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OCCUPANCY INFORMATION RATIO: INFINITE-HORIZON,
INFORMATION-DIRECTED, PARAMETERIZED POLICY SEARCH∗

WESLEY A. SUTTLE†, ALEC KOPPEL‡, AND JI LIU§

Abstract. In this work, we propose an information-directed objective for infinite-horizon rein-
forcement learning (RL), called the occupancy information ratio (OIR), inspired by the information
ratio objectives used in previous information-directed sampling schemes for multi-armed bandits and
Markov decision processes as well as recent advances in general utility RL. The OIR, composed of a
ratio between the average cost of a policy and the entropy of its induced state occupancy measure,
enjoys rich underlying structure and presents an objective to which scalable, model-free policy search
methods naturally apply. Specifically, we show by leveraging connections between quasiconvex opti-
mization and the linear programming theory for Markov decision processes that the OIR problem can
be transformed and solved via convex optimization methods when the underlying model is known.
Since model knowledge is typically lacking in practice, we lay the foundations for model-free OIR
policy search methods by establishing a corresponding policy gradient theorem. Building on this
result, we subsequently derive REINFORCE- and actor-critic-style algorithms for solving the OIR
problem in policy parameter space. Crucially, exploiting the powerful hidden quasiconvexity prop-
erty implied by our transformation of the OIR problem, we establish finite-time convergence of the
REINFORCE-style scheme to global optimality and asymptotic convergence of the actor-critic-style
scheme to (near) global optimality under suitable conditions. Finally, we experimentally illustrate
the utility of OIR-based methods over vanilla methods in sparse-reward settings, supporting the OIR
as an alternative to existing RL objectives.
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1. Introduction. The field of reinforcement learning (RL) [35] has seen many
attempts to address the exploration/exploitation trade-off by incentivizing exploration
via additive regularization; the hope is that, with more experience, the agent can im-
prove its exploitation capabilities. Prior works on information-directed solution meth-
ods for multi-armed bandits (MABs) [29, 30] and Markov decision processes (MDPs)
[22] instead seek to address this trade-off by minimizing an information ratio objective,
defined as the ratio of cost incurred to information acquired. Importantly, when used
as a tool for devising information-directed action-selection schemes, the specific form
of these information ratio objectives leads to policies with improved data efficiency
and improved regret bounds revealing the dependence of performance on information.
Beyond the original works, the advantages of information ratio objectives have been
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analyzed in the frequentist bandit setting [15], as well as the more general linear partial
monitoring setting [14]. In the RL setting, however, the same information-theoretic
quantities and assumptions on problem structure that make these insights possible
also limit the practical utility of the information ratios proposed in [22] as tools for
guiding action-selection. In particular, the abstract learning targets, representation
of cost in terms of regret, and mutual information formulation of information gain of
a policy lead to difficulties in devising practical estimation procedures. Moreover, the
practical schemes proposed in [22] rely on optimizing over the space D(A) of action
distributions at each step, limiting their practical use to the finite action space setting.
Due to these issues, the information ratio and its proxies explored in [22] suffer from
tractability and scalability issues in realistic settings.

Gaps therefore remain in the theory of information-directed methods under gen-
eral function approximation. The work [26] proposes a variant of deep Q-learning
that optimizes the ratio of Bellman error to a variance surrogate for information gain,
with substantial performance gains in practice, suggesting developing the theory of
information-directed schemes that can operate with parameterization is a worthy av-
enue of pursuit. New proxy objectives that tractably, scalably extend the spirit of the
information-directed schemes of [29, 30, 22] to operate with function approximation
and exhibit performance guarantees are therefore required. In order to achieve this,
two issues must be addressed. First, in order to overcome the limited scalability in-
herent in value-based methods, operating in parameter space is required, for which
policy gradient methods are most natural [20, 32, 9]. Recent theoretical progress has
also been made in providing global optimality guarantees for policy gradient methods
[4, 1, 23, 39, 3], strengthening the motivation for pursuing such methods. Second, to
address the estimation issues associated with the notions of information gain used in
[22], we need a definition of informativeness that is amenable to policy search in pa-
rameter space. Occupancy measure entropy has recently been used as an optimization
objective [10, 19, 39] quantifying the amount of information about the environment
that a policy provides through the Kullback–Leibler divergence of its state occupancy
measure from a uniform distribution. Motivated by this, in this work we take oc-
cupancy measure entropy, or occupancy information, of a policy as the fundamental
quantity defining its informativeness. Based on this definition, we develop and study
a new RL objective called the occupancy information ratio, or OIR, which captures
the exploration/exploitation trade-off as defined by the ratio of long-term average cost
to occupancy information of a policy.

Main contributions. Our main contributions are as follows. (1) We propose a
new RL objective, the occupancy information ratio (OIR), that is both inspired by
the information ratio objectives of [29, 30, 22] and amenable to solution via policy
search. (2) Drawing on connections between quasiconvex optimization and the linear
programming theory for MDPs, we derive a concave programming reformulation of
the OIR optimization problem over the space of state-action occupancy measures, es-
tablishing underlying theory that we exploit to strengthen our subsequent convergence
results. (3) We derive an OIR policy gradient theorem, then use it to develop OIR
policy gradient algorithms: Information-Directed REINFORCE (ID-REINFORCE)
and Information-Directed Actor-Critic (IDAC). (4) We establish corresponding con-
vergence theory with three key results: (i) OIR policy optimization enjoys a power-
ful hidden quasiconvexity property guaranteeing its first-order stationary points are
global optima; (ii) the gradient descent scheme underlying ID-REINFORCE enjoys
a nonasymptotic, information-dependent convergence rate; (iii) IDAC converges with
probability one to (a neighborhood of) a global optimum of the OIR problem. (5) We
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OCCUPANCY INFORMATION RATIO 3147

provide experimental results indicating that OIR-based methods are able to outper-
form vanilla RL methods in sparse-reward settings, providing auxiliary support for
the study of the OIR as an independent RL objective.

It is important to note that while the technical motivation for the OIR objective
stems from balancing explore-exploit issues via connections with the information ratio
methods of [29, 30, 22], our main convergence theory is of an optimization flavor, in
the sense that we provide asymptotic and nonasymptotic analysis of algorithms opti-
mizing the OIR objective. An information-theoretic characterization of the resulting
policies remains an important, open problem that we leave for future work. The key
technical challenge in our results lies in handling the fractional form of the OIR objec-
tive, which has not been previously addressed in the literature. To overcome this chal-
lenge, we first characterize the quasiconvex structure of the OIR problem in section 3.
Leveraging this structure, especially properties of the perspective transform familiar
to the quasiconvex programming literature, we then extend the convex utility analysis
of [39]1 to quasiconvex utilities, including the OIR, in sections 5.1–5.2. Finally, we
extend the asymptotic actor-critic analyses of [5, 34] to our IDAC algorithm, taking
special care to establish the requisite smoothness properties of the OIR gradient as
well as asymptotic negligibility of corresponding, OIR-specific noise and error terms.

2. Problem formulation. We now describe our problem setting and formu-
late the OIR objective. We first define an underlying Markov decision process, then
formulate the OIR as an objective to be optimized over it.

2.1. Markov decision processes. Consider an average-cost MDP described
by the tuple (S,A, p, c), where S is the finite state space, A is the finite action space,
p : S × A → D(S) is the transition probability kernel mapping state-action pairs to
distributions over the state space, and c : S ×A → R+ is the cost function mapping
state-action pairs to positive scalars. In this setting, at time step t, the agent is in
state st, chooses an action at according to a policy π : S → D(A) mapping states
to distributions over A, incurs cost c(st, at), and then the system transitions into
a new state st+1 ∼ p(·|st, at). Since we are interested in policy gradient methods,
we give the following definitions with respect to a parameterized family {πθ : S →
D(A)}θ∈Θ of policies, where Θ ⊂ Rd is some set of permissible policy parameters.
Note that analogous definitions apply to any policy π. For any θ ∈ Θ, let dθ(s) =
limt→∞P (st = s | πθ) denote the steady-state occupancy measure over S induced
by πθ, which we assume to be independent of the initial start state. In addition, let
λθ(s, a) = limt→∞P (st = s, at = a | πθ) denote the state-action occupancy measure
induced by πθ over S × A. Notice that λθ(s, a) = dθ(s)πθ(a|s). Furthermore, let
J(θ) =

∑
s dθ(s)

∑
a πθ(a|s)c(s, a) denote the long-run average cost of using policy πθ.

Finally, given θ, define the entropy of the state occupancy measure induced by πθ to
be H(dθ) =−∑s dθ(s) logdθ(s). This quantity measures how well πθ covers the state
space S in the long run.

2.2. Occupancy information ratio. We consider the OIR objective

ρ(θ) =
J(θ)

κ+H(dθ)
,(2.1)

where κ>−minθH(dθ) is a user-specified constant chosen to ensure that the denom-
inator in (2.1) remains strictly positive. Given an MDP (S,A, p, c), our goal is to find

1While the term “hidden concavity” is used in [39] due to the authors’ focus on maximization,
we focus on minimization and will thus use the term “hidden convexity” when there is no risk of
confusion.
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3148 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU

a policy parameter θ∗ such that πθ∗ minimizes (2.1) over the MDP, i.e., subject to
its costs and dynamics. As J(θ) and H(dθ) are both infinite-horizon quantities, we
regard (2.1) as an infinite-horizon objective.

Remark 2.1. If we allow κ < −maxθH(dθ) and require J(θ) ≥ 0 for all θ ∈
Θ, minimizing (2.1) will in fact minimize the ratio of −J(θ) to the absolute value
|κ +H(dθ)|. In this case, minimizing the OIR maximizes J(θ)/(|κ| −H(dθ)). This
allows the OIR framework to accommodate rewards by simply replacing the cost
function c in the MDP with a reward function r and choosing κ<−maxθH(dθ).

2.3. OIR as a proxy objective for information-directed sampling. The
general setting of [22] is a sequential decision-making problem where the goal is to
balance optimizing a given objective with acquiring information about an abstract
learning target, X , through interactions with the environment, all while maintain-
ing and updating some relevant epistemic state, Pt. For example, X may denote
the optimal policy for the objective or some suitable exploration scheme, while Pt

might include policy and value function parameters at time t. Given some reward
r, state s, and policy π, let Vπ(s) denote the value function starting from state s of
policy π, and let Qπ(s, a) denote the state-action value function for π starting from
s, a. Define V∗(s) = maxπ Vπ(s),Q∗(s, a) = maxπ Qπ(s, a), and let H(X|Pt) denote
the conditional entropy, or remaining uncertainty, of the learning target given Pt.
Once the agent has successfully achieved its learning target, H(X|Pt) will typically
be small or zero. Given Pt, horizon τ , and a candidate policy π, let Pt+τ denote
the epistemic state resulting from starting with Pt and using π for τ steps. Then
[H(X|Pt)−H(X|Pt+τ )]/τ is the τ -step information gain resulting from following π.
For a given candidate policy π, the τ -step information ratio of π at time t is defined in
[22] as the ratio of its instantaneous squared shortfall to its τ -step information gain:

Γπ
τ,t =

Eπ [V∗(st)−Q∗(st, at)]
2

[H(X|Pt)−H(X|Pt+τ )]/τ
.(2.2)

For a candidate π, [30, 22] show that Regret(T |π) =∑T−1
t=0 Eπ [V∗(st)−Q∗(st, at)] ≤√

H(X|P0)
∑T−1

t=0 Γπ
τ,t. This bound suggests that, by choosing a policy minimizing

(2.2) at each time step, overall regret can be minimized, leading to improved data
efficiency due to intelligent information acquisition. However, several factors limit
the tractability of the information ratio objective (2.2). First, the presence of V∗,Q∗
renders explicit estimation of the numerator intractable. Similarly, the specific choice
of X , formulation of Pt, and choice of τ make estimation of the denominator difficult.
Objective (2.2) is thus more useful as an archetype for proxy objectives than as an
optimization objective itself. Several Q-learning–based schemes using such proxy
objectives are accordingly proposed in [22], yet these are inherently restricted to the
finite action space setting and the corresponding proxy objectives are not amenable
to optimization using policy gradient-based methods, limiting scalability.

To obtain a proxy objective for (2.2) that is amenable to policy search, we must
recast the components of (2.2) into policy search-friendly terms. We emphasize that,
due to the abstract nature of the learning target X and epistemic states Pt and Pt+τ in
(2.2), deriving a direct translation of this objective for the policy search setting and es-
tablishing analogues of the corresponding regret analysis of [22] are likely impractical.
We instead focus on deriving a new proxy objective that is above all practically and
theoretically tractable for parameterized policy search, yet still retains the spirit of
(2.2) as a measure of the ratio of shortfall incurred to information gained. To achieve
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OCCUPANCY INFORMATION RATIO 3149

this, we first replace the squared shortfall in the numerator of (2.2) with the expected
average cost, J(θ), of the candidate policy πθ. By eliminating the dependence on
the optimal value functions V∗ and Q∗ present in (2.2) and removing the square in
the squared shortfall, we break the applicability of the regret analyses of [22]. In
compensation, however, these steps enable our subsequent use of the policy gradient
theorem, a key ingredient for policy search. We next recast the information gain in
the denominator. Without prior knowledge of the optimal policy π∗, environmental
exploration is a natural proxy for information gain. As discussed in the introduction,
state occupancy measure entropy, H(dθ), is widely used to quantify the exploration
achieved by policy πθ. For this reason, we replace the abstract τ -step information gain
of (2.2) with the concrete state occupancy measure entropy term κ+H(dθ), where we
choose κ > −minθH(dθ) to ensure that the denominator remains positive. Despite
losing the generality of the information gain term of (2.2) and the applicability of
the regret analysis of [22], the resulting OIR objective (2.1) is far more tractable for
policy search, as will be seen next.

3. Elements of OIR optimization. We now turn to the problem of optimizing
the OIR defined in (2.1). First, we build on parallels with linear programming solu-
tions to MDPs and quasiconvex programming to transform the nonconvex problem of
minimizing (2.1) into a concave program over the space of state-action occupancy mea-
sures. This endows the OIR problem with the powerful hidden quasiconvexity property
(cf. section 5.1) that we exploit to strengthen the convergence results for our policy
gradient algorithms in section 5. Second, we lay the groundwork for model-free policy
search methods developed in section 4 by deriving a policy gradient theorem for∇ρ(θ).

3.1. Concave reformulation. Given an average-cost MDP (S,A, p, c) and a
policy π, let λπ ∈ D(S × A) denote the state-action occupancy measure induced by
π on S × A, i.e., λsa = limt→∞P (st = s, at = a |π). As discussed in section 8.8 of
[27], if we have access to p and c, an optimal state value function can be obtained
by solving a related linear program, (P). This is useful, as the existence of weakly
polynomial-time algorithms for solving linear programs [12, 11] ensures the problem
can be solved efficiently. Furthermore, the state-action occupancy measure λ∗ of
the optimal policy π∗ for (S,A, p, c) can be obtained by solving the following linear
program, which is dual to (P): minλ≥0{J(λ) = cTλ | ∑s,a λsa = 1 and

∑
a λsa =∑

s′,a p(s|s′, a)λs′a ∀s∈ S}. Call this dual linear program (D). The constraints ensure
that the decision variables λ give a valid state-action occupancy measure for the MDP.
Given a feasible solution λ to (D), J(λ) is clearly the expected long-run average cost of
following a policy that induces λ. Further, the policy πλ defined by πλ(a|s) = λsa∑

a′ λsa′
induces λ (see Thm. 8.8.2 in [27]). Thus, once the optimal λ∗ is obtained by solving
(D), the corresponding policy πλ∗ is optimal for (S,A, p, c).

An analogous problem, (Q), can be used to minimize (2.1) over (S,A, p, c):

min
λ≥ 0

ρ(λ) =
J(λ)

κ+ Ĥ(λ)

s.t.
∑
s,a

λsa= 1(Q) ∑
a

λsa=
∑
s′,a

p(s|s′, a)λs′a ∀s∈ S,

where Ĥ(λ) = H(dλ) denotes the entropy of dλ ∈ D(S) given by dλs =
∑

a λsa. Fur-
thermore, in the standard definition of the function H(d), for any di = 0, we take
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di logdi = limdi→0+ di logdi = 0, so H(d) is always well-defined and finite for d ≥ 0

(see, e.g., [8]). Similarly, we take dλs logd
λ
s = 0 whenever dλs = 0, so that Ĥ(λ) is

well-defined for λ≥ 0. To ensure that the objective of (Q) is well-defined we assume
the following.

Assumption 3.1. For all λ feasible to (Q), dλ has at least two nonzero entries.

This ensures ρ(λπ) is well-defined for any π and is weaker than the ergodicity
conditions frequently encountered in the RL literature (cf. Assumption 5.1).

Since the feasible region of (Q) corresponds to precisely those state-action oc-
cupancy measures achievable over (S,A, p, c), solving (Q) yields the state-action oc-
cupancy measure minimizing ρ(λ). Furthermore, as with (D) above, any λ∗ optimal
to (Q) allows us to recover a policy πλ∗ minimizing ρ(λ). Unlike (D), however, the ob-
jective function in (Q) is the ratio of an affine function and a concave function and is
thus nonconvex, so the problem may be difficult to solve directly. Fortunately, due to
the quasiconvexity of ρ(λ) (cf. Definition 3.3), the problem (Q) can be transformed via
the substitution y= λ/cTλ, t= 1/cTλ and an application of the perspective transform
(see Definition 3.7 and [2, Chap. 7]) to the concave program (Q′):

min
y≥ 0, t

κt−
∑
s,a

ysa log

(∑
a ysa
t

)
s.t.

∑
s,a

ysa= t,
∑
s,a

csaysa = 1(Q′) ∑
a

ysa=
∑
s′,a

p(s|s′, a)ys′a ∀s∈ S.

This problem can be efficiently solved using well-known methods for convex optimiza-
tion [7] to obtain the optimal state-occupancy measure and corresponding optimal
policy. We formalize this as the following theorem.

Theorem 3.2. Problem (Q′) is a concave program, and any optimal solution to
it is optimal for the OIR problem (Q).

In addition to enabling efficient solution when the MDP model is known, this re-
formulation implies the existence of hidden quasiconvexity underlying any policy gra-
dient methods developed for the OIR minimization problem, as shown in section 5.1.

Proof of Theorem 3.2.

3.1.1. Quasiconvexity of (Q). Let us first formally define quasiconvexity/-
concavity. Given a scalar α and function f :Rn →R defined on a convex set C ⊂Rn,
define the α-superlevel set of f on C to be U(f,α) = {x ∈ C | f(x) ≥ α} and the
α-sublevel set of f on C to be L(f,α) = {x∈C | f(x)≤ α}.

Definition 3.3. Given f : Rn → R defined on a convex set C ⊂ Rn, f is quasi-
convex (resp., quasiconcave) if L(f,α) (resp., U(f,α)) is convex for each α∈R.

Now let Δ(R|S|·|A|) denote the unit simplex in R|S|·|A|, and let F denote the
feasible region of (Q). Clearly F is a convex subset of Δ(R|S|·|A|), since it is defined
by linear equality and nonnegativity constraints. Note that the numerator of ρ(λ), the
objective function in (Q), is convex (linear, in fact). Also notice that Ĥ(λ) =H(dλ)
is concave on F , which follows from the facts that the entropy H(d) is concave in d,
dλ is a linear function of λ, and the composition of a concave function with an affine
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OCCUPANCY INFORMATION RATIO 3151

function is itself concave. This implies that, for any fixed κ≥ 0, the denominator of
ρ(λ) is concave and also positive by Assumption 3.1 over all its sublevel subsets of
the feasible region. These facts guarantee that (Q) is a quasiconvex program with a
well-behaved objective function, as formalized in the following lemma.

Lemma 3.4. (Q) is feasible and has an optimal solution with finite objective func-
tion value, and the objective ρ of (Q) is strictly quasiconvex on F .

Finally, (Q) enjoys the following key property, which guarantees that any solution
to the concave program described in the next section provides a globally optimal
solution to the OIR minimization problem (2.1).

Lemma 3.5. Every local optimum of (Q) is a global optimum.

Proof. The assertion follows directly from Proposition 3.3 in [2].

3.1.2. Transformation to a concave program. Now that we are assured (Q)
is quasiconvex and has no spurious stationary points, we exploit the quasiconvex
structure of the OIR to transform (Q) into an equivalent concave program, leveraging
results from classic results from the literature on quasiconcave programming [31, 2]
along the way. Define q(λ) := 1/ρ(λ) = (κ+ Ĥ(λ))/J(λ) and consider the problem

max
λ

q(λ)

s.t.
∑
s

∑
a

λsa = 1,(Q′′) ∑
a

λsa =
∑
s′

∑
a

p(s|s′, a)λs′a ∀s∈ S,

λ≥ 0.

Note that the feasible region F of (Q′′) is identical to that of (Q). We have the
following.

Lemma 3.6. Problem (Q) is equivalent to (Q′′).

Proof. Assume λ∗ is optimal for (Q), i.e., λ∗ ∈ F and ρ(λ∗)≤ ρ(λ) for all λ ∈ F .
By Lemma 3.4, there exists M > 0 such that 0< ρ(λ∗)≤ ρ(λ)<M <∞ for all λ∈ F .
Clearly 0 < 1/M < q(λ) ≤ q(λ∗) <∞ for all λ ∈ F , so λ∗ is optimal to (Q′′). By an
analogous argument, any optimal solution to (Q′′) is optimal to (Q).

The foregoing lemma proves that solving (Q′′) also solves (Q). Crucially, as shown
in Theorem 3.8 below, we can in fact transform (Q′′) into a concave optimization
problem, which will allow us to indirectly solve (Q). Before presenting the theorem,
we provide an important definition.

Definition 3.7. Given f : Rn → R, the perspective of f is the function Pf :
Rn+1 → R given by Pf (x, t) = tf(x/t) with domain dom(Pf ) = {(x, t) | x/t ∈
dom(f), t > 0}.

We now proceed with the theorem, whose proof follows that of [2, Prop. 7.2].

Theorem 3.8. The quasiconcave program (Q′′) can be converted via the variable
transformation y= λ

cTλ
, t= 1

cTλ
into the following concave program:
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3152 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU

max
y, t

κt−
∑
s

∑
a

ysa log

(∑
a ysa
t

)
,

s.t.
∑
s

∑
a

ysa = t,(Q′′′) ∑
a

ysa =
∑
s′

∑
a

p(s|s′, a)ys′a ∀s∈ S,∑
s

∑
a

csaysa = 1,

y≥ 0.

Proof. First, the transformation y = λ
cTλ

, t = 1
cTλ

clearly provides a bijection

between the feasible regions of (Q′′) and (Q′′′). Next, let f(λ) = κ + Ĥ(λ) denote
the numerator of q(λ) =

(
κ+ Ĥ(λ)

)
/cTλ. It is immediate that q(λ) = tf(y/t), and

recalling the definition Ĥ(λ) =−∑s,a λsa log (
∑

a λsa) allows us to see that tf(y/t) =
κt −∑sa ysa log (

∑
a ysa/t). The objectives of (Q′′) and (Q′′′) thus share the same

value for corresponding points in their feasible regions. Since Ĥ(λ) is concave in
λ, and since the perspective transform of a concave function is itself concave by
[7, sect. 3.6.2], the objective tf(y/t) of (Q′′′) is concave. Finally, since the feasible
region of (Q′′′) is determined by linear equalities and positivity constraints, its feasible
region is convex. Problem (Q′′′) is thus a concave program.

Given an optimal solution (y∗, t∗) to (Q′′′), we can recover an optimal solution
λ∗ = y∗/t∗ to (Q′′), which by Lemma 3.6 is also optimal for (Q). As noted above,
the policy π∗(a|s) = λ∗

sa/
∑

a′ λ∗
sa′ thus minimizes the OIR over the MDP (S,A, p, c).

This proves Theorem 3.2.

3.2. Policy gradients. Sampling the gradient of (2.1) is not straightforward
using existing tools, as obtaining stochastic estimates of ∇ρ(θ) involves estimating

∇ρ(θ) =
∇J(θ)(κ+H(dθ))− J(θ)∇H(dθ)

[κ+H(dθ)]2
.(3.1)

Though we can use the classical policy gradient theorem (cf. eq. (3.2)) to estimate
∇J(θ) and we can empirically estimate J(θ) and H(dθ), it is not obvious how to
estimate ∇H(dθ). In what follows we prove an entropy gradient theorem that allows
us to estimate ∇H(dθ) and consequently ∇ρ(θ).

3.2.1. Policy gradient preliminaries. Given an MDP (S,A, p, c) and pol-
icy πθ, two important objects from the RL literature are the relative state value
function Vθ(s) =

∑∞
t=0Eπθ

[c(s, a)− J(θ) | s0 = s] and the relative action value func-
tion Qθ(s, a) =

∑∞
t=0Eπθ

[c(s, a)− J(θ) | s0 = s, a0 = a] . Under the assumption that
πθ(a|s) is differentiable in θ for all s ∈ S, a ∈A, classic policy gradient methods min-
imize J(θ) by taking stochastic gradient descent steps in the direction −∇J(θ). We
are guaranteed by the policy gradient theorem [36] that, under certain conditions,

∇J(θ) =
∑
s

dθ(s)
∑
a

Qθ(s, a)∇πθ(a|s) =Eπθ

[
(c(s, a)− J(θ))∇ logπθ(a|s)

]
.(3.2)

By following policy πθ, we can sample from the right-hand side of (3.2) to estimate
∇J(θ), then use this to perform stochastic gradient descent.

3.2.2. Cross-entropy gradient. To estimate ∇ρ(θ) we must know how to
estimate ∇H(dθ). Fortunately, by using the relationship between entropy and cross-
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OCCUPANCY INFORMATION RATIO 3153

entropy, ∇H(dθ) can be estimated in a straightforward manner. Given two policy
parameters θ and θ′, the cross-entropy between dθ and dθ′ is given by CE(dθ, dθ′) =
−∑s dθ(s) logdθ′(s) and their Kullback–Leibler (KL) divergence by DKL(dθ || dθ′) =∑

s log
( dθ(s)
dθ′ (s)

)
dθ(s). Recall that CE(dθ, dθ′) =H(dθ) +DKL(dθ || dθ′). We have the

following.

Lemma 3.9.

For any θ′ ∈Θ, ∇H(dθ)
∣∣
θ=θ′ =∇CE(dθ, dθ′)

∣∣
θ=θ′ .(3.3)

For the proof, see the full version in [33]. This establishes an important fact: we
can estimate ∇H(dθ)|θ=θt by instead estimating ∇CE(dθ, dθt)|θ=θt . At first glance,
this simply substitutes one problem for another. However, given a fixed θt, for any
θ, we can use the policy gradient theorem (3.2) to obtain a tractable expression for
∇CE(dθ, dθt)|θ=θt , as described next.

3.2.3. Entropy and OIR policy gradients. Our next results enable policy
gradient algorithms for maximizing H(dθ) and minimizing (2.1). See [33] for proofs.

Theorem 3.10. Let an MDP (S,A, p, c) and a differentiable parameterized policy
class {πθ}θ∈Θ be given, and recall the definition above of the state occupancy measure
dθ induced by πθ on S. Fix a policy parameter iterate θt at time step t. The gradient
∇H(dθ)|θ=θt (cf. (3.3)) with respect to the policy parameters θ of the state occupancy
measure entropy H(dθ), evaluated at θ= θt, satisfies

∇H(dθ)
∣∣
θ=θt

=Eπθt

[
(− logdθt(s)−H(dθt))∇ logπθt(a|s)

]
.(3.4)

With Theorem 3.10 in hand, we have the following OIR policy gradient theorem.

Theorem 3.11. Let MDP (S,A, p, c), differentiable policy class {πθ}θ∈Θ, and
constant κ ≥ 0 be given, and recall the definitions of the average cost J(θ), state
occupancy measure dθ, and entropy H(dθ). Fix a policy parameter iterate θt at time
step t. The gradient ∇ρ(θt) (cf. (3.1)) with respect to the policy parameters θ of the
OIR ρ(θ) (cf. (2.1)), evaluated at θ= θt, satisfies

∇ρ(θt) =Eπθt

[
δJt
(
κ+H(dθt)

)− J(θt)δ
H
t

[κ+H(dθt)]
2 ψt

]
,(3.5)

where δJt = c(s, a)− J(θt), δ
H
t =− logdθt(s)−H(dθt), and ψt =∇ logπθt(a|s).

The claim follows by combining (3.1) and (3.2) with Theorem 3.10.

4. Algorithms. In this section we derive two policy search schemes for minimiz-
ing (2.1). The first is based on the classic REINFORCE algorithm, while the second is
an actor-critic scheme. We assume throughout that an average-cost MDP (S,A, p, c)
is fixed. The reward setting can be accommodated by Remark 2.1.

4.1. Information-Directed REINFORCE. The classic REINFORCE algo-
rithm [37] generates a single, finite trajectory using a fixed policy, estimates the
gradient of J(θ) based on the trajectory, and performs a corresponding stochastic
gradient descent step. We present a related algorithm, Information-Directed RE-
INFORCE (ID-REINFORCE), that proceeds along similar lines to minimize (2.1).
Note that, in order to estimate the H(dθt) term in ∇ρ(θt) (see (3.5)), it is necessary
to first estimate dθt . This task is addressed both implicitly and explicitly in previous
works [10, 19, 39]. As in [10], for ease of exposition we assume access to an oracle

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

1/
24

 to
 1

29
.4

9.
10

0.
52

 . 
Re

di
str

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:/
/e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



3154 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU

DensityEstimator that returns the occupancy measure dθ =DENSITYESTIMATOR(θ)

when provided with input policy parameter θ ∈Θ. When S is finite and not too large,
DensityEstimator can be implemented by computing the empirical visitation prob-
abilities for each of the states s ∈ S based on sample trajectories. We focus on this
setting in this paper. When S is large or continuous, on the other hand, various para-
metric and nonparametric density estimation techniques can be used to implement
DensityEstimator. Pseudocode for ID-REINFORCE is given in Algorithm 4.1.

4.2. Information-Directed Actor-Critic. We next present the Information-
Directed Actor-Critic (IDAC) algorithm, a variant of the classic actor-critic algo-
rithm [16, 5] with two critics: the standard critic corresponding to average cost J(θ),
and an entropy critic corresponding to the shadow MDPs (S,A, p, rt), t ≥ 0, where
rt(s, a) = − logdθt(s) is the shadow reward discussed in the proof of Theorem 3.10.
We assume access to the DensityEstimator oracle throughout. The classic actor-
critic algorithm for minimizing J(θ) alternates between critic and actor updates.
At each time step, it first computes the temporal difference (TD) error, which is a
bootstrapped estimate of the amount by which the current state value function ap-
proximator, known as the critic, over- or underestimates the true value of the current
state (see [35] for details). This TD error is then used to update the critic, which is in
turn used to update the policy, or actor. For IDAC, we modify the classic scheme by
(i) introducing an entropy critic to estimate the entropy gradient (lines 10 and 14),
and (ii) altering the policy update to take a gradient descent step in the direction
−∇ρ(θt) instead of −∇J(θt) (line 15). Pseudocode is provided in Algorithm 4.2.

Algorithm 4.1. ID-REINFORCE.
1: Initialization: Rollout length K,

stepsizes η > 0 and τ ∈ (0,1], policy
class {πθ}θ∈Θ, entropy constant
κ≥ 0. Sample s0 and θ0, select
μH−1, μ

J
−1 > 0. t← 0.

2: repeat

3: Generate {(si, ai)}i=1,...,K ∼ πθt

4: Ĵ(θt) =
1
K

∑K
i=1 c(si, ai)

5: μJt = (1− τ)μJt−1 + τ Ĵ(θt)

6: dθt =DENSITYESTIMATOR(θt)

7: Ĥ(dθt ) =
1
K

∑K
i=1 (− logdθt (si))

8: μHt = (1− τ)μHt−1 + τĤ(dθt )

9: for i= 1, . . . , k do

10: δJi = c(si, ai)− μJt
11: δHi =− logdθt (si)− μHt
12: ψi =∇ logπθt (ai|si)
13: Δi = δJi

(
κ+ μHt

)− μJt δ
H
i

14: end for

15: θt+1 = θt − η 1

K[κ+μH
t ]2

∑K
i=1Δiψi

16: t← t+ 1

17: until convergence

Algorithm 4.2. IDAC.
1: Initialization: Rollout length K, stepsizes

{αt},{βt},{τt}, policy class {πθ}θ∈Θ, critic class
{vω}ω∈Ω, entropy constant κ≥ 0. Sample
s0, θ0, ωJ

0 , ω
H
0 , select μH−1, μ

J
−1 > 0. t← 0.

2: repeat

3: Generate {(si, ai)}i=1,...,K ∼ πθt
4: μJt = (1− τ)μJt−1 + τ 1

K

∑K
i=1 c(si, ai)

5: dθt =DENSITYESTIMATOR(θt)

6: μHt = (1− τ)μHt−1 − τ 1
K

∑K
i=1 logdθt (si)

7: for i= 1, . . . ,K do

8: Set vωJ
t
(sK+1) = vωH

t
(sK+1) = 0

9: δJi = c(si, ai)− μJt + vωJ
t
(si+1)− vωJ

t
(si)

10: δHi =− logdθt (si)− μHt + vωH
t
(si+1)

− vωH
t
(si)

11: ψi =∇ logπθt (ai|si)
12: Δi = δJi

(
κ+ μHt

)− μJt δ
H
i

13: end for

14: ωJ
t+1 = ωJ

t + α 1
K

∑K
i=1 δ

J
i ∇vωJ

t
(si)

15: ωH
t+1 = ωH

t + α 1
K

∑K
i=1 δ

H
i ∇vωH

t
(si)

16: θt+1 = θt − β 1

K[κ+μH
t ]2

∑K
i=1Δiψi

17: t← t+ 1

18: until convergence
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4.3. Density estimation. These algorithms are similar to algorithms in [10] in
that they need to estimate dθ, which can be inefficient in continuous, high-dimensional
spaces. There are two promising approaches for overcoming this. First, a variety of
density estimation techniques have been successfully employed in RL and imitation
learning in continuous settings, including kernel density estimation, variational au-
toencoders, energy-based models, and autoregressive models [10, 19, 13]. Second,
particle-based methods have recently been successfully used to avoid density esti-
mation altogether by directly estimating occupancy measure entropy [24, 21]. The
density estimation issue can likely be mitigated, providing an important direction for
future work.

5. Theoretical results. In this section we provide key results underpinning
policy search for the OIR problem. In section 5.1, we show that all stationary points of
ρ(θ) are in fact global minimizers. In section 5.2, we prove that the stochastic gradient
descent scheme underlying ID-REINFORCE enjoys a nonasymptotic convergence rate
depending on κ, the policy class, and ergodicity properties of the underlying MDP.
Finally, section 5.3 establishes that IDAC enjoys asymptotic, almost sure convergence
to a neighborhood of a stationary point. Taken together, these results prove that
both algorithms converge to globally optimal solutions under suitable conditions.

5.1. Stationarity implies global optimality. As we will see, the OIR opti-
mization problem enjoys a powerful hidden quasiconvexity property: under certain
conditions on the set Θ and the policy class {πθ}θ∈Θ, stationary points of ρ(θ) corre-
spond to global optima of the OIR minimization problem

min
θ ∈Θ

ρ(θ) =
J(θ)

κ+H(dθ)
.(5.1)

This result is surprising, as the objective function ρ(θ) is typically highly nonconvex.
Let Θ ⊂ Rk be convex, and let a parameterized policy class {πθ}θ∈Θ be given. Let
λ : Θ →D(S ×A) be a function mapping each parameter vector θ ∈ Θ to the state-
action occupancy measure λ(θ) := λθ := λπθ

induced by the policy πθ over S ×A. We
make the following assumptions.

Assumption 5.1. The set Θ is compact. For any s∈ S, a∈A, the function πθ(a|s)
is continuously differentiable with respect to θ on Θ, and the Markov chain induced
by πθ on S is ergodic.

Assumption 5.2. The following statements hold:
1. λ(·) is a bijection between Θ and λ(Θ), and λ(Θ) is compact and convex.
2. Let h(·) := λ−1(·) denote the inverse mapping of λ(·). h(·) is Lipschitz con-

tinuous.
3. The Jacobian matrix ∇λ(θ) is Lipschitz on Θ.

Assumption 5.1 is standard in the policy gradient literature, and it implies that
∇ρ(θ) exists for all θ ∈ Θ. Assumption 5.2 holds for reasonable examples and can
likely be proven to hold in the tabular setting under suitable ergodicity conditions on
the underlying MDP. See [33] for a detailed example for which Assumption 5.1 holds.

We now have the following theorem. The key idea behind the proof is to show
that the stationary point θ∗ corresponds to an optimal solution to the concave pro-
gram (Q′′′) and thus also provides an optimal solution to the quasiconvex OIR min-
imization problem (Q). The proof builds on that of Theorem 4.2 of [39], with key
modifications to accommodate the fact that the underlying OIR optimization problem
is not convex, but quasiconvex, in the state-action occupancy measure. In particular,
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3156 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU

the result in [39] holds for convex (or concave) functionals of the state-action occu-
pancy measure only, not ones involving quasiconvex (or quasiconcave) functionals.
The critical innovation in the proof of Theorem 5.3 below is to leverage properties
of the perspective transform combined with the smoothness conditions of Assump-
tion 5.2 to extend the hidden convexity analysis of [39] to the quasiconvex setting.

Theorem 5.3. Let Assumptions 5.1 and 5.2 hold. Let θ∗ be a stationary point of
(5.1), i.e., ∇ρ(θ∗) = 0. Then θ∗ is globally optimal for (5.1).

Proof. We reformulate (5.1) as a maximization problem. Let q(θ) = 1/ρ(θ) =
(κ +H(dθ))/J(θ). Let Ĥ(λθ) = H(dθ), where Ĥ(λ) = H(dλ) is the entropy of the
state occupancy measure dλ ∈D(S) given by dλs =

∑
a λsa, and recall thatJ(θ) = cTλθ

for some vector c > 0 of costs. This means that q(θ) = (κ+ Ĥ(λθ))/J(λθ). In what
follows we prove that θ∗ is globally optimal for maxθ∈Θ q(θ). By Lemma 3.6, this will
imply that θ∗ is globally optimal for minθ∈Θ ρ(θ). Also note that since ρ(θ) is strictly
positive on Θ, we know q(θ) is differentiable in θ and ∇q(θ) =−∇ρ(θ)/[ρ(θ)]2 for all
θ ∈Θ. Since ∇ρ(θ∗) = 0 by assumption, this means ∇q(θ∗) = 0, so θ∗ is a stationary
point of the optimization problem maxθ∈Θ q(θ).

We now transform the problem maxθ∈Θ q(θ) to a concave program. For z ∈
R|S||A|+1, let y ∈R|S||A| denote all but the last entry in z, and let the scalar t denote
the last entry of z. We will write z = (y, t) for brevity. Let ζ :D(S×A)→R|S||A|+1 be
the mapping given by ζ(λ) = (λ/J(λ),1/J(λ)). Consider the optimization problems

max
λ∈ λ(Θ)

κ+ Ĥ(λ)

J(λ)
,(5.2)

max
z ∈ (ζ ◦ λ)(Θ)

Pκ,Ĥ(z),(5.3)

where Pκ,Ĥ :R|S||A|+1 →R denotes the perspective transformation of κ+ Ĥ(λ), given

by Pκ+Ĥ(z) = Pκ,Ĥ((y, t)) = t(κ+ Ĥ(y/t)). For notational convenience we henceforth

drop the dependency on κ and simply write PĤ and Ĥ instead of Pκ,Ĥ and κ+ Ĥ.

Recall that since Ĥ is concave over the region D(S×A), its perspective transform PĤ
is concave over the region ζ(D(S ×A)). PĤ is thus concave over the convex, compact
region (ζ ◦ λ)(Θ)⊆ ζ(D(S ×A)).

The remainder of the proof provides the technical details demonstrating that
z∗ = (ζ ◦ λ)(θ∗) is a stationary point of (5.3). Since (5.3) is a concave program, this
will imply that z∗ and thus θ∗ are globally optimal for their respective problems. We
first show Assumption 5.2 can be extended to the mapping ζ ◦ λ. To do so, we prove
the following:

(i) ζ ◦ λ gives a bijection between Θ and (ζ ◦ λ)(Θ);
(ii) ζ ◦ λ has a Lipschitz continuous inverse; and
(iii) the Jacobian ∇θ(ζ ◦ λ)(θ) is Lipschitz.
To prove (i), recall ζ(λ) = (λ/J(λ),1/J(λ)). We know ζ is a surjection onto

(ζ ◦ λ)(Θ) by definition, so we just need to show it is injective. Fix λ 
= λ′. If
J(λ) = J(λ′), then λ/J(λ) 
= λ′/J(λ′), so ζ(λ) 
= ζ(λ′). If J(λ) 
= J(λ′), on the other
hand, then 1/J(λ) 
= 1/J(λ′), so again ζ(λ) 
= ζ(λ′). Therefore ζ is injective and thus
gives a bijection. Combined with Assumption 5.2, the foregoing implies that ζ ◦ λ
gives a bijection between Θ and (ζ ◦ λ)(Θ), proving (i).

For (ii), the inverse of ζ is clearly ζ−1(z) = ζ−1((y, t)) = y/t. Since 0<mini ci ≤
t≤maxi ci <∞, ζ−1 has continuous, bounded partial derivatives and is thus Lipschitz
continuous on (ζ ◦ λ)(Θ). Since the composition of Lipschitz functions is Lipschitz,
k= (ζ ◦ λ)−1 = λ−1 ◦ ζ−1 is Lipschitz continuous, proving (ii).
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For (iii), an application of the chain rule gives ∇θ(ζ◦λ)(θ) = [∇λζ(λ(θ))]
T ∇θλ(θ).

Clearly ∇λζ(λ) is Lipschitz continuous and bounded over the compact set Θ. Since
∇θλ(θ) is (Lipschitz) continuous and bounded over Θ, we know λ(θ) is Lipschitz,
implying that ∇λζ(λ(θ)) is Lipschitz and bounded on θ ∈ Θ. Furthermore, ∇θλ(θ)
is Lipschitz by assumption and bounded over Θ, so all entries in the matrix product
[∇λζ(λ(θ))]

T ∇θλ(θ) are sums and products of Lipschitz, bounded functions over Θ.
This implies that ∇θ(ζ ◦ λ)(θ) is Lipschitz on Θ, proving (iii).

We now move on to the bounding arguments that will ultimately prove that
z∗ = (ζ ◦ λ)(θ∗) is a stationary point of (5.3). First, notice that

(PĤ ◦ ζ ◦ λ)(θ) = PĤ(ζ(λ(θ))) =
κ+ Ĥ(λ(θ))

J(λ(θ))
=

κ+ Ĥ(λθ)

J(λθ)
= q(θ),

so ∇θ(PĤ ◦ ζ ◦ λ)(θ∗) = ∇θ
κ+Ĥ(λθ∗ )
J(λθ∗ )

= ∇q(θ∗) = 0. Since PĤ is concave and

locally Lipschitz on (ζ ◦ λ)(Θ), by the chain rule we have ∇θ(PĤ ◦ ζ ◦ λ)(θ∗) =

[∇θ(ζ ◦ λ)(θ∗)]T ∇zPĤ(z∗) = 0. This implies, for all θ ∈Θ,

〈∇zPĤ(z∗),∇θ(ζ ◦ λ)(θ∗)(θ− θ∗)〉= 〈[∇θ(ζ ◦ λ)(θ∗)]T ∇zPĤ(z∗), θ− θ∗〉= 0.(5.4)

Equation (5.4) is important to the bounding arguments presented next.
In the following equations, let θ = k(z) and θ∗ = k(z∗). Adding and subtracting

〈∇zPĤ(z∗),∇θ(ζ ◦ λ)(θ∗)(θ − θ∗)〉, using (5.4), and applying the Cauchy–Schwarz
inequality, we get

〈∇zPĤ(z∗), z − z∗〉= 〈∇zPĤ(z∗), (ζ ◦ λ)(θ)− (ζ ◦ λ)(θ∗)〉
= 〈∇zPĤ(z∗),∇θ(ζ ◦ λ)(θ∗)(θ− θ∗)〉
+ 〈∇zPĤ(z∗), (ζ ◦ λ)(θ)− (ζ ◦ λ)(θ∗)−∇θ(ζ ◦ λ)(θ∗)(θ− θ∗)〉

= 〈∇zPĤ(z∗), (ζ ◦ λ)(θ)− (ζ ◦ λ)(θ∗)−∇θ(ζ ◦ λ)(θ∗)(θ− θ∗)〉
≤ ∥∥∇zPĤ(z∗)

∥∥‖(ζ ◦ λ)(θ)− (ζ ◦ λ)(θ∗)−∇θ(ζ ◦ λ)(θ∗)(θ− θ∗)‖ .
Since ∇θ(ζ ◦ λ)(θ) is Lipschitz, there exists K0 > 0 such that

‖(ζ ◦ λ)(θ)− (ζ ◦ λ)(θ∗)−∇θ(ζ ◦ λ)(θ∗)(θ− θ∗)‖ ≤ K0

2
‖θ− θ∗‖2 .

In addition, k= (ζ ◦ λ)−1 is Lipschitz, so there exists K1 > 0 such that

‖θ− θ∗‖2 = ‖k(z)− k(z∗)‖2 ≤K2
1 ‖z − z∗‖2 .

Combining these inequalities yields that

〈∇zPĤ(z∗), z − z∗〉 ≤ K0K
2
1

2

∥∥∇zPĤ(z∗)
∥∥‖z − z∗‖2

for all z ∈ (ζ ◦ λ)(Θ). Since (ζ ◦ λ)(Θ) is convex, we can replace z above with
(1− α)z∗ + αz for any α∈ [0,1], which gives

α〈∇zPĤ(z∗), z − z∗〉 ≤ K0K
2
1α

2

2

∥∥∇zPĤ(z∗)
∥∥‖z − z∗‖2

for all z ∈ (ζ ◦ λ)(Θ) and α ∈ [0,1]. Dividing both sides by α and taking the limit as
α approaches 0 from above, we obtain

〈∇zPĤ(z∗), z − z∗〉 ≤ 0 ∀z ∈ (ζ ◦ λ)(Θ).
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3158 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU

Since problem (5.3) is concave in z, this implies that z∗ = (ζ ◦ λ)(θ∗) is a stationary
point of that problem. The solution z∗ is therefore a global optimal solution to (5.3),
implying that θ∗ is globally optimal for (5.1).

This powerful hidden quasiconvexity property implies that any policy gradient al-
gorithm that can be shown to converge to a stationary point of the OIR optimization
problem minθ∈Θ ρ(θ) in fact converges to a global optimum. This greatly strength-
ens the convergence results provided next by guaranteeing that they apply to global
optima. In contrast to the global optimality guarantees for tabular, softmax policy
search established in [4, 1, 23, 39, 3] using persistent exploration conditions, our result
instead builds on hidden convexity arguments from [39], which apply to parameterized
policies. However, Theorem 5.3 generalizes these results in important ways. First, it
applies to ratio objectives, which have not been addressed in prior work. In addition,
we establish hidden quasiconvexity for ratio objectives, not hidden convexity, which
requires reformulation via an application of the perspective transform (cf. section 3.1).
In these ways, Theorem 5.3 is a strict generalization of existing results.

5.2. Nonasymptotic convergence rate. We next establish a convergence rate
for the following projected gradient descent scheme for solving (5.1):

θt+1 =ProjΘ (θt − η∇ρ(θt)) = argmin
θ

[
ρ(θt) + 〈∇ρ(θt), θ− θt〉+ 1

2η
‖θ− θt‖2

]
(5.5)

for a fixed stepsize η > 0, where ProjΘ denotes euclidean projection onto Θ and
the second equality holds by the convexity of Θ. Note that (5.5) is a reformulation
of Algorithm 4.1 with null gradient estimation error and projection onto the set Θ;
we assume the projection operation for the purposes of analysis, and we discuss the
gradient estimation issue at the end of this subsection.

Let Θ⊂Rk, {πθ}θ∈Θ, and λ : Θ→D(S ×A) be as in the previous section. Recall
the mapping ζ : D(S × A) → R|S||A|+1 from the proof of Theorem 5.3, which was
defined to be ζ(λ) = (λ/c�λ,1/c�λ), where c ∈ R|S||A|, c > 0, is a vector of positive
costs. Notice that, under the ergodicity conditions in Assumption 5.1 and properties
of entropy, minθ ρ(θ)> 0 and maxθ ρ(θ)<∞. In addition to Assumptions 5.1 and 5.2,
we will need the following.

Assumption 5.4. ∇ρ(θ) is Lipschitz and L > 0 is the smallest number such
that‖∇ρ(θ)−∇ρ(θ′)‖ ≤L‖θ− θ′‖ for all θ, θ′ ∈Θ.

We have the following convergence rate result for the projected gradient descent
scheme (5.5). The key idea behind the proof is to link the objective function ρ(θ)
that the updates (5.5) are minimizing to the concave structure of the transformed
problem (Q′′′). This allows us to derive the bound (5.6) by studying related bounds
for the concave objective function of (Q′′′). Similar to Theorem 5.3 above, our key
innovation is that we leverage properties of the perspective transform combined with
the Lipschitz condition of Assumption 5.4 to extend the rate analysis of Theorem
4.4 in [39]—which holds only for convex (or concave) functionals of the state-action
occupancy measure—to the quasiconvex setting.

Theorem 5.5. Let Assumptions 5.1, 5.2, and 5.4 hold. Denote the diameter of
the convex, compact set (ζ ◦ λ)(Θ) by Dζ = maxz,z′∈(ζ◦λ)(Θ) ‖z − z′‖. Define M =
maxθ∈Θ ρ(θ), m = minθ∈Θ ρ(θ), K = max{m2L,M2m2L}, and L1 = max{L,M2L}.
Then, with η= 1/K, for all t≥ 0,
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OCCUPANCY INFORMATION RATIO 3159

ρ(θt)− ρ(θ∗)≤ 4M2L1

2D2

ζ

t+ 1
,(5.6)

where 
 is the minimal Lipschitz constant of the inverse mapping (ζ ◦ λ)−1.

Proof. To draw the connection with (Q′′′), we first transform (5.5) into an equiv-
alent projected gradient ascent scheme. Define q(θ) = 1/ρ(θ) = (κ+H(dθ))/J(θ), and
notice that ∇q(θ) =−∇ρ(θ)/ [ρ(θ)]

2
. The projected gradient ascent scheme becomes

θt+1 =ProjΘ (θt − η∇ρ(θt))
(a)
= ProjΘ

(
θt + η [ρ(θt)]

2∇q(θt)
)

(b)
= argmax

θ

(
q(θt) + 〈∇q(θt), θ− θt〉 − [ρ(θt)]

2

2η
‖θ− θt‖2

)
(c)
= argmax

θ

(
q(θt) + 〈∇q(θt), θ− θt〉 − 1

2ηt
‖θ− θt‖2

)
,(5.7)

where (a) follows by noticing that ∇ρ(θ) =−[ρ(θ)]2∇q(θ) and making the appropriate
substitution, (b) holds by definition of the Proj operator, and (c) results from defining
ηt = η[ρ(θt)]

2 = [ρ(θt)]
2/K0.

We next identify a family {Kc | c∈ [m,M ]} of Lipschitz constants of the gradient
∇q(θ). By Assumption 5.4, ∇q(θ) is Lipschitz and ‖∇q(θ)−∇q(θ′)‖ ≤ L0 ‖θ− θ′‖,
for all θ, θ′ ∈ Θ, where L0 = m2L. Let K = max{L0,M

2L0} = max{m2L,M2m2L}.
Then, for all scalars c ∈ [m,M ], the gradient ∇q(θ) satisfies ‖∇q(θ)−∇q(θ′)‖ ≤
Kc ‖θ− θ′‖ , where Kc =K/c2 is the desired Lipschitz constant. This family of Lip-
schitz constants will be critical in the analysis to follow.

We now study the sequence αt = [q(θ∗)− q(θt)]/2Km
2D2
ζ for t ≥ 0, ultimately

using properties of the sequence to show that q(θ∗)− q(θt)≤ 4Km
2D2
ζ/(1+ t) for all

t≥ 0. The remainder of the proof proceeds along lines similar to that of Theorem 4.4 in
[39], with critical modifications to accommodate the use of the perspective transform,
the variable transformation ζ, and the nonconstant stepsizes ηt = η[ρ(θt)]

2.
Define Ĥ(λ) =H(dλ), where H(dλ) is the entropy of the state occupancy measure

dλ(s) =
∑

a λ(s, a) corresponding to the state-action occupancy measure λ∈D(S×A).
For a given κ ≥ 0, let Pκ,Ĥ : R|S||A|+1 → R denote the perspective transformation of

κ+Ĥ(λ), given by Pκ+Ĥ(z) = Pκ,Ĥ((y, t)) = t(κ+Ĥ(y/t)). For notational convenience
we henceforth drop the dependency on κ and simply write PĤ .

Our next step is to make use of the concave structure of PĤ , ζ ◦ λ, and (Q′′′) to
analyze {αt}t∈N. We first derive several useful inequalities regarding PĤ and ζ ◦ λ.
Notice that q(θ) = (κ + Ĥ(λθ))/J(λθ) = PĤ(ζ(λθ)) = PĤ((ζ ◦ λ)(θ)) for all θ ∈ Θ.
This means that we can rewrite αt as

αt =
[
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

]
/2Km
2D2

ζ .(5.8)

Notice PĤ is concave over ζ(D(S×A)), since Ĥ is concave over D(S×A) and the per-
spective transform preserves concavity. PĤ is thus concave over the convex, compact
region (ζ ◦ λ)(Θ) ⊆ ζ(D(S ×A)). Furthermore, since PĤ((ζ ◦ λ)(θ)) = q(θ), we have
∇PĤ((ζ ◦ λ)(θ)) =∇q(θ), so ∇PĤ((ζ ◦ λ)(θ)) is Kc-Lipschitz for any Kc =K/c2, c ∈
[m,M ]. This implies (see Lemma 1.2.3 in [25]), for any c∈ [m,M ], that
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3160 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU∣∣∣PĤ((ζ ◦ λ)(θ))− PĤ((ζ ◦ λ)(θt))−
〈∇PĤ((ζ ◦ λ)(θt)), θ− θt

〉 ∣∣∣≤ Kc

2
‖θ− θt‖2 ,

whence, for any θ ∈Θ,

PĤ((ζ ◦ λ)(θ))≥ PĤ((ζ ◦ λ)(θt)) +
〈∇PĤ((ζ ◦ λ)(θt)), θ− θt

〉− Kc

2
‖θ− θt‖2

≥ PĤ((ζ ◦ λ)(θ))−Kc ‖θ− θt‖2 .(5.9)

In light of these inequalities, and using the fact that ηt = [ρ(θt)]
2/K = 1/Kρ(θt) by

setting c= ρ(θt) in the definition of Kc, we have

PĤ((ζ ◦ λ)(θt+1))≥ PĤ((ζ ◦ λ)(θt)) +
〈∇PĤ((ζ ◦ λ)(θt)), θt+1 − θt

〉(5.10)

− Kρ(θt)

2
‖θt+1 − θt‖2

(a)
= max

θ∈Θ

(
PĤ((ζ ◦ λ)(θt)) +

〈∇PĤ((ζ ◦ λ)(θt)), θ− θt
〉− Kρ(θt)

2
‖θ− θt‖2

)
(b)

≥ max
θ∈Θ

(
PĤ((ζ ◦ λ)(θ))−Kρ(θt) ‖θ− θt‖2

) (c)

≥ max
θ∈Θ

(
PĤ((ζ ◦ λ)(θ))−Km ‖θ− θt‖2

)
(d)

≥ max
α∈[0,1]

{PĤ((ζ ◦ λ)(θα))−Km ‖θα − θt‖2
∣∣ θα = k

(
α(ζ ◦ λ)(θ∗)

+ (1− α)(ζ ◦ λ)(θt)
)},

where (a) follows from the optimality of the update (5.7), (b) holds by (5.9), (c)
follows from the fact that Kρ(θt) ≤ Km, and (d) follows by the convexity of
(ζ ◦ λ)(Θ).

Let k(·) = (ζ ◦ λ)−1(·) as in Theorem 5.3. By Assumption 5.2 and the proof of
Theorem 5.3, we know that k(·) is 
-Lipschitz. Now notice that

PĤ((ζ ◦ λ)(θα)) = PĤ

(
(ζ ◦ λ)(k(α(ζ ◦ λ)(θ∗) + (1− α)(ζ ◦ λ)(θt))

))
= PĤ(α(ζ ◦ λ)(θ∗) + (1− α)(ζ ◦ λ)(θt))
≥ αPĤ((ζ ◦ λ)(θ∗)) + (1− α)PĤ((ζ ◦ λ)(θt)),(5.11)

where the first equality holds by the definition of θα given in (5.10), the second follows
from the fact that k((ζ ◦ λ)(θ)) = θ for any θ ∈Θ, and the final inequality is yielded
by the concavity of PĤ over (ζ ◦ λ)(Θ). Furthermore,

‖θα − θt‖2 (a)
= ‖k(α(ζ ◦ λ)(θ∗) + (1− α)(ζ ◦ λ)(θt))− k((ζ ◦ λ)(θt))‖2
(b)

≤ 
2 ‖α(ζ ◦ λ)(θ∗) + (1− α)(ζ ◦ λ)(θt)− (ζ ◦ λ)(θt)‖2

≤ α2
2 ‖(ζ ◦ λ)(θ∗)− (ζ ◦ λ)(θt)‖2
(c)

≤ α2
2D2
ζ ,(5.12)

where (a) holds by the definition of θα and the fact that k((ζ ◦λ)(θ)) = θ, (b) follows
since k is 
-Lipschitz, and (c) results from the definition of Dζ given in the statement
of the theorem. Now, the inequalities (5.10), (5.11), and (5.12) combine to yield
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PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt+1))

(a)

≤ min
α∈[0,1]

{
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θα)) +Km ‖θα − θt‖2∣∣ θα = k

(
α(ζ ◦ λ)(θ∗) + (1− α)(ζ ◦ λ)(θt)

)}
(b)

≤ min
α∈[0,1]

(
PĤ((ζ ◦ λ)(θ∗))− αPĤ((ζ ◦ λ)(θ∗))

− (1− α)PĤ((ζ ◦ λ)(θt)) +Kmα2
2D2
ζ

)
= min

α∈[0,1]

(
(1− α)

(
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

)
+Kmα2
2D2

ζ

)
,(5.13)

where inequality (a) results from multiplying both sides of (5.10) by −1 and adding
PĤ((ζ ◦ λ)(θ∗)), and (5.11) and (5.12) together yield (b).

Using (5.10), (5.11), (5.12), and (5.13), we now analyze the sequence {αt}t∈N

defined in (5.8). We first use (5.13) to derive a useful recursive inequality for {αt}t∈N.
Notice that αt ≥ 0 for all t ≥ 0. Now, assume that α0 ≥ 1. This implies that
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θ0)) ≥ 2Km
2D2

ζ , so the minimum in (5.13) is attained
when α = 1. But then α1 ≤ 1/2. Since this argument is independent of the choice
of t, we can assume without loss of generality that αt ≤ 1, for all t ≥ 0, by simply
discarding α0 if it is greater than 1.

We next show αt+1 ≤ αt for all t≥ 0. Since αt ≤ 1, αt is always the minimizer of
the right-hand side of (5.13), which can be seen by setting the derivative with respect
to α equal to 0 and solving for α. Substituting αt into (5.13), we see that

PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt+1))

(5.14)

≤
(
1− PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

2Km
2D2
ζ

)(
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

)
+
(PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

2Km
2D2
ζ

)2
Km
2D2

ζ

(a)
=

(
1− PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

2Km
2D2
ζ

)(
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

)
+

PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))
4Km
2D2

ζ

(
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

)
(b)
=

(
1− PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

4Km
2D2
ζ

)(
PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))

)
,

where (a) results by noticing that one of the Km
2D2
ζ terms cancels and (a) can be

obtained by factoring out the PĤ((ζ ◦λ)(θ∗))−PĤ((ζ ◦λ)(θt)) term and simplifying.
Dividing both sides of (5.14) by 2Km
2D2

ζ shows that αt+1 ≤ αt.
Dividing both sides of (5.14) by 4Km
2D2

ζ yields the recursive inequality αt+1

2 ≤(
1− αt

2

)
αt

2 , which implies

2

αt+1
≥ 1(

1− αt

2

)
αt

2

=
2
(
1− αt

2

)
+ αt(

1− αt

2

)
αt

=
2

αt
+

1

1− αt

2

≥ 2

αt
+ 1≥ 2

α0
+ t.
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Since α0 ≤ 1, this gives us that

αt+1

2
≤ 1

t+ 2
α0

≤ 1

t+ 2
.(5.15)

Multiplying both sides by 4Km
2D2
ζ finally yields, for all t≥ 0,

q(θ∗)− q(θt) = PĤ((ζ ◦ λ)(θ∗))− PĤ((ζ ◦ λ)(θt))≤
4Km
2D2

ζ

t+ 1
.(5.16)

This establishes the convergence rate result for (5.7). We finish the proof by using
this result to derive the corresponding rate for the OIR projected gradient descent
scheme (5.5). Since q(θ) = 1/ρ(θ) and Km =K/m2, (5.16) implies that

ρ(θt)−ρ(θ∗)
M2 ≤ ρ(θt)−ρ(θ∗)

ρ(θ∗)ρ(θt)
= 1

ρ(θ∗) − 1
ρ(θt)

= q(θ∗)− q(θt)≤ 4Km
2D2
ζ

t+1 =
4K
2D2

ζ

m2(t+1) .

Since K =max{m2L,M2m2L} and letting L1 =max{L,M2L}, we have

ρ(θt)− ρ(θ∗)≤ M2

m2

4K
2D2
ζ

t+ 1
=

4M2L1

2D2

ζ

t+ 1
.

Coupled with Theorem 5.3, this result provides a nonasymptotic convergence rate
to global optimality for algorithms solving the OIR minimization problem (5.1).

Remark 5.6. While the dependence on the hyperparameter κ does not appear
explicitly in the convergence rate, it does implicitly influence the rate. In particular,
as κ→∞, the objective ρ(θ) becomes arbitrarily close to the constant function with
value 0. Therefore, the suboptimality gap converges more quickly as κ → ∞, since
the possible variation of ρ(θ) about 0 goes to null as ρ(θ) gets closer to the constant
function with value 0. Therefore, if one multiplies the OIR objective by κ, one obtains
the scaled OIR objective κρ(θ) = J(θ)/

(
1 + H(dθ)

κ

) → J(θ) as κ → ∞. However,
altering the objective in this way also changes the behavior of the right-hand side of
the rate given in inequality (5.6). To see this, notice that we can analyze this situation
by applying Theorem 5.5 with J(θ) in the definition of ρ(θ) replaced by κJ(θ)—i.e.,
we simply scale our costs by κ. If we recall the definition M = maxθ ρ(θ) from
Theorem 5.5, however, then as κ→∞ we have that M =maxθ κJ(θ)/ (κ+H(dθ))→
maxθ J(θ). This means that as κ→∞, its effect on the convergence rate disappears
from the right-hand side of inequality (5.6), leaving us with a standard O(1/t) rate.

Remark 5.7. When compared with the corresponding result in [39], to which it is
closely related, the bound (5.6) of Theorem 5.5 contains an interesting dependence on
the user-specified κ, the policy class {πθ}θ∈Θ, and the underlying MDP. The presence
of M = maxθ∈Θ ρ(θ) = maxθ[J(θ)/(κ+H(dθ))] in the bound (5.6) suggests that the
convergence rate depends on the value of κ as well as the minimal possible value of
H(dθ) over θ ∈Θ. To see why, let C =maxθ∈Θ J(θ) and notice that

M ≤max
θ∈Θ

C

κ+H(dθ)
=

C

κ+minθ∈ΘH(dθ)
.(5.17)

When the MDP dynamics and policy class are such that minθ∈ΘH(dθ) is large, then
M will be closer to 0, yielding a tighter bound in (5.6). This suggests that it may be
easier to optimize the OIR over MDPs and/or policy classes that tend to be “more
ergodic.” When both κ and minθ∈ΘH(dθ) are close to 0, on the other hand, M

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/2

1/
24

 to
 1

29
.4

9.
10

0.
52

 . 
Re

di
str

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:/
/e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y
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may be very large, resulting in a looser bound in (5.6). This highlights the practical
usefulness of the constant κ, as choosing larger κ values can be used to smooth the
objective function ρ(θ) and thereby lead to stabler convergence when optimizing the
OIR over MDPs and policy classes that tend to be “less ergodic.”

In the preceding theorem, we assume “exact policy gradient,” or zero stochas-
tic approximation error. Note this assumption is limited to Theorem 5.5, whereas
Theorem 5.12 below allows stochastic approximation error and Theorem 5.3 above is
independent of estimation issues. Though this assumption is a drawback for Theo-
rem 5.5, we highlight that it allows us to succinctly focus on a core insight of this
work: hidden quasiconvexity unlocks an information-dependent convergence rate to
global optimality. We also note that, for REINFORCE-like algorithms like those con-
sidered in Theorem 5.5, long rollouts enable more accurate gradient estimates, for
which the existing assumptions approximately apply. A precise treatment of gradient
estimation error versus rollout length is an important direction for future work, and
we expect it to involve extending the analysis in [38] to the OIR problem.

5.3. Actor-critic convergence. We conclude this section by proving almost
sure convergence of IDAC to a neighborhood of a stationary point of (5.1). By The-
orem 5.3, this implies IDAC converges almost surely (a.s.) to a neighborhood of a
global optimum. This is much stronger than existing asymptotic results for actor-critic
schemes, which typically guarantee convergence to a neighborhood of a local optimum
or saddle point [5, 40, 1]. We analyze the algorithm as given in Algorithm 4.2 under
the assumption that τt = αt for all t ≥ 0, that K = 1, and with the addition of a
projection operation to the policy update,

θt+1 =Γ

[
θt − βt

δJt (κ+ μH
t )− μJ

t δ
H
t(

κ+ μH
t

)2 ∇ logπθt(at|st)
]
,(5.18)

where Γ : Rd → Θ maps any parameter θ ∈ Rd back onto the compact set Θ ⊂ Rd of
permissible policy parameters. This projection, which is common in the actor-critic
and broader two-timescale stochastic approximation literatures (see, e.g., [18, 6, 5]), is
for purposes of theoretical analysis and is typically not needed in practice. In addition
to Assumption 5.1, we impose the following.

Assumption 5.8. Stepsizes {αt},{βt} satisfy
∑

tαt =
∑

t βt =∞,
∑

tα
2
t+β2

t <∞,
limt

βt

αt
= 0.

Assumption 5.9. The value function approximators vω are linear, i.e., vω(s) =
ω�φ(s), where φ(s) = [φ1(s) · · · φK(s)]� ∈ RK is the feature vector associated with
s∈ S. The feature vectors φ(s) are uniformly bounded for any s∈ S, and the feature
matrix Φ= [φ(s)]�s∈S ∈R|S|×K has full column rank. For any u ∈RK , Φu 
= 1, where
1 is the vector of all ones.

Assumptions 5.1, 5.8, and 5.9 are standard in two-timescale convergence analyses
for actor-critic algorithms [5].

To prepare for the proof of Theorem 5.12, the main result of this section, we
first prove Lemmas 5.10 and 5.11. Our analysis leverages the average-reward actor-
critic results in [5] as well as the results for ratio optimization actor-critic in [34].
For a given policy parameter θ, let Dθ = diag(dθ) ∈ R|S|×|S| denote the matrix with
the elements of dθ along the diagonal and zeros everywhere else. Define the state
cost vector for the average-cost MDP (S,A, p, c) to be cθ = [cθ(s)]

�
s∈S ∈ R|S|, where

cθ(s) =
∑

a∈A πθ(a|s)c(s, a). Similarly, let rθ = [− logdθ(s)]
�
s∈S ∈R|S| denote the state
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reward vector for the shadow MDP (S,A, p, r), where r(s, a) =− logdθ(s). Note that
the ergodicity condition of Assumption 5.1 implies that dθ(s)> 0 for all s ∈ S, θ ∈Θ,
so r(s, a) is always defined and finite. Finally, let Pθ ∈ R|S|×|S| denote the state
transition probability matrix under policy πθ, i.e., Pθ(s

′|s) =∑a∈A πθ(a|s)p(s′|s, a)
for any s, s′ ∈ S. We first show convergence of the critics.

Lemma 5.10. Under Assumption 5.9, given a fixed policy parameter θ ∈ Θ, the
critic updates in lines 4, 6, 13, 14 of Algorithm 4.2 converge as follows: limt→∞ μJ

t =
J(θ) a.s., limt→∞ μH

t =H(dθ) a.s., limt→∞ ωJ
t = ωJ

θ a.s., and limt→∞ ωH
t = ωH

θ a.s.,
where ωJ

θ and ωH
θ are, respectively, the unique solutions to

Φ�Dθ

[
cθ − J(θ) · 1+ Pθ(Φω

J)−ΦωJ
]
= 0,

Φ�Dθ

[
rθ −H(dθ) · 1+ Pθ(Φω

H)−ΦωH
]
= 0.

Proof. Since the policy πθ is held fixed and the shadow MDP reward − logdθ(s)
can be exactly evaluated for any s ∈ S, the proof of Lemma 4 in [5] can be applied
separately to the average-cost recursions in lines 4, 9, and 13 and the shadow MDP
recursions in lines 6, 10, and 14 of Algorithm 4.2 to obtain the result.

As in Lemma 5 of [5], this result shows that the sequences {ωJ
t } and {ωH

t } con-
verge a.s. to the limit points ωJ

θ and ωH
θ of the TD(0) algorithm with linear function

approximation for their respective MDPs. Due to the use of linear function approxi-
mation, when used in the policy update step the value function estimates vJθ = ΦωJ

θ

and vHθ = ΦωH
θ may result in biased gradient estimates. Similar to the bias charac-

terization given in Lemma 4 in [5], this bias can be characterized as follows.

Lemma 5.11. Fix θ ∈ Θ. Let δθ,Jt = c(st, at) − J(θ) + φ(st+1)
�ωJ

θ − φ(st)
�ωJ

θ

and δθ,Ht =− logdθ(st)−H(dθ) + φ(st+1)
�ωH

θ − φ(st)
�ωH

θ denote the stationary es-
timates of the TD errors at time t. Let vJθ =Eπθ

[c(s, a)−J(θ)+φ(s′)�ωJ
θ ] and vHθ =

Eπθ
[− logdθ(s)−H(dθ)+φ(s′)�ωH

θ ]. Now let εJθ =
∑

s∈S dθ(s)
[∇θv

J
θ (s)−∇θφ(s)

�ωJ
θ

]
and εHθ =

∑
s∈S dθ(s)

[∇θv
H
θ (s)−∇θφ(s)

�ωH
θ

]
. We then have that

Eπθ

[
δθ,Jt [κ+H(dθ)]− J(θ)δθ,Ht

[κ+H(dθ)]
2 ∇ logπθ(at|st)

]
=∇ρ(θ) +

εJθ [κ+H(dθ)]− J(θ)εHθ
[κ+H(dθ)]

2 .

Proof. By [5, Lemma 4] and Theorem 3.10, Eπθ

[
δθ,Jt ∇ logπθ(at|st)

]
=∇J(θ)+εJθ

and Eπθ

[
δθ,Ht ∇ logπθ(at|st)

]
=∇H(dθ) + εHθ . This implies that

Eπθ

[
δθ,Jt [κ+H(dθ)]− J(θ)δθ,Ht

[κ+H(dθ)]
2 ∇ logπθ(at|st)

]

=
[κ+H(dθ)]Eπθ

[
δθ,Jt ∇ logπθ(at|st)

]
− J(θ)Eπθ

[
δθ,Ht ∇ logπθ(at|st)

]
[κ+H(dθ)]

2

=
[κ+H(dθ)]

(∇J(θ) + εJθ
)− J(θ)

(∇H(dθ) + εHθ
)

[κ+H(dθ)]
2

=∇ρ(θ) +
εJθ [κ+H(dθ)]− J(θ)εHθ

[κ+H(dθ)]
2 ,

which completes the proof.
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We now establish convergence of the actor step, and thus the actor-critic algo-
rithm. Given any continuous function f : Θ→ Rd, define the function Γ̂(·) using the
projection operator Γ to be Γ̂(f(θ)) = limη→0+ [Γ(θ+ η · f(θ))− θ]

/
η. Define

εθ =
εJθ [κ+H(dθ)]− J(θ)εHθ

[κ+H(dθ)]
2 .(5.19)

Consider the ODEs

θ̇= Γ̂(∇ρ(θ)),(5.20)

θ̇= Γ̂(∇ρ(θ) + εθ).(5.21)

Notice that, by the definition of Γ̂, the right-hand side of (5.20) is simply Γ(∇ρ(θ))
when there exists η0 > 0 such that θ + η∇ρ(θ) ∈ Θ for all η < η0. When such an η0
does not exist, Γ̂(∇ρ(θ)) can be interpreted as the projected ODE θ̇ =∇ρ(θ) + z(θ),
where z(θ) is the minimal force necessary to project θ back onto Θ. Similar statements
hold for (5.21). For further discussion of the definition of Γ̂ and related results, see
[17, p. 191]. For the projected ODE interpretation, see section 4.3 of [18].

We now present the main result of this subsection, which establishes convergence
of the actor-critic algorithm. Its proof follows that of Theorem 1 in [5], with key
modifications to accommodate complications arising from the fact that the objective
to be minimized is a ratio; specifically, we ensure that (i) the resulting noise terms
are indeed asymptotically negligible, and (ii) the Lipschitz properties of the gradient
∇ρ(θ) necessary for the ODE analysis are satisfied.

Theorem 5.12. Let Z denote the set of asymptotically stable equilibria of the
ODE (5.20). Given any ε > 0, define Zε = {z | infz′∈Z ‖z − z′‖ ≤ ε}. For any
θ ∈Θ, let εθ be defined as in (5.19). Under Assumptions 5.1, 5.8, and 5.9, given any
ε > 0, there exists δ > 0 such that for {θt} obtained from Algorithm 4.2 with projection
(5.18), if supt ‖εθt‖< δ, then θt →Zε a.s. as t→∞.

Proof. Let Ft = σ(θk, k ≤ t) denote the σ-algebra generated by the θ-iterates

up to time t. Define δt =
δJt [κ+μH

t ]−μJ
t δ

H
t

[κ+μH
t ]

2 and δθt =
δJ,θt [κ+H(dθ)]−J(θ)δH,θ

t

[κ+H(dθ)]
2 . In ad-

dition, define the noise terms M
(1)
t = δt∇ logπθt(at|st) − E [δt∇ logπθt(at|st) | Ft]

and M
(2)
t = E[(δt − δθtt )∇ logπθt(at|st) | Ft]. Finally, define the function h(θt) =

Eπθt
[δθtt ∇ logπθt(at|st) | Ft] = Eπθt

[δθtt ∇ logπθt(at|st)], which is the gradient expres-
sion from Lemma 5.11. Note that simultaneously taking an expectation with respect
to πθt and conditioning on Ft is redundant, so we can suppress one or the other in
our notation without altering the meaning.

We can now rewrite the projected actor update (5.18) as

θt+1 =Γ
(
θt − βtδt∇ logπθt(at|st)

)
=Γ
(
θt − βt

[
h(θt) +M

(1)
t +M

(2)
t

])
.

We show that this update scheme asymptotically tracks the ODE (5.21) a.s. by demon-

strating that the noise terms {M (1)
t } form an almost surely bounded martingale dif-

ference sequence, that the terms {M (2)
t } are asymptotically negligible, and that h is

Lipschitz and thus the ODE is well-posed.
Since δt → δθtt a.s. by Lemma 5.10, we have that M

(2)
t → 0 a.s., so the noise

terms {M (2)
t } are indeed asymptotically negligible. Next, recall the tower property
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3166 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU

of conditional expectations: for any F-measurable random variable X and any sub-
σ-algebras G ⊂ H ⊂ F , we have E [E [X|G] |H] = E [E [X|H] |G] = E [X|G]. Since
Ft ⊂Ft+1 for all t≥ 0, this implies that for all t≥ 0,

E

[
M

(1)
t+1|Ft

]
=E

[
δt+1∇ logπθt+1

(at+1|st+1)−E
[
δt+1∇ logπθt+1

(at+1|st+1) | Ft+1

] | Ft

]
=E

[
δt+1∇ logπθt+1(at+1|st+1) | Ft

]
−E

[
E
[
δt+1∇ logπθt+1

(at+1|st+1) | Ft+1

] | Ft

]
=E

[
δt+1∇ logπθt+1

(at+1|st+1) | Ft

]−E
[
δt+1∇ logπθt+1

(at+1|st+1) | Ft

]
= 0,

so {M (1)
t } is an F-martingale difference sequence, where F is the filtration F = {Ft}.

To see that M
(1)
t is a.s. bounded, first notice that μH

0 > 0 and 0 < inft dθt(st) ≤
supt dθt(st)≤ 1, so {μH

t } is uniformly bounded both above and below away from zero.
A similar argument applies to {μJ

t }. Coupled with almost sure boundedness of {ωJ
t }

and {ωH
t }, this implies that {δt} and thus {M (1)

t } are a.s. bounded. As discussed

in sections 2.1–2.2 of [6], the facts that {M (1)
t } is a.s. bounded martingale difference

noise and {M (2)
t } is asymptotically negligible ensure that as long as the right-hand

side of the ODE (5.21) is Lipschitz, the iterates generated by (5.18) will asymptotically
track it.

To see that h is Lipschitz in θ, first rewrite

h(θt) =
1

[κ+H(dθt)]
2

(
[κ+H(dθt)]Eπθt

[
δJ,θtt ∇ logπθt(at|st)

]
− J(θt)Eπθt

[
δH,θt
t ∇ logπθt(at|st)

])
.

We verify that each of the component terms in this expression is Lipschitz and
bounded. Recall that a function is Lipschitz if it is continuously differentiable with
bounded derivatives. First, as discussed in the proof of [5, Lem. 5], J(θ), dθ(s),
∇πθ(a|s), and ΦωJ

θ are all Lipschitz and bounded for all s∈ S, a∈A. Thus J(θ) and

Eπθ

[
δJ,θt ∇ logπθ(at|st)

]
are Lipschitz and bounded on Θ. The remaining terms we

need to inspect are κ+H(dθ), 1/ [κ+H(dθ)]
2
, and Eπθ

[
δH,θ
t ∇ logπθ(at|st)

]
.

Theorem 3.10 implies ∇H(dθ) is continuous and bounded. To see this, notice

∇H(dθ) =Eπθ

[
(− logdθ(s)−H(dθ))∇ logπθ(a|s)

]
=
∑
s

dθ(s)
∑
a

πθ(a|s)
[
(− logdθ(s)−H(dθ))∇ logπθ(a|s)

]
=
∑
s

dθ(s)
∑
a

∇πθ(a|s)
[
(− logdθ(s)−H(dθ))

]
.

By the ergodicity condition of Assumption 5.1, we have that dθ(s) > 0 for all
s ∈ S, which means that the − logdθ(s) is always defined. Since dθ is continuous,
we furthermore have that − logdθ(s) and H(dθ) are both continuous. The gradient
∇πθ(a|s) is continuous by Assumption 5.1. Finally, since Θ is a compact set, we know
that dθ(s),∇πθ(a|s),− logdθ(s), and H(dθ) remain bounded, implying that ∇H(dθ) is
continuous and bounded, since it is formed by taking products and sums of continuous,
bounded functions. H(dθ) is thus Lipschitz and bounded, as is the term κ+H(dθ),
for any constant κ ≥ 0. Furthermore, since dθ(s) > 0 for all s ∈ S, and since Θ is
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compact, there exists some constant B such that infθ∈ΘH(dθ) =B > 0. This means
that 1/ [κ+H(dθ)]

2 ≤ 1/ [κ+B]
2
for all θ ∈Θ. The term 1/ [κ+H(dθ)]

2
is therefore

Lipschitz and bounded, as well. Finally, notice that Eπθ

[
δH,θ
t ∇ logπθ(at|st)

]
=

Eπθ

[(− logdθ(st)−H(dθ) + φ(st+1)
�ωH

θ − φ(st)
�ωH

θ

)∇ logπθ(at|st)
](5.22)

=
∑
s

dθ(s)
∑
a

∇πθ(a|s)
[
− logdθ(s)−H(dθ)− φ(s)�ωH

θ +
∑
s′

p(s′|s, a)φ(s′)�ωH
θ

]
.

As discussed above, dθ(s), πθ(a|s),− logdθ(s), and H(dθ) are all continuously differen-
tiable with bounded derivatives on Θ. Furthermore, given that H(dθ) is Lipschitz and
bounded both above and away from zero, ΦωH

θ is Lipschitz and bounded for reasons
analogous to those for ΦωJ

θ . Expression (5.22) is thus Lipschitz and bounded.
By the foregoing, h is Lipschitz, since it is formed by taking products and sums

of Lipschitz, bounded functions. The ODE (5.21) is therefore well-posed, and its
equilibrium set Z is well-defined. A similar argument to the one just presented can
be used to show that (5.20) with equilibrium set Y is also well-posed. The remainder
of the arguments in the proof of Lemma 5 in [5] now apply to prove that θt → Y
a.s. as t→∞, and that as supθ ‖εθ‖→ 0, the trajectories of (5.21) converge to those
of (5.20). In particular, this implies that for a given ε > 0, there exists a δ > 0 such
that if supθ ‖εθ‖< δ, then θt →Zε a.s. as t→∞.

Combined with Theorem 5.3, Theorem 5.12 establishes almost sure convergence
of IDAC to a neighborhood of a global optimum of the OIR minimization problem
(5.1). Note that if the features Φ are expressive enough, ε will be small or even zero.

6. Experiments. We conducted numerical experiments showing that when the
reward signal is sparse, OIR methods lead to improved performance when compared
with vanilla RL methods. We conducted two different sets of experiments on gridworld
environments of varying complexity. In the first set of experiments, we compared
tabular implementations of IDAC and vanilla AC on three relatively small gridworlds.
For the second set of experiments, we compared a neural network version of IDAC
with the A2C, DQN, and PPO algorithms on a larger, more complex gridworld. Due
to the well-known practical advantages of actor-critic methods over higher-variance
REINFORCE-based approaches [35], we focused on IDAC in our experiments. All the
environments emit sparse reward signals in the sense that the majority of costs convey
no information about the central task of finding the goal state. On all environments,
OIR policy gradient methods outperform the vanilla RL methods that we tested. Due
to space limitations, we only present the neural network experiments in this section.
See [33] for all experimental results.

6.1. Implementation. A gridworld is composed of an n × m grid of states,
S = {0, . . . , n−1}×{0, . . . ,m−1}, along with a designated start state sstart, designated
goal state sgoal, and a set B ⊂S of blocked states the agent is not permitted to enter.
Episodes are of fixed length K, and the agent begins each episode in state sstart. In
a given state s= (i, j), the agent chooses an action a∈ {stay, up, down, left, right}.
The agent then attempts to move in the direction corresponding to the action selected:
if the selected action would move the agent off the grid or into a blocked state,
the agent remains in s; otherwise, the agent moves into (or remains in) the state
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3168 WESLEY A. SUTTLE, ALEC KOPPEL, AND JI LIU

corresponding to the action selected. Finally, let A(s) denote the set of all actions at
s that do not lead off the grid or into a blocked state. The cost function is given in
(6.1),

c(s, a) =

⎧⎪⎨⎪⎩
cgoal if s= sgoal and a∈A(s),

callowed if s 
= sgoal and a∈A(s),

cblocked if a /∈A(s),

(6.1)

where 0< cgoal < callowed < cblocked.
For the neural network experiments, we implemented IDAC with a categorical

policy using two-layer, fully connected neural networks for both policy and value
function approximators, and we compared against the Stable Baselines3 [28] imple-
mentations of A2C, DQN, and PPO with two-layer, fully connected neural networks
for all policies and value function approximators.

6.2. Neural network experiment results. Figure 1 illustrates the perfor-
mance of neural IDAC and A2C, DQN, and PPO on the gridworld environment
pictured with cgoal = 0.1, callowed = 5, and cblocked = 10. To generate the data for
these figures, we trained 48 instances of neural IDAC and 15 instances of each of the
A2C, DQN, and PPO algorithms. Average costs were computed for each episode,
and the sample means and 95% confidence intervals were used to create the learning
curves. As the figure illustrates, IDAC outperformed all three. Furthermore, none of
A2C, DQN, and PPO found the goal state after 1.2e+5 time steps. Hyperparameters
α= 0.0001, β = 0.0002, τ = 0.1, κ= 0.1, and 512 hidden units for each layer in both
the policy and value functions for neural IDAC were selected through trial and error.
After experimenting with a range of different parameters and detecting no noticeable
difference in performance, Stable Baselines3 default parameters for A2C, DQN, and
PPO were used. This included learning rates 0.0007 for A2C, 0.0003 for PPO, and
0.0001 for DQN, as well as 64-width layers for all networks.

All algorithms quickly learn to avoid blocked actions. In the case of A2C and
PPO, this leads to an average cost of exactly 5, while for DQN the cost remains
slightly above 5 due to exploration noise lower bounded by 0.05. Though the optimal

Fig. 1. Comparison of neural network IDAC with common deep RL methods. Plot gives means
and 95% confidence intervals. Optimal average cost is 0.1. Training took place over 1e+6 time steps;
no further improvement occurred beyond time step 1.2e+5.
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cost is 0.1, they converge to and remain at these suboptimal values for the remainder
of training. Sparse rewards and overconfidence in past experience likely caused this
premature convergence. Meanwhile, since neural IDAC minimizes ρ(θ) instead of
J(θ), it swiftly locates the goal state and an optimal policy with average cost 0.1. This
illustrates that, in sparse-reward environments, OIR-based policy gradient methods
can lead to improved performance over vanilla techniques.

7. Conclusion. In this paper we have developed policy gradient methods for a
new RL objective, the OIR. En route, we have elaborated a rich theory underlying
these methods, including a concave programming reformulation of the OIR optimiza-
tion problem with links to the powerful linear programming theory for MDPs; policy
gradient theorems for the OIR setting; and both asymptotic and nonasymptotic con-
vergence theory with global optimality guarantees under appropriate assumptions.
We have furthermore presented empirical results that indicate promising performance
compared with state-of-the-art methods on sparse-reward problems. Interesting direc-
tions for future work include extensions to more general classes of ratio optimization
problems, development of variants of the IDAC algorithm for continuous spaces us-
ing suitable density estimation techniques, exploration of whether the OIR enables
faster-than-linear nonasymptotic rate analyses, and thorough empirical evaluation of
deep RL variants of IDAC on a range of benchmark problems.

Disclaimer. This paper was prepared for informational purposes in part by the
Artificial Intelligence Research group of JP Morgan Chase & Co and its affiliates
(“JP Morgan”), and is not a product of the Research Department of JP Morgan. JP
Morgan makes no representation and warranty whatsoever and disclaims all liabil-
ity, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a rec-
ommendation, offer or solicitation for the purchase or sale of any security, financial
instrument, financial product or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not constitute a solicitation under
any jurisdiction or to any person, if such solicitation under such jurisdiction or to such
person would be unlawful.
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