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Abstract

This paper studies the extreme singular values of non-harmonic Fourier matrices. Such a
matrix of size m × s can be written as Φ = [e−2πijxk ]j=0,1,...,m−1,k=1,2,...,s for some set X =
{xk}sk=1

. Its condition number controls the stability of inversion, which is of great importance
to super-resolution and nonuniform Fourier transforms. Under the assumption m ≥ 6s and
without any restrictions on X , the main theorems provide explicit lower bounds for the smallest
singular value σs(Φ) in terms of distances between elements in X . More specifically, distances
exceeding an appropriate scale τ have modest influence on σs(Φ), while the product of distances
that are less than τ dominates the behavior of σs(Φ). These estimates reveal how the multiscale
structure of X affects the condition number of Fourier matrices. Theoretical and numerical
comparisons indicate that the main theorems significantly improve upon classical bounds and
recover the same rate for special cases but with relaxed assumptions.
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1 Introduction

1.1 Motivation

For any set X = {xk}sk=1 ⊆ T := R/Z and natural number m ≥ s, a (non-harmonic) Fourier
matrix of size m× s is defined as

Φ := Φ(m,X ) :=
[
e−2πijxk

]
j=0,1,...,m−1, k=1,2,...,s

.

This definition generalizes the discrete Fourier transform matrix, whereby m = s and X consist of
s equally spaced points in T. Throughout the expository portions of this paper, we will implicitly
assume that |X | = s, and we impose m ≥ s > 1 to avoid trivialities.

Fourier matrices are classical objects that appear in numerous areas of mathematics. They
provide a fundamental connection between linear algebra and trigonometric interpolation, which
can be traced back to the work of Newton and Lagrange. They are matrix representations of the
Fourier transform, so they naturally appear in the analysis of Fourier series [43], exponential sums
[41], and nonuniform Fourier transforms [19]. Since Φ is also a Vandermonde matrix, it has full
rank whenever m ≥ s. When the rows of Φ are viewed as elements of Cs, then the squared extreme
singular values are the upper and lower frame constants [12, 18].
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For numerical applications, we require quantitative estimates for the extreme singular values
of Φ to ensure that it can be inverted in numerical schemes without incurring significant error.
We provide two motivational examples. The first is a simplified model for one-dimensional super-
resolution, whereby X represents the support of a discrete measure and Φ is the matrix represen-
tation of the Fourier transform of the measure sampled at m consecutive integers. The problem is
to recover X through noisy Fourier data, and even though this is a nonlinear inverse problem, the
condition number of Φ is closely related to performance of algorithms [27, 28, 29] and fundamental
limits of recovery [17, 16, 27, 6]. The second is a connection to the nonuniform discrete Fourier
transform of Type I. Here, Φ is the NUDFT Type I matrix that evaluates the first m Fourier series
coefficients of the measure on X for the periodic domain T, see [19, 35] for an overview. This is
an over-determined linear system, so the condition number of Φ is pertinent to the least squares
solution of fitting data by exponential sums.

While classical papers such as [21, 15, 9] concentrated on square matrices, tall ones, where
m may be significantly larger than s, tend to be better conditioned. Tall Fourier matrices have
received considerable interest recently [30, 31, 30, 1, 27, 3, 5, 22, 23]. This is partly due to modern
applications in signal and image processing, where rectangular matrices appear more frequently,
since m represents the number of measurements or parameters, while s corresponds to the number
of constraints, see [17, 20, 8, 28, 29, 14] and references therein. It is worth noting that parallel
to this line of research, the approximation properties of trigonometric interpolation in the m ≥ s
regime has received interest [25, 40, 36] due to connections with over-parameterization in machine
learning.

The condition number κ(Φ(m,X )) greatly depends on the “Rayleigh length” 1
m versus the

“geometry” of X . The latter can be partially described by the minimum separation of X , defined
as

∆(X ) := min
j 6=k

|xj − xk|T, where |t|T := min
n∈Z

|t− n|.

Letting σk(Φ) denote the k-th largest singular value of Φ, it was shown in [1] that

if ∆(X ) >
1

m
, then

√
m− 1

∆(X )
≤ σs(Φ(m,X )) ≤ σ1(Φ(m,X )) ≤

√
m+

1

∆(X )
. (1.1)

The intuition behind this inequality is that the columns of Φ are almost orthogonal. This result
and a closely related one in [31], are proved using analytic number theory methods.

On the other hand, when ∆(X ) ≤ 1
m , simple numerical experiments, see [27, 3], show that

σs(Φ(m,X )) does not follow the behavior in (1.1). This makes intuitive sense since if |xk − xℓ|T is
small, then the k-th and ℓ-th columns of Φ are highly correlated, which results in a large condition
number. If it is significantly larger than

√
s, then the smallest singular value is the culprit because

we have the trivial estimate σ1(Φ) ≤ ‖Φ‖F =
√
ms, where ‖ · ‖F denotes the Frobenius norm.

Accurate bounds for the smallest singular value have been obtained under specific scenarios,
namely when X can be partitioned in subsets called “clumps”, where each clump is contained in
an interval whose length is on the order of 1

m . In contrast to the separation condition required in
(1.1), without any conditions on ∆(X ) relative to m, the results in [27, 3, 22, 5, 4] roughly state
that if each clump has cardinality at most λ and the clumps are sufficiently far away from each
other, then

c(λ, s)
√
m (m∆(X ))λ−1 ≤ σs(Φ(m,X )) ≤ C(λ, s)

√
m (m∆(X ))λ−1. (1.2)

Since the exponent λ − 1 may be significantly smaller than s − 1, this bound shows that σs(Φ)
depends on the local geometry of X . It captures the intuition that columns of Φ which correspond
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to different clumps are almost orthogonal with respect to each other, so we expect the conditioning
of Φ to only depend on each clump separately.

1.2 A motivational multiscale example

To better illustrate the limitations of prior work, let us consider a typical set with multiscale
structure such as

X := X1 ∪ X2 ∪ X3, where

X1 := {0, 1
90 ,

2
90 ,

3
90}, X2 =

1
3 + {0, 1

200 ,
2

200}, and X3 =
2
3 + {0, 1

500}.
(1.3)

We have defined in X this way to emphasize that its three disjoint subsets X1, X2, and X3 each have
significantly different minimum separations and should be treated as sets with completely different
scales. The set X is shown in Figure 1. Our problem is to determine behavior of σs(Φ(m,X )) as
a function of m. Clearly Φ(m,X ) only has full rank when m ≥ s = 9 and (1.1) kicks in when
m > 1

∆(X ) = 500. What about the missing range m ∈ [9, 500] ∩ N?

For the range m ∈ [9, 600]∩N, none of the bounds in [27, 3, 22, 5] are applicable. The reason is
that while X consists of three “clumps” X1, X2, and X3, they are too close to each other and do not
satisfy these theorems’ assumptions, or such theorems have implicit constants in their separation
criterion that cannot be explicitly determined. It is important to remark that the aforementioned
papers concentrated on the super-resolution limit, whereby either m is sufficiently large and there
is a sequence of Xm for which ∆(Xm) → 0, or alternatively, m → ∞ and ∆(Xm) → 0 with some
relationship between m and ∆(Xm). Hence, it is not that surprising they cannot be directly used
for fixed X and m.

10
1

10
2

10
3

10
-6

10
-4

10
-2

10
0

10
2

Figure 1: Left: Plot of X defined in (1.3). Right: Plot of σs(Φ(m,X )) and two different lower
bounds as functions of m for X defined in (1.3).

In contrast, this experiment is for fixed X and variable m within a finite range. Determining
σs(Φ(m,X )) is naturally a discrete problem – there are no large or small parameters to exploit. We
are only aware of one prior work that applies to this example. It results from combining Gautschi
[21] and Bazán [7] to obtain

σs(Φ(m,X )) ≥
√

⌊ms ⌋
s

min
1≤k≤s

{
∏

j 6=k

|e2πix − e2πixk |
2

}
. (1.4)
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We refer to this as the Gautschi-Bazán theorem, and will provide more details on its derivation
in the comparisons section. Aside from this inequality, a main result of this paper, Theorem 1, is
applicable to this discrete problem, but with a mild restriction that m ≥ 6s. The true σs(Φ(m,X )),
our main theorem, and the Gautschi-Bazán bound are displayed in Figure 1. We see that our
theorem offers a substantial improvement and better captures the true behavior. Just to highlight
a dramatic improvement offered by Theorem 1, when m = 400, our main theorem underestimates
the true value by a multiplicative factor of 21.0038, whereas the Gautschi-Bazán bound is off by a
factor of 1.9687e+05.

2 Main results

The goal of this paper is to provide explicit, interpretable, and accurate bounds for σs(Φ(m,X ))
for arbitrary X when ∆(X ) < 1

m . Doing so is a tricky balancing act. We require conditions on X
that are not too restrictive, yet are sufficiently informative enough that a resulting lower bound is
not too loose. We avoid restrictive assumptions by working with general geometric notions.

Definition 2.1. Let τ ∈ (0, 12 ] and X ⊆ T be a finite set. The τ local sparsity of X is

ν(τ,X ) := max
x∈X

∣∣{x′ ∈ X : |x− x′|T ≤ τ}
∣∣ and ν(τ, ∅) := 0.

The τ local sparsity is the maximum number of elements in X contained with a τ neighborhood
of any x ∈ X . By definition, ν(τ,X ) = 1 if and only if ∆(X ) > τ . Importantly, we have ν(τ,U) ≤
ν(τ,X ) whenever U ⊆ X . If τ = 1

2 , then ν(τ,X ) = |X | = s, but it is possible that the local sparsity
is significantly smaller than s.

Definition 2.2. For any m ∈ N+ and τ ∈ (0, 12 ], we say a finite set X ⊆ T satisfies the (m, τ)
density criterion if

3ν(τ,X )

τ
≤ m.

We call it the density criterion because ν(τ,X )
2τ can be interpreted as the density of X at scale

2τ , so the assumption asserts that it cannot be bigger than m
6 . This criterion is not difficult to

fulfill for some τ . Indeed, if we assume m ≥ 6s and select τ = 1
2 , then

3ν(τ,X )
τ = 6s ≤ m, so the

density criterion is satisfied. However, if X satisfies the (m, τ) density criterion, then there may be
infinitely many other τ that are also valid, and the choice of τ will influence the below estimates.

We are almost ready to present our first main result. When interpreting the expressions in this
paper, we use the standard convention that the product over an empty set is defined as 1. To
simplify some of the notation that will appear in this paper, we define the subsets,

B(x, τ,X ) := {x′ ∈ X : |x− x′|T ≤ τ}, and G(x, τ,X ) := {x′ ∈ X : |x− x′|T > τ}.

We will refer to these as the “bad” and “good” sets respectively, and this terminology will make
sense later. We define a special function φ : [1,∞) → [1,∞) by

φ(t) :=
t

⌊t⌋ . (2.1)

This function appears in several bounds since our methods depend on number theoretic properties
of several quantities. Note that φ(t) ≤ min{2, 1+ 1

t−1}, so in particular, φ(t) → 1 as t → ∞. Terms
that involve φ(t) are inconsequential when t is large.
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Theorem 1. Let m, s ∈ N+ such that s ≥ 2 and m ≥ 6s. Suppose X = {xk}sk=1 ⊆ T and pick any
τ such that X satisfies the (m, τ) density criterion. For each k = 1, 2, . . . , s, define

Gk := G(xk, τ,X ), αk :=
|B(xk, τ,X )|

2m− 4ν(τ,Gk)τ−1
,

and the subsets

Ik := {x ∈ X : 0 < |x− xk| ≤ αk} and Jk := {x ∈ X : αk < |x− xk| ≤ τ}.

Then we have

1

σ2
s(Φ(m,X ))

≤
s∑

k=1

2ν(τ,Gk)
2αk

1− 2αk

∏

x∈Jk

φ

(
1

2|x− xk|T

)2 ∏

x∈Ik

α2
k

(1− 2αk)2|x− xk|2T
, (2.2)

and in particular,

σs(Φ(m,X )) ≥ min
1≤k≤s

{
1√
4sαk

1√
2ν(τ,Gk)

1

2|Jk|

∏

x∈Ik

|x− xk|T
2αk

}
. (2.3)

Both inequalities in this theorem provide “multiscale” lower bounds for σs(Φ). Let us explain
what this terminology means in the context of (2.3), which is a simplified version of (2.2). Here,
we fix a reference point xk ∈ X . The ranges (τ, 12 ], (αk, τ ], and (0, αk] consist of the coarse,
intermediate, and small scales respectively, and the elements in X whose distance to xk lie in these
three ranges are Gk, Jk, and Ik, respectively. An example is shown in Figure 2.

(a) The set Gk contributes a factor of 2−ν(τ,Gk)/2 to the smallest singular value. Note that ν(τ,Gk)
may be significantly smaller than s−1 for many types of X , including the motivational example.
Hence, points in X that are τ away from xk typically have little influence on the lower bound.

(b) The set Jk contributes a factor of 2−|Jk|, so each element in Jk contributes a multiplicative
factor of 1

2 to the lower bound. Note that αk ≤ τ
2 due to the (m, τ) density criterion, so αk is

naturally the next smaller scale following τ .

(c) The set Ik has the greatest amount of influence on the lower bound. Notice that each term
inside the product in (2.3) is at most 1

2 , but may be significantly smaller depending on the
structure of X near xk. For instance, if we let sk,ℓ ∈ N denote the number of elements in X
whose distance to xk lies in (2−ℓ−1αk, 2

−ℓαk], then

log2




∏

x∈Ik

|x− xk|T
2αk


 ≍ −

∞∑

ℓ=0

sk,ℓ ℓ.

This illustrates that the product term is not equally influenced by all distances less than αk

and that it actually depends on the structure of X near xk at infinitely many finer scales.

If there is a τ ≪ 1
2 for which the density criterion holds, then this theorem effectively communi-

cates a localization phenomenon. Even though the Fourier transform is non-local, in the sense that
all elements of X participate, only those whose distances are closer than τ substantially contribute.
On the other hand, if τ = 1

2 is selected, then there is no localization.
Motivated by inverse problems where only weak information about X is known or can be

reasonably assumed, we provide a different lower bound for σs(Φ) in terms of any lower bound for
∆(X ). The following is our second main result.
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xk

2αk

2τ
Ik
Jk

Gk

Figure 2: An example of the three sets Ik, Jk and Gk defined in Theorem 1.

Theorem 2. Let m, s ∈ N+ such that s ≥ 2 and m ≥ 6s, and let δ ∈ (0, 1
m ]. Suppose X ⊆ T

is a set of cardinality s with ∆(X ) ≥ δ, and pick any τ such that X satisfies the (m, τ) density
criterion. For each k = 1, 2, . . . , s, define

Gk := G(xk, τ,X ), rk := |B(xk, τ,X )|, and nk :=

⌊
m− 2ν(τ,Gk)

τ

⌋
.

Then we have

1

σ2
s(Φ(m,X ))

≤ 4e2

π2

s∑

k=1

2ν(τ,Gk)
φ(nk

rk
)

rknk

(
2eφ(nk

rk
)

sin(π2nkδ)

)2rk−2

, (2.4)

and in particular,

σs(Φ(m,X )) ≥ π

2e

√
m

6s
min
1≤k≤s

{√
rk

2ν(τ,Gk)

(
mδ

12e

)rk−1
}
. (2.5)

We emphasize that δ is an independent parameter, so the theorem is applicable to sets for which
∆(X ) is arbitrarily small. This theorem is written from the perspective of δ. In (2.5), the exponent
on δ is rk − 1, which shows that interactions between x and xk at scales smaller than τ are most
significant. This theorem assumes that δ ≤ 1

m , which can be relaxed by adapting this theorem’s
proof, but with some additional technical complications. This is not a prohibitive assumption since
the estimate (1.1) can be used whenever δ > 1

m .
Compared to Theorem 1, Theorem 2 is easier to employ since it requires less information about

X , but it generally yields a looser bound. This is expected since Theorem 1 contains product
terms that depend on the pairwise distances between elements, whereas Theorem 2 has effectively
replaced all of these distances by δ. Both theorems give similar predictions if all small scales are
approximately δ. For sets with many scales between δ and τ , it is generally advisable to use
Theorem 1 instead.

To use Theorems 1 and 2, one first needs to select an appropriate τ for which the (m, τ) density
criteria holds, and as mentioned earlier, there may be infinitely many choices. For certain sets, one
could select τ heuristically based on m and properties of X . Another option is to sweep through
a collection T of τ and pick a τ that maximizes whichever bound one would like to use. We will
discuss the computational cost at the end of this article.

Clumps models for X were independently introduced in [27, 3] and were used to control the
condition number of tall Fourier matrices. There are some subtle differences between the definitions
in these papers, so to facilitate the presentation and to avoid giving two separate definitions, we
work with the following boarder definition that encapsulates both frameworks. For sets U ,V ⊆ T,
we define the diameter and distance,

diam(U) := sup
u,u′∈U

|u− u′|T and dist(U ,V) := inf
u∈U ,v∈V

|u− v|T.

6



Definition 2.3. A set X ⊆ T consists of separated clumps with parameters (s, δ, r, λ, α, β) if the
following hold. We have |X | = s, ∆(X ) ≥ δ, and there is a disjoint union

X = C1 ∪ C2 ∪ · · · ∪ Cr,

where each Ck is called a clump such that

max
1≤k≤r

|Ck| = λ, max
1≤k≤r

diam(Ck) ≤ α, and min
j 6=k

dist(Cj , Ck) > β > α if r ≥ 2.

A few remarks are in order. For a fixed X , the choice of parameters is not unique and it
is usually advisable to select valid parameters that minimize λ. If r = 1, then s = λ and β is
not a meaningful parameter since there is only a single clump. This is why the clump separation
requirement is necessary only when r ≥ 2. Notice β > α is included in the assumption so that
distances between clumps exceeds within a clump. We will see that λ plays the role of max1≤k≤s rk,
where rk was defined in Theorem 2.

There are natural situations where a set consisting of separated clumps also satisfies the re-
quirements of our main results, as shown in the next proposition.

Corollary 1. Let m, s ∈ N+ such that s ≥ 2 and m ≥ 6s. Suppose X consists of separated clumps
with parameters (s, r, δ, λ, α, β) such that δ ≤ 1

m . If r > 1, also assume that β ≥ 3λ
m . Set τ = 1

2 if
r = 1, otherwise let τ = β. Then X satisfies the (m, τ) density criterion, and the conclusions of
Theorems 1 and 2 hold. In particular, we have

σs(Φ(m,X )) ≥ π

2e

√
m

12s

(
mδ

12
√
2e

)λ−1

.

The condition that β scales linearly in λ
m is the best one can expect without imposing further

restrictions on X . Indeed, if we allow β < λ
m , then it may occur that m < s. Although Corollary 1

provides the same or worse estimate compared to Theorem 2, we included the corollary in order to
compare with prior results for clumps.

While this paper focuses on the smallest singular value, the techniques developed in this paper
provide a straightforward and nontrivial upper bound for the largest singular value.

Theorem 3. Let m, s ∈ N+ such that m ≥ s. For any X ⊆ T of cardinality s and τ ∈ (0, 12 ] such
that m > 1

τ , we have

σ1(Φ(m,X )) ≤
√
ν(τ,X )

(
m+

1

τ

)
.

For comparison purposes, recall the trivial bound σ1(Φ) ≤ ‖Φ‖F =
√
ms. Observe that Theo-

rem 3 provides a significantly better upper bound if the τ local sparsity of X is much smaller than
s. For example, if we were to apply the above theorem for τ = 2

m , then σ1(Φ) =
√

3ν(τ,X )m/2,
which is an improvement over the trivial bound if ν(τ,X ) < 2s

3 .

Organization

Section 3 provides detailed comparisons with prior work on the condition number of Fourier matri-
ces, and serves as an expanded version of Section 1.1. There, we will see that our main theorems
capture the scaling and localization phenomena that are missing from the classical Gautschi-Bazán
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theorem. In the case of clumps, we will see that Corollary 1 is equivalent to the lower bound in (1.2)
modulo universal constants, while holding under tremendously weaker separation assumptions.

Section 4 is dedicated to examples and numerical simulations, with comparisons to the predic-
tions provided by this paper. It also provides more details regarding the motivational example in
Section 1.2. There, we provide some extreme examples that illustrate when localization does (not)
occur. One on hand, there are examples where τ = C

m like in the clumps model, while in other
examples, τ = 1

2 such as for sparse spike trains. They illustrate the effectiveness and flexibility of
the main results.

The remaining portions deal with proofs. Section 5 develops the main tool called the polynomial
method and introduces two specific trigonometric interpolation problems that are connected to the
main theorems. This section also outlines the main strategy for proving the main theorems without
technical details. Section 6 addresses the “good” and “bad” interpolation problems, and how the
resulting polynomials are related to other interpolation strategies. Section 7 contains proofs of the
main results stated in Section 2.

3 Comparison with prior art

3.1 Comparison to classical estimates

Classical versus modern papers on Fourier matrices centers on the differences between square versus
rectangular. A s × s Fourier matrix is perfectly conditioned if and only if X is some shift of the
uniform lattice {k

s}sk=1, see [9]. It is natural to wonder whether it is possible to relax both sides of
this characterization. It would be a delicate task, since [15] established that if X consists of the first
s terms of the Van Der Corput sequence, then κ(Φ(s,X )) = 1 only if log2(s) is an integer, but grows
like

√
s otherwise. This example illustrates that it is possible for κ(Φ(s,X )) to be unbounded in s

even if X is “spread out” in T. Stability of the discrete Fourier transform matrix to perturbations
of its nodes via the Kadec-14 theorem were derived in in [42].

The results listed in the previous paragraph illustrate the brittleness of square matrices, while
rectangular ones are much more robust. Any m × s sub-matrix of the m × m discrete Fourier
transform matrix is perfectly conditioned even though the nodes are not uniformly spaced on
the circle. More generally, notice from inequality (1.1) that ∆(X ) > 1

m implies the conditioning
of Φ(m,X ) can be bounded uniformly in both m and s. It is important to mention that this
inequality only applies to rectangular matrices since ∆(X ) > 1

m and |X | = s imply that m > s.
These observations should be compared with the ones listed in the previous paragraph for square
matrices.

Results for square matrices can be used to deduce bounds for rectangular ones, beyond the
trivial relationship σs(Φ(m,X )) ≥ σs(Φ(s,X )). We first start with Gautschi [21, Theorem 1] for
square matrices,

‖Φ(s,X )−1‖∞ ≤ max
1≤k≤s

{
s∏

j=1, j 6=k

2

|e2πixj − e2πixk |

}
.

Here, ‖ · ‖p denotes the ℓp → ℓp operator norm. Next, Bazán [7, Theorem 1] showed that whenever
m
s ∈ N, then

‖Φ(m,X )†‖2 ≤
√

s

m
‖Φ(s,X )−1‖2.

Combining the above two inequalities, that ‖A‖2 ≤ √
s‖A‖∞ if A ∈ C

s×s, and σs(Φ(m,X )) ≥
σs(Φ(⌊ms ⌋s,X )), we obtain the Gautschi-Bazán theorem, which was stated in inequality (1.4).
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Comparing the Gautschi-Bazán theorem with Theorem 1, we see that there are two main
differences. First, the former does not exhibit localization since the product in (1.4) is taken over
all x ∈ X \ {xk}, whereas in the latter, the product is over all x ∈ Ik, while the further away
elements are less significant. Note that if |x − xk|T is small, then |e2πix − e2πixk | is comparable to
|x− xk|T. Second, the former does not exhibit the correct scaling in front of |e2πix − e2πixk |. In the
latter, notice that each term has a helpful αk factor, which could be on the order of 1

m depending
on X . The localization and scaling phenomenon manifest when we consider rectangular Fourier
matrices, which are absent for square ones. Examining the proof of [7, Theorem 1], we see that is
treats tall Fourier matrices as ⌊ms ⌋ independent s×s blocks, and does not fully exploit the algebraic
structure of tall Fourier matrices.

Continuing the remarks made in the previous paragraph, there is an elementary explanation
for why tall Fourier matrices should behave differently from square ones. Notice that (Φ∗Φ)j,k =
Dm(xj − xk), where Dm(t) :=

∑m−1
k=0 e2πikt is the Dirichlet kernel. We easily see that |Dm(t)| is on

the order of m on the interval [− 1
m , 1

m ] and decays at a rate of |t|−1 away from 0. This means that
the Gram matrix Φ∗Φ, for fixed X and increasing m, becomes increasingly diagonally dominant.
Basic and generic tools such as the Gershgorin circle theorem fail to provide any meaningful results
when ∆(X ) < 1

m and s ≥ 3 because the diagonal entries of Φ∗Φ are m while the ℓ1 norm of
off-diagonal rows and columns of Φ∗Φ exceed m. Instead, the proof methods used in this paper
specifically take advantage of the algebraic structure of Fourier matrices and are able to obtain
finer results.

3.2 Comparison to clumps

In this part, we compare Corollary 1 with the results in [27, 3, 22, 5]. As usual, we let m and s
denote the number of rows and columns of Φ. We will only compare the general scaling of the model
parameters and do not compare universal constants, since the latter can be improved by optimizing
their proofs or by providing more accurate but complicated expressions. When comparing our main
theorems with other papers, we will generally ignore distinctions between m− 1, m, and 2m, since
the extraneous factors can be absorbed into other constants.

The result [27, Theorem 2.7] shows that if X consists of separated clumps with parameters
(s, δ, r, λ, 1

m , β) such that

m ≥ s2 and β ≥ 20

m− 1

√
sλ5

(m− 1)δ
if r > 1, (3.1)

then there exist explicit universal constants C > 0 and c ∈ (0, 1) such that

σs(Φ(m,X )) ≥ C

√
m− 1

λ

(
c(m− 1)δ

)λ−1
.

One main drawback of condition (3.1) is that β → ∞ as δ → 0, so for sufficiently small δ, the
theorem only applies when there is only a single clump. Some improvements to the explicit constants
and variations of this inequality can be found in [22]. All results in this paper also require separation
conditions for which β → ∞ as δ → 0.

Corollary 1 shows that under the same hypotheses (3.1), this paper’s main results are applicable
and they yield the same C

√
m(cmδ)λ−1 estimate with different constants. However, Corollary 1

requires significantly weaker clump separation assumptions and relationship between m versus s.
Importantly, it removes the artificial behavior that β explodes in the limit that δ goes to zero.
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Moving on, [5, Theorem 2.2] shows that if X consists of separated clumps with parameters
(s, δ, r, λ, α, β) such that

c1(λ)s

πβ
≤ m ≤ c2(λ)

πsα
, (3.2)

for some c1(λ), c2(λ) > 0 depending only on λ, then there is an explicit universal constant C ′ > 0
such that

σs
(
Φ(2m+ 1,X )

)
≥ C ′√m

(
mδ

16e

)λ−1

.

Some of the constants in these expression are different than those in [5] since that paper identifies
T with [−π, π) as opposed to [0, 1) in this paper.

Although c1(λ) and c2(λ) are not given explicitly, [5, Section 6.3] shows that c1(λ) > C(1+λ9)
for some universal C > 0 and c2(λ) ≤ 2π. Hence, condition (3.2) requires, for all sufficiently large
λ,

α ≤ 2

sm
and β ≥ C(1 + λ9)s

m
≥ 3λ

m
.

This establishes that Corollary 1 provides a similar lower bound, but again, under significantly
weaker assumptions.

Clumps models were also introduced in [3] to bound the smallest singular value of a “continuous”
analogue, whereby Φ is replaced with an integral operator. In particular, [3, Corollary 3.6] assumes
that X consists of separated clumps and with the additional requirement that diam(X ) ≤ 1

πs2
.

It is not possible rescale this result to avoid this requirement, so we cannot provide a reasonable
comparison. Nevertheless, the restriction that X is contained in an interval of length 1

πs2
is removed

in a follow-up result [5], which we already compared to.

3.3 Other related work

The “colliding nodes” model, where X can be decomposed into clumps where each one has exactly
two elements, was studied in [23]. This is much more restrictive than the clumps model and can
be treated with specialized tools that cannot be extend to more complicated and general sets.

There is a plethora of papers that examine sub-matrices of the discrete Fourier transform matrix,
see [2] and references therein. This would correspond to the situation where X ⊆ { k

n}nk=1 and n is
a large parameter that can be selected independent of m, s. This setting is more specialized since
there are cancellation properties and explicit formulas that are not available in the general case.

4 Numerical simulations and examples

4.1 Setup and definitions

When comparing the true value of σs(Φ) and our estimated one, we use our more accurate estimate
(2.2) from Theorem 1. The software that reproduces the figures in this paper are publicly available
on the author’s Github repository 1, which is also linked to the author’s personal website 2.

The behavior of Fourier matrices was numerically evaluated in [27, 5, 3, 22] under the super-
resolution limit, wherebym is sufficiently large and there is a family of {Xm}∞m=1 for which ∆(Xm) →
0, or alternatively, m → ∞ and ∆(Xm) → 0 with some relationship between m and ∆(Xm). This is
an important scaling in the theory of super-resolution and the behavior of σs(Φ) greatly simplifies

1https://github.com/weilinlimath
2https://weilinli.ccny.cuny.edu
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in this scenario. The main results of this paper can be used for the super-resolution limit as well
and would give equivalent predictions up to implicit constants, see Corollary 1. One can consider
a complementary scaling, called the well-separated case, whereby X is fixed and m → ∞. In this
case, (1.1) is applicable.

Rather than look at either scaling again, we look at more challenging examples. In the absence
of a large or small parameter, σs(Φ) is naturally a discrete quantity. Nonetheless, even though our
main theorem is proved using analytic tools, it only requires a weak assumption that m ≥ 6s, so
it is applicable to a greater variety of examples. We are only aware of one other result with this
generality, which is the Gautschi-Bazán theorem in (1.4).

Since we provide lower bounds for the smallest singular value, it makes sense to quantify the
quality of approximation by a multiplicative factor. That is, we define the

inaccuracy factor :=
true value

estimated value
.

Of course, this quantity is lower bounded by 1.

4.2 The motivational example revisited

Here, we provide additional details for the motivational example in Section 1.2. First, notice that
for a fixed X , the set of τ for which the (m, τ) density criterion is satisfied are nested increasing
sets as m increases. More precisely, if we define

S(m,X ) := {τ : X satisfies the (m, τ) density criterion},

then S(m,X ) ⊆ S(m+1,X ). So as m increases, we have the option of choosing τ smaller in order
to reduce the number x ∈ X that are close to each xk. However, we do not simply define τ as the
infimum of S(m,X ) because αk may increase when τ decreases. Choosing an optimal τ is beyond
the scope of this paper. It is not difficult to select reasonable a candidate based on intuition, or
trial and error.

0 0.1 0.2 0.3 0.4 0.5
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1
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10

Figure 3: Plot of ν(τ,X ) as a function of τ ∈ (0, 12 ].
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Returning back to the motivational example, after some calculations, we define

τ :=

{
2
30 if m ∈ (450, 600],
3
10 if m ∈ [54, 450].

For these corresponding values of τ , it can be easily checked that ν(τ,X ) is 3 or 4 and that X
satisfies the (m, τ) density criterion. To visualize the former, we have plotted ν(τ,X ) as a function
of τ in Figure 3. Note that our choices for τ are not optimized, but were chosen according to
reasonable heuristics.

As shown in Figure 1, our theorem yields a significantly more accurate prediction, which becomes
more apparent as m increases. This occurs because the effective scale τ should be chosen to decrease
in m and the distance between nearby elements is scaled according to αk, neither of which are
captured in the Gautschi-Bazán theorem. Additionally, the results in [27, 22] are not applicable
for any m ∈ [9, 600] ∩N, because the separation condition (3.1) is not fulfilled, while [3] cannot be
used since X is not contained in an interval of length 1

πs2
, and it is unclear whether [5, 3] can be

used since they contain implicit constants in their separation criterion.

4.3 Another multiscale example

Unlike the motivational example in Section 1.2 where X was fixed and m varies, we consider the
reverse situation where m is fixed and we have a family of sets Xε parameterized by a ε ∈ (0, 1].
Consider the set

Xε := X1,ε ∪ X2(ε) ∪ X3,ε, where

X1,ε = ε{0, 1
90 ,

2
90 ,

3
90}, X2,ε =

1
3 + ε{0, 1

200 ,
2

200}, and X3,ε =
2
3 + ε{0, 1

500}.
(4.1)

We have defined Xε in this way to emphasize that while ε controls the minimum separation since
∆(Xε) =

ε
500 , the three sets X1, X2, and X3 are still of different scales for each ε.

Since ∆(Xε) ≤ 1
500 for any ε, we consider only m ≤ 500. If we pick τ = 3

10 , then ν(τ,Xε) = 4
for all ε. For two separate experiments, we select m = 400 and m = 100. Note that Xε satisfies the
(m, τ) density criterion for all values of ε.

The results are shown in Figure 4. We see from the simulations that our lower bound matches
the true behavior of the smallest singular value. Notice that for both experiments, σs(Φ) is piece-
wise linear, which is expected. Indeed, our theory states that the only significant interactions
between x, x′ ∈ X are those for which |x−x′| ≤ τ . For τ = 3

10 , the sets X1, X2, and X3 do not have
significant interactions due to our choice of τ . They also have cardinality 4, 3, and 2 respectively
for all ε, and the interactions between elements in each Xk scales linearly with ε. Hence, according
to Theorem 1, we expect

σs(Φ(m,Xε)) & c1ε
3 + c2ε

2 + c3ε
1,

for some universal constants that can be explicitly computed. Hence, as ε varies, depending on the
regime of ε and the size of c1, c2, c3, the dominant term in this inequality changes. In fact, Figure 4
shows that σs(Φ) appears to consists of three power-law pieces; on a log-log plot, they have slopes
approximately 3.0055, 2.0321, and 0.9485, which is consistent with our prediction.

4.4 Sparse spike train

In this example, we consider an extreme situation where τ cannot be chosen on the order of 1
m

even though the number of elements in an interval of length 2
m is at most 3. For any ε ∈ (0, 1] and
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Figure 4: For X defined in (4.1), plot of σs(Φ(m,Xε)), main theorem, and Gautschi-Bazán bound,
as a function of ε, with m = 400 on the left and m = 100 on the right.

s ∈ [5, 30] ∩ N+, we set m = 200 and consider the following set,

Xs,ε = ε

{
0,

1

m
, . . . ,

s− 1

m

}
. (4.2)

Our choices of m and s here are arbitrary and we could have considered larger or smaller m provided
that s is sufficiently small compared to m.

It was shown in [31] that for fixed ε, provided that s ≥ C logm, then σs(Φ(m,Xs,ε)) ≤ C ′e−cεs

for some unspecified universal C,C ′, c > 0. An improved estimate and with explicit C,C ′, c were
derived in [2]. Provided that m

ε is an integer, [2, Theorem 10] provides an explicit upper bound,
which for sufficiently large m

ε , simplifies to

σs(Φ(m,Xs,ε)) ≤ Ce−π(1−ε)s/2. (4.3)

There is another bound [2, Lemma 19], which is better for ε ≤ ε∗ ≈ 0.117 and takes the form

σs(Φ(m,Xs,ε)) ≤
2
√
ms

1− (eπ(m− 1)ε/4m)

(
eπ(m− 1)ε

4m

)s−1

.

These upper bounds have important implications. First, they show that even if X consists of
clumps, they need to be sufficiently far apart for the lower bound in (1.2) to be valid, otherwise
there is a contradiction. However, it does not provide a quantitative bound on the clump separation.
Second, they imply that if ∆(X ) < 1

m , then we need to put some restrictions on s otherwise κ(Φ)
may grow exponentially. Indeed, without an upper bound on s, we can let X be the set in (4.2)
with s on the order of m. This also explains why we cannot substantially relax the (m, τ) density
criterion. We will provide more details related to the second point below.

Notice that ν( 1
m ,Xs,ε) ≤ 3 for all ε ∈ (0, 12 ], so at first glance, it may be temping to set τ on the

order of 1
m . However, it is not hard to see that there is no τ < 3s

m for which Xs,ε satisfies the (m, τ)
density criterion. On the other hand, if τ ≥ 3s

m , then ν(τ,Xs,ε) = s and consequently, X satisfies
the (m, τ) density criterion. The graph of ν(τ,Xs,ε) as a function of τ is shown in Figure 5. Thus,
we are in the extreme case where we should just pick τ = 1

2 . Intuitively, we think of Xs,ε as a high
density set.
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Figure 5: Left: Plot of the local sparsity ν(τ,Xs,ε) as a function of τ for ε = 1
2 . Right: For Xs,ε

defined in (4.2), m = 200, and ε = 0.9, 0.7, 0.5, the graphs of σs(Φ(m,Xs,ε)), upper bound (4.3)
with C = 500, and lower bound (2.2) are shown in solid, dashed circular markers, and dashed plus

sign markers, respectively. The slopes of the upper bounds are −π(1−ε)s
2 . The slopes of the lower

bounds are −1.2729, −1.5259, and −1.8625, found by best linear fit.

Figure 5 plots the numerically computed σs(Φ(m,Xs,ε)) and our main theorem as functions
of s and for ε = 0.9, 0.7, 0.5. The numerical simulations indicate that log(σs(Φ(m,Xs,ε))) is well
approximated by an affine function of s, namely,

log(σs(Φ(m,Xs,ε))) = bε,m − cε,ms+ less significant terms depending on s.

This is consistent with Theorem 1, which predicts that the dominant term in log(σs(Φ)) is affine
in s. To see why, using the notation defined in the theorem, there is a k for which Ik = X \ {xk},
so there is at least one term on the right side of (2.2) that contains a product of s− 1 terms. They
are the dominant terms since Ik exerts the greatest influence on the lower bound.

If one wants a provable (but worse) result for this example, we recommend Theorem 2. Following
the notation of that theorem, whenever s ≥ 2, m ≥ 6s, and ε ∈ (0, 1], we set τ = 1

2 and δ = ε
m .

Then for each k, we have Gk = ∅, ν(τ,Gk) = 0, nk = m, B(xk, τ,X ) = X , and rk = s. Since m ≥ 6s,
we have φ(ms ) ≤ 1 + 1

5 . Using (2.4), we have

σs(Φ(m,Xs,ε)) ≥
π

2e

√
m

φ(ms )

(
sin(πε2 )

2eφ(ms )

)s−1

≥ π

2e

√
5m

6

(
5 sin(πε2 )

12e

)s−1

. (4.4)

The lower bound for log(σs(Φ)) provided by (4.4) has slope −1.8879, −1.9909 and −2.2220 for
ε = 0.9, 0.7, 0.5 respectively.

4.5 Colliding clumps

Here we introduce an example where there are two localized sets that are progressive being pushed
towards each other. To make this notion more precise, we fix m = 100 and for sufficiently small
β > 0, define

C1 := {0, 1
2m , 2

2m}, C2(β) := β + 1
m + C1, and X (β) := C1 ∪ C2(β). (4.5)
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As β → 0, the two sets C1 and C2(β) become closer and σs(Φ(m,X (β))) → 0 as β → 0. Note we can
think of C1 and C2(β) as clumps with separation β. Eventually for sufficiently small β, we should
think of X (β) as just a single clump as opposed to two separate ones.
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Figure 6: For m = 100 and X (β) defined in (4.5), plot of σs(Φ(m,X (β))), our main theorem, and
the Gautschi-Bazán bound as a function of β ∈ [0.1m , 20m ].

To employ Theorem 1, we pick τ = β if β ≥ 18
m , otherwise we set τ = 1

2 . Our choice of τ is
consistent with Corollary 1, but we picked a bigger constant (18 instead of 9) in front of 1

m to temper
the growth of several implicit constants in our estimates. For this example, the clumps bounds
[27, 22] do not apply since C1 and C2(β) are too close together. The results of this experiment are
shown in Figure 6. This behavior of σs(Φ(m,X (β))) undergoes a phase transition at β ≈ 1

m since
for β ≫ 1

m , it is intuitive that X (β) should be treated as two clumps instead of just one. There
are some fluctuations in the graph of σs(Φ) due to number theoretic reasons since X (β) is a partial
unitary matrix if it is a subset of the lattice with spacing 1

2m . Our estimate is significantly better
than the Gautschi-Bazán theorem. For example, at β = 0.1 = 10

m , the former has an inaccuracy
factor of 66.1225, while the latter is 1.9916e+05.

5 Proof strategy

5.1 The polynomial method

The torus is defined as T := R/Z, which we normally identify with [0, 1) via the map x 7→ mod(x, 1).
The canonical basis vectors for Rd is denoted {ek}dk=1. We let ‖ · ‖p and ‖ · ‖Lp denote the ℓp and

Lp norms respectively, for 1 ≤ p ≤ ∞. The Fourier transform of a f ∈ L2(T) is denoted f̂ : Z → C,
where f̂(k) :=

∫
T
f(x)e−2πikx dx for each k ∈ Z. We say f is a trigonometric polynomial of degree

m − 1 if its Fourier transform is supported in {0, 1, . . . ,m − 1}, and we let Pm be the set of all
trigonometric polynomials of degree at most m− 1.

The primary method that we will use to lower bound σs(Φ), or more precisely, upper bound
1/σs(Φ), is through a “dual” relationship with minimum norm trigonometric interpolation. This
duality was introduced in [27, Proposition 2.12]: For any integers m ≥ s ≥ 1, finite set X ⊆ T

of cardinality s, and unit vector v ∈ C
s such that ‖Φ(m,X )v‖ = σs(Φ(m,X )) (i.e., v is any right
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singular vector corresponding to the smallest singular value of Φ(m,X )), we have

σs(Φ(m,X )) = max

{
1

‖f‖L2

: f ∈ Pm and f(xk) = vk for each k

}
. (5.1)

We refer to this equation as the duality principle, since it provides a connection between the
smallest singular value to minimum norm trigonometric interpolation. There are related concepts
[17, 11, 10] for R instead of T, but one main difference is that our X is arbitrary and can be
completely nonuniform.

It may be helpful to explain the intuition behind this duality principle. Suppose v is a unit norm
right singular vector corresponding to the smallest singular value of Φ(m,X ) and we examine all
solutions u to Φ∗u = v. Due to the singular value decomposition, any minimum norm vector u that
is consistent with this system will have norm 1/σs(Φ). Note that Φ∗ is the matrix representation
of the linear transform that maps Fourier coefficients of functions in Pm to their restriction on
X . Using the Plancherel’s theorem allows us to pass from the Fourier coefficients to polynomials.
It follows from this discussion that a f ∈ Pm which achieves equality in (5.1) is necessarily a f
whose Fourier coefficients are u/σs(Φ) where u is any unit norm left singular vector of Φ which
corresponds to σs(Φ).

The duality principle provides a natural and constructive avenue for lower bounding σs(Φ).
However, since we have no exploitable information on the right singular vectors of Φ, we construct
interpolants for arbitrary v, and then estimate them in L2 uniformly in v. This leads us to the
subsequent definition and lemma.

Definition 5.1. For any set X = {xk}sk=1 ⊆ T, we say {fk}sk=1 is a family of Lagrange interpolants
for X if fk(xℓ) = δk,ℓ for each 1 ≤ k, ℓ ≤ s.

Lemma 5.2. For any m, s ∈ N+ with m ≥ s and X ⊆ T of cardinality s, if {fk}sk=1 ⊆ Pm is a
family of Lagrange interpolants for X , then

1

σ2
s(Φ(m,X ))

≤
s∑

k=1

‖fk‖2L2 .

Proof. Let v ∈ C
s be any unit norm vector such that ‖Φv‖ = σs(Φ). Since f =

∑s
k=1 vkfk

interpolates v on X , by equation (5.1) and Cauchy-Schwarz, we have

1

σs(Φ)
≤ ‖f‖L2 ≤

s∑

k=1

|vk|‖fk‖L2 ≤
( s∑

k=1

‖fk‖2L2

)1/2( s∑

k=1

|vk|2
)1/2

=

( s∑

k=1

‖fk‖2L2

)1/2

.

This lemma was implicitly used in [27], and allows us to reduce the problem of lower bounding
σs(Φ) into constructing Lagrange interpolants. One strength of this method is that it does not
require any information about the singular vectors of Φ, which is usually more difficult to analyze
than the singular values. However, if we had additional information about them, such as localization
properties, then the L2 estimate provided here can be improved.

The next proposition serves as a converse to Lemma 5.2. It shows that any lower bound on
the smallest singular value provides the existence of polynomials with prescribed interpolation
properties.
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Proposition 5.3. If X ⊆ T is a non-empty finite set with cardinality s, then for any w ∈ C
s and

integer m ≥ s, there exits f ∈ Pm such that f |X = w,

‖f‖L2 ≤ ‖w‖2
σs(Φ(m,X ))

and ‖f‖L∞ ≤
√
m ‖w‖2

σs(Φ(m,X ))
.

Proof. Note that m ≥ s implies Φ := Φ(m,X ) is injective due to the Vandermonde determinant
theorem. We have the singular value decomposition Φ =

∑s
k=1 σkukv

∗
k, where the vk’s and uk’s are

orthonormal and the σk’s are the nonzero singular values of Φ.
For any w ∈ C

s, we have w =
∑s

k=1 bkvk for some b ∈ C
s such that ‖b‖2 = ‖w‖2. For each

k, we define fk ∈ Pm such that f̂k = uk/σk. Using again that Φ∗ is the matrix representation of
the operator that maps the Fourier coefficients of a function in Pm to its values on X , a direct
calculation then yields that fk|X = Φ∗f̂k = vk.

From here we see that f :=
∑s

k=1 bkfk satisfies f |X = w. Moreover, since the uk’s are orthonor-
mal, an application of Parseval’s shows that the fk’s are L2 orthogonal, and so

‖f‖2L2 =

s∑

k=1

|bk|2‖fk‖2L2 =

s∑

k=1

|bk|2
σ2
k

≤ ‖w‖22
σ2
s

.

For the L∞ bound, we use that f ∈ Pm, and Cauchy-Schwarz, to get

‖f‖L∞ ≤ ‖f̂‖ℓ1 ≤ √
m ‖f̂‖ℓ2 =

√
m ‖f‖L2 .

This proposition can be rephrased as a result for an interpolation operator. Consider the
operator T (X ) that takes f∗ ∈ C(T) and produces the f ∈ Pm guaranteed by this proposition such
that f∗ = f on X . Equipping both C(T) and Pm with the L∞ norm yields the estimate

‖T (X )‖L∞→L∞ ≤
√
ms

σs(Φ(m,X ))
.

We loosely refer to the strategy provided by the results of this subsection as the polynomial
method. A primary usefulness of this connection between σs(Φ) and trigonometric interpolation is
that it can be used employ tools from Fourier analysis and polynomial approximation, instead of
solely working with matrices. While this connection is helpful, it is only useful if one can construct
Lagrange interpolants with small norm, otherwise the resulting lower bounds for σs(Φ) would be
quite loose.

5.2 Outline of the main proofs from an abstract perspective

The proofs of Theorems 1 and 2 are based on the following general recipe. Due to the polynomial
method, we only need to provide the existence of Lagrange interpolants with suitably small norms
and degree at most m − 1. Note that Pm enjoys numerous algebraic properties. In addition to
being vector space, if f ∈ Pm and g ∈ Pn, then fg ∈ Pm+n−1. It is also a shift invariant space,
namely, f ∈ Pm if and only if f(· − t) ∈ Pm for any t ∈ T.

We start the proof by fixing any xk ∈ X and concentrate on establishing a polynomial fk ∈ Pm

such that fk(xk) = 1 and vanishes on X \ {xk}. Constructing a Lagrange interpolant of this data
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is straightforward, but doing so in a naive manner leads to loose estimates. We use the standard
Lagrange interpolant ℓk ∈ Ps as a benchmark. Note that it has a pointwise upper bound,

‖ℓk‖L∞ ≤
∏

j 6=k

2

|e2πixk − e2πixj | = 2s−1
∏

j 6=k

1

|e2πixk − e2πixj | . (5.2)

The right hand side grows exponentially in s and it contains a product of s − 1 terms. It is
significantly larger compared to the norms of polynomials that we will construct later. The main
deficiency of ℓk is that deg(ℓk) = s − 1, so it does not take advantage of the possibility that
interpolants can be selected from Pm where m can be significantly larger than s. From this point
of view, we interpret m as the number of parameters or degrees of freedom, and s as the number
of constraints.

Addition of two polynomials results in polynomial whose degree is the max, while multiplication
adds their degrees. It is intuitive that points in X near xk require larger norm polynomials to
interpolate, since we need fk(xk) = 1, yet fk can potentially have many nearby zeros, whereas
further away points require smaller norms. Hence, it is natural to decompose

X = Bk ∪ Gk,

where the “bad” Bk and “good” Gk sets contain the points near and far away from xk, respectively.
The scale τ at which these sets are selected is important and determined by the density crite-
rion. Hence the original interpolation problem can be solved by finding and multiplying Lagrange
interpolants bk and gk where bk(xk) = gk(xk), bk vanishes on Bk \ {xk}, and gk vanishes on Gk.

The interpolation problem for the good set will be handled in Section 6.1. Although each
element of Gk is sufficiently far away from xk, points in Gk can still be close together. Hence, it is
not clear that there is even any advantage of splitting X into the good and bad sets. To deal with
this, we will employ Proposition 6.1 to further decompose Gk as

Gk = Gk,1 ∪ · · · ∪ Gk,νk , where νk := ν(τ,Gk),

such that ∆(Gk,j) is suitably controlled from below. By using Proposition 5.3, we can recast
inequality (1.1) as an interpolation statement. Doing so, we obtain the existence of νk many
interpolants, which are multiplied together to obtain a desired gk. Interpolation for the good set
will require a budget of roughly 2ν(τ,Gk)/τ , which is guaranteed to be at most 2m/3 in view of
the density criterion.

The interpolation problem for the bad set will be handled in Section 6.2. The starting point is a
basic observation that the standard Lagrange interpolant for the bad set can be pointwise bounded
by the distances between elements of Bk and xk as seen in (5.2). Note that if q|t|T ≤ 1

2 for some
q ∈ N+, then |qt|T = q|t|T. Hence, if we shift and dilate the elements of Bk, and use a Lagrange
interpolant for the dilated points, such as

bk(x) =
∏

xj∈Bk\{xk}

e2πiqjx − e2πiqjxj

e2πiqjxk − e2πiqjxj
,

then this polynomial will have significantly smaller norm and larger degree compared to the stan-
dard Lagrange interpolant ℓk. Here, each qj will need to be chosen so that the degree of bk is not
too large. Interpolation for the bad set will use the remaining portion of our budget consisting of
roughly m− 1− 2ν(τ,Gk)/τ .

Finally, the desired Lagrange interpolant is fk := bkgk. Doing this for each xk ∈ X yields a
family of Lagrange interpolants for X in Pm, allowing us to employ Lemma 5.2, which completes
the proof.
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Carrying out these steps requires exploiting the advantages of several seemingly disparate ap-
proaches. The polynomial method for estimating the smallest singular value of Fourier matrices
was introduced in [27] and was inspired by interpolation techniques [17, 11]. It is further refined in
this paper to handle more abstract sets, beyond clumps and subsets of lattices, by incorporating
density ideas. Although we were unable to find a prior reference that uses exactly the same density
criterion, there are strong connections between sampling and density, such as [24].

The initial decomposition of X into Bk∪Gk and further decompositions of Gk into Gk,1, . . . ,Gk,νk ,
are inspired by the classical Calderón-Zygmund decomposition. Our method for dealing with the
good set requires the lower bound in (1.1), which was proved in [1] by using powerful machinery
developed for analytic number theory [39, 38, 33, 32]. Finally, the method for dealing with the
bad set using local dilation methods was originally employed in [27], for which we make significant
improvements to.

6 Two trigonometric interpolation problems

6.1 Small norm Lagrange interpolants

In this section, we study the interpolation problem for the “good” set G ⊆ T where all elements
of G are away from zero, and we would like to find a trigonometric polynomial that vanishes on
G and equals 1 at 0. Since we do not want to place any assumptions on ∆(G), which we allow to
be arbitrarily small, this is a delicate problem. We will construct a polynomial that is significantly
better behaved than the standard Lagrange interpolant.

A key observation is the following sparsity decomposition which essentially states that a set can
be decomposed into disjoint sets, each with unit local sparsity and minimum separation that is
well-controlled. The key is that the number of sets equals the local sparsity of the original set, and
not the cardinality. While this decomposition is intuitive, some care is taken with the proof due to
the periodic boundary conditions that are imposed on us due to working with the torus.

Proposition 6.1. For any τ ∈ (0, 12 ] and non-empty W ⊆ T, letting ν := ν(τ,W), there exist
non-empty disjoint subsets W1,W2, . . . ,Wν ⊆ W such that their union is W and ∆(Wk) > τ for
each k.

Proof. Since the statement we are proving is invariant under periodic shifts, we can assume that
w1 := 0 ∈ W. We sort the elements of W by w1, w2, . . . , wn sorted counterclockwise and provide a
greedy method for generating the desired sets W1,W2, . . . ,Wν . We initialize these sets to be empty
and we add wℓ ∈ W to one of these sets until all elements of W have been exhausted. We say wℓ

has been assigned if it has been placed in a Wk, and unassigned otherwise. We start by placing
w1 ∈ W1. For each unassigned wℓ ∈ W, we consider the set of Uℓ := W ∩ [wℓ − τ, wℓ + τ ] and
place wℓ in an arbitrary Wk that does not contain any assigned elements in Uℓ. This is always
possible since |Uℓ| ≤ ν for all ℓ. By construction, W1, . . . ,Wν are disjoint and ∆(Wk) > τ . To
see why W1,W2, . . . ,Wν are each nonempty, by definition of the τ density, there is a ℓ such that
[wℓ − τ, wℓ + τ ] contains exactly ν elements of W and they are necessarily placed in different
Wk’s.

There is a stark conceptual distinction between the clumps decomposition in Definition 2.3,
which groups the elements of X by their spatial locations, versus Proposition 6.1, which decomposes
X into disjoint subsets that each have unit local sparsity. An example is shown in Figure 7.

The usefulness of this decomposition for controlling the condition number of Fourier matrices
is not obvious, but it will be made more clear in the following proof.
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(b) Sparsity decomposition

Figure 7: Clumps versus sparsity decomposition of the same set.

Proposition 6.2. Let G ⊆ T be a non-empty finite set such that for some τ ∈ (0, 12 ], we have
|w|T > τ for all w ∈ G. Suppose m, r ∈ N+ such that ν(τ,G) ≤ r and m > 1

τ . Then there is
f ∈ Pr(m−1)+1 such that f(0) = 1, f vanishes on G, and

‖f‖L2 ≤ 1√
m

(
1 +

1

mτ − 1

)r/2

and ‖f‖L∞ ≤
(
1 +

1

mτ − 1

)r/2

.

Proof. Let ν := ν(τ,G). By Proposition 6.1, there exists a disjoint decomposition,

G = G1 ∪ G2 ∪ · · · ∪ Gν , where Gk 6= ∅ and ∆(Gk) > τ.

The assumption that |w|T > τ for all w ∈ G implies ∆(Gk∪{0}) > τ . Using the assumption m > 1
τ ,

we invoke the lower bound in (1.1), which implies

σmin

(
Φ
(
m,Gk ∪ {0}

))
≥

√
m− 1

τ
.

By Proposition 5.3, applied to the data points ({0} ∪ Gk, e1), there exists a fk ∈ Pm such that

fk(0) = 1, fk|Gk
= 0, ‖fk‖L2 ≤ 1√

m

√
mτ

mτ − 1
and ‖fk‖L∞ ≤

√
mτ

mτ − 1
. (6.1)

Let f be the product of f1, f2, . . . , fν . It follows immediately from (6.1) that f(0) = 1 and f |G = 0.
The claimed bounds for ‖f‖L2 and ‖f‖L∞ follow from Hölder’s inequality. Moreover, we readily
see that

deg(f) =

ν∑

k=1

deg(fk) ≤ ν(m− 1) ≤ r(m− 1).

These polynomials can be numerically computed. First, we compute the decomposition of G
outlined in Proposition 6.1, which can be done constructively using the greedy method described
in its proof. Second, for each Gk in this decomposition, we find an interpolant fk of the data
({0} ∪ Gk, e1) via Proposition 5.3. This can also be done numerically since f̂k is precisely a scaled
left singular vector of Φ(m, {0} ∪ Gk), see the discussion following (5.1). Finally, these interpolants
are then multiplied together to yield the desired f .

We refer to a f generated by this proposition as a small norm Lagrange interpolant. While each
fk is found by minimizing a L2 norm with interpolation constraints, it is not necessarily true that
f is also a minimum L2 norm interpolant. Nonetheless, it is the pointwise bound that is important
for this paper, and it is not clear if any of the fk’s or f are extremal in the L∞ norm.
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The interpolant in Proposition 6.2 enjoys many favorable and surprising properties. First, in
the absence of additional assumptions, it is degree-optimal. Notice that ∆({0}∪Gk) > τ and 0 6∈ G
imply that (|Gk|+ 1)τ < 1. This in turn establishes

|G| ≤ ν max
1≤k≤ν

|Gk| ≤ r

⌊
1

τ
− 1

⌋
.

This inequality is sharp since it is possible to provide an example of a G such that these inequalities
are achieved. On the other hand, with the only stipulation that m > 1

τ , the theorem provides a
polynomial of degree r(m− 1) that has up to r⌊ 1τ − 1⌋ zeros. Hence it is not possible to reduce the
degree of this interpolant in general.

Aside from degree optimality, there is a second significance of small norm Lagrange interpolants,
and to explain this, let us look at an example. For any ε > 0 that will be made sufficiently small,
consider the set,

Gε =

(
1

4
+ {0, ε, 2ε}

)
∪
(
1

2
+ {0, ε}

)
∪
(
3

4
+ {0, ε, . . . , 3ε}

)
. (6.2)

Whenever ε is small enough, this set consists of 9 elements. In order to find a Lagrange interpolant
that interpolates (0, 1) and vanishes on Gε, we could use the usual Lagrange interpolant ℓ of degree
|Gε| = 9, which satisfies the inequality

‖ℓ‖L∞ ≤ 2|Gε|
∏

w∈Gε

1

|1− e2πiw| .

One advantage of the Lagrange interpolant is that its degree does not depend on ε. However, ‖ℓ‖L∞

grows exponentially in |Gε| and the product term may be large, which makes it rather unappealing
for our purposes; this could be an artifact of estimating its sup-norm by upper bounding each term
individually, but it is difficult to circumvent.

On the other hand, there are interpolation methods that yield interpolants with larger degrees
but smaller norms. For instance, [13, Theorem 2.1] proves that there is a trigonometric interpolant
with good control over its norm, but requires the interpolant to have degree that scales inversely
proportional to the minimum separation of the nodes. Hence, this result gives us an interpolant of
any data defined on {0} ∪ Gε with degree that proportional to 1

ε . Related interpolation results in
[34] that are proved using functional analysis also exhibit similar behavior.

In contrast to the above types of interpolants, the small norm Lagrange interpolants enjoy both
advantages. Set τ = 1

5 and for all sufficiently small ε, say ε ≤ 1
300 , we have ν(τ,Gε) = 4. Pick

m = 2
τ = 10 so that Proposition 6.2 is applicable. Notice that deg(fε) = 4 · 9 = 36 does not depend

on ε, hence does not explode as ε → 0. We also have ‖fε‖L∞ ≤ 22 = 4 for all ε. This is because
the norm of f does not grow exponentially in |Gε|, but only grows exponentially in ν(τ,Gε). This
is crucial for the purposes of this paper, since we do not want high degree interpolants or large
norms, while allowing the minimum separation to be arbitrary. Graphs of the real part of the four
interpolants f1, f2, f3, f4 generated by Proposition 6.2 are shown in Figure 8.

We suspect that the advantages offered by Proposition 6.2 is highly dependent on the signs
of the data that are being interpolated, that is, 1, 0, . . . , 0 on {0} ∪ Gε. The number ‘0’ is not
necessarily crucial though since we can interpolate 1, a, . . . , a as well by multiplying the small norm
Lagrange interpolants by 1− a and then adding a. The important part here is that 0, . . . , 0 are all
equal. In contrast, the other interpolation methods work for arbitrary data, which is perhaps why
they do not enjoy the same advantages.
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Figure 8: For the zero set Gε defined in (6.2) with ε = 1
300 , the four small norm Lagrange interpolants

each of degree 9 are displayed.

6.2 Construction of local Lagrange polynomials

In this section, we study the interpolation problem for the “bad” set B. It contains 0, all other
elements in B are close to zero, and we place no assumptions on ∆(B). We seek a trigonometric
polynomial f such that f(0) = 1 and f vanishes on B \ {0}.

Throughout this paper, let ψ : [−1
2 ,

1
2 ] → R be the sinc kernel restricted to [−1

2 ,
1
2 ],

ψ(t) :=

{
sin(πt)

πt if t 6= 0,

1 if t = 0.
(6.3)

One can provide lower bounds for ψ via Taylor expansions, but the point here is that multiplication
by ψ(t) is negligible whenever t ≈ 0. It naturally appears from the following calculation. For all
|t| ≤ 1

2 , we have

|1− e2πit|2 = 2− 2 cos(2πt) = 4π2t2
(
sin(πt)

πt

)2

= 4π2t2ψ(t)2. (6.4)

We have the basic bound that ψ(t) ≥ ψ(12 ) =
2
π since it is decreasing away from zero in its domain.

We have our first result for the bad set, which will be used in the proof of Theorem 1.

Lemma 6.3. Suppose B is a set of at most r points in T with 0 ∈ B and B ⊆ [−τ, τ ] for some
τ ∈ (0, 12 ]. For any n ∈ N+ such that n ≥ r, define the subsets

I :=
{
w ∈ B : 0 < |w|T ≤ r

2n

}
and J := B \ (I ∪ {0}).

Then there exists a f ∈ Pn such that f vanishes on B \ {0}, f(0) = 1, and

‖f‖L2 ≤ 1√
⌊nr ⌋

∏

w∈J

1

2⌊ 1
2|w|T ⌋|w|T

∏

w∈I

1

2⌊nr ⌋|w|T
.

Proof. We first deal with the B = {0} case, in which case I = J = ∅. Then we define f to be a
normalized Dirichlet kernel,

f(x) :=
1

n

n−1∑

ℓ=0

e2πiℓx.
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Notice that f(0) = 1 and f ∈ Pn. Moreover, an application of Parseval establishes that for any
r ∈ N+, we have

‖f‖L2 ≤ 1√
n
≤ 1√

⌊nr ⌋
.

This takes care of the B = {0} case.
From here onward, assume that |B| ≥ 2. We first deal with the case that I 6= ∅. For each

w ∈ B, we define the natural number q(w) where

q(w) := q :=
⌊n
r

⌋
if w ∈ I, and q(w) :=

⌊
1

2|w|T

⌋
if w ∈ J .

We readily verify that q(w)|w|T ≤ 1
2 for all w ∈ I ∪ J , which implies

|q(w)w|T = q(w)|w|T for each w ∈ I ∪ J . (6.5)

In particular, this implies |q(w)w|T 6= 0 whenever w ∈ I ∪ J . This enables us to define the
polynomials,

h0(x) :=
∏

w∈I

e2πiq(w)x − e2πiq(w)w

1− e2πiq(w)w
, and g(x) :=

∏

w∈J

e2πiq(w)x − e2πiq(w)w

1− e2πiq(w)w
.

By construction, h0 vanishes on I and h0(0) = 1. For each ℓ = 1, 2, . . . , q − 1, we define the
functions

hℓ(x) := e2πiℓxh0(x) and h :=
1

q

q−1∑

ℓ=0

hℓ.

Using that |hℓ| = |h0|, we see that h(0) = 1 and h also vanishes on I. Note that hℓ is a trigonometric
polynomial whose frequencies are in ℓ+{0, q, . . . |I|q}. This implies that {hℓ}q−1

ℓ=0 are L2 orthogonal,
deg(h) ≤ |I|q + q − 1, and by orthogonality,

‖h‖2L2 =
1

q2

q−1∑

ℓ=1

‖hℓ‖2L2 =
1

q2

q−1∑

ℓ=1

‖h0‖2L2 ≤ 1

q
‖h0‖2L∞ . (6.6)

We define f := gh. By construction, f(0) = 1 and f vanishes on B \ {0}. We bound the degree
of f . Note for each w ∈ J , we have |w|T > r

n and so q(w) ≤ n
2r . This implies, together with the

assumption |B| ≤ r, that

deg(f) = |I|q + q − 1 +
∑

w∈J
q(w) ≤ n(|I|+ 1)

r
− 1 +

n|J |
r

≤ n|B|
r

− 1 ≤ n− 1.

It remains to obtain the desired bound for ‖f‖L2 . Using (6.6), we get

‖f‖L2 ≤ ‖h‖L2‖g‖L∞ ≤ 1√
q
‖h0‖L∞‖g‖L∞ ≤ 1√

q

∏

w∈I∪J

2

|1− e2πiq(w)w| .

Combining this with (6.4), (6.5), and that ψ(t) ≥ 2
π for |t| ≤ 1

2 , we obtain

‖f‖L2 ≤ 1√
q

∏

w∈B

1

π|q(w)w|T ψ(|q(w)w|T)
≤ 1√

q

∏

w∈B

1

2q(w)|w|T
.

23



Using the definition of q(w) yields the claimed upper bound for ‖f‖L2 when I 6= ∅.
Finally, for the remaining case where |B| ≥ 2 and I = ∅, we use the same g as above but with

a different h. We instead use a normalized Dirichlet kernel,

h(x) :=
1

⌊n/r⌋

⌊n/r⌋−1∑

ℓ=0

e2πiℓx.

We have h ∈ P⌊n/r⌋ and that ‖h‖L2 = 1/
√

⌊n/r⌋. Setting f := gh, we see that

deg(f) = deg(g) + deg(h) ≤ |J |n
r
+

n

r
− 1 ≤ n− 1,

where the final inequality used that since I = ∅ and 0 ∈ B, we have |J | = |B| − 1 ≤ r − 1. Hence,
f ∈ Pn and it satisfies the desired interpolation properties. Combining the previous upper bounds
for ‖g‖L∞ and ‖h‖L2 completes the proof.

The following is our second result for the bad set, which will be used in the proof of Theorem 2.

Lemma 6.4. Let n, r ∈ N+ such that n ≥ r and δ ∈ (0, 1
n ]. Suppose B ⊆ T is a finite set such that

0 ∈ B, |B| = r and δ ≤ ∆(B) ≤ 1
n . Then there exists a f ∈ Pn such that f vanishes on B \ {0},

f(0) = 1, and

‖f‖L2 ≤ 2e

πr

1√
⌊nr ⌋

(
4e

πψ(nδ2 )r⌊nr ⌋δ

)r−1

.

Proof. We define the subsets,

I :=

{
w ∈ B : 0 < |w|T ≤ r

2n

}
and J := B \ (I ∪ {0}).

We first deal with the B = {0} case, in which case r = 1 and I = J = ∅. Similar to the proof
of Lemma 6.3, we define f(x) := 1

n

∑n−1
ℓ=0 e2πiℓx. Then f(0) = 1, f ∈ Pn, and ‖f‖L2 ≤ 1√

n
. Since

2e
π ≥ 1, this proves the B = {0} case.

From here onward assume that r ≥ 2. We enumerate the elements of B as 0 = w0, w1, . . . , wr−1

where |wk|T ≤ |wk+1|T for each k. For reasons that will become apparent later, for any d ∈ N+,
we define the following sequence, 0,−1, 1,−2, 2,−3, 3, . . . , which we enumerate by a0, a1, . . . . We
define the natural numbers q1, . . . , qr−1 as

qk := q :=
⌊n
r

⌋
if wk ∈ I, and qk :=

⌊
q|ak|δ
|wk|T

⌋
if wk ∈ J .

We need to set the stage before we explicitly construct f . For each wk ∈ I, we immediately get
qk|wk|T ≤ 1

2 by definition of q and I. For each wk ∈ J , we use that |ak| ≤ r
2 regardless of the

parity of r and the assumption δ ≤ 1
n to see that qk|wk|T ≤ q|ak|δ ≤ 1

2 . This implies

|qkwk|T = qk|wk|T for each wk ∈ B \ {0}. (6.7)

This enables us to define the polynomials,

h0(x) :=
∏

w∈I

e2πiqx − e2πiqw

1− e2πiqw
, and g(x) :=

∏

wk∈J

e2πiqkx − e2πiqkwk

1− e2πiqkwk
.
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We repeat the same sub-argument that appeared in the proof of Lemma 6.3. We define the function
h(x) := 1

q

∑q−1
ℓ=0 e

2πiℓxh0(x), and we see that ‖h‖L2 ≤ 1√
q‖h0‖L∞ . Thus, we define f = gh and so

‖f‖L2 ≤ 1√
q
‖h0‖L∞‖g‖L∞ ≤ 1√

q

∏

w∈I

2

|1− e2πiqw|
∏

wk∈J

2

|1− e2πiqkwk | . (6.8)

By construction, f satisfies the desired interpolation properties. We argue that f ∈ Pn. Notice
that deg(h0) = q|I| and deg(h) = q|I| + q − 1. On the other hand, for each wk ∈ J , using that
|ak| ≤ r

2 , δ ≤ 1
n , and |wk|T > r

2n , we see that qk ≤ q. Thus,

deg(f) = q(|I|+ 1)− 1 +
∑

wk∈J
qk ≤ q(|I|+ |J |+ 1)− 1 ≤ n|B|

r
− 1 ≤ n− 1.

It remains to upper bound ‖f‖L2 . By (6.7), we see that |qkwk|T = qk|wk|T ≥ q|ak|δ/2. Using this
inequality on the right side of (6.8), we get

‖f‖L2 ≤ 1√
q

∏

w∈I

2√
2− 2 cos(2πq|w|T)

∏

wk∈J

2√
2− 2 cos(2πq|ak|δ/2)

. (6.9)

We let ℓ := |I| and claim that

∏

w∈I

2√
2− 2 cos(2πq|w|T)

≤
ℓ∏

k=1

2√
2− 2 cos(2πq|ak|δ)

(6.10)

Recall that ∆(I ∪ {0}) ≥ δ and that 0 6∈ I. We define the auxiliary function,

γ(t1, t2, . . . , tℓ) :=

ℓ∑

k=1

1

1− cos(2πq|tk|)
,

where δ ≤ |tk| ≤ 1
2q for each k and |tj − tk| ≥ δ for each j 6= k. Clearly this function increases if any

tj is made smaller while the remaining tk’s are fixed. We claim that γ is maximized precisely when
t1, t2, . . . , tℓ is a1δ, a2δ, . . . , aℓδ. To see this, we list t1, t2, . . . , tℓ as {u1, . . . , ua, v1, . . . , vb} where
a+ b = ℓ and

ua < · · · < u1 ≤ −δ < 0 < δ ≤ v1 < · · · < vb.

If b ≥ 1, we can assume that v1 = δ since a shift of all v1, . . . , vb by the same amount towards
0 increases the value of γ. If a ≥ 1, we can likewise assume that u1 = −δ. Finally, γ is further
increased if all the u’s and v’s are fixed except v2 is replaced with 2δ, then v3 is moved to 3δ,
etc. Likewise, γ is increased if u2 is replaced to −2δ, etc. Hence, we see that γ(t1, t2, . . . , tℓ) is
dominated by γ(−aδ, . . . ,−δ, δ, . . . , bδ). If |a− b| > 1, then by reflecting elements across the origin
and shifting again, we see that γ(−aδ, . . . ,−δ, δ, . . . , bδ) is further dominated by γ(a1δ, a2δ, . . . , aℓδ).
This establishes inequality (6.10).

We continue with the upper bound for ‖f‖L2 . Note that q|ak|δ ≤ nδ
2 for each k = 1, . . . , r − 1

and that ψ is decreasing on [0, 12 ]. Using (6.4), (6.9), and (6.10), we see that

‖f‖L2 ≤ 1√
q

ℓ∏

k=1

1

πψ(q|ak|δ)q|ak |δ
∏

wk∈J

2

πψ(q|ak|δ/2)q|ak |δ
≤ 1√

q

r−1∏

k=1

2

πψ(nδ2 )q|ak|δ
. (6.11)
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To control the product over k, first note that

Cd :=

d∏

k=1

|ak| =





(
d
2 !

)(
d
2 !

)
if d is even,

(
d+1
2 !

)(
d−1
2 !

)
if d is odd.

Recall the well known inequalities k! ≥
√
2πk (ke )

k and 1 + t ≤ et for all t ≥ 0. We have C1 = 1,
and for d ≥ 2, we have

(d+ 1)d

Cd
≤ (2e)d

πd

(
d+ 1

d

)d

≤ (2e)de

πd
≤ (2e)d2e

π(d+ 1)
if d is even,

(d+ 1)d

Cd
=

2(d + 1)d−1

(d−1
2 !)2

≤ 2(2e)d−1

π(d− 1)

(
d+ 1

d− 1

)d−1

≤ 2(2e)d−1e2

π(d− 1)
≤ (2e)d2e

π(d+ 1)
if d is odd.

Using these and the definition of q in (6.11) completes the proof.

It may be worthwhile to mention a subtle technical part of this proof. We do not prove, or
claim, that the “worst case” B (up to trivial invariances) satisfying the hypotheses of Lemma 6.4 is

δ

{
−
⌊
r − 1

2

⌋
, . . . ,−1, 0, 1, . . . ,

⌈
r − 1

2

⌉}
. (6.12)

In this proof, we showed that for any B satisfying the hypotheses, there is an explicit Lagrange
interpolant f with some upper bound for ‖f‖L2 . Then we showed that this upper bound for ‖f‖L2

is maximized precisely when B is equal to (6.12). This is the quantity reported in the conclusion
of Lemma 6.4.

7 Proofs of the main results

7.1 Proof of Theorem 1

Proof. Let us first set the stage and discuss several immediate implications of the assumptions. Fix
any 1 ≤ k ≤ s and for convenience, we define

nk :=

⌊
m− 2ν(τ,Gk)

τ

⌋
.

Note that ν(τ,Gk) ≤ ν(τ,X ) since Gk ⊆ X . Also using the assumptions m ≥ 6s and 3ν(τ,X ) ≤ τm,
we have

m− 2ν(τ,Gk)

τ
≥ m− 2ν(τ,X )

τ
≥ m

3
≥ 2s. (7.1)

As immediate consequences of this inequality, we have nk ∈ N+ and that αk > 0. Since ν(τ,Bk) ≤
ν(τ,X ) due to Bk ⊆ X , we use the assumption 3ν(τ,X ) ≤ τm to see that

αk ≤ ν(τ,X )

2m− 4ν(τ,X )τ−1
≤ ν(τ,X )

6ν(τ,X )τ−1 − 4ν(τ,X )τ−1
≤ τ

2
. (7.2)

We first deal with the “good” set Gk. If Gk = ∅, then ν(τ,Gk) = 0 and we set gk := 1. Otherwise,
we assume Gk 6= ∅. We apply Proposition 6.2, where Gk − xk, ⌈ 2τ ⌉, and ν(τ,Gk) play the roles of B,
m and r respectively, in the referenced proposition’s notation. This provides us with a polynomial,
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which after shifting by xk, we call it gk ∈ Pν(τ,Gk)(⌈ 2

τ
⌉−1)+1 such that gk(xk) = 1, gk vanishes on Gk,

and

‖gk‖L∞ ≤
(
1 +

1

⌈ 2τ ⌉τ − 1

)ν(τ,Gk)/2

≤ 2ν(τ,Gk)/2. (7.3)

Note that this statement is still valid in the corner case that Gk = ∅ since in this case, we have
ν(τ,Gk) = 0, which is consistent with ‖gk‖L∞ = 1 and gk ∈ P1.

Now we deal with the “bad” set Bk := B(xk, τ,X ). We use the shorthand notation rk := |Bk|.
We are ready to employ Lemma 6.3, where Bk − xk, nk, and rk play the roles of B, n, and r
respectively, in the referenced lemma’s notation. Note that nk ≥ s from (7.1). The lemma provides
us with a polynomial, and after shifting by xk, we call it bk ∈ Pnk

such that bk vanishes on Bk\{xk},
bk(xk) = 1, and bk enjoys the estimates,

‖bk‖L2 ≤
√

1

⌊nk

rk
⌋

∏

x∈Jk

1

2⌊ 1
2|x−xk|T ⌋|x− xk|T

∏

x∈Ik

1

2⌊nk

rk
⌋|x− xk|T

.

Now we perform some algebraic manipulations and simplifications. First note that 1
αk

≤ 2nk+2
rk

,

and ⌊nk

rk
⌋ ≥ nk

rk
− rk−1

rk
since rk ∈ N+. Together, they imply that

1

2⌊nk

rk
⌋ ≤ 1

1
αk

− 2
=

αk

1− 2αk
.

Using this observation and the definition of φ in the previous upper bound for ‖bk‖L2 , we have

‖bk‖L2 ≤
√

2αk

1− 2αk

∏

x∈Jk

φ

(
1

2|x− xk|T

) ∏

x∈Ik

αk

(1− 2αk)|x− xk|T
. (7.4)

We next define fk := bkgk. We have fk ∈ Pm because

deg(fk) = deg(bk) + deg(gk) ≤ ν(τ,Gk)

(⌈
2

τ

⌉
− 1

)
+ nk − 1 ≤ 2ν(τ,Gk)

τ
+ nk − 1 ≤ m− 1.

Together with the interpolation properties of gk and bk, we see that {fk}sk=1 ⊆ Pm is a family of
Lagrange interpolants for X . We use Hölder’s inequality and the upper bounds (7.3) and (7.4) to
get

‖fk‖L2 ≤
√

2αk2ν(τ,Gk)

1− 2αk

∏

x∈Jk

φ

(
1

2|x− xk|T

) ∏

x∈Ik

αk

(1− 2αk)|x− xk|T
.

We apply Lemma 5.2 to complete the proof of (2.2).
Now we proceed to further upper bound the right side of (2.2). Using that φ(t) ≤ 2 for all

t ≥ 1, that αk ≤ τ
2 ≤ 1

4 due to (7.2), we obtain

1

σ2
s(Φ(m,X ))

≤
s∑

k=1

2ν(τ,Gk) 4αk 4
|Jk|

∏

x∈Ik

4α2
k

|x− xk|2T

≤ s max
1≤k≤s

{
2ν(τ,Gk)4αk4

|Jk|
∏

x∈Ik

4α2
k

|x− xk|2T

}
.

Rearranging this inequality and taking the square root completes the proof of (2.3).
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7.2 Proof of Theorem 2

Proof. Fix any 1 ≤ k ≤ s. Note (7.1) showed that nk ≥ ⌊m3 ⌋, while nk ≤ m immediately by
definition. The proof is analogous to the proof of Theorem 1, but with a different function for
the bad set. We carry over the same definitions of nk and rk. There we constructed the function
gk ∈ Pν(τ,Gk)(⌈ 2

τ
⌉−1)+1 for the “good” set Gk such that

‖gk‖L∞ ≤ 2ν(τ,Gk)/2. (7.5)

For the “bad” set Bk := B(xk, τ,X ), we note that ∆(Bk) ≥ ∆(X ) ≥ δ. We use Lemma 6.4,
where Bk − xk, nk and rk play the roles of B, n, and r respectively, in the referenced lemma’s
notation. Also note that nk ≥ s ≥ rk due to (7.1), and that δ ≤ 1

m ≤ 1
nk

. The lemma provides us
with a polynomial, and after shifting by xk, we call it bk ∈ Pnk

such that bk vanishes on Bk \ {xk},
bk(xk) = 1, and bk enjoys the estimate,

‖bk‖L2 ≤ 2e

πrk

1√
⌊nk

rk
⌋

(
4e

πψ(nkδ
2 )rk⌊nk

rk
⌋δ

)rk−1

. (7.6)

We define fk = gkbk. Repeating the same argument as in the proof of Theorem 1 shows that
fk ∈ Pm. By construction, {fk}sk=1 is a family of Lagrange polynomials for X . Using Hölder’s
inequality, (7.5), (7.6), and the definition of φ, we get

‖fk‖L2 ≤ 2e

π

√
2ν(τ,Gk)φ(nk

rk
)

rknk

(
4eφ(nk

rk
)

πψ(nkδ
2 )nkδ

)rk−1

.

Finally, using Lemma 5.2 completes the proof of (2.4).
We proceed to make numerous simplifications of the right hand side of (2.4). Since δ ≤ 1

m and

nk ≤ m, we have ψ(nkδ
2 ) ≥ ψ(12 ) =

2
π . Note that (7.1) and the assumption m ≥ 6s imply

rk

⌊
nk

rk

⌋
≥ rk

(
nk

rk
− rk − 1

rk

)
= nk − rk + 1 ≥ m− 2ν(τ,X )

τ
− rk ≥ m

3
− s ≥ m

6
.

Using these observations in (2.4) now establishes

1

σ2
s(Φ(m,X ))

≤ 24e2

π2m

s∑

k=1

2ν(τ,Gk)

rk

(
12e

mδ

)2rk−2

≤ 24e2s

π2m
max
1≤k≤s

{
2ν(τ,Gk)

rk

(
12e

mδ

)2rk−2
}
.

Rearranging this inequality and taking the square root completes the proof of (2.5).

7.3 Proof of Corollary 1

Proof. We first claim that X satisfies the (m, τ) density criterion. This trivially holds when r = 1
because then τ = 1

2 and so ν(τ,X ) = |X | = s = λ. From here onward, assume that r > 1. For any
x ∈ X , let Cx be the clump that x belongs to. Since β > α by definition, we see that

Cx = {x′ ∈ X : |x− x′|T ≤ β},

otherwise it would contradict the assumption that any two clumps are separated by distances
strictly larger than β and that diam(Cx) ≤ α < β. This shows that ν(τ,X ) ≤ λ, and since there
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is a clump that has cardinality exactly equal to λ, we see that ν(τ,X ) = λ. We have β ≥ 3λ
m by

assumption, and so
3ν(τ,X )

τ
=

3λ

β
≤ m.

We have shown that X satisfies the (m, τ) density criterion. This shows that the assumptions
of Theorem 1 and Theorem 2 are satisfied. For each k in the right side of (2.5), we use that
rk ≤ ν(τ,X ) = λ and ν(τ,Gk) ≤ ν(τ,X ) = λ to complete the proof.

7.4 Proof of Theorem 3

Proof. Letting ν := ν(τ,X ), by the decomposition given in Proposition 6.1, we have a disjoint
union

X = X1 ∪ X2 ∪ · · · ∪ Xν , where ∆(Xk) ≥ τ for each k = 1, 2, . . . , ν.

Since the singular values of Φ(m,X ) are invariant under permutations of its columns, after reshuf-
fling,

Φ(m,X ) =
[
Φ(m,X1) Φ(m,X2) · · · Φ(m,Xν)

]
.

Let u ∈ C
|X | be any unit norm vector, and likewise, we partition u into sub-vectors u1, u2, . . . , uν

such that uk ∈ C
|Xk|. Since ∆(Xk) ≥ τ for each k and m > 1

τ , we use the upper bound in (1.1) to
get

‖Φ(m,X )u‖2 =

∥∥∥∥∥

ν∑

k=1

Φ(m,Xk)uk

∥∥∥∥∥
2

≤
√

m+
1

τ

ν∑

k=1

‖uk‖2.

Using Cauchy-Schwarz and that u has unit norm, we obtain

ν∑

k=1

‖uk‖2 ≤
√
ν

(
ν∑

k=1

‖uk‖22

)1/2

=
√
ν‖u‖2 =

√
ν.

Combining the above inequalities completes the proof.

Computational costs and benefits

Selecting reasonable τ to use in the main theorems can be done computationally. Let T ⊆ (0, 12 ]
be a collection of τ for which we would like to evaluate the main estimates. We proceed to analyze
the naive time and storage complexity of evaluating the main estimates for each τ ∈ T . All of
the main inequalities are simple expressions that can be evaluated once the various parameters are
determined, which importantly, only depend on τ and distances between elements in X .

As overhead, we first compute the distances between all
(
s
2

)
distinct pairs of elements in X ,

which requires O(s2) operations and storage. As we will see, computation of the local sparsity is
the main bottleneck. For an arbitrary and finite set U ⊆ T, computation of ν(τ,U) requires O(|U|2)
operations since we need to enumerate through each u ∈ U and find the number of u′ ∈ U such
that |u− u′| ≤ τ .

Coming back to the task at hand, we perform a first loop over each xk ∈ X and τ ∈ T , in
order to compute |B(xk, τ,X )| and ν(τ,G(xk, τ,X )). This loop requires O(s3|T |) time and O(s|T |)
storage. After the first loop executes, we perform a second loop through each xk ∈ X and τ ∈ T .
In this loop, we calculate the necessary parameters (e.g., αk, nk) and each of the s terms in the
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main inequalities. This second loop requires O(s2|T |) time for Theorem 1 and O(s|T |) time for
Theorem 2. Then we perform a final minimization or summation (depending on which inequality
is evaluated), and then find the the optimal τ ∈ T . Ultimately, computation of the optimal τ ∈ T
for any of these theorems requires O(s3|T |) operations and O(s2 + |T |) storage.

Let us quickly remark that these complexities are for arbitrary X and T , and the computations
can be sped up under special cases. Suppose X consists of clumps and T ⊆ [α, β], where α and β
are clump parameters as in Definition 2.3. Notice that |B(xk, τ,X )| is the cardinality of the clump
that contains xk, while G(xk, τ,X ) consists of all the other clumps that do not contain xk, and
ν(τ,G(xk, τ,X )) is the cardinality of the largest clump that does not contain xk. All of them do not
vary with τ ∈ T . So these quantities can be computed with O(s2) operations instead of O(s3|T |).

Another possibility of improvement is to take advantage of redundancies in these calculations
when looping through τ ∈ T . Notice that |B(xk, τ,X )| and ν(τ,G(xk, τ,X )) are piece-wise constant
functions with at most s − 1 break points, so there is no need to enumerate through T . So the
|T | terms in the above complexities can be replaced with s2 whenever |T | ≥ s2. However, in our
experience, we usually have a good sense for what range of τ is appropriate, so only a few different
τ need to be evaluated. Moreover, the loop over T can be parallelized to further reduce the scaling
in |T |.

In comparison, the singular value decomposition of Φ(m,X ) requires O(m2s) operations and
O(ms) storage; recall that m ≥ s and we require m ≥ 6s to use the main theorems. Depending on
the relationship between m, s, and |T |, it may be significantly faster to compute the expressions of
the main theorems to obtain approximations rather than numerically computing the actual smallest
singular value. This gain is particularly noticeable for many signal and image processing problems
where m ≫ s.

Our theorems offer significant computational benefits when there is uncertainty in X or freedom
to choose X . For instance, consider a situation where each xk lies in some interval [x∗k−εk, x

∗
k+εk].

This may occur if we only have some rough idea of what xk is or if we are forced to select xk in
this interval due to some constraint. Hence, we are dealing with infinitely many possible sets X .
In principle, we could N many possible X , and use the SVD to calculate the singular values of
Φ(m,X ), which requires O(Nm2s) operations.

On the other hand, our theorems give interpretable bounds for the smallest singular value in
terms of the geometry of X , so we have some understanding of which sets lead to poor condition
numbers. This greatly reduces the number of sets X that would be considered, from large N to
much smaller n. Hence, it suffices to compute n many SVDs, which requires O(nm2s) operations,
or evaluate our main theorems for n many X and |T | many τ , which requires O(ns3|T |) operations.

Conclusion and future work

This paper presented multiscale estimates for the condition number of Fourier matrices for general
X provided that there is a modicum of redundancy, m ≥ 6s. The main results are completely new
whenever ∆(X ) < 1

m and X does not consist of separated clumps. Even in the clump framework, the
main results significantly reduce sufficient conditions of prior works and achieve similar estimates.
The main results also greatly improve upon classical estimates and provide a unified framework for
dealing with a disparate collection of sets, which were previously treated on a case-by-case basis.

We state one immediate consequence of the main results. It was shown in [28] that the stability
of a foundational algorithm called ESPRIT [37] used for signal processing enjoys (under suitable
conditions) the error estimate

error ≤ Cs · noise
σ2
s(Φ(m,X ))

.
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A significance of this inequality is that it establishes ESPRIT is near min-max optimal. Since this
paper greatly enlarges the collection of X for which we have accurate estimates for σs(Φ(m,X )), it
yields significant practical implications for ESPRIT and related signal processing algorithms and
applications such as [29]. These improvements and their implications will be discussed in a separate
article.

Returning to discussion of main results, a natural question is the selection of an optimal scale
parameter τ for which to invoke the main inequalities in Theorems 1 and 2. This is not a simple task
(for theoretical purposes) and greatly depends on X . We saw examples where the best effective
scale τ is on the order of 1

m such as for clumps, whereas τ = 1
2 for sparse spike trains. These

polarizing examples illustrate that the optimal effective scale does not only depend on m, s, and/or
∆(X ), but on more complicated relationships depending on X .

Regarding the main theorems’ assumptions, they can be weakened to m ≥ 3s and 2ν(τ,X )
τ + s ≤

m − 1 without significant modifications to the main proofs. However, doing so would change the
numerical constants in a rather undesirable way. For this reason, we decided to state the main
results with a stronger than necessary conditions. The techniques introduced in this paper are
unable to deal with the extreme case where m ≥ s and ν(τ,X )

2τ ≤ m. This is due to splitting
the good and bad sets into separate problems, which comes at a cost of making the interpolants’
degrees larger than necessary. To circumvent this, one can handle the good and bad sets in a
unified manner and construct interpolants in a completely different way. Our construction of these
alternative polynomials have horribly large norms, which in turn, yields a lower bound for σs(Φ)
that appears to have limited use outside of special contexts.

Many of the techniques and ideas in this paper, including the polynomial method, are flexible.
They can be altered to deal with more restricted classes of X if desired and can be extended
to multivariate Fourier matrices. Such a matrix has the form Φ = [e2πij·xk ]j∈Ω, xk∈X for some
X = {xk}sk=1 ⊆ T

d and Ω ⊆ R
d. There are many open questions about the condition number of

multivariate Fourier matrices and their behavior greatly depends on the structure of both X and Ω.
From the dual perspective, interpolation by multivariate polynomials is also much more involved.
Due to these added technical difficulties and important differences, we deal with multidimensional
matrices in a separate article [26].
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