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Abstract We describe a method for identifying and clustering diffraction vectors in four-
dimensional (4-D) scanning transmission electron microscopy data to determine characteristic 
diffraction patterns from overlapping structures in projection. First, the data is convolved with a 
4-D kernel, then diffraction vectors are identified and clustered using both density-based clustering 
and a metric that emphasizes rotational symmetries. The method works well for both crystalline 
and amorphous samples and in high- and low-dose experiments. A simulated dataset of 
overlapping aluminum nanocrystals provides performance metrics as a function of Poisson noise 
and the number of overlapping structures. Experimental data from an aluminum nanocrystal 
sample shows similar performance. For an amorphous Pd77.5Cu6Si16.5 thin film, experiments 
measuring glassy structure show strong evidence of 4- and 6-fold symmetry structures. A 
significant background arises from the diffraction of overlapping structures. Quantifying this 
background helps to separate contributions from single, rotationally symmetric structures vs. 
apparent symmetries arising from overlapping structures in projection. 
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Symmetry; Clustering; Electron Diffraction 

1. Introduction 

Four-dimensional scanning transmission electron microscopy (4-D STEM) characterizes the 
structure of materials at nanometer scale and below, providing unique insights into complex 
materials [1]. In 4-D STEM, a small electron probe rasters across a sample, and a pixelated detector 
acquires a diffraction pattern in k (kx, ky) at each real space position r (rx, ry), resulting in a 4-D 
hypercube I(rx, ry, kx, ky). Each diffraction pattern I(kx, ky) contains information about the structure 
of the excited volume at position r. 4-D STEM experiments characterize local strain and defects 
[2], crystal orientation [3], polymer orientation [4], and the structure of disordered materials [5–
7], among other applications. 

Identifying diffraction disks in each diffraction pattern converts the 4-D hypercube into a 4-D set 
of vectors <rx ,ry, kx, ky >, reducing the size and complexity of the data. Methods for disk detection 
include correlation-based methods [8], circle finding methods, such as variations on the circular 
Hough transform [9], and feature finding methods such as difference of Gaussians [10]. 
Convolution neural networks also provide good performance and accuracy for strain and 
orientation mapping [11]. For thin samples with uniform, well separated disks, any of these 
methods perform well. Neural networks show good performance in finding diffraction features if 
the data being processed matches the training dataset [11,12]. In general, methods that depend on 
edge detection are slightly more accurate for ideal samples while correlation-based methods and 
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feature finding methods work better for non-ideal samples with varying intensity in the diffracting 
disks. 

Strain mapping and vector-based orientation mapping are straightforward calculations given a list 
of vectors. The relative shifts in the diffraction vector relate to local lattice distortions along 
different directions in the material [2]. Orientation maps of crystalline materials rely on the 
comparison of the list of diffraction vectors with the list of vectors from a library of values [13]. 
In comparison to image cross correlation methods [14], vector-based methods offer higher speed 
and more flexibility at the cost of additional pre-processing, specifically finding diffraction 
vectors, which leads to less automation. 

More complex analyses calculate characteristic diffraction patterns from structures probed in a 4-
D STEM dataset. Methods include matrix factorization [15], template matching versus a library of 
pre-computed structures using traditional methods or neural networks [16], and density-based 
clustering [17]. Matrix factorization segments data quickly without preprocessing. It excels at 
identifying components but struggles to separate structures that overlap through the thickness of 
the sample and tends to over-cluster in many situations [15,18]. Template matching proves very 
effective for 1-3 overlapping structures through the thickness [13]. Knowledge about the 
underlying crystal structure improves clustering performance but limits the ability to measure 
unknown structures [12]. Vector based methods require less memory and are less computationally 
expensive than methods that use every pixel in the 4-D hypercube, but reliably finding diffraction 
vectors in an automated fashion can be difficult [10]. In every method, clustering performance 
decreases significantly as the number of overlapping structures increases.  

4-D STEM is widely used for measuring the structure of amorphous materials, but data from 
current methods for measuring amorphous structure can be difficult to interpret. These methods 
include fluctuation electron microscopy (FEM), angular correlations/angular power spectrum 
(AC/APS), and correlation symmetry analysis (CSA). FEM measures the global variation in the 
structure as a function of k [5,19]. Methods for correcting for thickness extend the functionality of 
FEM to samples of up to 1.5 times the elastic mean free path [20]. AC or correlographs provide 
additional information about the symmetry of the diffracting structures, but overlapping structures 
complicate the connection between observed symmetries in diffraction and symmetries in atomic 
structure [6,21,22]. CSA is, in many cases, superior to AC with respect to overlapping structures, 
but as samples get thicker, identifying structural symmetry and local structure with high 
confidence is still difficult [7]. 

Here, we present a method for identifying diffraction disks in 4-D STEM data that is more robust 
than previous methods against overlapping structures and shows good performance against 
Poisson noise. The method first filters the intensity in four dimensions, then finds diffraction 
vectors in each diffraction pattern to generate the list of vectors <rx, ry, kx, ky>. Density-based 
clustering on the vector list is used to determine the characteristic diffraction patterns for individual 
structures, separating out structures that partially but not completely overlap in real space. This 
method performs well for crystalline and amorphous materials and provides a general workflow 
for important feature identification in 4D STEM datasets regardless of the sample structure. Tests 
on phantom data of Al nanocrystals show good performance versus Poisson noise and the number 
of overlapping structures. Experiments on a real Al nanocrystals sample show similarly good 
performance. For a metallic glass sample, adjusting the intensity threshold for diffraction vector 
identification allows us to identify speckles from high symmetry structures with high confidence. 



Measuring the angle between speckles at fixed radius in the diffraction pattern, k, provides insight 
into the symmetry of the dominant structures in the glass. 

2. Methods 

Figure 1 illustrates the vector-finding and clustering method for a sample example consisting of 
two partially overlapping Al nanocrystals. Figure 1a shows diffraction patterns from the 
overlapping region of two crystals. The upper left of the tableau shows the superposition of the 
two characteristic diffraction patterns, while the lower left shows only one characteristic 
diffraction pattern. 

Figure 1b shows the kernel that is used to filter the data using the normalized cross correlation. 
The kernel is Gaussian in r and a flat disk in k to match the probe intensity in both spaces. The 
size of the kernel in r and k is also selected to match the probe intensity. Figure 1c shows the 
resulting data after filtering. Filtering suppresses features in real space smaller than the real-space 
size of the beam [23] and accentuates features in reciprocal space with a similar diameter to the 
probe in reciprocal space. After filtering, we apply a simple local maximum peak finding method. 
A threshold of around 50% of the maximum cross-correlation intensity returns the positions of the 
diffraction vectors shown in Figure 1d. Here, we use the term “diffraction vector” to refer to either 
the 4-D vectors or, occasionally, the (kx, ky) position of an identified feature in a particular 
diffraction pattern. 

We then apply a two-step density-based clustering method to identify real space structures and 
their corresponding diffraction patterns. First, we use density-based spatial clustering of 
applications of noise (DBSCAN) to identify dense clusters of 4-D vectors <rx, ry, kx, ky>. To cluster 
successfully, the real and reciprocal space magnitudes must be scaled independently. An ideal 
cluster covers all the rx, ry positions associated with a given structure, but only small range of kx, 
ky associated with the center of a single diffraction disk. DBSCAN is controlled by the adjustable 
parameters ϵ, the radius of the search for some hypersphere, and m, the minimum number of 
vectors in the hypersphere to identify a cluster. Clusters are agglomerated from overlapping 
hyperspheres. m is typically set to the number of dimensions + 1, but since our kx, ky clusters should 

 

Figure 1: Graphical representation of the filtering - peak finding - segmentation workflow for a 
simulated dataset from a simple sample consisting of two overlapping Al nano-crystals. (a) 
example diffraction patterns. (b) convolution kernel in real and reciprocal space. (c) data from (a) 
after filtering. (d) diffraction vectors identified from (c). (e) Overlapping but distinct structures 
identified in real space. (f) diffraction patterns from the indicated positions, with each feature color 
coded by its corresponding real space object. 



be small, we set m = 2+1. We then scale the 4-D vectors such that ϵ is ~1 pixel in kx, ky 
corresponding to a small uncertainty in the position of the center of the identified diffraction disks, 
and, at the same time, ~2 pixels in rx, ry to account for potential a diffraction disk to missed due to 
noise or other factors from a pattern that nonetheless arises from the same real space object as its 
neighbors. 

Second, we compute for each cluster the average and standard deviation for rx, ry and (separately) 
for kx, ky. Clusters with a large standard deviation in kx, ky are flagged for further analysis. Third, 
we use DBSCAN again to cluster only the rx, ry average vectors. These average vector clusters 
represent crystals with the same orientation. For each crystal, we construct a list of all the kx, ky 
average vectors from the associated 4-D clusters. This list makes up the characteristic diffraction 
pattern from some crystal. Figures 1e and 1f show the results of clustering the example data. Figure 
1e shows the real space regions of the two nanocrystals in the dataset, and Figure 1f shows the 
characteristic diffraction patterns color-coded by which disks arise from each crystal, even in the 
region where the two crystals overlap. 

Figure 2 illustrates the symmetry-based clustering metric used to identify high-symmetry 
prototypical diffraction patterns. Symmetric diffraction patterns are defined by having at least 3 
vectors at the same real space position [<rx, ry, kx1, ky1>, < rx, ry, kx2, ky2>, < rx, ry, kx3, ky3>] that at 
least twice subtend the angle ϕ, within an acceptance angle α. If 𝛼𝛼 > |𝜙𝜙1 − 𝜙𝜙2|, then 𝜙𝜙1 is 
considered equal to 𝜙𝜙2. For this study an α = 2.5° was used.  The angle 𝜙𝜙 is used to describe the 
symmetry of the 3 vectors. DBSCAN can be used to cluster based on the computed < rx, ry, ϕ> 
vector to identify a characteristic diffraction pattern from a highly symmetric structure. 

This method was tested on phantom simulated data and experimental data. The phantom data was 
simulated from models of randomly oriented Al nanocrystals using kinematic diffraction 
simulations implemented in the diffsims python package. A maximum excitation error of 0.015 Å-

1 and beam voltage of 200 keV were used. Each diffraction vector was represented by a flat disk 
with a radius of 5 pixels or 0.05 Å-1. Poisson and Gaussian noise were added to simulate the 
electron dose and detector readout noise respectively. The use of phantom data with known ground 
truth enables us to calculate recall percentages as a measure of the method performance versus the 
number of structures and Poisson noise. We define two different recall percentages: Diffraction 
vector recall measures the percent of diffraction vectors correctly identified. A diffraction vector 
is recalled if the algorithm identifies a diffraction vector within 1 pixel of the ground truth. 

 
Figure 2: Schematic of the 3-vector clustering applied to complex overlapping structures. Only 
sets of 3 vectors subtending two equal angles, 𝜙𝜙, within an error of ±α are considered 



Diffraction pattern recall measures the percent of characteristic diffraction patterns correctly 
identified. Because only some of the diffraction vectors of some characteristic diffraction pattern 
may be identified, for instance, due to noise, both partial and complete pattern recall are reported. 

A FEI Titan electron microscope was used to acquire a 4-D STEM dataset from an evaporated Al 
nanocrystal sample (Electron Microscopy Supplies, part #80044). The experiment was done at 
spot size 5 and with a convergence angle of 1.5 mrad which created a probe with a diameter of 
around 1 nm. 1024x1024 diffraction patterns were acquired over a 522 nm x 522 nm area, giving 
a step size of 0.51 nm. The data was acquired using a Direct Electron Celeritas camera with a 
readout speed of 20,000 frames per second over a period of around 1 minute to minimize drift. The 
4-D filter used for this data had a real-space width σ = 1.0 nm and a reciprocal space disk size of 
1.5 mrad. 

The Titan STEM was also used to acquire 4-D STEM data on Pd77.5Cu6Si16.5 thin film glasses of 
various thicknesses at spot size 5, a convergence angle of 2.5 mrad, and probe size of 0.5 nm, 
rastered across the sample with a 0.1 nm step size. The real space sampling was 1024x1024 
diffraction patterns and the data was acquired using a Direct Electron Celeritas camera with a 
readout speed of 5,000 frames per second. The resulting datasets were filtered, and peaks within 
the dataset were found. Then, high symmetry diffraction patterns were identified using the 
symmetry clustering method described above. These clusters were then further clustered into 
structures diffracting from some high symmetry axis using DBSCAN. Processing was done using 
the hyperspy[24], pyxem[25]  and diffsims[26] packages. 

Processing was done lazily (from hard disk) using distributed computing resources (128 Cores 
with 512 GB RAM). The total time to process the large (256 GB) Al dataset was around ~7 
minutes. Processing was also tested and ran effectively when running lazily on a MacBook Air 
M1 laptop with 16 GB of RAM and 8 cores. 

3. Results 

Figure 3 shows the diffraction vector recall percentage as a function of the number of crystals in 
the phantom nanocrystalline Al 4-D STEM data set with minimal noise. The recall percentage falls 
as the density of nanocrystals increases. As the number of nanocrystals in projection increases, 
more diffraction disks overlap by chance and are not identified in the diffraction pattern. For the 
largest number of crystals tested here (1200 in the field of view), the average number of structures 
in projection is ~7, and the vector recall percentage falls to 83%. When only considering the 
strongest 50% of diffracting vectors at an average of ~7 structures in projection, the vector recall 
percentage remains high, with ~95% of the vectors successfully identified.  

Figure 4 shows the diffraction vector recall percentage as a function of Poisson noise, controlled 
by the average number of electrons per diffraction vector. The synthetic data has 40 nanocrystals 
in the field of view. The recall percentage is above 90% for 13 or more electrons per diffraction 
disk but falls quickly at lower numbers of electrons. The top axis displays the total number of 
electrons within the 4-D volume covered by the kernel used for filtering. As the Gaussian blur 
contains information from surrounding diffraction patterns in (rx, ry) and the normalized cross 
correlation uses the entire diffraction disk, this effective number of electrons better represents the 
total electron dose used to identify the diffraction vector. 



 

 

Figure 3: (a) The percentage of diffraction vectors recalled using the filtering and peak finding 
method as a function of the number of crystals in the field of view. The inset figures show real 
space representations of selected nanocrystalline Al models. The red markers show only the 
strongest diffracting 50% of vectors where the black markers show all vectors regardless of 
intensity. (b) An example diffraction pattern for an average number of crystals in projection of less 
than 1. (c) An example diffraction pattern for an average number of crystals in projection of 2.6.  
(d) An example diffraction pattern for an average number of crystals in projection of 7. 

 

 

Figure 4: Diffraction vector recall percentage as a function of the average number of electrons per 
vector for synthetic data with 40 nanocrystals. The top axis shows the effective number of electrons 
used to find each diffraction vector after 4-D filtering, which combines counts in reciprocal and 
real space. The inset images are example single diffraction patterns with an average of 2,12, and 
30 electrons per diffraction disk. 



Figure 5a shows the diffraction pattern recall for characteristic diffraction patterns with two or 
more diffraction vectors. Complete diffraction pattern recall measures the number of characteristic 
diffraction patterns for which every diffraction vector is correctly identified and clustered. Partial 
diffraction pattern recall measures the number of characteristic diffraction patterns for which 2 or 

 
Figure 5: (a) Recall percentage for complete diffraction patterns after clustering with 2-step 
density-based clustering. Complete diffraction pattern recall refers to every diffraction vector for 
a crystal being correctly found. Partial diffraction pattern recall refers to only some of the 
diffraction vectors for a crystal being correctly found. (b) Example of complete pattern recall of 
two crystals, one contributing the spots circled in blue, the other contributing the spots circled in 
yellow. (c) Example of partial pattern recall, with the white circles identifying vectors that are not 
properly clustered due to overlapping crystals in projection. The magenta and green circles show 
a partially recalled high symmetry diffraction pattern and a partially recalled off-axis diffraction 
pattern. 
 

 

Figure 6: The diffraction pattern recall percentage using the three-vector separation clustering 
method. Recall is only measured for the crystals oriented such that they diffract on a high 
symmetry axis. The inset images show a real space image of all the crystals in the dataset, with 
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more diffraction vectors are identified and clustered but less than the number of diffraction vectors 
in the complete diffraction pattern. For up to 600 crystals in the field of view, the partial recall 
remains >80%. For orientation mapping or measuring structure symmetry, higher pattern recall 
will lead to better performance. Figure 5b shows an example of complete pattern recall and Figure 
5c shows an example of partial pattern recall with the white circles showing vectors identified but 
not properly clustered due to overlapping nanocrystals. The colored circles show diffraction 
patterns from individual overlapping crystals. In Figure 5b, two separate crystals are completely 
recalled, while in Figure 5c shows partial recall due to high symmetry diffraction with many 
overlapping disks and structures.  Interactive visualization of this phenomenon is available with 
the included Jupyter notebooks. 

Figure 6 shows the diffraction pattern recall after filtering based on the three vector separation 
criteria described above. The ground truth for this pattern recall percentage only includes patterns 
with three or more vectors separated by an angle 𝜙𝜙. The low probability of three randomly oriented 
vectors potentially arising from two different but overlapping crystals, satisfying this condition 
significantly improves the diffraction pattern recall performance. The inset figures show crystals 
that meet this condition in bold overlaid on the total number of crystals. The smaller number of 
crystals involved in the analysis reduces random overlaps in space and increases the pattern recall 
percentage. In Figure 6 the recall percentage at 1200 crystals remains around 80% rather than 40% 
as in Figure 5. The recall percentage in Figure 6 does not fall to 40% until the sample consists of 
3000 crystals. 

Figure 7 shows diffraction vector identification and clustering on experimental 4-D STEM data 
acquired from the Al nanocrystal sample. Figure 7a is a virtual dark-field image computed from 
the 4-D STEM data, the circular object in the bottom right corner arises from sample 
contamination. Figure 7b shows the clustered and segmented crystals. Figures 7c-e show example 
diffraction patterns from different positions on the sample. In each pattern, diffraction spots are 

 

Figure 7: Clustering 4-D STEM experimental data from an Al nanocrystal thin film sample. (a) 
A low angle virtual dark field image of the first two diffraction rings (b) the segmented 
nanocrystals. (c)-(e) diffraction patterns from positions on the sample and the resulting clustering. 
For (a) the ring in the lower right is a result of carbon contamination. It does not interfere with the 
crystal identification. Diffraction vectors in c and e which are not circled are identified but not 
correctly clustered.  



color coded by the crystal from which they arise. The average diameter of the nanocrystals is ~36 
nm, and, based on the segmentation results, the average number of overlapping crystals through 
the thickness is 2-4. Based on these parameters, the complete diffraction pattern recall for the 
dataset should be 70-80%, based on Figure 5. Visual inspection of the diffraction patterns and 
segmentation compared to images like Figure 7a seems consistent with 70-80% recall. The 4-D 
STEM data analyzed to produce Figure 7 is 256 GB of raw images. Identifying diffraction vectors 
drastically reduces the data size, to ~150 MB. 

We have also compared the three-vector direct symmetry analysis with previous methods for 
measuring symmetry in amorphous materials.  Figure 8a shows the true positive recall for 
identifying six-fold symmetric structures within the toy dataset as a function of the number of 
structures within the field of view. Figure 8b shows the false positive recall for the same dataset. 
The direct symmetry analysis presented here indicates higher performance concerning overlapping 
structures than the correlation symmetry analysis and the angular correlation/ power spectrum 
analysis. Similar results are seen for 4-fold symmetry as well. 

 

Figure 8: Comparison of recall performance for spatial structure identification for 6-fold 
symmetric structures in the toy Al dataset. (a) The true positive recall. (b) The false positive recall. 
Power spectrum analysis, correlation symmetry analysis, and direct symmetry analysis (described 
here) are all compared. Thresholds are chosen to maximize true positive recall for the power 
spectrum and the correlation symmetry analysis.  



Figure 9 shows the dominant symmetries in the PdCuSi glass sample found using the 3-vector 
method in the form of histograms of the number of diffraction patterns exhibiting sets of three or 
more vectors subtending different angles, 𝜙𝜙. Different histograms were computed using different 
thresholds in the peak finding step. Strong 12-, 6- and 4-fold symmetries in the diffraction patterns 
give rise to the peaks in the histograms at π/6, π/3 and π/2. The relative fraction of 6-fold 
structures is higher with a higher threshold, and the relative fractions of 12- and 4-fold structures 
are lower. As the threshold increases the number of randomly overlapping structures decreases. 
Figure 9 was produced from one 64 GB 4D STEM dataset. Identifying diffraction vectors 
drastically reduces the data size, to ~100 MB for the lowest peak identification threshold in 9a to 
~10 MB for the highest peak identification threshold in Figure 9(e). 

  

 

Figure 9: Histograms of the number of 
diffraction patterns as a function of the angular 
separation 𝜙𝜙 for the 3-vector clustering method 
for the 5 nm thick PdCuSi glass sample. (a) 
histogram for a low threshold for peak finding. 
(b)-(e) histograms for progressively higher 
thresholds. The dotted lines represent the 
symmetry expected based on random overlaps. 

 

Figure 10: Histograms of the number of 
diffraction patterns as a function of the 
separation 𝜙𝜙 for the 3-vector clustering 
method. (a) histogram for a 5 nm thickness 
PdCuSi glass (b) 9 nm thickness, and (c) 13 nm 
thickness. The dotted lines represent the 
symmetry expected based on random overlaps. 



Figure 10 is a histogram of the number of symmetric diffraction patterns as a function of subtended 
angle identified in the PdCuSi glass sample as a function of the sample thickness from 5 to 13 nm. 
Increasing the sample thickness should increase the number of overlapping diffracting structures 
contributing to each experimental diffraction pattern. Increasing thickness changes the histograms 
similarly to decreasing the peak finding threshold. The relative fraction of 6-fold structures 
increases with a lower thickness, and the relative fraction of 12- and 4-fold structures decreases as 
the thickness increases. 

4. Discussion 

Previous results have shown that using a known kernel, such as a vacuum probe, is an excellent 
method for extracting the position of diffraction vectors [8]. These works primarily focus on 
orientation mapping and strain mapping with simple, non-overlapping, structures in real space 
projection [11,13]. We found convolution with a known kernel remains effective for samples with 
overlapping structures in real space and overlapping disks in reciprocal space. Figure 3 shows that 
the recall percentage for the diffraction vectors remains high even with larger numbers of 
diffracting structures with a significant number of through-thickness overlaps at each real space 
position. The window-normalized cross-correlation specifically proves the most effective, as it 
normalizes based on the local intensity. This helps to identify both low and high-intensity 
diffraction vectors. One potential breakdown of this method occurs when diffraction spots 
significantly overlap in reciprocal space and have large differences in intensity. In this case, the 
normalization suppresses the weaker diffracting vector. When the method fails, lower-intensity 
diffraction vectors are not properly identified. This can be seen by the difference in the red and 
black markers in Figure 3. Overlap in reciprocal space can, of course, be minimized using a small 
probe convergence angle at the price of a larger probe and poorer spatial resolution. 

Figure 4 shows this method is robust against noise. Compared to the position error published in 
Pekin et. al. [8], this method performs optimally at 1/10th of the electron dose per diffraction 
pattern. The robust performance results from the Gaussian filter applied in r to the dataset, which 
reduces Poisson noise but reduces the real space resolution. For most mapping measurements, 
increasing the number of counts in the dataset is better than applying the Gaussian filter, if the 
sample will sustain the dose. For low-dose strain mapping, however, even a small sigma value 
(σ = 0.25 nm) increases the number of effective counts and reduces readout noise while only 
slightly reducing the spatial resolution. This is equivalent to increasing the size of the electron 

beam to �σbeam2 + σfilter2  with the added benefit of suppressing the readout noise and reducing the 

overall dose required for the experiment/applied to the sample.  

Figure 5 shows additional difficulties that arise from overlapping structures in real space and in 
reciprocal space. In both cases, the greedy DBSCAN method tends to over-cluster, leading to 
poorer results as overlaps increase. Separating the diffraction patterns from structures that 
completely overlap in real space requires some additional prior information about the material 
being measured. We explored using rotational symmetry to cluster diffraction vectors, but future 
work using both density-based clustering and a library of crystal orientations might prove useful 
for clustering overlapping crystals. Figure 6 shows a marked increase in recall achieved by 
focusing only on higher symmetry diffraction patterns. Emphasizing symmetric features reduces 



the over-clustering since it is relatively rare for three diffraction vectors to subtend the same angle 
ϕ and for all three vectors to extend for the same region of real space. 

Many of the characteristic diffraction patterns for the experimental Al nanocrystal sample in Figure 
7 show physically reasonable features, including strong Friedel symmetry and rotational 
symmetry. This result suggests that the 2-step clustering does a good job of separating overlapping 
crystals in the sample, but the greedy nature of the spatial clustering means that small variations 
in the positions of the diffraction vectors from small tilts or strains are kept within the same crystal. 
Vector-based template matching based on prior knowledge of the crystal structures in the sample 
is likely to provide even better separation of overlapping crystals using methods like those 
discussed by Valery et. al. and Ophus et.al. [13,27]. Such methods are readily applied to the list of 
4D vectors extracted from the dataset before 2-step clustering. The 2-step clustering method 
presented here is particularly useful for samples with unknown crystal structures, samples that 
contain as-yet unidentified second phases, or amorphous samples. 

Overlapping structures in projection have been recognized for some time as a challenge for 
assessing rotational symmetries in diffraction from amorphous materials. Gibson, Treacy, and Tao 
suggested that only 2-fold symmetry was robust enough to be reliably measured [28]. Im et. al. 
showed that thicker samples result in both even and odd symmetries in the AC [22]. The magnitude 
of the correlation in AC is especially difficult to interpret directly. Corrections from Liu provide 
some insight into connecting specific glassy structures with angular correlations, but they do not 
account for overlapping structures [6]. CSA reduces the effects of overlapping structures in 
comparison to AC by probing a narrow range of angles near the angles defined by a perfect 
rotational symmetry [7]. Some models for correcting overlaps have been proposed based on the 
size of the structures [29] but break down with increasing numbers of overlapping structures as 
shown in Figure 8.  

Figure 10 shows that as the number of structures through the thickness increases, symmetries from 
random overlaps increase and a flat, 𝜙𝜙-independent background arises. Figure 9 shows that 
increasing the threshold for peak finding reduces random overlaps but maintains strong symmetry 
recovery in complex disordered materials. Unlike previous AC or CSA methods, the probability 
for random symmetries from overlapping structures in the current method can be calculated. For 
any set of 2 vectors there is a 2𝛼𝛼/𝜋𝜋 chance that a randomly oriented third vector will satisfy the 3-
vector condition, where 𝛼𝛼 is the acceptance angle. This effect gives rise to an average number of 
false positive structures given by 𝐶𝐶(𝑛𝑛, 3) ∗ 2𝛼𝛼/𝜋𝜋 where 𝐶𝐶(𝑛𝑛, 3) is the number of combinations for 
n vectors in each diffraction pattern in groups of 3. The dotted lines in each panel are calculated 
from this formula, showing that a large fraction of the total symmetric patterns arise from random 
overlaps when the number of diffraction vectors is high. Thin samples and high thresholds reduce 
this effect at the cost of ignoring weakly diffracting structures. If the angular symmetries were 
assessed from just two diffraction vectors instead of three, the background level would be 
significantly higher at 𝐶𝐶(𝑛𝑛, 2). This explains why this method outperforms correlation symmetry 
analysis and angular power spectrum methods as shown in Figure 8.  Both methods only depend 
on a two-angle comparison.  Additionally, the performance of the power spectrum method is 
further negatively impacted by the Fourier ringing artifact described by Huang [7]. As a result, all 
structures with Friedel symmetry show strong 2*n fold symmetry, and the number of false 
positives is much higher than other methods.  



For thick samples with a characteristic symmetry at 𝜙𝜙, a secondary peak at 𝜙𝜙/2 arises with a 
frequency 𝑃𝑃(𝜙𝜙) ∗ 𝑛𝑛 ∗ 2𝛼𝛼/𝜋𝜋 where n is the number of vectors and 𝑃𝑃(𝜙𝜙) is the probability that a 
group of 2 vectors has symmetry 𝜙𝜙. This effect explains the 12-fold symmetry in Figures 8 and 9. 
The relative height of the 12-fold peak with respect to the 6-fold peak increases with increasing 
thickness and with decreasing threshold, both of which increase n. Similarly, the strong 4-fold 
symmetry in the glass might partially arise from the strong 2-fold Friedel symmetry in the 
diffraction patterns. This false positive contribution is not shown on the figures as it requires 
knowledge of the true, ground truth 𝑃𝑃(𝜙𝜙), which is not available for experimental data. 

CSA measured for this same glass by Huang et. al. shows the presence of both 4- and 6-fold 
symmetries [29]. Here we show similar structures but suggest that some of the strong 4-fold 
symmetries arise from random overlaps with strong Friedel pairs. Additionally, this study shows 
little evidence of 10-fold symmetries measured with CSA. The current analysis has the advantage 
of identifying the specific diffraction vectors and characteristics that contribute to specific 
symmetries, which may open the door to additional analysis of selected, highly symmetrical 
diffraction patterns. 

The small size of the list of 4D vectors compared to the original data makes it amenable to 
additional processing beyond what is discussed here. For example, double diffraction from 
partially overlapping structures in crystalline samples may lead to incorrect identification of 
separate spatial regions with diffraction vectors that are a sum of a vector from the top crystal and 
a vector from the bottom crystal. Further processing might identify such regions by finding 
diffraction vectors are the sum of a vector from one spatial region and a vector from a different 
spatial region. These regions might also be identified by a failure to match against a simulated 
library as in orientation mapping. Other dynamical diffraction phenomena, like the appearance of 
kinematically forbidden reflections, similarly will result in 4D vectors that require additional 
processing based on prior knowledge of the sample to identify. 

5. Conclusions 

We have developed a method for analyzing 4-D STEM data that consists of filtering, peak finding 
to identify 4-D diffraction vectors, then clustering those vectors into characteristic diffraction 
patterns. This approach is well suited to characterizing diffraction from spatially overlapping 
structures along the electron beam, such as nanocrystalline materials and amorphous materials. 
Density based clustering is adequate for extracting characteristic diffraction patterns of individual 
crystals in data acquired from nanocrystalline material. Clustering of more complex glassy 
materials benefits from symmetry-based clustering based on 3 vector criteria. The method 
identifies structural information from glassy samples of 5-13 nm in thickness. Good performance 
on low dose or sparse data allows for fast acquisition of large data sets, which could potentially 
cover large areas or arise from time resolved experiments. The method results in a large reduction 
in data size, which enables more facile complex analysis. 

6. Data and Software Availability 

The methods for the analysis are all available in the HyperSpy [10.5281/zenodo.10412190] and 
pyxem[10.5281/zenodo.10551678] software packages. 



Methods for simulating the toy models are also available in the diffsims 
[10.5281/zenodo.7962969] software package.  

The 4-D STEM data analyzed are available hosted from the Materials Data 
Facility[10.18126/z6m9-o3hv] 

Jupyter Notebooks for running the analysis are hosted at: 

https://github.com/CSSFrancis/4d_stem_clustering 
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