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Decentralized Multi-Armed Bandit Can Outperform Classic Upper
Confidence Bound: A Homogeneous Case over Strongly Connected Graphs

Jingxuan Zhu

Abstract— This paper studies a homogeneous decentralized
multi-armed bandit problem, in which a network of multiple
agents faces the same set of arms, and each agent aims to
minimize its own regret. A fully decentralized upper confidence
bound (UCB) algorithm is proposed for a multi-agent network
whose neighbor relations are described by a directed graph. It
is shown that the decentralized algorithm guarantees each agent
to achieve a lower logarithmic asymptotic regret compared
to the classic UCB algorithm, provided the neighbor graph
is strongly connected. The improved asymptotic regret upper
bound is reciprocally related to the maximal size of a local
neighborhood within the network. The roles of graph connec-
tivity, maximum local degree, and network size are analytically
elucidated in the expression of regret.

I. INTRODUCTION

Multi-armed bandit (MAB) is a basic yet fundamental
reinforcement learning problem, with a wide range of prac-
tical applications in natural and engineered systems. These
applications include clinical trials, adaptive routing, cognitive
radio networks, and online recommendation systems [2].
The problem has various formulations. In a classical and
conventional MAB problem setting, a single decision maker
(or player) sequentially selects one arm from a given finite
set of arms (or choices) at each discrete time. Subsequently,
the decision maker receives a reward corresponding to the
chosen arm, which is generated according to a random
variable with an unknown distribution. In general, different
arms have different distributions and reward means. The
goal of the decision maker is to minimize its cumulative
(expected) regret, namely the difference between the decision
maker’s accumulated (expected) reward and the maximum
which could have been obtained had the reward information
been known. For this conventional MAB problem, both
lower and upper bounds on the asymptotic regret were
derived in the seminal work [3]. Additionally, classic UCB
algorithms, known as UCB1 and UCB2, were proposed in
[4], which achieve an asymptotic O(logT') regret. Due to
the extensive study of multi-armed bandit problems over
decades, it is impossible to survey the entire literature here.
For an introductory survey for MAB, see a recent book [5].

*The proofs of all assertions in this paper are omitted due to space
limitations and can be found in the arXiv version of the paper [1].
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Over the past years, there has been increasing interest to
extend conventional single-player bandit settings to multi-
player frameworks.

Multi-agent MAB problems have been studied in var-
ious settings [6]-[23], to name a few. For example, [6],
[71, [10], [24] preclude communications among agents but
allow them to receive “collision” signals when more than
one agent selects the same arm, which has applications in
wireless communication and cognitive radio. A distributed
setting with a central controller is studied in [14], [19] in
a federated learning context. Other federated bandit settings
are considered in [13], [20], [25] with additional focus on
theoretical privacy preservation.

Among all the existing multi-agent settings, we are mo-
tivated by a cooperative setting which makes use of a
consensus process [26] among all agents. Such a cooperative
setting was first proposed in [17] with homogeneous reward
distributions, that is, all agents share the same distribution
of each arm’s reward.

A. Problem Formulation

As mentioned in the introduction, we are interested in
a decentralized multi-armed bandit problem formulated as
follows. Consider a multi-agent network consisting of N
agents (or players). For presentation purposes, we label the
agents from 1 through N. It is worth emphasizing that the
agents are not aware of such a global labeling, but each
agent can differentiate between its neighbors. The neighbor
relations among the N agents are described by a directed
graph G = (V,€) with N vertices, where the vertex set
V = [N] £ {1,2,...,N} represents the N agents and
the set of directed edges (or arcs) £ depicts the neighbor
relations Specifically, agent j is an in-neighbor of agent ¢
if (4,4) € &, and similarly, agent k is an out-neighbor of
agent ¢ if (i, k) € €. Each agent can send information to its
out-neighbors and receive information from its in-neighbors.
Thus, the directions of edges represent the directions of
information flow. For convenience, we assume that each
agent is always an in- and out-neighbor of itself. We use
N;(t) and N, (t) to denote the in- and out-neighbor set
of agent ¢ at time ¢, respectively, i.e., N;(t) = {j € V :
(4,i) € Ey and N (t) = {k € V : (i,k) € E}. It is clear
that N;(¢t) and N, (t) are nonempty as they both contain
index ¢. Clearly, a directed graph G may allow uni-directional
communication among the agents. In the case when (i, j) is
an edge in G as long as (j,i) is an edge in the graph, G
can be simplified to an undirected graph which only allows
bi-directional communication.
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All N agents face a common set of M arms (or decisions)
which is denoted by [M] £ {1,2,..., M}. At each discrete
time t € {0,1,2,...,T}, each agent i makes a decision on
which arm to select from the M choices, and the selected arm
is denoted by a;(t). If agent i selects an arm k, it will receive
a random reward X, ;(¢). For each i € [N] and k € [M],
{X; x(t)}1_, is an unknown i.i.d. random process. For each
arm k € [M], all X; ,(t), ¢ € [N], share the same expectation
k- It is worth emphasizing that this setting allows different
agents to have different reward probability distributions for
each arm, so long as their means are the same. Without
loss of generality, we assume that all X; ;(¢) have bounded
support [0, 1] and that p1q > pg > -+ > pps, which implies
that arm 1 has the largest reward mean and thus is always
an optimal choice.

The goal of the decentralized multi-armed bandit problem
just described is to devise a decentralized algorithm for each
agent in the network which will enable agent ¢ to minimize
its expected cumulative regret, defined as

T
Ri(T) =Tpr — ZE [Xai(t)] )
t=1

at an order at least as good as R;(T) =
R,(T)/T — 0 as T — oo, for all i € [N].

o(T), ie.,

B. Related Work

The above homogeneous cooperative multi-agent MAB
problem has recently attracted increasing attention and quite
a few different consensus-based decentralized algorithms
have been proposed and developed [17], [18], [25], [27]-
[29]. Recently, cooperative multi-agent bandits have been
extended to heterogeneous reward settings, wherein different
agents may have distinct reward distributions and means for
each arm. A heterogeneous decentralized problem was first
proposed and solved in [25] using the idea of gossiping to
improve communication efficiency and privacy. Its algorithm
is “partially” decentralized because it relies on the network
size. A fully decentralized algorithm was later designed in
[30]. The work of [31] considers a heterogeneous setting
but focuses on a complete graph, which implicitly allows
each agent to collect all other agents’ information. Another
heterogeneous setting over complete graphs has been studied
in [22], [23], where different agents are associated with
distinct arm subsets or bandits.

This paper focuses on the homogeneous setting. Note
that in the homogeneous reward distribution setting, each
agent in a network actually can independently learn an
optimal arm using any conventional single-agent UCB algo-
rithm, ignoring any information received from other agents.
Notwithstanding, all the existing algorithms for the decentral-
ized multi-armed bandit problem with homogeneous reward
distributions require that each agent be aware of certain
network-wise global information, such as spectral properties
of the underlying graph or total number of agents in the
network, except for our earlier work [32]. Such a requirement
leads to a counterintuitive observation: compared with the

conventional single agent case, each agent in a multi-agent
network can collect more arm-related information while its
bandit learning becomes more restrictive or less independent.

Even though [32] shows that collaborating with neigh-
bors can improve regret bounds compared to the classic
single-agent UCB1 [4], it does not exhibit any specific
dependence on the network or neighborhood. This means
that the incentive for collaboration is not reflected in the
learning rates. In other words, a network- and neighborhood-
independent improvement fails to capture the gain an agent
should experience if it has more neighbors with which to
communicate. Intuitively, a lower regret should be attainable
when more neighbors are available. Another limitation of
the algorithm in [32] is that it only works for undirected
graphs. The incentive issue may be resolved by applying
the heterogeneous decentralized algorithm in [30] to the
homogeneous case. However, it relies on a doubly stochastic
consensus update matrix and thus implicitly requires that the
underlying graph be undirected or weight-balanced'. It is
unclear how its algorithm design can be applied to general
weight-unbalanced directed graphs. The algorithm in [34], to
our knowledge, is the only one in the literature crafted for
general directed graphs, but it requires each agent be aware
of the network size N.

C. Contribution

With the preceding discussion in mind, this paper proposes
a new fully decentralized UCB algorithm for the homoge-
neous setting over general directed neighbor graphs, without
using any network-wide information. The proposed decen-
tralized algorithm not only outperforms its classic single-
agent counterpart, UCB1, ensuring that each agent in the net-
work achieves an improved asymptotic regret upper bound,
but also guarantees that this bound is reciprocally related
to the maximal size of a neighborhood within the network,
provided the neighbor graph is strongly connected. This con-
tribution incentivizes collaboration among all neighboring
agents in any strongly connected network. In particular, the
established asymptotic regret surpasses that of all existing
fully decentralized cooperative algorithms. This includes
algorithms described in [32] and [30] whose asymptotic
regrets are C'logl’, with the coefficient C' being either a
constant or reciprocally related to each agent’s local degree.

II. ALGORITHM

Before introducing the algorithm, we first articulate the
technical challenges of algorithm design.

A. Technical Challenges

The variables mentioned here will be explained in detail
in the next subsection. The primary technical challenge
of decentralized bandit algorithm design lies in accurately
estimating reward means in a multi-agent network. Each
agent ¢ iteratively updates its reward mean estimate z; j(t)
for each arm k. This estimation process is intrinsically tied

'A weighted directed graph is called weight-balanced if the sum of all
in-weights equals the sum of all out-weights at each of its vertices [33].
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to the agent’s confidence level in arm k, as reflected by the
variance of z; ,(t). It is worth emphasizing that, contrary
to intuition, having access to more information does not
necessarily guarantee improved accuracy in reward mean
estimates. This is because the reward information propagated
over the network does not consist of raw rewards. Instead,
what is transmitted is a linear composition of one-time
rewards at different agents over time. Therefore, accurately
evaluating the confidence level of the reward mean estimate
requires a careful design of auxiliary transmitted variables
and their updating rules. This issue becomes even more
challenging for general weight-unbalanced directed graphs.

The existing literature fails to resolve this issue in a
fully decentralized manner, except for our earlier works [32]
and [30], which are tailored solely for undirected graphs
or special weight-balanced directed graphs, and thus rely
on a doubly stochastic consensus update matrix. To address
the challenge in general directed graphs, we appeal to the
idea of push-sum [35] based on a column stochastic matrix.
While this idea was previously applied in directed graphs
in our earlier work [34], it required each agent to know the
network size. Here we introduce a new local update [;(¢) at
each agent ¢ to estimate the maximal neighborhood size. This
fully decentralized process not only avoids the need for the
network size but also, by incorporating /;(¢) into the design
of the upper confidence bound function C’M(t), leads to a
tighter asymptotic regret compared to those in [32] and [30].

Another challenge in decentralized bandit algorithm de-
sign is ensuring exploration consistency among different
agents. This is because insufficient sampling of an arm by
one agent can negatively affect the reward mean estimation
of its out-neighbors, and through information propagation,
ultimately hinders the estimation of all agents. Here we
refine the operation of case b) in the Decision Making
step, which enables agents to achieve faster exploration
consistency compared to counterpart operations described in
[30], [32], [34], as demonstrated in Lemma 8 compared to
Lemma 6 in [30], [32], [34].

B. Algorithm Design

We next introduce some important variables to help
present our algorithm.

Local sample counter and sampling estimate: Let
n; (t) be the number of times agent ¢ pulls arm % up to
time ¢. Let m,; ;(t) be agent i’s estimate of the maximal
sampling times of arm & up to time ¢ over its neighborhood,
which is updated as follows:

m;,(t +1) = max {ni}k(t + 1), max mj,k(t)}. (1)
JEN;

The variable m; ;(t) and its update (1) help agent i keep
track of the maximal sampling times of arm %k among
all those agents in the network that lie within the same
connected component.

Local sample mean and reward mean estimate: Let
Z; 1 (t) be the sample mean, representing the average reward
that agent ¢ receives from arm k up to time ¢, which is

updated as follows:
t

Z 1(a; (1) = k)X k(7),

7=0

1
ni}k(t)

where 1(-) is the indicator function that returns 1 if the
statement is true and O otherwise. Let z; 1 () be agent i’s
estimate of the reward mean of arm k up to time ¢, which is
updated, along with an auxiliary variable y;(t), as follows:

Zip(t+1) =Y wiza(t) + Tkt + 1) — Zik(t), )
JEN;
yilt+1) = > wijy;(t), 3)
JEN;
where w;; = 1/|[N;7| for all j € Nj. Let W be the n x
n matrix whose ijth entry equals w;; if j € N; and zero
otherwise. It is easy to see that W is a column stochastic
matrix whose zero and nonzero pattern are consistent with
the neighbor graph G. The updates (2) and (3) make use of
the idea of push-sum [35], a clever approach to distributed
averaging over directed graphs. The term Z;  (t+1) —Z; 1 (t)
can be regarded as a “coarse gradient”, which requires the
reward at time ¢ + 1. We also define Z; 1 (t) = 2 x(¢) /v:(¢)
which will be used in the algorithm.

Local arm index set: Each agent ¢ keeps and updates an
arm index set A;(t) = {k € [M] : n;x(t) < m;p(t)} at
each time t, which serves as the index collection of those
arms that “fall behind” in exploring.

Local estimate of maximal neighborhood size: Each
agent ¢ maintains a variable [;(t) to estimate the maximal
neighborhood size within the network, which is initialized
as 1;(0) = |NV; UN,| and updated as

l;(t+1) = max [;(¢). 4)

JEN;

Tip(t) =

It is easy to see that if G is strongly connected, all I;(¢),
i € [N] will reach the maximum value, max;¢(n) |N;UN; |,
in a finite number of time steps at t = d(G), where d(G)
denotes the diameter of G. It is worth emphasizing that each
agent does not need to know when this update process stops.

Local upper confidence bound function: Each agent ¢
needs to specify a design object in its local implementation,
namely its upper confidence bound function, C(t,n; (%)),
which will be used to quantify agent ¢’s belief on its estimate
of arm k’s reward mean. Upper confidence bound functions
are critical in single-agent UCB algorithm design. Coordi-
nation among the agents allows us to design the following
upper confidence bound function:

1 (t) 2logt
Cix(t) = (1 " \/ni7k(t> >\/li(t)"i,k(t) ”

which, as we will see, is “better’” than that in the conventional
single-agent UCBI.

A detailed description of the proposed decentralized UCB
algorithm is presented as follows.

Initialization: At time ¢ = 0, each agent ¢ samples each arm
k exactly once and sets m; ;(0) = n; (0) = 1, 2, 5(0) =
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2k (0) = Zi 1 (0) = Xi£(0), %:(0) = 1, 1(0) = |N; UN;|,
and C; ;(0) = 0.

Iteration: Between clock times ¢ and t+1,¢ € {0,1,...,T},
each agent ¢ performs the steps enumerated below in the
order indicated.

1) Transmitting: Agent ¢ transmits v;(¢)/|N;"|, Li(t),
zik(t)/|N;"| and m; (t) for each arm k, to its out-
neighbors; simultaneously, agent 7 receives these quan-
tities from each of its in-neighbors j € N;.

2) Decision Making: Let A;(t) = {k € [M] : n; ;(t) <
m; ,(t)}. Agent ¢ pulls exactly one arm according to
the following rule:

a) If A;(t) = O, agent ¢ pulls arm

a;(t + 1) = argmax (Z; 1 (t) + C; x(2))
ke[M]
with ties broken arbitrarily.
b) If A;(t) # O, agent ¢ pulls arm

a;(t+ 1) = argmax (m; x(t) — n; x(t))
ke A;i(t)

with ties broken arbitrarily.

3) Updating: Agent i first updates n; , (t+1) and Z; 5, (t+
1) according to the Decision Making step, then updates
m;p(t+1), zip(t+1), yi(t+1), l;(¢ + 1) according
to (1)-(4), respectively, and finally sets Z; (¢t + 1) =
zik(t +1)/yi(t +1).

For a concise presentation of the algorithm, we refer to
the pseudocode below.

It is straightforward to verify that in the extreme single-
agent case, namely when N = 1, the proposed decentralized
multi-agent algorithm simplifies to the classic upper confi-
dence bound algorithm, UCB1, as proposed in [4]. Therefore,
we term it Decentralized UCBI1.

C. Main Results

To state the main result, we need the following notation.
For each arm k, let Ay = p; — py denote the difference
in reward means between arm k and the optimal arm. Let
Imax = max;e(n) [N; U N, | represent the largest local
neighborhood size within the network. Let ps denote the
second largest magnitude among all eigenvalues of the col-
umn stochastic matrix W. It is well know that po < 1 if G
is strongly connected, which follows as a direct consequence
of the Perron-Frobenius Theorem (cf. Lemma 4).

Theorem 1: Suppose that all N agents adhere to Algo-
rithm 1. If G is strongly connected, then for any ¢ > 0, the
regret of each agent ¢ up to time 7' satisfies

Ri(T) < Z (W

lrnax A\
ki Ap>0 max =k

+ Fi,k(ea G)) ) (6)

where I'; (¢, G) is a constant defined in Remark 1.

Note that the upper regret bound in the above theorem is
of the form (1 + €)2C; log T + Cs(€), where C and C, are
two algorithm-dependent constants with the latter depending

Algorithm 1: Decentralized UCB1
Input: G, T, C(t,n; (1))

1 Initialization: Each agent ¢ samples each arm &
exactly once and sets m; 1 (0) = n; 5(0) = 1,
Zi,6(0) = 23,1(0) = Zi,k(0) = X; (0), 1:(0) =1,
1;(0) = [N; UN;|, and C; (0) = 0.

2 fort=0,...,7 do

s | A =0

4 for k=1,...,M do

5 if n; ;(t) < m; 1 (t) then

6 | Agent i adds index k into set A;(t)

7 end

8 end

9 | if A;(t) = O then

10 ai(t +1) = argmaxycpay (Zik(t) + Cik(t))
// optimal arm in belief

1 else

12 ai(t+1) = argmaxye 4, () (Mik(t) —nik(t))
// for exploration consistency

13 end

14 | Agent ¢ transmits y; (¢)/|N; |, 1i(t), zix(t)/|N;|
and m, 1, (t) for each arm k, to its out-neighbors
// information transmission

15| Ny (E+H1) = 10, 400)(8) + 1

16 ni’k(t-i-l) :Tli’k(t), k;éai(t-i-l), ke [M]

17 | Zig(t41) = m S Lai(r) = k)X 4 (7)
18 Agent ¢ updates m; i (t + 1), 2z, (t + 1),

yi(t + 1), l;(t + 1) according to (1)—(4)

1 | Zp(t+1) =220 ke ]

yi(t+1)
// information updating

20 end

on an arbitrary positive e. Such a similar form of upper
regret bound is standard in the multi-armed bandit literature.
Notable examples include the non-asymptotic bound of the
KL-UCB algorithm, (1+4¢)C; log T+ C5(e) +C5 log(log T),
[36, Theorem 2] and the optimal problem-dependent bound
of Thompson sampling, (1 + €)C;logT + O(Me=2) [37,
Theorem 1.1]. From the following remark, it will be easy to
see that in the special single-agent case, namely N = 1,
[ix(e,G) = O(Me2), which is of the same order as
Thompson sampling. From Theorem 1, it is easy to see that

8(1 2logT
Ry(T) < int 80t LosT | 1 (6G)),
e>0 lmaxAk ,

k: Ap>0

which is a simple theoretical improvement, but without an
explicit expression.

Remark 1: We define the constant I'; ;. (¢, G) here. First
note that the column stochastic matrix W, network size IV,
and [;ax are uniquely determined by the neighbor graph G.
When G is strongly connected, po < 1 and lim;_, W = v1’,
where v € RY is a positive stochastic vector and 1 denotes
the vector in IRY whose entries all equal 1; furthermore,
there exists a constant ¢ > 0 such that |[W'];; — v;| < (ph
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for all 4,5 € [N], where v; denotes the ith entry of v (cf.
Lemma 4).2 Let o;(G) be the smallest value such that for
all z > o;(G), there holds®

—2y/zlogx N 2 -
xlogps +2logx  xr T
Such «;(G) must exist (cf. Lemma 1) and it is straightfor-
ward to verify that a;(G) = O(1 +log ™2 ps). Next let 3(G)
be the unique solution of z to the following equation:
(.13 - (3N + 1))%(ﬁ+ V lmax ) 7

A0E BN D V) 5 ©

Such 5(G) must exist (cf. Lemma 2) and it is straightforward
to verify that 5(G) = O(N). It is clear that 5(G) > 3N + 1.
To proceed, let ¢ = [(log(1—+/6/7)v;)/(log p2)], where [-]
denotes the ceiling function, and define

7(G) = 227*%(1*%) 2 )

U \/émax 7 (7)

which is of the order O(1) (cf. Lemma 3). Then, I'; 1 (¢, G)
is defined as follows:

Tin(e,G) = (max{m((@), Lmax log(1 — \/5)’02'}

e’ log p2
+26i(G) + 2%(G) + 3N — 1)Ak, (10)

where £;(G) = max{a;(G) + 3N + 1,5(G)}. It is worth
emphasizing that, with a;(G) = O(1 + log™2 py), B(G) =
O(N), and v;(G) = O(1), it is easy to see that I'; ,(¢,G) =
O(N max{e~2,log"? pa}). O

From Remark 1, it is clear that the constant term in each
agent i’s upper bound of the regret, > ;. A - Llik(€,G),
will increase if, while assuming other variables remain
unchanged, N or ps increases.

It is well known that for the classic single-agent (non-
cooperative) UCB1 algorithm, the upper bound on the

agent’s regret, denoted as R(T'), is D 1. a, <0 (% +(1+
7T;)Ak) [4, Theorem 1], which implies limz . ff‘)gT) <

>k Ap>0 Aik. From Theorem 1, since (6) holds for any

. Ri(T . .
e > 0, limp_oo log(T) < Yharso oay- Since G is
assumed to be strongly connected, l;,.x > 3. We have thus

proved the following result:

Corollary 1: The proposed decentralized multi-agent
UCBI1 achieves an improved per-agent asymptotic regret
upper bound compared to its single-agent counterpart, with
the improvement being inversely related to the maximal size
of a local neighborhood within the multi-agent network,
provided that the network is strongly connected.

The corollary immediately implies that a strongly con-
nected network of multiple agents can collectively outper-
form the non-cooperative case.

2We sometimes use [M] ij to denote the ijth entry of a matrix M.
3We treat the rare extremal case pz = 0 with limpﬁ(ﬁ log=! p2 = 0.

Lower Bound: For any strongly connected graph, the
proposed decentralized UCBI1 algorithm has an asymptotic
lower bound ((logT)/N) on each agent’s regret. The
argument is as follows: Among all strongly connected graphs
with NV agents, a complete graph yields the lowest network
regret, as each agent can access information from all other
agents. This is essentially equivalent to a single-agent case
in which the agent can pull NV times at each time. It is well
known that the asymptotic lower bound of the classic single-
agent UCB1 algorithm, in which the agent pulls exactly once
every time, is Q(logT') [3, Theorem 1]. Then, with pulling
N times at each time, the regret lower bound becomes
Q(log NT). Since this regret equals to the network regret of
the complete graph case and all N agents are homogeneous,
each agent’s regret has a lower bound (1/N)Q(log NT),
which asymptotically equals ©2((logT')/N). This is in line
with (6) for the complete graph case in which [;,,x = N.

For any strongly connected graph, the iterative process
described in (4) for estimating the maximal neighborhood
size can be replaced by a flooding process to estimate the
network size. In this flooding process, each agent iteratively
collects the identity numbers of its in-neighbors and transmits
all collected identity numbers to its out-neighbors. Conse-
quently, all agents will have an accurate network size value in
finite time. Using the same analysis, this approach will lead
to a further improved regret upper bound by replacing l,.x
with N in (6), leading to an asymptotic bound of optimal
order O((logT)/N). However, implementing this flooding
idea requires a global unique identity and extensive storage
and communication capacities at each agent.

Remark 2: If we divide time into communication epochs
of fixed constant length and allow each agent to communicate
and make arm decisions only at the start of each epoch,
while continuing to select the same arm until the end of
the epoch, we can reduce communication while experiencing
only a constant-level increase in regret. O

ITI. ANALYSIS
This section provides a comprehensive analysis of the

proposed Decentralized UCB1 algorithm (excluding proofs)
and a sketched proof of Theorem 1.

A. Properties of Constants

We begin with the following lemmas supporting the con-
stant definitions in Remark 1.

Lemma 1: o;(G) exists.
Lemma 2: Equation (8) has a unique minimum solution.
Lemma 3: v;(G) defined in (9) is of the order O(1).

B. Preliminary Results

We next introduce some preliminary results which are
more or less well known and will be used later.

Lemma 4: If G is strongly connected, then W, £

lim;_, Wt = v1’, where v € R" is a positive stochastic
vector, and there exists a constant ¢ > 0 such that |[[W'];; —
v;| < Cpb for all 4,5 € [N].
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Lemma 5: (Hoeffding’s inequality [38, Theorem 2]) Let
{X1,...,X,} be a finite set of independent random vari-
ables such that each X; satisfies X; € [a;, b;] and E(X;) =
;. Then, for any 1 > 0,

2

P(;XI';M ZT]) < exp <Z:ln_1(lin—al)2>7

i n 9,2
P(;Xi - ;M < —n) < exp (ﬁ)

i=1

C. Simple Update Properties

We will also need the following simple properties respec-
tively for updates (3) and (1).

Lemma 6: If G is strongly connected, then there exists a
constant 1 > 0 such that N > y,(t) > for all i and t.

It is easy to prove that N > y;(¢). The above lemma is a
special case of Corollary 2 (b) in [39].

For any i,j € [N], we use d; ; to denote the distance
from vertex ¢ to vertex j, which is defined as the number
of directed edges in a shortest directed path from vertex @
to vertex j in the neighbor graph G, provided at least one
such directed path exists. It is natural to define d; ; = 0 for
all i € [N]. In the case when G is strongly connected, all
d; j, i,j € [N] are well defined and it is easy to see that
d; ; < d(G) for all ¢,j € [N]. For the purpose of analysis,
define n; ;(t) = m;(t) = 0 for all ¢ € [N] and k € [M]
when ¢t < 0.

Lemma 7: For any i € [N], k € [M], and t > 0,
m; p(t) = max {n; L(t —d;;)}.
,k( ) je[l\)/(]{ J-,k( s )}

The above lemma was proved in [30, Lemma 4].

D. Key Lemmas

We then present the following two key intermediate steps
for analyzing the proposed algorithm.

The first key lemma guarantees that the difference in
exploration times of each arm among different agents in the
network is always bounded.

Lemma 8 (Exploration Consistency): |n; ,(t)—n; i (t)] <
3N +1 for any i,j € [N], k € [M], and ¢t > 0.

The second key lemma establishes a tight error bound for
each agent ¢’s reward mean estimate for each arm k.

Lemma 9 (Estimation Confidence): If n; i (t) > a;(G) +
3N + 1, then for any i € [N], k € [M], and ¢ > 0,

llnax —
2i k(t) > v; E 1- zj (1),
, n;,k(t)
JE[N]
lmax

2k (t) < vy Z <1 + BN ) T k().
] I

JEIN
where v; and «;(G) are defined in Remark 1.

E. Sketched Proof of Main Theorem
We are now in a position to outline the proof of Theorem 1.

Sketched Proof of Theorem 1: There are two key inter-
mediate steps toward the analysis of the Decentralized UCB1
algorithm. The first key step is Lemma 8, which guarantees
that the difference in exploration times of each arm among
different agents in the network is always bounded. We call
it the exploration consistency step. The proof of Lemma 8
makes use of Lemma 7, which establishes a property of
the update (1) by expressing each agent ¢’s local sampling
estimate m; ;;(¢) in terms of all its in-neighbors’ local sample
counters. The other key step is to establish a tight error
bound for z; j(t), each agent i’s reward mean estimate for
each arm k. This is achieved through Lemma 9, which
quantifies both lower and upper bounds via the maximal
size of a local neighborhood within the network, [;,,x, and
the unique dominant eigenvector v of the push-sum update
matrix WW. We call it the estimation confidence step. The
proof of Lemma 9 leverages the exploration step in Lemma 8§,
as well as the convergence property of the push-sum weight
matrix W given in Lemma 4.

Equipped with the two key lemmas, we are able to prove
the main theorem. To enhance the clarity and refinement of
our analysis, we divide the proof of Theorem 1 into two
parts. Part A analyzes the number of times agents choose
sub-optimal arms when they execute case a) in the Decision
Making step, while Part B focuses on case b). In Part A, we
systematically evaluate each agent’s confidence in its reward
mean estimate of each arm for all possible random processes.
This evaluation involves applying the “slicing” technique to
the sample count, as shown in Equation (28) in [1]. This
evaluation process also makes use of Lemma 6, which is a
well-known property of the update (3) in push-sum. We then
utilize Hoeffding’s inequality (cf. Lemma 5) in conjunction
with Lemma 9 in Equation (29) in [1]. This allows us to show
that the expected sampling frequency of any sub-optimal
arm is “negligible” after a sufficient number of samplings,
as indicated in Equation (33) in [1]. This result not only
establishes an upper bound for the number of sub-optimal
samplings in Part A but also leads to a low frequency of sub-
optimal samplings in Part B when combined with Lemma 8.
We finally obtain the regret upper bound (6) by combining
the findings from both Part A and Part B. [ |

IV. CONCLUSION

In this paper, we have proposed a novel fully decentralized
UCB algorithm for a homogeneous multi-agent multi-armed
bandit problem, without using any network-wide informa-
tion. It has been shown that the proposed algorithm achieves
an asymptotic regret upper bound which is reciprocally
related to the maximal size of a local neighborhood within a
multi-agent network, provided the network is strongly con-
nected. To our knowledge, this is the best asymptotic regret
bound in the existing fully decentralized bandit literature.

The proposed algorithm utilizes the push-sum idea to
handle general weight-unbalanced directed graphs. Conse-
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quently, it “inherits” a well-known limitation from push-sum,
that is, it requires each agent to be aware of its out-neighbors.
Additionally, the algorithm analysis relies on the fact that
an irreducible nonnegative matrix W has a strictly positive
dominant eigenvector v. Therefore, the presented analysis
tool cannot be applied to more general weakly connected
graphs. These two limitations are directions for future work.
Tailoring the proposed algorithm to cope with Byzantine
attacks [40] is another potential future direction.
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