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Abstract— This paper studies a homogeneous decentralized
multi-armed bandit problem, in which a network of multiple
agents faces the same set of arms, and each agent aims to
minimize its own regret. A fully decentralized upper confidence
bound (UCB) algorithm is proposed for a multi-agent network
whose neighbor relations are described by a directed graph. It
is shown that the decentralized algorithm guarantees each agent
to achieve a lower logarithmic asymptotic regret compared
to the classic UCB algorithm, provided the neighbor graph
is strongly connected. The improved asymptotic regret upper
bound is reciprocally related to the maximal size of a local
neighborhood within the network. The roles of graph connec-
tivity, maximum local degree, and network size are analytically
elucidated in the expression of regret.

I. INTRODUCTION

Multi-armed bandit (MAB) is a basic yet fundamental

reinforcement learning problem, with a wide range of prac-

tical applications in natural and engineered systems. These

applications include clinical trials, adaptive routing, cognitive

radio networks, and online recommendation systems [2].

The problem has various formulations. In a classical and

conventional MAB problem setting, a single decision maker

(or player) sequentially selects one arm from a given finite

set of arms (or choices) at each discrete time. Subsequently,

the decision maker receives a reward corresponding to the

chosen arm, which is generated according to a random

variable with an unknown distribution. In general, different

arms have different distributions and reward means. The

goal of the decision maker is to minimize its cumulative

(expected) regret, namely the difference between the decision

maker’s accumulated (expected) reward and the maximum

which could have been obtained had the reward information

been known. For this conventional MAB problem, both

lower and upper bounds on the asymptotic regret were

derived in the seminal work [3]. Additionally, classic UCB

algorithms, known as UCB1 and UCB2, were proposed in

[4], which achieve an asymptotic O(log T ) regret. Due to

the extensive study of multi-armed bandit problems over

decades, it is impossible to survey the entire literature here.

For an introductory survey for MAB, see a recent book [5].

*The proofs of all assertions in this paper are omitted due to space
limitations and can be found in the arXiv version of the paper [1].
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Over the past years, there has been increasing interest to

extend conventional single-player bandit settings to multi-

player frameworks.

Multi-agent MAB problems have been studied in var-

ious settings [6]–[23], to name a few. For example, [6],

[7], [10], [24] preclude communications among agents but

allow them to receive “collision” signals when more than

one agent selects the same arm, which has applications in

wireless communication and cognitive radio. A distributed

setting with a central controller is studied in [14], [19] in

a federated learning context. Other federated bandit settings

are considered in [13], [20], [25] with additional focus on

theoretical privacy preservation.

Among all the existing multi-agent settings, we are mo-

tivated by a cooperative setting which makes use of a

consensus process [26] among all agents. Such a cooperative

setting was first proposed in [17] with homogeneous reward

distributions, that is, all agents share the same distribution

of each arm’s reward.

A. Problem Formulation

As mentioned in the introduction, we are interested in

a decentralized multi-armed bandit problem formulated as

follows. Consider a multi-agent network consisting of N
agents (or players). For presentation purposes, we label the

agents from 1 through N . It is worth emphasizing that the

agents are not aware of such a global labeling, but each

agent can differentiate between its neighbors. The neighbor

relations among the N agents are described by a directed

graph G = (V, E) with N vertices, where the vertex set

V = [N ] � {1, 2, . . . , N} represents the N agents and

the set of directed edges (or arcs) E depicts the neighbor

relations Specifically, agent j is an in-neighbor of agent i
if (j, i) ∈ E , and similarly, agent k is an out-neighbor of

agent i if (i, k) ∈ E . Each agent can send information to its

out-neighbors and receive information from its in-neighbors.

Thus, the directions of edges represent the directions of

information flow. For convenience, we assume that each

agent is always an in- and out-neighbor of itself. We use

Ni(t) and N−
i (t) to denote the in- and out-neighbor set

of agent i at time t, respectively, i.e., Ni(t) = {j ∈ V :
(j, i) ∈ E} and N−

i (t) = {k ∈ V : (i, k) ∈ E}. It is clear

that Ni(t) and N−
i (t) are nonempty as they both contain

index i. Clearly, a directed graph G may allow uni-directional

communication among the agents. In the case when (i, j) is

an edge in G as long as (j, i) is an edge in the graph, G

can be simplified to an undirected graph which only allows

bi-directional communication.
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All N agents face a common set of M arms (or decisions)

which is denoted by [M ] � {1, 2, . . . ,M}. At each discrete

time t ∈ {0, 1, 2, . . . , T}, each agent i makes a decision on

which arm to select from the M choices, and the selected arm

is denoted by ai(t). If agent i selects an arm k, it will receive

a random reward Xi,k(t). For each i ∈ [N ] and k ∈ [M ],
{Xi,k(t)}Tt=1 is an unknown i.i.d. random process. For each

arm k ∈ [M ], all Xi,k(t), i ∈ [N ], share the same expectation

μk. It is worth emphasizing that this setting allows different

agents to have different reward probability distributions for

each arm, so long as their means are the same. Without

loss of generality, we assume that all Xi,k(t) have bounded

support [0, 1] and that μ1 ≥ μ2 ≥ · · · ≥ μM , which implies

that arm 1 has the largest reward mean and thus is always

an optimal choice.

The goal of the decentralized multi-armed bandit problem

just described is to devise a decentralized algorithm for each

agent in the network which will enable agent i to minimize

its expected cumulative regret, defined as

Ri(T ) = Tμ1 −
T∑

t=1

E
[
Xai(t)

]
,

at an order at least as good as Ri(T ) = o(T ), i.e.,

Ri(T )/T → 0 as T → ∞, for all i ∈ [N ].

B. Related Work

The above homogeneous cooperative multi-agent MAB

problem has recently attracted increasing attention and quite

a few different consensus-based decentralized algorithms

have been proposed and developed [17], [18], [25], [27]–

[29]. Recently, cooperative multi-agent bandits have been

extended to heterogeneous reward settings, wherein different

agents may have distinct reward distributions and means for

each arm. A heterogeneous decentralized problem was first

proposed and solved in [25] using the idea of gossiping to

improve communication efficiency and privacy. Its algorithm

is “partially” decentralized because it relies on the network

size. A fully decentralized algorithm was later designed in

[30]. The work of [31] considers a heterogeneous setting

but focuses on a complete graph, which implicitly allows

each agent to collect all other agents’ information. Another

heterogeneous setting over complete graphs has been studied

in [22], [23], where different agents are associated with

distinct arm subsets or bandits.

This paper focuses on the homogeneous setting. Note

that in the homogeneous reward distribution setting, each

agent in a network actually can independently learn an

optimal arm using any conventional single-agent UCB algo-

rithm, ignoring any information received from other agents.

Notwithstanding, all the existing algorithms for the decentral-

ized multi-armed bandit problem with homogeneous reward

distributions require that each agent be aware of certain

network-wise global information, such as spectral properties

of the underlying graph or total number of agents in the

network, except for our earlier work [32]. Such a requirement

leads to a counterintuitive observation: compared with the

conventional single agent case, each agent in a multi-agent

network can collect more arm-related information while its

bandit learning becomes more restrictive or less independent.

Even though [32] shows that collaborating with neigh-

bors can improve regret bounds compared to the classic

single-agent UCB1 [4], it does not exhibit any specific

dependence on the network or neighborhood. This means

that the incentive for collaboration is not reflected in the

learning rates. In other words, a network- and neighborhood-

independent improvement fails to capture the gain an agent

should experience if it has more neighbors with which to

communicate. Intuitively, a lower regret should be attainable

when more neighbors are available. Another limitation of

the algorithm in [32] is that it only works for undirected

graphs. The incentive issue may be resolved by applying

the heterogeneous decentralized algorithm in [30] to the

homogeneous case. However, it relies on a doubly stochastic

consensus update matrix and thus implicitly requires that the

underlying graph be undirected or weight-balanced1. It is

unclear how its algorithm design can be applied to general

weight-unbalanced directed graphs. The algorithm in [34], to

our knowledge, is the only one in the literature crafted for

general directed graphs, but it requires each agent be aware

of the network size N .

C. Contribution

With the preceding discussion in mind, this paper proposes

a new fully decentralized UCB algorithm for the homoge-

neous setting over general directed neighbor graphs, without

using any network-wide information. The proposed decen-

tralized algorithm not only outperforms its classic single-

agent counterpart, UCB1, ensuring that each agent in the net-

work achieves an improved asymptotic regret upper bound,

but also guarantees that this bound is reciprocally related

to the maximal size of a neighborhood within the network,

provided the neighbor graph is strongly connected. This con-

tribution incentivizes collaboration among all neighboring

agents in any strongly connected network. In particular, the

established asymptotic regret surpasses that of all existing

fully decentralized cooperative algorithms. This includes

algorithms described in [32] and [30] whose asymptotic

regrets are C log T , with the coefficient C being either a

constant or reciprocally related to each agent’s local degree.

II. ALGORITHM

Before introducing the algorithm, we first articulate the

technical challenges of algorithm design.

A. Technical Challenges

The variables mentioned here will be explained in detail

in the next subsection. The primary technical challenge

of decentralized bandit algorithm design lies in accurately

estimating reward means in a multi-agent network. Each

agent i iteratively updates its reward mean estimate zi,k(t)
for each arm k. This estimation process is intrinsically tied

1A weighted directed graph is called weight-balanced if the sum of all
in-weights equals the sum of all out-weights at each of its vertices [33].
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to the agent’s confidence level in arm k, as reflected by the

variance of zi,k(t). It is worth emphasizing that, contrary

to intuition, having access to more information does not

necessarily guarantee improved accuracy in reward mean

estimates. This is because the reward information propagated

over the network does not consist of raw rewards. Instead,

what is transmitted is a linear composition of one-time

rewards at different agents over time. Therefore, accurately

evaluating the confidence level of the reward mean estimate

requires a careful design of auxiliary transmitted variables

and their updating rules. This issue becomes even more

challenging for general weight-unbalanced directed graphs.

The existing literature fails to resolve this issue in a

fully decentralized manner, except for our earlier works [32]

and [30], which are tailored solely for undirected graphs

or special weight-balanced directed graphs, and thus rely

on a doubly stochastic consensus update matrix. To address

the challenge in general directed graphs, we appeal to the

idea of push-sum [35] based on a column stochastic matrix.

While this idea was previously applied in directed graphs

in our earlier work [34], it required each agent to know the

network size. Here we introduce a new local update li(t) at

each agent i to estimate the maximal neighborhood size. This

fully decentralized process not only avoids the need for the

network size but also, by incorporating li(t) into the design

of the upper confidence bound function Ci,k(t), leads to a

tighter asymptotic regret compared to those in [32] and [30].

Another challenge in decentralized bandit algorithm de-

sign is ensuring exploration consistency among different

agents. This is because insufficient sampling of an arm by

one agent can negatively affect the reward mean estimation

of its out-neighbors, and through information propagation,

ultimately hinders the estimation of all agents. Here we

refine the operation of case b) in the Decision Making

step, which enables agents to achieve faster exploration

consistency compared to counterpart operations described in

[30], [32], [34], as demonstrated in Lemma 8 compared to

Lemma 6 in [30], [32], [34].

B. Algorithm Design

We next introduce some important variables to help

present our algorithm.

Local sample counter and sampling estimate: Let

ni,k(t) be the number of times agent i pulls arm k up to

time t. Let mi,k(t) be agent i’s estimate of the maximal

sampling times of arm k up to time t over its neighborhood,

which is updated as follows:

mi,k(t+ 1) = max
{
ni,k(t+ 1), max

j∈Ni

mj,k(t)
}
. (1)

The variable mi,k(t) and its update (1) help agent i keep

track of the maximal sampling times of arm k among

all those agents in the network that lie within the same

connected component.

Local sample mean and reward mean estimate: Let

x̄i,k(t) be the sample mean, representing the average reward

that agent i receives from arm k up to time t, which is

updated as follows:

x̄i,k(t) =
1

ni,k(t)

t∑
τ=0

1(ai(τ) = k)Xi,k(τ),

where 1(·) is the indicator function that returns 1 if the

statement is true and 0 otherwise. Let zi,k(t) be agent i’s
estimate of the reward mean of arm k up to time t, which is

updated, along with an auxiliary variable yi(t), as follows:

zi,k(t+ 1) =
∑
j∈Ni

wijzj,k(t) + x̄i,k(t+ 1)− x̄i,k(t), (2)

yi(t+ 1) =
∑
j∈Ni

wijyj(t), (3)

where wij = 1/|N−
j | for all j ∈ Ni. Let W be the n ×

n matrix whose ijth entry equals wij if j ∈ Ni and zero

otherwise. It is easy to see that W is a column stochastic

matrix whose zero and nonzero pattern are consistent with

the neighbor graph G. The updates (2) and (3) make use of

the idea of push-sum [35], a clever approach to distributed

averaging over directed graphs. The term x̄i,k(t+1)−x̄i,k(t)
can be regarded as a “coarse gradient”, which requires the

reward at time t+ 1. We also define z̃i,k(t) = zi,k(t)/yi(t)
which will be used in the algorithm.

Local arm index set: Each agent i keeps and updates an

arm index set Ai(t) = {k ∈ [M ] : ni,k(t) < mi,k(t)} at

each time t, which serves as the index collection of those

arms that “fall behind” in exploring.

Local estimate of maximal neighborhood size: Each

agent i maintains a variable li(t) to estimate the maximal

neighborhood size within the network, which is initialized

as li(0) = |Ni ∪N−
i | and updated as

li(t+ 1) = max
j∈Ni

lj(t). (4)

It is easy to see that if G is strongly connected, all li(t),
i ∈ [N ] will reach the maximum value, maxi∈[N ] |Ni∪N−

i |,
in a finite number of time steps at t = d(G), where d(G)
denotes the diameter of G. It is worth emphasizing that each

agent does not need to know when this update process stops.

Local upper confidence bound function: Each agent i
needs to specify a design object in its local implementation,

namely its upper confidence bound function, C(t, ni,k(t)),
which will be used to quantify agent i’s belief on its estimate

of arm k’s reward mean. Upper confidence bound functions

are critical in single-agent UCB algorithm design. Coordi-

nation among the agents allows us to design the following

upper confidence bound function:

Ci,k(t) =

(
1 +

√
li(t)

ni,k(t)

)√
2 log t

li(t)ni,k(t)
(5)

which, as we will see, is “better” than that in the conventional

single-agent UCB1.

A detailed description of the proposed decentralized UCB

algorithm is presented as follows.

Initialization: At time t = 0, each agent i samples each arm

k exactly once and sets mi,k(0) = ni,k(0) = 1, z̃i,k(0) =
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zi,k(0) = x̄i,k(0) = Xi,k(0), yi(0) = 1, li(0) = |Ni ∪ N−
i |,

and Ci,k(0) = 0.

Iteration: Between clock times t and t+1, t ∈ {0, 1, . . . , T},

each agent i performs the steps enumerated below in the

order indicated.

1) Transmitting: Agent i transmits yi(t)/|N−
i |, li(t),

zi,k(t)/|N−
i | and mi,k(t) for each arm k, to its out-

neighbors; simultaneously, agent i receives these quan-

tities from each of its in-neighbors j ∈ Ni.

2) Decision Making: Let Ai(t) = {k ∈ [M ] : ni,k(t) <
mi,k(t)}. Agent i pulls exactly one arm according to

the following rule:

a) If Ai(t) = Ø, agent i pulls arm

ai(t+ 1) = argmax
k∈[M ]

(z̃i,k(t) + Ci,k(t))

with ties broken arbitrarily.

b) If Ai(t) �= Ø, agent i pulls arm

ai(t+ 1) = argmax
k∈Ai(t)

(mi,k(t)− ni,k(t))

with ties broken arbitrarily.

3) Updating: Agent i first updates ni,k(t+1) and x̄i,k(t+
1) according to the Decision Making step, then updates

mi,k(t+ 1), zi,k(t+ 1), yi(t+ 1), li(t+ 1) according

to (1)–(4), respectively, and finally sets z̃i,k(t + 1) =
zi,k(t+ 1)/yi(t+ 1).

For a concise presentation of the algorithm, we refer to

the pseudocode below.

It is straightforward to verify that in the extreme single-

agent case, namely when N = 1, the proposed decentralized

multi-agent algorithm simplifies to the classic upper confi-

dence bound algorithm, UCB1, as proposed in [4]. Therefore,

we term it Decentralized UCB1.

C. Main Results

To state the main result, we need the following notation.

For each arm k, let Δk = μ1 − μk denote the difference

in reward means between arm k and the optimal arm. Let

lmax = maxi∈[N ] |Ni ∪ N−
i | represent the largest local

neighborhood size within the network. Let ρ2 denote the

second largest magnitude among all eigenvalues of the col-

umn stochastic matrix W . It is well know that ρ2 < 1 if G

is strongly connected, which follows as a direct consequence

of the Perron-Frobenius Theorem (cf. Lemma 4).

Theorem 1: Suppose that all N agents adhere to Algo-

rithm 1. If G is strongly connected, then for any ε > 0, the

regret of each agent i up to time T satisfies

Ri(T ) ≤
∑

k: Δk>0

(
8(1 + ε)2 log T

lmaxΔk
+ Γi,k(ε,G)

)
, (6)

where Γi,k(ε,G) is a constant defined in Remark 1.

Note that the upper regret bound in the above theorem is

of the form (1+ ε)2C1 log T +C2(ε), where C1 and C2 are

two algorithm-dependent constants with the latter depending

Algorithm 1: Decentralized UCB1
Input: G, T, C(t, ni,k(t))

1 Initialization: Each agent i samples each arm k
exactly once and sets mi,k(0) = ni,k(0) = 1,

z̃i,k(0) = zi,k(0) = x̄i,k(0) = Xi,k(0), yi(0) = 1,

li(0) = |Ni ∪N−
i |, and Ci,k(0) = 0.

2 for t = 0, . . . , T do
3 Ai(t) = Ø
4 for k = 1, . . . ,M do
5 if ni,k(t) < mi,k(t) then
6 Agent i adds index k into set Ai(t)
7 end
8 end
9 if Ai(t) = Ø then

10 ai(t+ 1) = argmaxk∈[M ] (z̃i,k(t) + Ci,k(t))
// optimal arm in belief

11 else
12 ai(t+1) = argmaxk∈Ai(t) (mi,k(t)−ni,k(t))

// for exploration consistency

13 end
14 Agent i transmits yi(t)/|N−

i |, li(t), zi,k(t)/|N−
i |

and mi,k(t) for each arm k, to its out-neighbors

// information transmission

15 ni,ai(t+1)(t+ 1) = ni,ai(t+1)(t) + 1
16 ni,k(t+ 1) = ni,k(t), k �= ai(t+ 1), k ∈ [M ]

17 x̄i,k(t+1) = 1
ni,k(t+1)

∑t+1
τ=0 1(ai(τ) = k)Xi,k(τ)

18 Agent i updates mi,k(t+ 1), zi,k(t+ 1),
yi(t+ 1), li(t+ 1) according to (1)–(4)

19 z̃i,k(t+ 1) =
zi,k(t+1)
yi(t+1) , k ∈ [M ]

// information updating

20 end

on an arbitrary positive ε. Such a similar form of upper

regret bound is standard in the multi-armed bandit literature.

Notable examples include the non-asymptotic bound of the

KL-UCB algorithm, (1+ε)C1 log T+C2(ε)+C3 log(log T ),
[36, Theorem 2] and the optimal problem-dependent bound

of Thompson sampling, (1 + ε)C1 log T + O(Mε−2) [37,

Theorem 1.1]. From the following remark, it will be easy to

see that in the special single-agent case, namely N = 1,

Γi,k(ε,G) = O(Mε−2), which is of the same order as

Thompson sampling. From Theorem 1, it is easy to see that

Ri(T ) ≤ inf
ε>0

∑
k: Δk>0

(
8(1 + ε)2 log T

lmaxΔk
+ Γi,k(ε,G)

)
,

which is a simple theoretical improvement, but without an

explicit expression.

Remark 1: We define the constant Γi,k(ε,G) here. First

note that the column stochastic matrix W , network size N ,

and lmax are uniquely determined by the neighbor graph G.

When G is strongly connected, ρ2 < 1 and limt→ W t = v1′,
where v ∈ IRN is a positive stochastic vector and 1 denotes

the vector in IRN whose entries all equal 1; furthermore,

there exists a constant ζ > 0 such that |[W t]ij − vi| ≤ ζρt2
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for all i, j ∈ [N ], where vi denotes the ith entry of v (cf.

Lemma 4).2 Let αi(G) be the smallest value such that for

all x ≥ αi(G), there holds3

−2
√
x log x

x log ρ2 + 2 log x
+

2√
x
≤ vi

√
lmax

ζ
, (7)

Such αi(G) must exist (cf. Lemma 1) and it is straightfor-

ward to verify that αi(G) = O(1+log−2 ρ2). Next let β(G)
be the unique solution of x to the following equation:

(x− (3N + 1))
3
2 (
√
x+

√
lmax )

x
3
2 (
√
x− (3N + 1) +

√
lmax )

=
7

8
. (8)

Such β(G) must exist (cf. Lemma 2) and it is straightforward

to verify that β(G) = O(N). It is clear that β(G) ≥ 3N+1.

To proceed, let c = 
(log(1−√
6/7)vi)/(log ρ2)�, where 
·�

denotes the ceiling function, and define

γi(G) = 2

∞∑
τ=c

τ
− 7

2

(
1− ρτ2

vi

)2
+2

, (9)

which is of the order O(1) (cf. Lemma 3). Then, Γi,k(ε,G)
is defined as follows:

Γi,k(ε,G) =
(
max

{
κi(G),

lmax

ε2
,
log(1−

√
6
7 )vi

log ρ2

}
+2κi(G) + 2γi(G) + 3N − 1

)
Δk, (10)

where κi(G) = max{αi(G) + 3N + 1, β(G)}. It is worth

emphasizing that, with αi(G) = O(1 + log−2 ρ2), β(G) =
O(N), and γi(G) = O(1), it is easy to see that Γi,k(ε,G) =
O(N max{ε−2, log−2 ρ2}). �

From Remark 1, it is clear that the constant term in each

agent i’s upper bound of the regret,
∑

k:Δk>0 Γi,k(ε,G),
will increase if, while assuming other variables remain

unchanged, N or ρ2 increases.

It is well known that for the classic single-agent (non-

cooperative) UCB1 algorithm, the upper bound on the

agent’s regret, denoted as R(T ), is
∑

k:Δk>0

(
8 log T
Δk

+ (1+
π2

3 )Δk

)
[4, Theorem 1], which implies limT→∞

R(T )
log T ≤∑

k:Δk>0
8
Δk

. From Theorem 1, since (6) holds for any

ε > 0, limT→∞
Ri(T )
log T <

∑
k:Δk>0

8
lmaxΔk

. Since G is

assumed to be strongly connected, lmax ≥ 3. We have thus

proved the following result:

Corollary 1: The proposed decentralized multi-agent

UCB1 achieves an improved per-agent asymptotic regret

upper bound compared to its single-agent counterpart, with

the improvement being inversely related to the maximal size

of a local neighborhood within the multi-agent network,

provided that the network is strongly connected.

The corollary immediately implies that a strongly con-

nected network of multiple agents can collectively outper-

form the non-cooperative case.

2We sometimes use [M ]ij to denote the ijth entry of a matrix M .
3We treat the rare extremal case ρ2 = 0 with limρ→0+ log−1 ρ2 = 0.

Lower Bound: For any strongly connected graph, the

proposed decentralized UCB1 algorithm has an asymptotic

lower bound Ω((log T )/N) on each agent’s regret. The

argument is as follows: Among all strongly connected graphs

with N agents, a complete graph yields the lowest network

regret, as each agent can access information from all other

agents. This is essentially equivalent to a single-agent case

in which the agent can pull N times at each time. It is well

known that the asymptotic lower bound of the classic single-

agent UCB1 algorithm, in which the agent pulls exactly once

every time, is Ω(log T ) [3, Theorem 1]. Then, with pulling

N times at each time, the regret lower bound becomes

Ω(logNT ). Since this regret equals to the network regret of

the complete graph case and all N agents are homogeneous,

each agent’s regret has a lower bound (1/N)Ω(logNT ),
which asymptotically equals Ω((log T )/N). This is in line

with (6) for the complete graph case in which lmax = N .

For any strongly connected graph, the iterative process

described in (4) for estimating the maximal neighborhood

size can be replaced by a flooding process to estimate the

network size. In this flooding process, each agent iteratively

collects the identity numbers of its in-neighbors and transmits

all collected identity numbers to its out-neighbors. Conse-

quently, all agents will have an accurate network size value in

finite time. Using the same analysis, this approach will lead

to a further improved regret upper bound by replacing lmax

with N in (6), leading to an asymptotic bound of optimal

order O((log T )/N). However, implementing this flooding

idea requires a global unique identity and extensive storage

and communication capacities at each agent.

Remark 2: If we divide time into communication epochs

of fixed constant length and allow each agent to communicate

and make arm decisions only at the start of each epoch,

while continuing to select the same arm until the end of

the epoch, we can reduce communication while experiencing

only a constant-level increase in regret. �

III. ANALYSIS

This section provides a comprehensive analysis of the

proposed Decentralized UCB1 algorithm (excluding proofs)

and a sketched proof of Theorem 1.

A. Properties of Constants

We begin with the following lemmas supporting the con-

stant definitions in Remark 1.

Lemma 1: αi(G) exists.

Lemma 2: Equation (8) has a unique minimum solution.

Lemma 3: γi(G) defined in (9) is of the order O(1).

B. Preliminary Results

We next introduce some preliminary results which are

more or less well known and will be used later.

Lemma 4: If G is strongly connected, then W∞ �
limt→ W t = v1′, where v ∈ IRN is a positive stochastic

vector, and there exists a constant ζ > 0 such that |[W t]ij −
vi| ≤ ζρt2 for all i, j ∈ [N ].

3137



Lemma 5: (Hoeffding’s inequality [38, Theorem 2]) Let

{X1, . . . , Xn} be a finite set of independent random vari-

ables such that each Xi satisfies Xi ∈ [ai, bi] and E(Xi) =
μi. Then, for any η ≥ 0,

P
( n∑

i=1

Xi −
n∑

i=1

μi ≥ η
)
≤ exp

( −2η2∑n
i=1(bi − ai)2

)
,

P
( n∑

i=1

Xi −
n∑

i=1

μi ≤ −η
)
≤ exp

( −2η2∑n
i=1(bi − ai)2

)
.

C. Simple Update Properties

We will also need the following simple properties respec-

tively for updates (3) and (1).

Lemma 6: If G is strongly connected, then there exists a

constant η > 0 such that N ≥ yi(t) ≥ η for all i and t.

It is easy to prove that N ≥ yi(t). The above lemma is a

special case of Corollary 2 (b) in [39].

For any i, j ∈ [N ], we use di,j to denote the distance

from vertex i to vertex j, which is defined as the number

of directed edges in a shortest directed path from vertex i
to vertex j in the neighbor graph G, provided at least one

such directed path exists. It is natural to define di,i = 0 for

all i ∈ [N ]. In the case when G is strongly connected, all

di,j , i, j ∈ [N ] are well defined and it is easy to see that

di,j ≤ d(G) for all i, j ∈ [N ]. For the purpose of analysis,

define ni,k(t) = mi,k(t) = 0 for all i ∈ [N ] and k ∈ [M ]
when t < 0.

Lemma 7: For any i ∈ [N ], k ∈ [M ], and t ≥ 0,

mi,k(t) = max
j∈[N ]

{nj,k(t− dj,i)} .

The above lemma was proved in [30, Lemma 4].

D. Key Lemmas

We then present the following two key intermediate steps

for analyzing the proposed algorithm.

The first key lemma guarantees that the difference in

exploration times of each arm among different agents in the

network is always bounded.

Lemma 8 (Exploration Consistency): |ni,k(t)−nj,k(t)| ≤
3N + 1 for any i, j ∈ [N ], k ∈ [M ], and t > 0.

The second key lemma establishes a tight error bound for

each agent i’s reward mean estimate for each arm k.

Lemma 9 (Estimation Confidence): If ni,k(t) ≥ αi(G) +
3N + 1, then for any i ∈ [N ], k ∈ [M ], and t > 0,

zi,k(t) ≥ vi
∑
j∈[N ]

(
1−

√
lmax

nj,k(t)

)
x̄j,k(t),

zi,k(t) ≤ vi
∑
j∈[N ]

(
1 +

√
lmax

nj,k(t)

)
x̄j,k(t).

where vi and αi(G) are defined in Remark 1.

E. Sketched Proof of Main Theorem

We are now in a position to outline the proof of Theorem 1.

Sketched Proof of Theorem 1: There are two key inter-

mediate steps toward the analysis of the Decentralized UCB1

algorithm. The first key step is Lemma 8, which guarantees

that the difference in exploration times of each arm among

different agents in the network is always bounded. We call

it the exploration consistency step. The proof of Lemma 8

makes use of Lemma 7, which establishes a property of

the update (1) by expressing each agent i’s local sampling

estimate mi,k(t) in terms of all its in-neighbors’ local sample

counters. The other key step is to establish a tight error

bound for zi,k(t), each agent i’s reward mean estimate for

each arm k. This is achieved through Lemma 9, which

quantifies both lower and upper bounds via the maximal

size of a local neighborhood within the network, lmax, and

the unique dominant eigenvector v of the push-sum update

matrix W . We call it the estimation confidence step. The

proof of Lemma 9 leverages the exploration step in Lemma 8,

as well as the convergence property of the push-sum weight

matrix W given in Lemma 4.

Equipped with the two key lemmas, we are able to prove

the main theorem. To enhance the clarity and refinement of

our analysis, we divide the proof of Theorem 1 into two

parts. Part A analyzes the number of times agents choose

sub-optimal arms when they execute case a) in the Decision

Making step, while Part B focuses on case b). In Part A, we

systematically evaluate each agent’s confidence in its reward

mean estimate of each arm for all possible random processes.

This evaluation involves applying the “slicing” technique to

the sample count, as shown in Equation (28) in [1]. This

evaluation process also makes use of Lemma 6, which is a

well-known property of the update (3) in push-sum. We then

utilize Hoeffding’s inequality (cf. Lemma 5) in conjunction

with Lemma 9 in Equation (29) in [1]. This allows us to show

that the expected sampling frequency of any sub-optimal

arm is “negligible” after a sufficient number of samplings,

as indicated in Equation (33) in [1]. This result not only

establishes an upper bound for the number of sub-optimal

samplings in Part A but also leads to a low frequency of sub-

optimal samplings in Part B when combined with Lemma 8.

We finally obtain the regret upper bound (6) by combining

the findings from both Part A and Part B.

IV. CONCLUSION

In this paper, we have proposed a novel fully decentralized

UCB algorithm for a homogeneous multi-agent multi-armed

bandit problem, without using any network-wide informa-

tion. It has been shown that the proposed algorithm achieves

an asymptotic regret upper bound which is reciprocally

related to the maximal size of a local neighborhood within a

multi-agent network, provided the network is strongly con-

nected. To our knowledge, this is the best asymptotic regret

bound in the existing fully decentralized bandit literature.

The proposed algorithm utilizes the push-sum idea to

handle general weight-unbalanced directed graphs. Conse-
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quently, it “inherits” a well-known limitation from push-sum,

that is, it requires each agent to be aware of its out-neighbors.

Additionally, the algorithm analysis relies on the fact that

an irreducible nonnegative matrix W has a strictly positive

dominant eigenvector v. Therefore, the presented analysis

tool cannot be applied to more general weakly connected

graphs. These two limitations are directions for future work.

Tailoring the proposed algorithm to cope with Byzantine

attacks [40] is another potential future direction.
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and B. Kégl. Gossip-based distributed stochastic bandit algorithms.
In Proceedings of the 30th International Conference on Machine
Learning, pages 19–27, 2013.

[9] D. Kalathil, N. Nayyar, and R. Jain. Decentralized learning for
multiplayer multiarmed bandits. IEEE Transactions on Information
Theory, 60(4):2331–2345, 2014.

[10] I. Bistritz and A. Leshem. Distributed multi-player bandits – a game of
thrones approach. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages 7222–7232, 2018.

[11] A. Sankararaman, A. Ganesh, and S. Shakkottai. Social learning
in multi agent multi armed bandits. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 3(3):1–35, 2019.

[12] Y. Wang, J. Hu, X. Chen, and L. Wang. Distributed bandit learning:
Near-optimal regret with efficient communication. In Proceedings of
the 8th International Conference on Learning Representations, 2020.

[13] A. Dubey and A. Pentland. Differentially-private federated linear
bandits. In Proceedings of the 34th Conference on Neural Information
Processing Systems, pages 6003–6014, 2020.

[14] C. Shi and C. Shen. Federated multi-armed bandits. In Proceedings of
the 35th AAAI Conference on Artificial Intelligence, pages 9603–9611,
2021.

[15] U. Madhushani and N.E. Leonard. A dynamic observation strategy for
multi-agent multi-armed bandit problem. In Proceedings of the 2020
European Control Conference, pages 1677–1682, 2020.

[16] U. Madhushani and N.E. Leonard. Heterogeneous explore-exploit
strategies on multi-star networks. IEEE Control Systems Letters,
5(5):1603–1608, 2020.

[17] P. Landgren, V. Srivastava, and N.E. Leonard. On distributed coop-
erative decision-making in multiarmed bandits. In Proceedings of the
2016 European Control Conference, pages 243–248, 2016.

[18] D. Martı́nez-Rubio, V. Kanade, and P. Rebeschini. Decentralized
cooperative stochastic bandits. In Proceedings of the 33rd Conference
on Neural Information Processing Systems, pages 4531–4542, 2019.

[19] C. Shi, C. Shen, and J. Yang. Federated multi-armed bandits with
personalization. In Proceedings of the 24th International Conference
on Artificial Intelligence and Statistics, 2021.

[20] T. Li, L. Song, and C. Fragouli. Federated recommendation system
via differential privacy. In Proceedings of the 2020 IEEE International
Symposium on Information Theory, pages 2592–2597, 2020.

[21] M. Agarwal, V. Aggarwal, and K. Azizzadenesheli. Multi-agent multi-
armed bandits with limited communication. Journal of Machine
Learning Research, 23(212):1–24, 2022.

[22] L. Yang, Y.-Z.J. Chen, M.H. Hajiemaili, J.C.S. Lui, and D. Towsley.
Distributed bandits with heterogeneous agents. In Proceedings of the
2022 IEEE International Conference on Computer Communications,
pages 200–209, 2022.

[23] R. Chawla, D. Vial, S. Shakkottai, and R. Srikant. Collaborative
multi-agent heterogeneous multi-armed bandits. In Proceedings of the
40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages 4189–4217, 2023.

[24] N. Nayyar, D. Kalathil, and R. Jain. On regret-optimal learning in
decentralized multi-player multi-armed bandits. IEEE Transactions
on Control of Network Systems, 5(1):597–606, 2018.

[25] Z. Zhu, J. Zhu, J. Liu, and Y. Liu. Federated bandit: A gossiping
approach. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 5(1):Article 2, 2021.

[26] A. Jadbabaie, J. Lin, and A.S. Morse. Coordination of groups
of mobile autonomous agents using nearest neighbor rules. IEEE
Transactions on Automatic Control, 48(6):988–1001, 2003.

[27] P. Landgren, V. Srivastava, and N.E. Leonard. Distributed cooperative
decision-making in multiarmed bandits: Frequentist and bayesian
algorithms. In Proceedings of the 55th IEEE Conference on Decision
and Control, pages 167–172, 2016.

[28] P. Landgrena, V. Srivastavab, and N.E. Leonarda. Distributed coopera-
tive decision making in multi-agent multi-armed bandits. Automatica,
125:109445, 2021.

[29] J. Zhu, R. Sandhu, and J. Liu. A distributed algorithm for sequential
decision making in multi-armed bandit with homogeneous rewards. In
Proceedings of the 59th IEEE Conference on Decision and Control,
pages 3078–3083, 2020.

[30] J. Zhu and J. Liu. Distributed multi-armed bandits. IEEE Transactions
on Automatic Control, 68(5):3025–3040, 2023. Special Issue on
Learning for Control.

[31] Z. Wang, C. Zhang, M. K. Singh, L. Riek, and K. Chaudhuri. Multitask
bandit learning through heterogeneous feedback aggregation. In
Arindam Banerjee and Kenji Fukumizu, editors, Proceedings of The
24th International Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Research, pages
1531–1539. PMLR, 13–15 Apr 2021.

[32] J. Zhu and J. Liu. Distributed multi-armed bandit over arbitrary
undirected graphs. In Proceedings of the 60th IEEE Conference on
Decision and Control, pages 6976–6981, 2021.

[33] B. Gharesifard and J. Cortés. Distributed continuous-time convex
optimization on weight-balanced digraphs. IEEE Transactions on
Automatic Control, 59(3):781–786, 2013.

[34] J. Zhu and J. Liu. A distributed algorithm for multi-armed bandit
with homogeneous rewards over directed graphs. In Proceedings of
the 2021 American Control Conference, pages 3038–3043, 2021.

[35] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of
aggregate information. In Proceedings of the 44th Annual Symposium
on Foundations of Computer Science, pages 482–491, 2003.
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