
Applied and Numerical Harmonic Analysis

Eugenio Hernández
Marco Maria Peloso
Fulvio Ricci
Fernando Soria
Anita Tabacco
Editors

The Mathematical
Heritage of
Guido Weiss

Chapter 15

On Low-Rank Convex-Convex Quadratic
Fractional Programming

Ilya Krishtal and Brendan Miller

Abstract We present an efficient algorithm for solving fractional programming

problems whose objective functions are the ratio of a low-rank quadratic to a

positive definite quadratic with convex constraints. The proposed algorithm for these

convex-convex problems is based on the Shen-Yu Quadratic Transform (Shen and

Yu, IEEE Trans Signal Process 66(10):2616–2630, 2018) which finds stationary

points of concave-convex sum-of-ratios problems. We further use elements of the

algorithm proposed by Shen and Yu and the classic Dinkelbach approach to ensure

convergence. We show that our algorithm performs better than previous algorithms

for low-rank problems.

15.1 Introduction

Methods of fractional programming encompass a large range of techniques to solve

problems of the form

max F(x) =
M
∑

m=1

Nm(x)

Dm(x)

s.t. x ∈ X ⊂ R
n

(15.1)

where Nm(x),Dm(x) : Rn → R are continuous functions, and X is a closed, convex

set. A convention of the field, which we adopt throughout this paper, is that Nm(x) ≥
0 and Dm(x) > 0 for all x ∈ X. The problem is called single-ratio if M = 1 and a

sum-of-ratios fractional programming problem if M > 1. Fractional programming

problems arise in many different applications, such as finance and portfolio analysis,

I. Krishtal (�) · B. Miller

Northern Illinois University, Dekalb, IL, USA

e-mail: ikrishtal@niu.edu; bmiller14@niu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

E. Hernández et al. (eds.), The Mathematical Heritage of Guido Weiss,

Applied and Numerical Harmonic Analysis,

https://doi.org/10.1007/978-3-031-76793-7_15

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-76793-7_15&domain=pdf
mailto:ikrishtal@niu.edu
mailto:bmiller14@niu.edu
https://doi.org/10.1007/978-3-031-76793-7_15

332 I. Krishtal and B. Miller

government contracting, and engineering (see [1, 2, 10, 11]). We were led to a single-

ratio problem in the process of studying the problem of optimal sensor placement for

dynamical sampling on graphs [8]. In particular, the relative error of reconstructing

a signal on a graph from spatio-temporal samples in the presence of noise can be

bounded above by a ratio of two quadratics depending on the eigenvalues of a certain

frame operator.

Fractional programs have a long history. Below we outline a few milestones in

the development of the theory.

In 1962, Charnes and Cooper showed in [3] that linear fractional programming

problems, which are single-ratio fractional programming problems whose numera-

tor, denominator, and constraints are linear, can be solved by simplex method.

In 1967, Dinkelbach [4] showed that any concave-convex single-ratio fractional

programming problem can be solved efficiently by consecutively solving several

concave maximization problems. The approach used by Dinkelbach was so useful

that it has become standard and even seen many applications to fractional programs

which are not concave-convex. In the latter case, however, the method involves

solving a succession of non-concave maximization problems and becomes rather

expensive.

In 1997, Lo and MacKinlay [11] proposed the problem of maximizing the ratio of

two convex quadratic functions in the context of portfolio analysis. The following

decade saw two papers published [7, 14] which presented algorithms for solving

this problem exactly. Both follow the standard Dinkelbach approach, with different

methods of handling the most expensive aspect of the problem: the need to solve

multiple non-convex quadratic programming problems. To do so, the former paper

by Gotoh and Konnoh implemented a branch-and-bound technique while the latter

by Yamamoto and Konnoh iteratively approximated the quadratic by a piece-wise

linear function, which is maximized by standard mixed integer linear programming

techniques.

In recent years, there has also been much research on the sum-of-ratios problem.

For example, [1, 2, 5] all produce branch-and-bound type algorithms for solving

the concave-convex sum-of-ratios problem. Similarly, [10, 12] propose efficient

algorithms for solving quadratically constrained quadratic sum-of-ratios type prob-

lems. Of particular interest to us is the Shen-Yu Quadratic Transform introduced in

[13] which, like the Dinkelbach method, iteratively solves a concave programming

problem to converge to a stationary point of the concave-convex sum-of-ratios

problem.

In this paper, we propose an algorithm for solving the single-ratio convex-

convex quadratic programming problem which can be effectively utilized when

the numerator has low rank. We divide the feasible region into several subregions

in which the Shen-Yu Quadratic Transform method can be applied successively

until global convergence. Since the methods of Shen and Yu only guarantee

convergence to a stationary point, we use the mixed integer linear programming

techniques employed in [14] to check if a given stationary point is a global optimum.

Although, as we will see empirically, this rather expensive procedure can often be

omitted altogether (with a minimal chance of error). This yields a very efficient

15 On Low-Rank Convex-Convex Quadratic Fractional Programming 333

algorithm which, with high probability, converges to the global solution of a

convex-convex quadratic programming problem by successively solving concave

maximization problems. The only known algorithms for solving such problems

involve successively maximizing a nonconvex quadratic programming problems.

The remainder of this paper is organized as follows. In Sect. 15.2, we state

the problem we focus on and outline the classic Dinkelbach approach for ratio

maximization. We then convert our problem into a sum-of-ratios problem and recall

a recent Shen-Yu scheme for solving such problems. Section 15.3 is the centerpiece

of the paper. In it, we present a natural way of subdividing the feasible region

of our problem into a number of subregions thereby replacing a convex-convex

sum-of-ratios problem with a finite number of much simpler concave-convex sum-

of-ratios problems. This results in a region checking algorithm (Algorithm 15.3)

which encompasses our approach to solving single-ratio quadratic convex-convex

problems. Numerical experiments described in Sect. 15.4 illustrate the effectiveness

of our approach in comparison with other algorithms. Finally, concluding remarks

are presented in Sect. 15.5.

15.2 Basic Analysis

We study the problem of the form

max F(x) =
xT Qx

xT Px

s.t. Ax ≤ b

(15.2)

where Q is an n × n positive semidefinite matrix, P is an n × n positive definite

matrix, A ∈ R
T ×n, b ∈ R

T . We will denote the feasible region of this problem by

X ⊂ R
n. Such optimization problems are nonconcave in general, and thus require

expensive algorithms to solve. We recall the standard Dinkelbach method which

utilizes the function

π(λ) := max
x∈X

xT (Q − λP)x, λ > 0.

It is convenient to introduce the following notation:

x(λ) = arg max
x∈X

xT (Q − λP)x, λ > 0.

Theorem 15.1 The function π(λ) is convex and strictly decreasing in λ. Further-

more, π(λ) = 0 if and only if x(λ) maximizes (15.2) in X.

The algorithms of [7, 14] are root-finding algorithms which use a scheme

developed by Ibaraki [9] to search for the root of π . These algorithms become

334 I. Krishtal and B. Miller

expensive because computing π(λ) is a nonconvex quadratic programming problem,

whose difficulty is larger for smaller values of λ. We will utilize this Theorem

of Dinkelbach in our algorithm, but only to check if a local maximum of (15.2)

is indeed a global maximum. We summarize the Ibaraki scheme here as Algo-

rithm 15.1 for reference, but omit the explanation of convergence.

input : Matrices Q and P , linear inequality constraints Ax ≤ b, and a tolerance ε.

1 Find λu with π(λu) < 0 and λl with π(λl) > 0;

2 repeat

3 Compute λ as follows:

λ =
{

− π(λu)
Δπ

+ λu if x(λu)T Px(λu) + Δπ �= 0
π(λu)

x(λu)T Px(λu)
+ λu otherwise,

where Δπ = (π(λu) − π(λl))/(λu − λl);

4 Compute π(λ);

5 Update λl = λ if π(λ) > 0, or λu = λ if π(λ) < 0;

6 until |π(λ)| < ε;

Algorithm 15.1: Interpolated binary search (Ibaraki scheme)

The algorithms presented in [7, 14] both utilize Algorithm 15.1, but employ

different methods of computing π(λ). We will use contemporary software to solve

these non-convex quadratic programming problems to ensure the most accurate

solutions.

Suppose now that Q can be written as

Q =
M

∑

m=1

qmqT
m,

which is a sum of rank-one matrices. Note that Q always admits such a decomposi-

tion as we can take M = rank(Q) and qm =
√

λmvm where vm is the eigenvector

of Q associated to the nonzero eigenvalue λm. Then we may rewrite the objective

function in the following way:

F(x) =
∑M

m=1 xT (qmqT
m)x

xT Px

=
M

∑

m=1

〈qm, x〉2

xT Px
.

(15.3)

15 On Low-Rank Convex-Convex Quadratic Fractional Programming 335

This reformulation of the objective function converts a single-ratio fractional

programming problem (15.2) into a convex-convex sum-of-ratios fractional pro-

gramming problem which we will refer to as (15.3).

Next, we summarize a method for suboptimally solving sum-of-ratios fractional

programming problems (15.1) that was introduced in [13].

Definition 15.1 (See [13]) Given the sum-of-ratios fractional programming prob-

lem (15.1), the Shen-Yu Quadratic Transform of this problem is defined to be

g(x, y) =
M

∑

m=1

(

2ym

√

Nm(x) − y2
mDm(x)

)

. (15.4)

Theorem 15.2 ([13]) The sum-of-ratios problem (15.1) and its quadratic transform

(15.4) maximization problem are equivalent. More precisely, the maximum of (15.4)

occurs at (x∗, y∗) where x∗ maximizes (15.1) and y∗ = (y∗
m)Mm=1 satisfies

y∗
m =

√
Nm(x∗)

Dm(x∗)
.

The following Lemma is useful for deriving the Shen-Yu scheme.

Lemma 15.1 Let g(x, y) be as in (15.4). If x0 ∈ X, then y0 := arg maxy∈RM g(x0,

y) can be found analytically and is given by y0 = (y0
m)Mm=1, where

y0
m =

√
Nm(x0)

Dm(x0)
.

Proof It suffices to maximize each term in the sum in (15.4) individually. Clearly,

the vertex of the quadratic f (ym) = 2ym

√
Nm(x0) − y2

mD(x0) occurs at the point

y0
m =

√
Nm(x0)

Dm(x0)

as desired. �

We may now state and prove a theorem from which, when taken together with

Theorem 15.2, an algorithm for suboptimally solving (15.1) is naturally derived.

Theorem 15.3 (Shen, Yu [13]) Consider the sum-of-ratios problem (15.1) and

suppose that x0 ∈ X. Let y0 = (y0
m)Mm=1 with y0

m =
√

Nm(x0)/Dm(x0). If

x∗ = arg max
x∈X

g(x, y0) = arg max
x∈X

M
∑

m=1

(

2y0
m

√

Nm(x) − (y0
m)2Dm(x)

)

,

then F(x∗) ≥ F(x0).

336 I. Krishtal and B. Miller

Proof Let x0, y0, and x∗ be as above and set

y∗
m =

√
Nm(x∗)

Dm(x∗)

and y∗ = (y∗
m)Mm=1. Then we have the following string of inequalities

F(x0) = g(x0, y0)

≤ g(x∗, y0)

≤ g(x∗, y∗)

= F(x∗)

where the third line follows from Lemma 15.1, and the last by a direct computation.

The proof is complete. �

The above Theorem guarantees that replacing x0 by x∗ and y0 by y∗ improves

the value of the objective function with each iteration, and thus this method (with

the scheme written explicitly in Algorithm 15.2) converges. It is clear that the

algorithm converges to a local maximum, say (x∗, y∗), of the Quadratic Transform

g. It follows easily that the value x∗ is indeed a local maximum of the objective F

as well.

input : Functions Nm and Dm, and a compact, convex set X.

1 Find an initial x0 ∈ X;

2 repeat

3 set y0
m =

√
Nm(x0)/Dm(x0);

4 solve x∗ = arg maxx∈X

∑M
m=1

(

2y0
m

√
Nm(x) − (y0

m)2Dm(x)
)

;

5 update x0 = x∗;

6 until convergence;

Algorithm 15.2: Shen-Yu iterative algorithm

Corollary 15.1 Algorithm 15.2 converges to a stationary point of the sum-of-ratios

fractional programming problem (15.1).

Although Algorithm 15.2 is guaranteed to converge to a stationary point, its

usefulness is limited to the difficulty of maximizing the Quadratic Transform over

the variable x. In the case when each Nm is concave and each Dm is convex, this

can be done by any method of concave programming. When the objective has the

form (15.3), the Quadratic Transform becomes

g(x, y) =
M

∑

m=1

2ym|〈qm, x〉| − y2
mxT Px (15.5)

15 On Low-Rank Convex-Convex Quadratic Fractional Programming 337

which is not, in general, concave in x. However, in the event that the absolute

values around each linear term in the sum can be dropped (i.e. each 〈qm, x〉 is

either nonnegative or nonpositive valued on X), then we may apply Algorithm 15.2

effectively.

15.3 Region Checking Algorithm

Henceforth we will assume the objective function F is as in (15.2) and, therefore,

it can be rewritten in the sum-of-ratios form (15.3). The first observation to make

is that combining Algorithm 15.2 with the Dinkelbach method yields an algorithm

which converges to the global maximum of (15.3). Indeed, if x∗ is the local optimum

found by Algorithm 15.2, we may set λ∗ = F(x∗) and compute both π(λ∗) and

x(λ∗). If |π(λ∗)| > ε where ε is some tolerance, we again run Algorithm 15.2 with

x(λ∗) as the initial feasible point and repeat. This method is guaranteed to converge

to the globally optimal solution since

x(λ∗)T (Q − λ∗P)x(λ∗) > x∗T (Q − λ∗P)x∗

implies that

F(x(λ∗)) > F(x∗) ≥ F(x0)

where x0 is the initial feasible point used in Algorithm 15.2.

Finding the value of π(λ∗) and the vector x(λ∗) can be achieved by the methods

introduced in [7] and refined in [14], but maximizing the Quadratic Transform as

in Algorithm 15.2 cannot. To circumvent this issue, we divide the feasible region

into at most 2rank(Q) subregions and perform this algorithm independently in each

subregion. Suppose, as before, that

Q =
M

∑

m=1

qmqT
m,

and for each 1 ≤ m ≤ M define

R0
m = {x ∈ X | 〈qm, x〉 ≤ 0}, R1

m = {x ∈ X | 〈qm, x〉 ≥ 0}.

For each binary sequence (nm)Mm=1 = n ∈ {0, 1}M , we denote by Rn a (possibly

empty) subregion of X given by

Rn =
M
⋂

m=1

Rnm
m .

338 I. Krishtal and B. Miller

A straightforward observation then yields the following result.

Lemma 15.2 The Quadratic Transform (15.5) of (15.3) is concave in the x

variable over each nonempty subregion Rn for n ∈ {0, 1}M .

Proof Let g(x, y) be as in (15.5) and fix a binary sequence n ∈ {0, 1}M . Then, by

definition of Rn, we see that for each 1 ≤ m ≤ M we have either 〈qm, x〉 ≥ 0 or

〈qm, x〉 ≤ 0 for all x ∈ Rn. This implies that |〈qm, x〉| is linear over Rn, and hence

g(x, y) is a sum of concave functions, which is itself concave. �

We can now formulate our method for solving the convex-convex quadratic

fractional programming problem as Algorithm 15.3.

input : Matrices Q =
∑M

m=1 qmqT
m, P , linear constraints Ax ≤ b, and a tolerance ε.

output: Global Solution of (15.2)

1 for n ∈ {0, 1}M do

2 if Rn �= ∅ then

3 Find an initial xn ∈ Rn;

4 repeat

5 Find stationary point x∗ of (15.2) via Algorithm 15.2 with initial point xn;

6 Set λ = F(x∗);
7 Compute π(λ) and x(λ);

8 Update xn = x(λ);

9 until |π(λ)| < ε;

10 end

11 end

12 Determine max F(xn);

Algorithm 15.3: Region-checking algorithm for convex-convex quadratic

fractional programming

Remark 15.1 The utility of Algorithm 15.3 is, in full generality, limited by the rank

of Q or, more precisely, by the number of nonempty subregions (which is controlled

by the rank of Q). It is also worth noting that different decompositions of Q may

yield different numbers of nonempty subregions of the feasible region. We leave the

question of how to find better decompositions of Q beyond the scope of this paper.

We do, however, mention explicitly the case when Q is a totally nonnegative matrix

and the optimization problem in question is

max F(x) =
xT Qx

xT Px

s.t. Ax = b

0 ≤ x ≤ α.

15 On Low-Rank Convex-Convex Quadratic Fractional Programming 339

In this case, we write Q = LDLT for D a diagonal matrix and L a lower

triangular matrix. This gives a decomposition of Q as

Q =
M

∑

m=1

dm�m�T
m,

where �m and dm are, respectively, the mth column of L and mth diagonal entry of

D. Since Q is totally nonnegative, the entries of each vector �m are nonnegative [6],

in which case 〈�m, x〉 ≥ 0 for all feasible x. Thus, there is only one subregion Rn

of the feasible region which is nonempty.

It is quite possible that Algorithm 15.3 is considerably slower than the algorithms

proposed in [7] and [14] given the potentially large number of times π(λ) is

computed. However, as we will show empirically in the next section, often the

first local maximum found by Algorithm 15.3 in a given region is, in fact, the

global maximum of the region. Thus, we will also compare the efficiency and

accuracy of Algorithm 15.3 without computing π(λ) and assuming each x∗ found

by Algorithm 15.2 is a global maximum of the region. This modification of

Algorithm 15.3 is Algorithm 15.4 below.

input : Matrices Q =
∑M

m=1 qmqT
m, P , linear constraints Ax ≤ b, and a tolerance ε.

output: Local Solution of (15.2)

1 for n ∈ {0, 1}M do

2 if Rn �= ∅ then

3 Find an initial xn ∈ Rn;

4 Find stationary point x∗ of (15.2) via Algorithm 15.2 with initial point xn;

5 Update xn = x∗;

6 end

7 end

8 Determine max F(xn);

Algorithm 15.4: Fast region-checking algorithm

Remark 15.2 Suppose Q = qqT is a rank-one matrix. We write the objective

function as

F(x) =
〈q, x〉2

xT Px
.

In this case, there are only two subregions of the feasible region: R0 and R1. Also,

we may equivalently maximize the square-root of the objective, which is given by

√

F(x) =
{

−〈q, x〉/
√

xT Px x ∈ R0

〈q, x〉/
√

xT Px x ∈ R1.

340 I. Krishtal and B. Miller

Thus,
√

F(x) is a concave-convex fractional programming problem in each sub-

region of the feasible region, and hence can be solved by two applications of

Algorithm 15.1 where computing π(λ) is a concave programming problem. This

method is superior to Algorithm 15.4 as it was shown in [13] that Algorithm 15.2

is slower than the standard Dinkelbach method for standard single-ratio concave-

convex fractional programs.

15.4 Numerical Experiments

In this section we conduct several numerical experiments on the following optimiza-

tion problem:

max F(x) =
xT Qx

xT Px

s.t. Ax ≤ b, A ∈ R
T ×n, b ∈ R

T

n
∑

i=1

xi = 1

0 ≤ xi ≤ 0.1, i = 1, ..., n

where A and b have random entries in the interval [0, 1] so that the vector

(1/n, ..., 1/n) is feasible, and Q = XT X and P = Y T Y where X and Y are,

respectively, an M × n and an n × n random matrix with entries in [0, 1]. Unless

otherwise specified, we will always decompose Q as a sum of rank one matrices

according to its eigendecomposition as noted in Sect. 15.2.

We first demonstrate the efficiency and accuracy of Algorithms 15.3 and 15.4

against Algorithm 15.1 for various combinations of (n,M, T). Next, we examine

the average number of nonempty subregions in Algorithms 15.3 and 15.4. Finally,

we demonstrate the accuracy of Algorithm 15.4 in a full-rank example (i.e. r = n,

which has several local maxima) when there are a small number of subregions (see

Remark 15.1).

All computation was done in MATLAB (on AMD A6-7400K Radeon R5 4.09

GHz processor), using Gurobi 9.5 interface to solve the nonconvex quadratic

programming problems involved in Algorithms 15.1 and 15.3. The tolerance ε is

always set as ε = 10−3. All values in the forthcoming tables are averages of five

tests.

15 On Low-Rank Convex-Convex Quadratic Fractional Programming 341

15.4.1 Algorithm Comparison

We first give a demonstration of how differing combinations of (n,M, T) affect the

computation time of Algorithm 15.3 in a single nonempty region of the feasible set.

Table 15.1 shows that the computation time for Algorithm 15.3 increases sharply

with the number of inequality constraints due to the increasing complexity of

solving the nonconvex quadratic subproblems. Likewise, the computation time

increases with both the number of variables and the rank of Q, albeit not as

sharply. Second, none of the problems solved in this experiment took more than two

iterations of Algorithm 15.2 to converge. In fact, 209 of the 240 problems solved

in this experiment converged in just one iteration of Algorithm 15.2. This suggests

that the expensive procedure of computing π(λ) can safely be dropped from the

algorithm, if a low probability of missing the exact solution may be tolerated by the

application.

In the next two experiments, we fix T = 10. We now compare Algorithm 15.3

with Algorithm 15.1. We show the results for Algorithm 15.3 both converging to the

global solution and forcing only one iteration per region without computing π(λ).

Table 15.2 shows the comparison of Algorithms 15.1, 15.3, and 15.4. There are

several things to note about these results. First, the error incurred from performing

only one iteration per region is negligible; it is always under one percent and quite

often is under 0.1%. This implies that one need only perform Algorithm 15.2 once

in each subregion of the feasible region, making irrelevant the need to compute

π(λ). Second, for a given value of M , the computation time needed to complete

Algorithm 15.2 increases steadily as n increases, but does so at a much slower rate

for Algorithm 15.4.

In fact, Table 15.3 shows that Algorithm 15.4 can be used efficiently for large

scale problems when the number of subregions is less than 130. For comparison, the

Table 15.1 Efficiency of Algorithm 15.3 for one region

CPU time (sec) Iterations

T = 1 T = 10 T = 30 T = 50 T = 1 T = 10 T = 30 T = 50

n = 25 M = 2 0.4657 0.3689 0.7372 0.7063 1.2 1 1 1

5 1.074 0.5517 1.183 0.7725 1 1.2 1 1

7 1.037 2.339 1.473 1.337 1 1 1 1

10 0.5639 1.253 9.06 1.849 1.2 1 1.4 1.2

50 2 2.022 2.512 2.403 5.308 1.2 1.2 1 1.2

5 3.208 6.842 15.71 19.66 1 1 1.2 1

7 60.85 5.055 6.284 31.49 1.4 1 1.2 1

10 8.032 126.5 663.4 49.52 1.2 1 1.4 1

75 2 4.261 7.612 11.04 7.077 1 1 1.2 1

5 5.299 32.95 58.67 79.35 1 1.2 1.4 1

7 125.9 62.65 48.03 273.3 1.4 1.2 1.4 1

10 23.8 20.38 93.34 904.7 1 1 1 1.4

342 I. Krishtal and B. Miller

Table 15.2 Comparison of algorithms in CPU time (sec) Error = (F (xopt) − F(x))/F (xopt)

CPU time (sec) Alg 4 error

Alg 1 Alg 3 Alg 4 Error (%)

n = 10 M = 2 0.01372 0.07733 0.09616 0

3 0.006822 0.01969 0.1347 0

4 0.005291 0.02188 0.2637 0

5 0.01414 0.02462 0.5047 0

7 0.01159 – 2.006 0

10 0.01003 – 16.67 0

25 2 0.5673 0.9934 0.1193 0

3 0.6599 1.266 0.1932 0.08

4 1.068 3.975 0.3618 0

5 1.105 26.85 0.7185 0.06

7 0.7177 – 2.976 0.02

10 0.8667 – 23.35 0.02

50 2 4.932 4.649 0.1331 0.04

3 5.258 11.6 0.2104 0.05

4 9.485 72.51 0.4216 0.02

5 7.618 223.9 0.91 0.01

7 5.573 – 3.18 0.03

10 8.004 – 26.5 0

75 2 12.63 17.12 0.1229 0.01

3 14.43 273.3 0.346 0

4 30.47 211.2 0.531 0.2

5 45.63 868.8 1.249 0.07

7 34.33 – 4.407 0

10 53.35 – 35.55 0.05

Table 15.3 CPU time (sec)

for Algorithm 15.4
Algorithm 15.4

n = 250 M = 7 T = 10 22.32

500 7 10 117.34

750 7 10 357.42

1000 7 10 743.24

authors in [14] state that the case when n = 500 is within reach via their algorithm

only by employing an elaborate local search.

15.4.2 Accuracy of Algorithm 4

The numerical experiments above call into question the accuracy of Algorithm 15.4

in high-rank problems with a small number of nonempty regions. Table 15.1 shows

15 On Low-Rank Convex-Convex Quadratic Fractional Programming 343

Table 15.4 Average number of subregions checked by Algorithm 15.4

Number of subregions

T = n/2 T = n T = 3n/2 T = 2n T = 5n/2

n = 30 M = 2 2 2 2 1 1

3 4 4 3.8 2 1

5 16 16 12 3 1

7 64 64 49.4 11 1

50 2 2 2 2 1.8 1

3 4 4 4 2.8 1

5 16 16 14.4 5 1

7 64 64 64 19.4 1

100 2 2 2 2 1.4 1

3 4 4 4 2.8 1

5 16 16 16 6.6 1

7 64 64 64 23.4 1

150 2 2 2 2 1.2 1

3 4 4 4 2.8 1

5 16 16 16 8 1

7 64 64 64 13.6 1

that there is typically only one local maximum per subregion, and this may seem to

be attributable to the large number of subregions relative to the number of local

maxima. Thus, one might conclude that it may be disadvantageous to choose a

decomposition of Q with fewer terms as this leads to fewer possible subregions.

We aim to show that this is not the case.

The number of subregions is, of course, determined by the linear constraints.

Table 15.4 shows that the number of subregions is usually 2rank(Q)−1, and this

decreases only when the number of inequality constraints is much larger than the

number of variables. This implies that the number of subregions checked by the

algorithm increases exponentially with the rank of Q, and thus the accuracy of

Algorithm 15.4 could be a product of the brute-force nature of checking each region.

For illustration we construct a full-rank example with a small number of

subregions to check. For a given value of n, we generate n random, linearly

independent vectors (qi)
n
i=1 with values in the unit interval [0, 1]. We construct the

matrix Q as

Q =
n

∑

i=1

qiq
T
i .

Note that since the qi are constructed to be linearly independent, the matrix Q will

be invertible. Using this decomposition of Q and the constraints as before, there will

be only one non-empty subregion of the feasible region. This is because the entries

344 I. Krishtal and B. Miller

Table 15.5 CPU time (sec)

and error in full rank example
CPU time (sec) Alg 4 error

Alg 1 Alg 4 Error (%)

n = 20 T = 1 0.2189 0.01942 0

10 0.6094 0.02111 0

30 0.9902 0.02257 0.02936

50 1.766 0.04667 0

35 1 1.423 0.02659 0.08328

10 6.945 0.02921 0.01075

30 7.726 0.03527 0.05105

50 20.61 0.05936 0.02039

50 1 6.25 0.03352 0

10 6.753 0.03664 0.02419

30 25.31 0.04325 0.01203

50 189 0.09199 0.01428

of each qi are positive, and hence 〈qi, x〉 ≥ 0 for all feasible x. All other matrices

are constructed in the same manner as before.

It is shown in Table 15.5 that the accuracy of Algorithm 15.4 remains quite

high using this decomposition of Q. So, the accuracy of Algorithm 15.4 should

not be attributed primarily to the number of subregions. Therefore, since choosing

a decomposition of Q which results in few nonempty subregions yields a faster

algorithm, it is advantageous to choose one which yields the fewest number of

nonempty subregions of the feasible region.

15.5 Conclusion

We have presented an efficient and accurate algorithm for globally maximizing

low-rank convex-convex quadratic fractional programming problems. We have also

demonstrated that this algorithm can be utilized in high-rank problems if the

numerator admits a decomposition which divides the feasible region into a small

number of subregions. Although Algorithm 15.4 is only guaranteed to converge

to a local maximum of (15.2), we have shown heuristically that it almost always

converges to the global solution.

To guarantee global convergence of Algorithm 15.4, one needs only to have a

method to determine if there is a feasible x ∈ X ∩R such that F(x) > F(x∗) where

x∗ is the local maximum found in the subregion R by Algorithm 15.2. One way this

may be done is by using a solver to maximize the nonconvex quadratic

G(x) = xT (Q − F(x∗)P)x

15 On Low-Rank Convex-Convex Quadratic Fractional Programming 345

with the added quadratic constraint that G(x) > 0, and artificially terminating the

solver once a feasible x is found. If no such x can be found, then x∗ is the global

solution in the subregion.

Finally, we remark that Algorithm 15.4 is also applicable to the quadratic sum-

of-ratios problems, i.e. in the case when the matrix P in the denominator of (15.3)

is allowed to vary with m (in fact, the denominators need not be quadratic, they just

need to be convex).

Acknowledgments Both authors of the paper were supported in part by the NSF grant DMS-

2208031. The authors are grateful to the anonymous referees for their suggestions that helped

improve the exposition. The paper is dedicated to the everlasting memory of Guido L. Weiss whose

research, teaching, and friendship has inspired generations.

References

1. H.P. Benson, Global optimization algorithm for the nonlinear sum of ratios problem. J. Optim.

Theory Appl. 112(1), 1–29 (2002)

2. H.P. Benson, Using concave envelopes to globally solve the nonlinear sum of ratios problem.

J. Global Optim. 22(1/4), 343–364 (2002)

3. A. Charnes, W.W. Cooper, Programming with linear fractional functionals. Naval Res. Logist.

Q. 10(1), 273–274 (1962)

4. W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

5. L. Gao, S.K. Mishra, J. Shi, An extension of branch-and-bound algorithm for solving sum-of-

nonlinear-ratios problem. Optim. Lett. 6(2), 221–230 (2010)

6. K.R. Goodearl, T.H. Lenagan, Lu decomposition of totally nonnegative matrices. Linear

Algebra Appl. 436(7), 2554–2566 (2012)

7. J.-Y. Gotoh, H. Konno, Maximization of the ratio of two convex quadratic functions over a

polytope. Comput. Optim. Appl. 20(1), 43–60 (2001)

8. L. Huang, D. Needell, S. Tang, Robust recovery of bandlimited graph signals via randomized

dynamical sampling. arXiv:2109.14079 (2021)

9. T. Ibaraki, Parametric approaches to fractional programs. Math. Program. 26(3), 345–362

(1983)

10. H. Jiao, S. Liu, An efficient algorithm for quadratic sum-of-ratios fractional programs problem.

Numer. Funct. Anal. Optim. 38(11), 1426–1445 (2017)

11. A. Lo, A.C. MacKinlay. Maximizing predictability in the stock and bond markets. Macroecon.

Dynamics 1, 102 (1997)

12. S.-J. Qu, K.-C. Zhang, J.-K. Zhao, An efficient algorithm for globally minimizing sum of

quadratic ratios problem with nonconvex quadratic constraints. Appl. Math. Comput. 189(2),

1624–1636 (2007)

13. K. Shen, W. Yu, Fractional programming for communication systems–part I: Power control

and beamforming. IEEE Trans. Signal Process. 66(10), 2616–2630 (2018)

14. R. Yamamoto, H. Konno, An efficient algorithm for solving convex–convex quadratic

fractional programs. J. Optim. Theory Appl. 133(2), 241–255 (2007)

