabilized. Thus, h01 must bound four punctures. Here, h01 bounds q and the
curve  3. By focusing on this disk (see Figure 8, right), we see that h02 must be disjoint from 
1 because
.h2 [ h

0
2/\ 3 D ∅. This lets us find a shadow c0 for Tjk connecting q and u, such that c0 is disjoint

from h01 and h02. We can slide c0 over h01 and h02 in order to arrange that c0 and 
1 intersect once. Thus,
the bridge trisection is stabilized by Lemma 2.13.

3.2 Improved lower bound

We are ready to prove the lower-bound of Theorem 1.1. The main result of this Section is Theorem 3.16,
which states that the Kirby–Thompson invariant of a .4; 2/–bridge trisection of a knotted sphere in S4 is
at least 15.

As before, let S be a connected surface in S4 with an unstabilized, irreducible .4; 2/–bridge trisection T.
Fix fi; j; kg D f1; 2; 3g. Let .pi

ij ; p
i
ik
/ and .pj

ij ; p
j

jk
/ be defining pairs. Denote the curves in pi

ij and pj
ij

by pi
ij D f
1; 
2; 
3; f1; f2g and pj

ij D f 1;  2;  3; h1; h2g as in Lemma 3.1. We know that f1, f2, h1

and h2 bound compressing disks for Tij ; also, each 
n–curve is a reducing or cut-reducing curve for Li

and each  n–curve is a reducing or cut-reducing curve for Lj ; in fact, 
1 and  1 are reducing curves
and the others are cut-reducing curves. Recall that there are essential, simple closed curves f 0

1 and f 0
2

such that pi
ik

D f
1; 
2; 
3; f
0

1; f
0

2g completes an efficient defining pair .pi
ij ; p

i
ik
/. Likewise, there are
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Figure 9: Two subcases, depending on the number of punctures bounded by @3.

essential, simple closed curves h01 and h02 such that pj

jk
D f 1;  2;  3; h

0
1; h

0
2g completes an efficient

defining pair .pj
ij ; p

j

jk
/.

The proof of Theorem 3.16 will be broken into Propositions 3.13, 3.14 and 3.15, each of them proving
that d.pi

ij ; p
j
ij / � 5 for each pair, depending on the number of punctures bounded by 
1 and  1. We

begin in Proposition 3.12, showing that such distance is at least 4.

Proposition 3.12 If �.ij / is a path from pi
ij to pj

ij . The length of �.ij / is at least 4. If it is equal to 4,
then at least one of f1 and f2 is unmoved by �.ij /.

Proof By Lemma 3.9, no  n–loop is equal to f1 or f2 and no 
n–loop is equal to h1 or h2. Thus, if
some 
n–loop is unmoved by �.ij /, then it is equal to some  n–loop. But, by Lemma 2.10, this implies
that T is reducible, a contradiction. Thus, �.ij / moves every 
n–loop, so the length of �.ij / is at least 3.
If it is equal to 3, then f1 and f2 are unmoved by �.ij / and, if it is equal to 4, at least one of f1 or f2 is
unmoved by �.ij /, as desired. Thus, we simply need to show that the length is not 3.

Assume, for a contradiction, that the length of �.ij / is 3. As f1 and f2 are unmoved, by Lemma 3.9,
ff1; f2g D fh1; h2g. By Lemma 2.10, each of the curves f
1; 
2; 
3g moves exactly once. For each
mD 1; 2; 3, let 
 0m denote the  n–loop to which 
m is moved by �.ij /. Lemmas 3.10 and 3.11 imply
that the curves 
1 and  1 are not involved in the first and third A–moves of �.ij /. Thus, 
1 7!  1 must
be the second A–move in �.ij /. We can then assume that 
2 moves first, 
 02 D  2 and 
 03 D  3.

We focus on the 4–holed sphere E where the A–move 
2 7! 
 02 occurs. Denote the boundaries of E by
@1, @2, @3 and @4. After a surface homeomorphism, we can draw E as in Figure 9, left, which shows
the parity of punctures bounded by @n. Since 
2 is a cut disk, one of its sides contains three punctures.
Thus, we may assume that @2 only bounds the puncture p and @1 bounds two punctures. We get two
cases, depending on the number of punctures bounded by @3, one or three (see Figure 9).

Case 1 (@3 bounds three punctures; in particular, @3 D 
3 bounds a cut disk) See Figure 9, center.
By the previous paragraph, 
3 has to be moved in third place and 
1 in second. Since 
1 7!  1 is an
A–move, we know that j
1\ 1jD 2. This is a contradiction, due to the following argument, also found in
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Lemma 3.6. Denote by D �† the twice-punctured disk bounded by 
1. We have that  1\D consists of
parallel arcs separating the punctures. Since  1 is a reducing curve, it bounds disks in † each containing
an even number of punctures. Therefore, j 1 \Dj is even and j 1 \ 
1j is a multiple of 4.

Case 2 (@3 bounds one puncture, named q) After a surface homeomorphism, we can draw the curves
as in Figure 9, right. Recall that 
1 7!  1 is the second A–move in �.ij /. It follows that 
1 2 f@1; @4; xg

and observe that all the possible configurations for the curve 
 01 D  1 in Figure 9, right, contradict the
combinatorial conditions in Remark 3.5. Thus, this case cannot occur.

Proposition 3.13 Suppose 
1 bounds two punctures and  1 bounds four. Then any path �.ij / from pi
ij

to pj
ij must be of distance at least 5.

Proof By Proposition 3.12, it is enough to show the distance from pi
ij to pj

ij is not four. By way of
contradiction, let � be a geodesic path of length four between such pants decompositions. By Lemmas 2.10
and 3.9, each 
n–curve must move at least once. We have two cases, depending on how many curves
of ff1; f2g are moved.

Case 1 (� moves one curve of ff1; f2g) Without loss of generality, f1 is moved and so f2 D h2 is
fixed. In this case, each of f
1; 
2; 
3; f1g is moved once to one curve among f 1;  2;  3; h1g. Denote
by x0 the image of a loop x under the path �; ie x and x0 differ by one A–move.

First observe that, since hn and 
1 are compressing curves for the same tangle, it must happen that, if 
1

bounds fp; qg, then they are both on the same side of hn. Thus, j
1 \ hnj � 0 modulo 4. In particular,

 01 ¤ hn. Similarly 
 01 ¤  1. Thus, 
 01 bounds a cut disk, say 
 01 D  2. In particular, j
1 \ 2j D 2. This
is a contradiction to Lemma 3.7(1). Hence, this case cannot occur.

Case 2 (� fixes ff1; f2g) We can write f1 D h1 and f2 D h2. In this case, one of f
1; 
2; 
3g will
move twice and the other 
n–loops move once along �. For the curve 
j 2 f
1; 
2; 
3g that moves twice,
denote by � the curve 
 0j. We will also refer to � as the pivotal curve.

Subcase 2a (
1 moves once along �) By Lemma 3.6, j
1 \ 1j � 4, so 
 01 must bound a cut disk, say

 01 D  2. In particular, j
1 \ 2j D 2. This is impossible since it contradicts Lemma 3.7(1).

Subcase 2b (
1 moves twice along �) We will first see that 
 0n ¤  1 for any n. In particular, � 0 D  1

and the following property holds: at each vertex of �, there are at most three pairwise disjoint curves
bounding an even number of punctures.

By Lemma 3.6, 
 01 ¤  1. Suppose, without loss of generality, that 
 02 D  1. The 4–holed sphere
corresponding to the A–move 
2 7!  1 has one boundary component bounding one puncture, r , and
boundary loops @1, @3 and @4 bounding two, two and three punctures, respectively (see Figure 10, right).
Here, there are four pairwise disjoint curves bounding an even number of punctures: f 1; @1; @3; xg.
Since 
1 \  1 ¤ ∅ by Lemma 3.6, we know that ff1; f2; �g D f@1; @3; xg. If @1 D � , then 
1 will
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Figure 10: How the curves in † look for specific A–moves.

bound r and one of the two punctures bounded by @1. This is impossible since such punctures are on
distinct sides of  1. Hence, @1 D f1 D h1.

Observe that the two punctures bounded by 
1 must be separated by � D 
 01; if not, then j
1 \ � j � 0

modulo 4, which makes impossible the A–move 
1 7! � . We use this to see that, if @3 D � , then 
1 would
bound one puncture inside @3 with one puncture inside @4. These points are in distinct sides of  1 (see
Figure 10, right), which is a contradiction to Remark 3.5. Hence, x D � , @3 D f2 and @1 D f1. Notice
that all the incoming A–moves will occur in the side of  1 containing @4. This forces pj

ij to have at least
four curves bounding an even number of punctures, a contradiction to Lemma 3.1. Thus, we conclude
that 
 0n ¤  1, as desired.

By the above, the 
n cut curves move once along � to  n cut curves. Without loss of generality, 
 0n D n

for n D 2; 3. We will assume that 
3 7!  3 is not the last A–move in �; if not, we can relabel the

n–curves. We will focus on the 4–holed sphere corresponding to the A–move 
3 7! 
 03 (see Figure 11,
left). We have two cases, depending on the number of punctures bounded by @2 and @3.

Subcase 2b(i) (both @2 and @3 bound one puncture each) We adopt the notation in Figure 11, center.
In this case, we already have three pairwise disjoint curves bounding an even number of punctures,
f@1; @4; xg, so there is a curve y bounding x and one puncture u (see Figure 11, center). Recall that hn

bounds two punctures and fn D hn is fixed by �. This implies that @1 D f1, x D f2 and @4 2 f�;  1g.

even
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odd
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q p
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x y

s u v w
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Figure 11: The three possibilities occurring in Subcase 2b.
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Figure 12: Two paths.

Now, since 
3 7!  3 is not the last A–move in �, there are two possible curves which may move next, y
and � .

Suppose first that y moves before � does. (The curve � may or may not move). Then y0 must be a cut disk
and we get y0 D  2 and y D 
2. Using the notation of Figure 11, center, since 
1 bounds two punctures
and is disjoint from 
2 and 
3, we obtain that 
1 bounds fr; sg. But @4 separates such punctures, so the
only option is @4 D � . Now, the fact that y0 bounds a cut disk implies that it bounds the two punctures
inside x and s. The next move � 7!  1 is forced to separate r and s, contradicting Remark 3.5.

It remains to study what happens when @4 moves before y. (The curve y may or may not move). Here,
@4 D � . Focusing on Figure 11, center, we observe that  1 D � 0 bounds the two punctures inside x D f2,
together with t and u. By Remark 3.5, 
1 bounds either fr; sg or ft; ug. The latter is impossible since

3 is disjoint from 
1 and 
3 separates such punctures. Thus, 
1 bounds fr; sg. Since  3 separates
r and s, the A–move 
1 7! � must appear in � before 
3 7!  3. Moreover, the move 
2 7!  2 D y

cannot happen between 
1 7! � and 
3 7!  3. This claim holds because, if 
2 moves between 
1

and 
3, it would force 
2 to bound the two punctures inside x D f2 together with s, which implies the
contradiction 
1\
2 ¤∅. We are left with two possibilities, depending on the order of the curves moving:
.
2; 
1; 
3; �/ or .
1; 
3; �; 
2/. Figure 12 showcases the two possible paths and which punctures are
bounded by each curve.

We focus on the subpath of � corresponding to the consecutive A–moves 
1 7! � followed by 
3 7!  3.
The second A–move occurs inside a 4–holed sphere with boundaries associated to t , r , f1 and � (see
Figure 13, left). The fact that 
1 and 
3 are disjoint implies that the condition j
3 \ 3j D 2 is equivalent
to j
1 \ 3j D 2. One can see this claim by noticing that the curves 
3 and @�.
1 [ �/ are isotopic in the
4–holed sphere. The condition j
1 \ 3j D 2 contradicts Lemma 3.7. In other words, Subcase 2b(i) is
impossible.

Subcase 2b(ii) (only one of f@2; @3g bounds one puncture) Without loss of generality, @2 bounds one
puncture and @3 three. This forces the setup in Figure 11, right. The curves along the path � bounding an
even number of punctures are 
1,  1, f1 D h1, f2 D h2 and (possibly) � . But we have seen that � 0 D 1
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Figure 13: Curves interacting in the consecutive A–moves 
1 7! � , 
n 7!  n for a fixed n.

and 
 01 D � . This implies that @4 … f
1; �;  1g since all the A–moves starting at @4 will be forced to end
at curves bounding two punctures. Thus, we may assume that @4 D f1. Since no curve at this moment
bounds four punctures, there should be another A–move after 
3 7!  3. Using the notation in Figure 11,
right, the curves that might move are f@1; @3; xg.

Suppose that @3 moves first, then @3 D 
2 and @03 D  2. Since  2 bounds three punctures, @03 must
enclose @1 and the puncture r together. Since  1 separates the cut curves  2 and  3 (Figure 7), it follows
that @1 D f2 and  1 separates p and q. Thus, from Remark 3.5, we must have x D � . Without loss of
generality, 
1 encloses r and p (see Figure 11, right). We now focus on the consecutive A–moves 
1 7! �

and @3 D 
2 7!  2. Observe that 
2 7!  2 occurs in a 4–holed sphere with boundaries corresponding to
 3, r , @1 Df2 and � . This local setup in depicted in Figure 13, center. In here, the conditions 
1\
2 D∅
and j
2 \ 2j D 2 force j
1 \ 2j D 2. This contradicts Lemma 3.7.

If x moves before @1 and @3, then @1 D f2. In particular, x D 
1 and @3 must move so that � 0 D  1 can
bound four punctures. We can then redefine x to be 
 01 D � and proceed as if @3 moved first (paragraph
above). We get then a contradiction.

The last case to check is when @1 moves before @3 and x. In particular, x D f2 and @1 2 f
1; �g.

First we see that, if @1 D 
1, then @3 will have to move between 
1 7! � and � 7! 1. This is true because,
if @3 didn’t move immediately after, then .
 01/

0 D  1 would separate t and u, contradicting Remark 3.5.
In particular, @3 D 
2 must move between 
1 and � . Moreover, the A–move 
2 7! 1 occurs in a 4–holed
sphere with boundaries corresponding to � , @1 D f2 and two boundaries bounding one puncture each. If
we switch the labels and redefine 
2 to be 
3, we get the situation of Subcase 2b(i). We can then obtain a
contradiction.

Therefore, we must have @1 D � . Since 
1 is disjoint from 
3, using the notation in Figure 11, right, we
can assume that 
1 bounds t and s. We obtain the subpath of �, depicted in Figure 13, right, given by
the consecutive A–moves 
1 7! � and 
3 7!  3. Observe that 
3 7!  3 occurs in a 4–holed sphere with
boundaries corresponding to s, @3, f1 and � . In here, the conditions 
3 \
1 D∅ and j
3 \ 3j D 2 force
j
1 \ 3j D 2, contradicting Lemma 3.7. Hence, Subcase 2b(ii) cannot occur. We have exhausted all the
possibilities, thus concluding the proof of the proposition.
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Proposition 3.14 Suppose that both 
1 and  1 bound two punctures each. Then any path �.ij / from
pi

ij to pj
ij must be of distance at least 5.

Proof This proof follows the same path as Proposition 3.13. By Proposition 3.12, it is enough to show
the distance from pi

ij to pj
ij is not four. By way of contradiction, let � be a geodesic path of length four

between such pants decompositions. By Lemmas 2.10 and 3.9, each 
n–curve must move at least once.
We have two cases, depending on how many curves of ff1; f2g are moved.

Case 1 (� moves one curve of ff1; f2g) Without loss of generality, assume f2 D h2 is fixed. Observe
that, since  1 and 
1 bound two punctures and the curves  1, 
1, h1 and f1 are compressing curves
for the same tangle, we obtain that 
 01 ¤ h1,  1 and  1 ¤ f 0

1. Thus, we can assume that 
 01 D  2 and

 02 D  1. By Lemmas 3.10 and 3.11, the A–moves 
1 7!  2 and 
2 7!  1 cannot be first nor last in �.

Subcase 1(a) (
1 7!  2 is second) In particular, 
2 7!  1 is third, and there are at most three
curves bounding an even number of punctures after the second A–move: ff1; h1; f2 D h2g. We focus
our attention on the 4–holed sphere corresponding to 
1 7!  2. By the previous sentence, we are
forced to have an arrangement of curves as in Figure 10, left (compare with Figure 14). In particular,
fx; @2; @4gD ff1; h1; f2g and yD 
2. Since  1 is the next curve to appear,  1 must bound fr; sg. This is
already a contradiction since Lemma 3.7(2) implies that  1 bounds two of the three punctures fp; v;wg.
This subcase is impossible.

Subcase 1(b) (
1 7!  2 is third and 
2 7!  1 is second in �) Recall that the only curves bounding
an even number of punctures are f
1;  1; f1; h1; f2 D h2g. We need to decide which of the A–moves

3 7! h1 and f1 7! 3 is first. For us to decide, focus on the 4–holed sphere corresponding to the A–move

1 7!  2. Counting 
1, there were four or five pairwise disjoint curves bounding an even number of
punctures before 
1 moved (see Figure 14). But every A–move in � interchanges cut and compressing
curves, so the number of even curves after the second A–move will be three or five. Thus, 
3 moves first,
f1 last, and the curves look like in Figure 14, right. Lemma 3.7(2) implies that @2 D  1. Since 
2 7!  1

occurs in second place, we can assume that 
2 bounds fp; q; vg.

We will focus on @4. First observe that, if @4 D f2 D h2, then the A–moves in distinct sides of @4

commute. This would let us contradict Lemma 3.11, since we could make 
2 7!  1 the first A–move.
Suppose now @4 D f1. Since f1 is the last curve to move, we can assume that f 0

1 D  3 bounds fq; u; tg.
Moreover, because j
1 \ 2j D j@4 \ 3j D 2 and  3 is disjoint from x, z and  2, we can see that 
1

and  3 must intersect in two points. Now, we know that x D ha for some a 2 f1; 2g. We can use the dual
curve h0a 2 p

j

jk
to find a tuple .c; c0/ of destabilization shadows as in Lemma 2.13. Thus, @4 D h1 is the

remaining option.

If @4 D h1, then we can assume that 
3 bounds fr; s; wg because 
3 7! h1 is the first A–move in �.
Recall that 
2 bounds fp; q; vg. By thinking in the 4–holed sphere with boundaries 
3, @2, z and x, the
conditions j@4 \ 
3j D j@2 \ 
2j D 2 and @4 \ @2 D ∅ imply that 
2 intersects @2 D  1 in two points.
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Figure 14: When 
1 and  2 differ by one A–move, there are either three (left) or four (right)
curves disjoint from 
1 bounding an even number of punctures.

Now, we know that z D fa for some a 2 f1; 2g. We can use the dual curve f 0
a 2 pi

ik
to find a pair of

shadows .c; c0/ as in Lemma 2.13. We have concluded Case 1.

Case 2 (� fixes ff1; f2g) In this case, one 
n–curve moves twice and the rest exactly once. We write
fa D ha and denote by � the pivotal curve. There are two subcases, depending on how many times 
1

moves.

Subcase 2a (
1 moves once along �) Recall that 
1,  1, f1 D h1 and f2 D h2 bound compressing
disks in Tij and 
1 and  1 bound two punctures. Thus, j
n \ ˛j and j 1 \ ˛j are both divisible by
four for all ˛ 2 f
1;  1; f1 D h1; f2 D h2g. This implies that 
 01 must bound a cut disk, say 
 01 D  2.
Lemmas 3.10 and 3.11 force 
1 to move second or third in �. We can represent the curves in the 4–holed
sphere corresponding to 
1 7!  2 like in Figure 14. Observe that, before the A–move of 
1, there are
either four or five pairwise disjoint curves bounding an even number of punctures.

We first study @2 in Figure 14. Since @2 bounds two punctures, we have @2 2 ff1 D h1; f2 D h2;  1; �g.
Notice that @2 cannot be � . If that were the case, � 0 would be forced to bound an even number of
punctures, say fp; vg, and � 0 D  1. In particular,  1 would separate p and q, which contradicts
Remark 3.5. Lemma 3.7 implies that  1 bounds two punctures from fp; v;wg; thus, @2 D  1.

Subcase 2a(i) (there are five even curves) We use the notation in Figure 14, right. We have that the sets
of curves fx; z; @4g and f�; f1; f2g agree. In particular, by Lemma 3.11, 
2 7!  1 must be the second
A–move and so 
3 7! � is the first one. If @4 is equal to some fa, then the curves � and  1 will lie in
different sides of @4. We could then permute their corresponding A–moves and obtain 
2 7!  1 first in �,
contradicting Lemma 3.11. Thus, we conclude that @4 D � , x D f1 D h1 and z D f2 D h2. Here, we can
assume that 
2 bounds fp; q; vg and 
3 bounds fw; r; sg. Now, by looking at the 4–holed sphere bounded
by 
2, x, z and @�.w/, we can see that 
3 \ 
2 D∅ and j
2 \ 1j D 2 imply that j
3 \ 1j D 2. Then,
inside the component of † n 
3 containing w, we can use f 0

2 to find a tuple of shadows .c; c0/ satisfying
the conditions of Lemma 2.13. Thus, this subcase cannot occur.

Subcase 2a(ii) (before theA–move 
1 7! 2, there are four curves bounding an even number of punctures)
We can draw the curves in † as in Figure 14, left. Since @2 D  1, we can assume x D f1 D h1 and

Algebraic & Geometric Topology, Volume 24 (2024)



Bounding the Kirby–Thompson invariant of spun knots 3387

@4 D f2 D h2. Now, since @4 is fixed along �, the A–moves occurring in different sides of @4 can be
permuted. Thus, we can assume that y D 
2 and so 
 02 2 f 3; �g.

Suppose now that 
 02 D  3. Since  3 D 
 02 is forced to bound fu; t; sg, we can assume that h01 2 p
j

jk

bounds ft; sg. In particular, Tjk connects the punctures ft; sg. On the other hand, since 
1, f1 and f2

bound disks in Tij , we know that Tij connects p, u and r with q, t and s, respectively. The fact that
Lj D Tij [Tjk is a 2–component link and  1 is a reducing curve implies that Tjk connects the punctures
fu; rg with fp; qg. Since 
2 bounds a cut disk for Tik , we have that Tik must connect r with either u
or t . In any case, the fact that Lk D Tik [ Tjk is a 2–component link forces v and w to be connected
by Tik . Since  1 bounds a compressing disk in both Tij and Tjk , we obtain that v and w are connected
by the three tangles. This implies the surface S is disconnected, a contradiction.

We are left with 
 02 D � , which forces 
 03 D  1 D @2 and � 0 D  3. Since @4 D f2 D h2 is fixed along �,
the A–moves on distinct sides of @4 commute. Thus, we can take � such that 
3 7! 1 is the first A–move.
This contradicts the conclusion of Lemma 3.11. Hence, this subcase cannot occur.

Subcase 2b (
1 moves twice along �) By symmetry and Subcase 2a, it is enough to study the case that
� 0 D  1. We write 
 02 D  2 and 
 03 D  3. First observe that, since 
1 and  1 bound disjoint sets of two
punctures (Lemma 3.3), the A–moves 
1 7! � and � 7! 1 cannot be consecutive in �. In other words, at
least one cut curve must move between those moves. We are left with two options (up to symmetry) for
the order of the A–moves along �: .
1; 
3; 
2; �/ and .
1; 
3; �; 
2/. We focus on the second A–move

3 7!  3. It occurs inside a 4–holed sphere depicted in Figure 11, left.

Subcase 2b(i) (both @2 and @3 bound one puncture each) We use the notation in Figure 11, center,
and observe that y D 
2. Since 
1 7! � and 
3 7!  3 are the first two A–moves in �, we know that the
sets of curves fx; @1; @4g and f�; f1 D h1; f2 D h2g agree. Suppose @4 D � ; then 
1 is forced to bound
fr; sg. In the 4–holed sphere with boundaries @1, y, @�.r/ and @�.t/, the conditions 
3 \ 
1 D ∅ and
j
3\ 3j D 2 force j
1\ 3j D 2. Lemma 3.7 implies that  1 bounds two punctures from fq; p; rg. This
is impossible since @1 2 fh1; h2g is disjoint from  1. Thus, we conclude that @4 D f2 D h2.

Suppose now that @1 D f1 D h1. Since the A–move 
1 7! � occurs inside 
2, we can reuse Figure 11,
center, and assume that x D 
1 and � D 
 01 bounds fu; vg. After 
 01 7! � , the next A–move has to be

2 7!  2. Here,  2 and  1 D � 0 will bound fs; u; vg and fs; ug, respectively. Focus on the 4–holed
sphere E corresponding to the A–move � 7!  1. Notice that E has boundaries corresponding to s, u, v
and  2. Since j
2 \ 2j D 2, the intersection 
2 \E is an arc with both endpoints on  2 that separates s
from fu; vg (see Figure 15, left). Since � \ 
2 D∅, the condition j 1 \ � j D 2 forces  1 to intersect 
2

in two points.

To end, we study the curve f 0
2. For reference, we use the curves and notation from Figure 15, right. We

now look at the 4–holed sphere E 0 with boundaries 
3, 
2, @�.r/ and @�.t/. Since j 1\
2j D 2,  1\E
0

Algebraic & Geometric Topology, Volume 24 (2024)



3388 Román Aranda, Puttipong Pongtanapaisan, Scott A Taylor and Suixin (Cindy) Zhang

s u v w

�

 1

@4 D f1 D h1

 2


2

q p

t

s u

r

v wf 0
2

c0

@1 D f1


3

f 0
1

c

@4 D f2


2

 1

Figure 15: A close-up of some curves in Subcase 2b(i).

is an arc with both endpoints on 
2 that separates s from r and 
3. Thus, the conditions 
2 \ f2 D ∅
and jf 0

2 \ f2j D 2 imply that  1 intersects f 0
2 in two points. If f 0

2 bounds two punctures, we can use
the condition j 1 \ f

0
2j D 2 to find a tuple .c; c0/ of shadows satisfying the condition of Lemma 2.13,

contradicting the fact that T is not stabilized.

On the other hand, if f 0
2 bounds four punctures, we will also find a tuple .c; c0/ as in Lemma 2.13. The

rest of this paragraph explains how to do this. First observe that f 0
2 will bound 
3 and s. Since f 0

1

lies inside 
3 and intersects f1 in two points, we can assume that f 0
1 bounds fq; tg. Both f 0

1 and f 0
2

bound compressing disks in Tik , so we can find a shadow c0 of an arc of Tik connecting fp; sg such
that c0 is disjoint from f 0

1 and f 0
2. Inside the disk component of † n f 0

2 that contains 
3, the condition
j 1 \f

0
2j D 2 implies that  1 is an arc with both endpoints in f 0

2 that separates s from f 0
1 and p. We can

slide c0 over f 0
1 and f 0

2 and assume that jc0\ 1j D 1. The last condition allows us to pick an arc c in †
connecting fs; ug such that @�.c/D  1 and c \ c0 D @c \ @c0 D fsg. Notice that c0 is a shadow for arcs
in Tij and Tjk . Hence, the tuple .c; c0/ satisfies the conditions of Lemma 2.13. This is a contradiction.

We are left with xD f1 D h1 and � D @1. Since @4 D f2 D h2 is fixed along �, A–moves on distinct sides
of @4 commute. Moreover, this setup is equivalent to the previous case (@1 D f1 D h1): one can reflect
Figure 11, center, with respect to @4 and the roles of the curves on each side will reverse. Therefore, this
case is impossible.

Subcase 2b(ii) (@2 and @3 enclose one and three punctures, respectively) We use the notation of
Figure 11, right. One of the curves f@1; x; @4g is equal to � . Observe that, if � is a curve such that
� 7! @4 is an A–move immediately before @3 7!  3, then � bounds four punctures. In particular, �¤ 
1.
Thus, @4 ¤ � and so @4 D f1 D h1. Suppose now that x D � . We can assume that 
1 bounds fr; pg. By
Lemma 3.3, the two punctures bounded by  1 must be distinct than fr; pg. Here, notice that 
 02 D  2

is forced to bound ft; u; rg and � D x must move after 
2. Moreover, � 0 has to bound four punctures,
contradicting � 0 D  1. Hence, x D f2 D h2 and @1 D � .
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We are left to discard the case @1 D � . Since x is fixed along � and  3 won’t move, we see that two out
of the three punctures ft; u; rg will be bounded by  1. We can assume that 
1 bounds ft; sg. By looking
at the 4–holed sphere with boundaries 
3, @�.t/, @�.s/ and @�.u/, we see that the conditions  3\� D∅,
j
3 \ 3j D 2 and j� \ 
1j D 2 imply j
1 \ 3j D 2. Now, inside the disk of † n 3 containing @4 D h1,
one can see that h01 2p

j

jk
must intersect 
1 in two points. Thus, there is a shadow c0 for an arc of Tjk with

@�.c0/D h01 and jc0\ 
1j D 1. By taking c �† with @�.c/D 
1 and c\ c0 D @c\ @c0 D fsg, we obtain
a tuple .c; c0/ like in Lemma 2.13. Hence, T is a stabilization. This finishes the analysis in Case 2.

Proposition 3.15 Suppose that both 
1 and  1 bound four punctures each. Then any path �.ij / from
pi

ij to pj
ij must have length at least 5.

Proof By Proposition 3.12, it is enough to show the distance from pi
ij to pj

ij is not four. By way of
contradiction, let � be a geodesic path of length four between such pants decompositions. By Lemmas 2.10
and 3.9, each 
n–curve must move at least once.

Notice that, if two pants decompositions differ by the A–move 
1 7!  1, then each boundary loop of the
4–holed sphere corresponding to this A–move must bound two punctures. This is true because the curves

1 and  1 bound compressing disks for the same tangle Tij . In particular, we know that there are at most
five curves bounding an even number of punctures that are involved in �, say f
1;  1; h1; f1; f2 D h2g or
f
1;  1; �; f1 D h1; f2 D h2g, where � is the pivotal curve. Thus, it cannot contain the edge 
1 7!  1.

Case 1 (� moves one curve of ff1; f2g) Say f2 D h2 is fixed. Notice that f1 bounds two punctures
since 
1 bounds four. Also, f1 and  1 bound compressing disks for the same tangle Tij , so the two
punctures bounded by f1 must be on the same side of  1. Thus, jf1 \ 1j is divisible by four. This
implies that f 0

1 ¤  1. Similarly, 
 01 ¤ h1. We can then assume that 
2 7!  1 and 
1 7!  2 are A–moves
along �. Moreover, by Lemmas 3.10 and 3.11, such A–moves must be in either second or third place.
But 
1 \ 1 ¤∅, so 
1 7!  2 must be second and 
2 7!  1 third.

We now study the 4–holed sphere where the A–move 
1 7!  2 occurs. We can assume that the curves
look like in Figure 16, left. In particular, @1 D 
2 and the sets of curves fx; @3; @4g and ff1; h1; f2 D h2g

agree. Since the next A–move is 
2 7!  1, we obtain that  1 bounds x and @3. From Figure 7, we know
that the reducing curve 
1 (resp.  1) must separate f1 and f2 (resp. h1 and h2). This implies that xD f1,
@3 D f2 D h2 and @4 D h1.

To end this case, we will analyze the possible shadows of the tangles Tij , Tik and Tjk . Figure 17, left,
contains the labels of the punctures and the new shadows described throughout this paragraph. Notice that
h01 bounds two punctures, say fs; tg. By looking at the 4–holed sphere with boundaries  2, s, t and u, we
can conclude that h01 must intersect 
1 in two points. In particular, there is a shadow c of an arc in Tjk

connecting fs; tg such that @�.c/D h01. Since jh01 \ 
1j D 2, we see that c intersects 
1 once. Now focus
on the disk component of † n 
1 containing 
2. Since f1 and 
1 bound compressing disks for Tij , there
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Figure 16: Curve arrangements for specific A–moves.

are shadows a1 and a2 for arcs of Tij that are disjoint from f1 [ 
1 satisfying @�.a1/ D f1 and such
that a2 connects fr; sg. Notice that f1 and h01 are on opposite sides of 
2, so a1 \ c D∅. Moreover, we
can think of a2 as an arc in a 4–holed sphere with boundaries x D f1, 
1, @�.s/ and @�.r/, where a2

and c are arcs connecting fr; sg and fs; 
1g, respectively. We can slide a2 over f1 and 
1 and still obtain
a shadow arc for Tij . Thus, we can slide a2 inside this 4–holed sphere and choose a2 to have interior
disjoint from c, ie a2 \ c D @a2 \ @c D fsg. To end, we observe that f 0

1 bounds two punctures and is
inside 
2. We can assume that f 0

1 bounds fq; rg. Since f 0
1 and 
1 bound compressing disks for Tik , we

can find shadows b1 and b2 for arcs in Tik disjoint from f 0
1 and 
1 satisfying @�.b1/D f 0

1 and that b2

connects fp; sg. Since jf1 \ f
0

1j D 2, we can choose b1 so that b1 \ a1 D @b1 \ @a1 D fqg. As we did
with a2, we can slide b2 over f 0

1 and 
1 until b2 has interior disjoint from c. We can further slide a2 and
b2 and see that a1 [ b1 [ a2 [ b2 can be chosen to be a simple closed curve (ignoring the punctures).
The tuple .˛; ˇ; 
/D .fa1; a2g; fb1; b2g; c/ satisfies the conditions of Lemma 2.12, concluding that T is
a stabilization.

Case 2 (� fixes ff1; f2g) Suppose first that 
 01 D  2. From Figure 16, left, we note that, before the
A–move 
1 7! 2, there are four curves bounding an even number of punctures, say f
1; x; @3; @4g. Since

1 \ 1 ¤∅, f1 D h1 and f2 D h2, the mentioned A–move is impossible. Thus, 
 01 ¤ 2;  3. Similarly,
we see that  1 ¤ 
 02; 


0
3. We have already established that 
 01 cannot be equal to  1. Thus, the only

option is 
 01 D � and � 0 D  1. In particular, 
 02 D  2 and 
 03 D  3.

p q r

s
ut

a1 b1

f1 f 0
1


2


1
 2

@3

h1

c

b2 a2

p q r s

t u v wa1b1

f2

f 0
2

a2

b2

1

�

2


 02

h1

c

Figure 17: Shadows.
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We now study how many punctures � bounds. First note that � cannot bound three punctures. This
holds because, before the A–move 
1 7! � , there would be three other curves bounding an even number
of punctures (set  2 D � in Figure 16, left). This is impossible since only five curves can bound an
even number of punctures, f
1;  1; �; f1 D h1; f2 D h2g, and  1 and � intersect 
1. If � bounds two
punctures, the curves in † will look as in Figure 16, center. If � moves immediately after 
1, then three
out of the four punctures bounded by 
1 will be on the same side of  1 D � , contradicting Remark 3.5. If
a cut curve moves before � , we can assume it is 
2 D @3. Since 
 02 bounds a cut disk, it is forced to bound
� together with one other puncture. This implies that � 0 D  1 will bound two punctures, a contradiction.

The only remaining option is if � bounds four punctures. Since only ff1 D h1; f2 D h2g are curves
disjoint from 
1 that bound an even number of punctures, we can draw the curves in † before the A–move

1 7! � as in Figure 16, right. Moreover, we can assume x D f1 D h1 and z D f2 D h2. Recall that
f1 D h1 and f2 D h2 lie in different sides of both 
1 and  1 (see Figure 7). Thus, by Remark 3.5,
since 
1 bounds t , u and f2 D h2, we conclude that  1 bounds r , s and f2 D h2. But @1 bounds h1

and r which are on distinct sides of  1. Thus, @1 … f 2;  3g. Similarly, @4 … f 2;  3g. We can then
assume that @1 D 
2 and @4 D 
3. Since � separates fr; tg from fs; ug, we see that 
2 moves before � .
Also, 
 02 D  2 will bound t and f1 D h1. The A–move 
2 7!  2 occurs inside a 4–holed sphere with
boundaries f1 D h1, @�.r/, @�.t/ and � . Here, 
1 is an arc with both endpoints in � that separates t from
f1 D h1 and @�.r/. Thus, since 
2 \ 
1 D∅, the condition j
2 \ 2j D 2 is equivalent to j 2 \ 
1j D 2.
Now, inside  2, we can assume that the curve h01 bounds fp; tg. Again, the condition j
1 \ 2j D 2

implies that jh01 \ 
1j D 2. In particular, there is a shadow c of an arc in Tjk connecting fp; tg such that
@�.c/D h01. The condition jh01 \ 
1j D 2 implies that c intersects 
1 once. Focus on the disk component
of † n 
1. Here, the arc c is an arc with endpoints in 
1 and ftg. We can repeat the argument in Case 1
and find shadows a1 and a2 for arcs in Tj i and b1 and b2 for arcs in Tik as in Figure 17, right. One of
the key properties we obtain is that a1 [ b1 [ a2 [ b2 is a simple closed curve (ignoring the punctures)
disjoint from 
1 that intersects c in the puncture ftg. Then the tuple .˛; ˇ; 
/D .fa1; a2g; fb1; b2g; c/

satisfies the conditions of Lemma 2.12, concluding that T is a stabilization.

Theorem 3.16 Let T be a .4; 2/–bridge trisection for a knotted connected surface S in S4. Then

L.T/� 15:

Proof We first observe that T is unstabilized and irreducible. If T is stabilized, then b.S/ � 3. By
[Meier and Zupan 2017, Theorem 1.8], S is unknotted, contradicting our assumption. If T is reducible,
then, by [Blair et al. 2022], it is either the distant sum or connected sum of two other trisections. In the
former case, this would imply that F is disconnected, a contradiction. In the latter case, the two other
trisections have bridge numbers b1; b2 � 2 and b1 C b2 � 1D 4. Thus, b1; b2 � 3. Again by [Meier and
Zupan 2017, Theorem 1.8], this means both surfaces being trisected are unknotted and so S, being their
connected sum, is also unknotted.
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Let .pi
ij ; p

i
ik
/ for fi; j; kg D f1; 2; 3g be choices of efficient pairs such that

L.T/D d.p1
12; p

2
12/C d.p

1
31; p

3
31/C d.p

2
23; p

3
23/:

By Lemma 3.3, the reducing curves of pi
ij and pj

ij either

(1) bound two and four punctures each,

(2) both bound two punctures, or

(3) both bound four punctures.

Propositions 3.13, 3.14 and 3.15 state that d.pi
ij ; p

j
ij / � 5 in each case. Hence, L.T/ is at least

5C 5C 5D 15.

Corollary 3.17 Let K ¤ U be a 2–bridge knot in S3. The spun knot S.K/ satisfies

L.S.K//� 15:

Proof From Theorem 2.5, if T is a minimal .b; c1; c2; c2/–bridge trisection of S.K/, then b D 4 and
c1 D c2 D c3 D 2. By Theorem 3.16, L.T/� 15.

4 Upper bounds for L–invariant of spun knots

The goal of this section is to build an upper bound for L.S.K// in terms of the bridge splitting for K.
Throughout this section, K will denote a knot in b–bridge position, K D TC

K [ T �
K , and TMZ is the

.3b�2; b/–bridge trisection for the spin of K from Section 2.3.

Example 4.1 (L–invariant of spun trefoil) When K is the trefoil knot, the triplane diagrams from
Section 2.3 give us the links Li D Tij [Tik in Figure 18. In the same figure, we find particular choices for
efficient defining pairs .pi

ij ; p
i
ik
/ for the link Li which have bounded distance d.pi

ij ; p
j
ij /� 5 (Figure 19).

Thus, L.S.K// � 15. One can observe that such paths resemble a particular path in the 4–punctured
sphere (Figure 19, right). The main idea of this section is to formalize the resemblance and use it to build
a general upper bound in Theorem 4.3.

Recall that a link L D LC [L� in bridge position is perturbed if there is a pair of bridge disks (one
on each side) intersecting once in one puncture. This notion is equivalent to the existence of a pair of
compressing disks (one per tangle) with boundaries fC and f� such that

(1) each f˙ bounds two punctures,

(2) fC and f� bound one common puncture, and

(3) jfC\f�j D 2.

Observe that, if c˙ is the shadow for the bridge disk in the perturbation, then f˙ D @�c˙.

A perturbation system is a finite collection of perturbation pairs f.cn
�; c

n
C
/gn with pairwise disjoint interiors

such that
S

n.c
n
C
[ cn

�/ contains no circles in the bridge surface. In other words, it is a collection of
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T12

T23

p2
12

p2
23

T23

T31

p3
23

p3
31

T31

T12

p1
31

p1
12

Figure 18: Bridge positions and efficient defining pairs for the links Li D Tij [Tik .

perturbations that can be undone at the same time. Figure 20 contains examples of perturbation systems.
As submanifolds of the bridge surface, the loops @�

�S
n.c

n
C
[cn

�/
�

bound c–disks for L in both sides. We
will refer to these curves (resp. spheres) in the bridge surface (resp. S3) as sensor curves (resp. spheres)
since they allow us to think of L as a link with lower bridge number.

For the b–bridge links in Figure 20, the perturbation systems will determine two simplicial maps between
pants complexes P.†2b/! P.†6b�4/. The main idea of the upper bound for L.TMZ/ is to induce paths
in P.†6b�4/ using information from the splitting of the knot K.

p2
12

p1
12

p3
23

p2
23

p3
31

p1
31

A

Figure 19: Three paths of length five between pi
ij and pj

ij .
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12

23

ˇ

x̌

23

31

ˇ

x̌

31

12

ˇ

x̌

Figure 20: Bridge presentations for the links L";xı D T" [Tı .

Fix ."; ı; �/ to be a cyclic permutation of the labels .12; 31; 23/. Focus on the link L
";xı

D T" [Txı and
the perturbation system in Figure 20. Observe that L

";xı
is in .6b�4/–bridge position. Moreover, if we

shrink the sensor spheres to a point by collapsing the 3–ball containing the perturbation disks, we obtain
a link isotopic to L

";xı
in b–bridge position. At the level of the bridge surfaces, this collapsing induces

a continuous map between the punctured spheres g
";xı

W †6b�4 ! †2b . Given a pants decomposition
p 2 P.†2b/, define sets of curves G˙

";xı
.p/D g�1

";xı
.p/[�˙

";xı
[�

";xı
, where �˙

";xı
and �

";xı
are collections

of curves described in Figure 21. By construction, both G˙

";xı
.p/ are pants decompositions of †6b�4.

Furthermore, the functions fG˙

";xı
g
.";xı/

satisfy several properties described in the following lemma:

Lemma 4.2 Let ."; ı; �/ be a cyclic permutation of .12; 23; 31/ and let p0 and p1 be any two pants
decompositions of †2b . The following holds:

(1) G˙

";xı
W P.†2b/! P.†6b�4/ is a 1–simplicial map; in other words , if �� P.†2b/ is a path from

p0 to p1, then G˙

";xı
.�/ is a path connecting G˙

";xı
.p0/ and G˙

";xı
.p1/.

(2) If every loop in p0 bounds a c–disk in TC

K , then the tuple .GC

";xı
.p0/; G

�

";xı
.p0// is an efficient pair

for the link T" [Tı .

=

=

=

K:

.12; 23/:

.23; 31/:

.31; 12/:

1 2 3 4

5 5 5

3 33 3 3

5 5 5

�C

12;23
�12;23

��

12;23

��
�C

�23;31

��

31;12

�C

31;12

�31;12

2b�1 2b�2

Figure 21: Curves that complete G˙

";xı
; we removed the indices in the right side of the figure.
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(3) If every loop in p1 bounds a compressing disk for T �
K , then the distance in P.†6b�4/ between

GC

";xı
.p1/ and G�

�;x".p1/ is 2.b� 1/.

Proof Part (1) follows from the definition of G˙

";xı
. In order to prove (2), we first observe that GC

";xı
.p0/

and G�

";xı
.p0/ are pants decompositions with loops bounding c–disks in T" and Tı , respectively. The

loops in �˙

";xı
arise from perturbation pairs and the ones in �

";xı
from sensor loops (see Figure 20). Thus,

they bound c–disks. The extra assumption in p0 implies that g�1

";xı
.p0/ also bounds c–disks. Next, one

can see from Figure 21 that the loops in �C

";xı
and ��

";xı
can be paired so that they intersect in two points

and are disjoint from the rest. Thus, there is a path in P.†6g�4/ of length 2b� 2. Lemma 2.7 concludes
that .GC

";xı
.p0/; G

�

";xı
.p0// is an efficient pair.

We will now discuss (3). Label the punctures in the bridge sphere for K as in the left side of Figure 21.
In particular, since every loop in p1 bonds a compressing disk for T �

K , we get that the pairs of punctures
f2n� 1; 2ng belong to the same component of †2b n p1 for n D 1; : : : ; b. We denote this collection
of loops by B � p1. After an isotopy of the bridge surface for K, which changes the surface by a
homeomorphism fixing the punctures, we can assume that the loops in B look as in Figure 22. Observe
that this isotopy of K does not affect the class of bridge trisection TMZ; more precisely, it changes the
triplane diagrams by a mutual braid transposition by a pure braid [Meier and Zupan 2017, Section 2.5].
We can then consider the pants decompositions GC

";xı
.p1/ and G�

�;x".p1/ and see that the loops in g�1

";xı
.p1/

and g�1
�;x".p1/ agree. We also observe that the loops in �C

";xı
and ��

�;xı
are the same since their corresponding

bridge disks agree (see Figure 20). To end, we can perform the length two path of A–moves described by
Figure 22 near each loop in B (b� 1 times), and find a path in P.†6b�4/ replacing the loops �

";xı
by the

...

5

55

5

3 3

3 3

=
= =

= =
=

†2b 1 2 3 4 2b
B B B

.12; 23/C B

B.31; 12/�

.31; 12/CB

B .23; 31/�

.23; 31/CB

B .12; 23/�

Figure 22: If we perform the sequence of A–moves inside each component of B, we obtain paths
of length 2.b� 1/ connecting �";xı 7! ��;x".
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.p1/

GC

23;31
.p0/

GC

23;31
.p1/

G�

23;31
.p0/

G�

23;31
.p1/

GC

31;12
.p0/

GC

31;12
.p1/

G�

31;12
.p0/

G�

31;12
.p1/

2b
�
2

2
b
�
2

2b� 2

Figure 23: Upper bound for L.T/.

loops ��;x". Thus, the distance in P.†6b�4/ between GC

";xı
.p1/ and G�

�;x".p1/ is at most 2.b� 1/. Since
the sets of curves �

";xı
and ��;x" have no common curve, we conclude that this path is minimal length.

Motivated by Lemma 4.2, for a trivial N –tangle T, we define Pcomp.T / and Pc.T / to be the sets of pants
decompositions p 2 P.†2N / such that all loops in p bound compressing disks and c–disks, respectively.
The upper bound in the following theorem can be summarized in Figure 23.

Theorem 4.3 Let K D TC

K [T �
K be a knot in b–bridge position and let TMZ be the .3b�2; b/–bridge

trisection for the spun 2–knot S.K/� S4. Let d � 0 be the distance in P.†2b/ between the sets Pc.T
C

K /

and Pcomp.T
�

K /. Then

L.TMZ/� 6.d C b� 1/:

Proof Let p0 2 Pc.T
C

K / and p1 2 Pcomp.T
�

K / be pants decompositions realizing the distance d , and
let � be a geodesic path in P.†2b/ connecting them. In particular, p0 and p1 satisfy the conclusions
of Lemma 4.2 for any cyclic permutation ."; ı; �/ of .12; 23; 31/. Now, consider the loop in P.†6b�4/

described in Figure 23. By Lemma 4.2, this loop satisfies the conditions in the definition of L.TMZ/.
Since each G˙

";xı
.�/ is a path of length d , we can conclude the desired inequality.
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5

= = =

55

=

3

= =

5

3

3 3

†4 1 2 3 4

B

.12; 23/C

.31; 12/�

.31; 12/C

.23; 31/�

.23; 31/C

.12; 23/�

Figure 24: Paths of length three between GC

";xı
.p1/ and G�

�;x".p1/.

Remark 4.4 From Figure 23, we can derive a more general upper bound for L.TMZ/ as follows: if
p0; p1 2 P.†2b/ are pants decompositions with p0 2 Pc.T

C

K /, then

L.TMZ/� 6d.p0; p1/C d.G
�

12;31
.p1/; G

C

31;23
.p1//C d.G

�

31;23
.p1/; G

C

23;12
.p1//

C d.G�

23;12
.p1/; G

C

12;31
.p1//:

The following corollary studies the distance between GC

";xı
.p1/ and G�

�;x".p1/ for families of pants decom-
positions other than Pcomp.T

�
K /. We use Conway’s notation [1970; Kauffman and Lambropoulou 2004;

Mulazzani and Vesnin 2001] to describe 2–bridge links. The curve in the top of Figure 22 (resp. Figure 24)
bounds a compressing disk on both sides of the 2–bridge link with Conway number 0 (resp. 1). The
distance below can be computed using continued fraction expansions of p=q [Agol 2010]. For details on
continued fraction expansions of rational tangles, see [Hatcher 2022].

Corollary 4.5 Let K � S3 be a 2–bridge knot. If K is the numerator closure of a 2–string trivial tangle
with Conway number p=q, then

L.TMZ/� minf6d.p=q; 0/C 6; 6d.p=q;1/C 9g:

Proof For 2–bridge knots, the only curve bounding a compressing disk in T �
K (resp. TC

K ) is the loop of
slope 0 (resp. p=q) in the 4–punctured bridge sphere. Furthermore, there are no cut disks for TC

K since b
is small. The first inequality, L.TMZ/� 6d.p=q; 0/C 6, follows from Theorem 4.3.
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In order to prove the second inequality, we consider p1 � P.†4/ corresponding to the curve B �†4 with
slope 1 in Figure 24. In the same figure, we observe that the distance between the pants decompositions
GC

";xı
.p1/ and G�

�;x".p1/ is bounded by three. By Remark 4.4, we conclude L.S.K//� 6d.p=q;1/C3 �3,
as desired.
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