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Summary

A key feature of cortical systems is functional organization: the arrangement of functionally
distinct neurons in characteristic spatial patterns. However, the principles underlying the
emergence of functional organization in cortex are poorly understood. Here we develop the
Topographic Deep Artificial Neural Network (TDANN), the first model to predict several aspects
of the functional organization of multiple cortical areas in the primate visual system. We analyze
the factors driving the TDANN’s success and find that it balances two objectives: learning a
task-general sensory representation and maximizing the spatial smoothness of responses according
to a metric that scales with cortical surface area. In turn, the representations learned by the
TDANN are more brain-like than in spatially-unconstrained models. Finally, we provide evidence
that the TDANN’s functional organization balances performance with between-area connection
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length. Our results offer a unified principle for understanding the functional organization of the

primate ventral visual system.

eTOC Blurb

Margalit et al. develop a topographic artificial neural network that predicts both functional

responses and spatial organization of multiple cortical areas of the primate visual system. In turn,

the model minimizes between-area wiring length and produces more brain-like responses to visual

stimuli than spatially unconstrained alternative models.

Introduction

Sensory cortical systems can be measured in two ways: by the response patterns of neurons
as a function of stimulus input, and by the spatial arrangement of those neurons across

the cortical surface. The confluence of these observations is referred to as fimnctional
organization, the reproducible spatial arrangement of neurons within a cortical area
according to their response properties. Functional organization is among the most ubiquitous
of neuroscience findings, appearing in the topographic maps of the visual system>?, and in
auditory>2, parietal*?, sensorimotor!!7, and entorhinal areas®!:*2. These organized structures
anchor our understanding of cortical development, function, and dysfunction. Yet, it remains
a mystery what processes govern their emergence, and what computational function they
serve.

Any theory of functional organization must explain both neuronal response

properties and the physical arrangement of neurons. Furthermore, a complete

unified theory should account for functional organization in all cortical areas. Prior
computational models of the organization within single cortical areas have been
developed>-00-92.28,107,123,26,72,84.83,13,54,65.9,53.3 byt these approaches do not generalize

to multiple areas. Moreover, many prior models utilize hand-crafted features, and thus
cannot explain how neuronal response properties are learned from realistic sensory

inputs. Deep artificial neural networks (DANNS) trained with large naturalistic datasets

are increasingly being used to model neuronal responses in visual, auditory, and

language regions!%-37:118.120,58.44,12.68,103.102 However, standard DANNs impose no spatial
arrangement among model units, and thus cannot explain the organization of neurons across
the cortical sheet.

Here, we introduce the Topographic Deep Artificial Neural Network (TDANN), a model
that takes a step toward unification by predicting many features of functional organization
in multiple cortical areas from a single learning framework. The TDANN implements

the hypothesis that neural systems are optimized to address two key goals: supporting
ecologically-relevant behaviors by producing useful neural representations’®, and doing

so in a biophysically efficient manner. A critical component of biophysical efficiency is

the minimization of neuronal wiring length, which is theorized to result in the smooth
topographic organization observed in many cortical areas! 654 The TDANN embeds each
layer’s units in a two-dimensional simulated cortical sheet, then optimizes a composite
objective function with two components: a functional objective that drives the learning
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of useful representations, and a spatial constraint that encourages efficiency with smooth
response patterns across the simulated cortical sheet. We test this framework in the
primate ventral visual stream, a cortical system in which functional organization has been
extensively documented.

The ventral stream is a hierarchical series of cortical areas that support visual recognition,
beginning with primary visual cortex (V1) and ascending through intermediate areas to
high-level regions: inferotemporal (IT) cortex in macaques and ventral temporal cortex
(VTC) in humans. Well-known neuronal response properties in V1 include tuning to

edge orientation®0-100.21 "spatial frequency2?, and color!22:73. These response properties

are coupled with topography: orientation preferences form a smooth cortical map with
pinwheel-like discontinuities®:40-10:51.88. spatial frequency is organized in a quasi-periodic
map>1-88:43; and color-preferring neurons cluster in punctate blobs’3 across V1. Higher-level
regions such as primate 1T2441:96:109 and the analogous human VTC contain neurons

with stronger responses for items of specific categories (e.g., faces vs non-faces), a

property known as category selectivity. A core characteristic of functional organization in
IT109:95 and VT(C33-30.27.78.94.115.39 i5 that neurons selective for certain ecologically-relevant
categories — including faces, places, limbs, and visual wordforms — cluster into spatial
patches, with characteristic patch sizes, counts, and inter-patch distances. The location of
category-selective regions in human VTC has been related to eccentricity biases’!46-33,
spatial frequency and curvature preferences®’+4, chromatic preference®, and real-world
size®*. Functional organization in V1 has been related to endogenous activity patterns prior
to birth! and efficient encoding of visual inputs”3. Here, we apply the TDANN to test if core
phenomenology in multiple cortical areas can be predicted by a single computational model.

We find that the TDANN reproduces several key aspects of the functional organization of
multiple regions in the ventral stream, including smooth orientation maps with pinwheels
in an earlier model layer, and category-selective patches in a later layer that match the
number and size of selective regions in human VTC. We then test which specific functional
and spatial constraints of the TDANN are critical to its success by instantiating alternative
models and measuring their capacity to predict neuronal data. We find that the combination
of task and spatial objectives that best matches the functional organization of the ventral
stream also makes learned representations more brain-like by constraining their intrinsic
dimensionality. We also find that the TDANN learns these representations while indirectly
minimizing between-area wiring length, providing further evidence that brain-like functional
organization effectively balances performance with metabolic costs.

Finally, because the the TDANN accurately predicts key aspects of the functional
organization of the ventral stream, it provides an exciting new platform for simulating
experiments that are challenging to implement empirically. As a proof of principle, we
perform in silico experiments simulating the effect of cortical microstimulation devices that
vary in their spatial precision and cortical coverage (Box 1). Taken together, our experiments
suggest that the TDANN provides a framework for understanding the emergence of
functional organization in multiple cortical areas of the ventral visual stream.

Neuron. Author manuscript; available in PMC 2025 July 17.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuely Joyiny

Margalit et al.

Results

Page 4

Instantiating models that balance task performance with spatial smoothness

Building on optimization-based approaches in computational neuroscience?®119, we seck a
model architecture and an objective function that generate a neural network which matches
the neuronal responses and topography of the primate ventral visual stream.

Because standard DANNs have no within-area spatial structure beyond retinotopy, we must
augment their architecture to model spatial topography. Specifically, we take the ResNet-18
architecture*®, a DANN with strong object recognition performance and accurate prediction

of neuronal responses throughout the ventral visual stream!03

, and augment it by embedding
the units of each convolutional layer into a two-dimensional simulated cortical sheet (Figure
1a). Given that neurons in visual cortex are organized retinotopically at birth*, we assign
model unit positions retinotopically, such that units responding to similar regions of input
images are nearby in the simulated cortical sheet. The size of the simulated cortical sheet

in each layer is anchored by estimates of cortical surface area in the human ventral visual

stream (Figure 1a). We refer to the resulting model as the 7opographic DANN (TDANN).

Given this architecture, the core of the TDANN approach is to train on a composite
objective function that sums two components: a task objective encouraging the learning of
behaviorally-useful functional representations, and a spatial objective driving the emergence
of topographic properties. Recent work has illustrated the training of (non-topographic)
DANNSs with constrastive self-supervised objectives as models of the ventral pathway!24:63,
Contrastive self-supervised networks learn representations that achieve equally strong
neural predictivity as category-supervised networks, but without the need for biologicially-
implausible category supervision labels. Here we use SimCLR!7, a simple but especially
effective contrastive self-supervised objective, as the task component of the TDANN loss
function.

For the spatial loss (SL), we introduce an objective that encourages nearby pairs of units to
have more correlated responses than distant pairs of units (Figure 1b, see Methods). The SL
is computed separately in each convolutional layer, then summed across layers:

TDANNLoss = Ly + ). @SLy
k € layers

)]

where «, is the weight of the spatial loss in the kth layer, set to , = 0.25 for all layers. The
value of « is a free parameter that was selected based on quantitative benchmarks comparing
model predictions to neuronal functional organization (Figure 4). Other parameters that
impact the spatial loss — including the size of each cortical sheet and the maximum distance
across which different units can participate in the spatial loss computation — are fixed based
on empirical measurements (see Methods).

Training the TDANN on ImageNet?3 successfully minimized both task and spatial
losses (Supplemental Figure Sla,b). We tested if adding the spatial loss interferes with
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representation learning by measuring the model’s object categorization performance with
a linear readout. Categorization accuracy was only slightly lower for the TDANN (median
across initialization seeds = 43.9%) than "Task Only" models with no spatial loss (a = 0,
median = 48.5%; Mann-Whitney U = 25, p = .008). Moreover, adding the spatial loss term
had the intended effect of increasing spatial smoothness (Supplemental Figure S1c,d).

To determine if this learned correlation structure corresponds to brain-like topographic
maps, we constructed a battery of quantitative benchmarks comparing model predictions
with neural data in two stages of the ventral pathway: V1 and VTC, (Figure 1c). Initial
results for intermediate ventral visual areas are presented in Supplemental Figure S2, but
we do not include them in our core benchmarks due to a relative lack of empirical data

to compare against. As in prior work!2-120

, we find that earlier model layers best predict

V1 responses and later layers best predict responses in higher visual cortex (Supplemental
Figure S2d). Accordingly, we designate the fourth and ninth convolutional layers as the
"V1-like" and "VTC-like" layers, respectively, and restrict our analyses to these layers when

evaluating benchmarks of functional organization.

The TDANN predicts the functional organization of primary visual cortex

Neurons in primate V1 are organized into maps of preferred stimulus orientation, spatial
frequency, and color’3-88:15 Because data at the resolution necessary to visualize these

maps is not available for human V1, we compare the TDANN to macaque V1 using
scale-invariant metrics. We tested if the V1-like TDANN layer captures the functional
organization of macaque V1 with three quantitative benchmarks. First, we evaluate
functional correspondence by asking if model units in the TDANN V1-like layer have
similar preferred orientations and orientation tuning strengths as neurons in macaque V1.
Second, we assay cortical map structure by measuring pairwise tuning similarity as a
function of cortical distance. Third, we measure the density of pinwheel-like discontinuities
in the orientation preference map. In addition to the TDANN, we evaluate four control
models on these benchmarks. To test the impact of model training and pre-optimization unit
shuffling, we used an Unoptimized TDANN, in which model weights and unit positions are
left randomly initialized. To determine the effect of the spatial constraint in the loss function,
we trained a 7ask Only variant with « = 0. The other two controls are self-organizing

maps (SOMs), which have been proposed as models of V1 functional organization!07-28: a
traditional SOM in which feature dimensions are manually predetermined (as in'%7), referred
to here as the "Hand-Crafted SOM", and the DNN-SOM, a novel SOM that organizes the
output of a deep neural network (AlexNet) V1-like layer (inspired by26-123),

The TDANN matches orientation tuning in V1—We measured orientation tuning
strength by presenting a set of oriented sine grating images to the model (Figure 2a),
computing a tuning curve for each unit, and calculating the circular variance (CV; lower
values for sharper tuning) of each tuning curve. We find that the TDANN V1-like layer has
a significantly greater proportion of selective units (CV < 0.6, range across model seeds:
[20%, 31%]) than Unoptimized models ([ 1%, 3%]; Mann-Whitney U = 25; p = .008, Figure
2b), but fewer than Task Only models ([35%, 50%]; U = 25; p = .008) or macaque V1 (45%;
Supplemental Figure S3c). In contrast, neither the Hand-Crafted SOM nor the DNN-SOM
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exhibited any units with sharp orientation tuning. We also find that TDANN and Task Only
models (but not SOMs or Unoptimized models) show an over-representation of cardinal
orientations (0 and 90 degrees) as in macaque V12! (Supplemental Figure S3b; see also
Henderson & Serences*?).

The TDANN predicts the arrangement of orientation-selective V1 neurons—To
evaluate whether the TDANN V1-like layer captures the topographic properties of macaque
V1, we consider the spatial distribution of orientation-selective units — the orientation
preference map (OPM) — and find a smooth progression of preferred orientations that
resembles macaque V1 (Figure 2c, d). Following prior work!431:99 we quantify this
structure by measuring the absolute pairwise difference in preferred orientation as a function
of cortical distance. In both the TDANN and macaque V1 (data from38), we find that
nearby units have smaller differences in orientation preference than distant pairs (Figure 2¢).
In contrast, orientation preference similarity does not vary with cortical distance in Task
Only or Unoptimized models, and both the Hand-Crafted and DNN-SOM:s exhibit OPMs
with abnormally high orientation tuning similarity (Figure 2e, Supplemental Figure S3a).
We summarize these profiles by computing a smoothness score that measures the increase
in tuning similarity for nearby unit pairs compared to distant unit pairs. Smoothness of
TDANN OPMs ([min, max] across random initialization: [.64, .83]) was consistent with
macaque V1 (.68); however, OPMs in the Hand-Crafted SOM ([.92, .92]) and DNN-SOMs
([.81, .86]) were smoother than in macaque V1. In turn, macaque V1 OPMs were smoother
than Unoptimized ([.03, .04]) and Task Only ([.28, .39]) models. Jointly comparing each
model to macaque V1 orientation tuning strength and OPM smoothness highlights that the
TDANN is the only model class that satisfies both criteria (Figure 2j).

As a more stringent test of OPM structure, we computed the density of pinwheel-like
discontinuities in the OPM!? and compared to the expected value of ~3.1 pinwheels /

mun?* in macaque V1°°. Multiple pinwheels are apparent in both the TDANN and the
Hand-Crafted SOM (Figure 2k). We find that the TDANN has lower pinwheel density
(range across seeds = [2.0, 2.3] pinwheels / column spacing?) than macaque V1, but
significantly higher than either the Task Only ([0.2, 0.8]; Mann-Whitney U = 25, p = .008) or
Unoptimized models (0 pinwheels; Figure 2k). The Hand-Crafted SOM has higher pinwheel
density ([3.7, 4.5]) than the TDANN, but the DNN-SOM has no detectable pinwheels. We
note that absolute pinwheel density can depend on model architecture (Supplemental Figure
S3).

The TDANN predicts maps of spatial frequency and color preference in V1
—While OPMs are the best-studied feature of V1 functional organization, the cortical
sheet simultaneously accommodates organized maps of spatial frequency®® and chromatic
tuning33-73. An accurate model of V1 should also predict these maps. We compared spatial
frequency preference maps in macaque V1 (data from®8) and in the TDANN V1-like layer
and found a smooth progression of preferred spatial frequency in both (Figure 2f). The
TDANN map of spatial frequency preference across random initializations = [.38, .54]
([min, max]) is as smooth as the map in macaque V1 (0.53; Figure 2g), whereas maps
from Task Only ([.23, .36]) and Unoptimized models ([.02, .03]) are less smooth than
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macaque V1, and both the Hand-Crafted SOM ([.79, .81]) and the DNN-SOM (.83, .86])
are far smoother than the neuronal data. We observe similar results for maps of chromatic
preference (Figure 2h, 1), where comparisons are made to imaging of cytochrome oxidase
uptake that is prevalent in color-tuned neurons (data from Livingstone & Hubel’?). In

the TDANN chromatic map, the fraction of units with opposite color-tuning increases

with cortical distance, again exhibiting comparable smoothness to macaque V1 (TDANN
smoothness: [.38, .54], macaque: .53). Together, our analyses demonstrate that the TDANN
predicts the multifaceted functional organization of macaque V1, providing a stronger match
to neuronal data than existing models.

The TDANN reproduces many features of higher visual cortex functional organization

Because benchmarks measuring the topographic similarity between models and higher
visual cortex, i.e. primate inferior temporal (IT) and human ventral temporal cortex (VTC),
are underdeveloped, we introduce five quantitative benchmarks that compare both responses
and topography. Response properties are compared by measuring the similarity of category
selectivity patterns with representational similarity analysis (RSA, Kriegeskorte et al.%%),

as in Margalit et al.”’, Haxby et al.*’. Topographic properties are then compared against
four complementary benchmarks: 1) the smoothness of category selectivity maps, 2) the
number of category selective patches, 3) the area of these patches, and 4) the spatial overlap
among units selective for different categories. We compute these metrics for the TDANN’s
VTC-like layer and for VTC data from eight human subjects in the Natural Scenes Dataset
(NSD)?2 (Supplemental Figure S4e).

We also evaluate two alternative models of VTC topography: an SOM trained on the outputs
of a categorization-pretrained AlexNet (DNN-SOM, cf26-123) and an Interactive Topographic
Network (ITN) that is trained on the same dataset (ImageNet) we used”. Human subjects
and models were presented a common set of 1,440 grayscale images from five categories!0:

faces, bodies, written characters, places, and objects.

The TDANN predicts patterns of category selectivity—We characterize neuronal
responses in VTC by computing a representational similarity matrix (RSM): the similarity
among distributed selectivity patterns for each of the five object categories. The average
RSM from human VTC indicates high similarity between distributed selectivity patterns
for faces and bodies, and low similarity between distributed selectivity for faces and places
(Figure 3a). RSMs from different subjects and hemispheres were very similar, with the
95% CI of Kendall’s = = [.72, .75]. We then compute RSMs for each model and find that
some models provide a closer match to human VTC than others (ANOVA F(4,331) = 630;
p<1071 2). TDANN RSMs closely mirror those in human VTC (z = [.69, .73]), significantly
better than DNN-SOM (r = [.31,.35]; post-hoc Tukey’s HSD p < 10_13), ITN (z = [.46,.56];
p< 10_]3), Task Only (r = [.65, .68]; p = .001) and Unoptimized (z = [.11,.14]; p < 10_13)
models (Figure 3b).

The TDANN predicts category-selectivity maps—To compare models against
topographic benchmarks, we generate selectivity maps for each of the five object categories
(Figure 3c), then quantify their structure by measuring the difference in selectivity as a
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function of cortical distance between pairs of units (Figure 3d). We find that many models
have similar selectivity profiles, with nearby units having more similar selectivity than
distant pairs of units (Figure 3d). Summarizing the curves with the same smoothness metric
used in V1 (Figure 3e), we find no significant differences between smoothness in human
VTC and the TDANN VTC-like layer (permutation test: p = 0.30). The ITN also exhibits
VTC-like smoothness (p = 0.10), although the maps from the Task Only and Unoptimized
models were less smooth than human VTC (ps < 0.001), and maps from the DNN-SOM
were smoother than human VTC (p < .001).

For the remaining topographic benchmarks, we follow the literature by thresholding
selectivity maps to find strongly selective units (Supplemental Figure S4a-d). Clusters of
selective units are identifiable in human VTC, TDANN, the SOM, and ITN models, but
not in Task Only or Unoptimized models. We computationally identify large contiguous
clusters of selective units as "patches" (Figure 3f). We find similar sets of patches in VTC
and the TDANN: both contain a few patches selective for each category. There are two
notable exceptions: object-selective patches are present in the TDANN but not VTC, and the
TDANN exhibits a large central place-selective patch flanked by face-selective patches, an
arrangement not found in VTC. Quantitative comparison supports the similarity of human
VTC and TDANN: there is no significant difference in patch count (p = 0.99, Figure 3g)
or patch area (p = 0.67; Figure 3h). In contrast, we find that the ITN has more than twice

as many patches as VTC (p = 1.2 x 1073 ), although the patches are as large on average as
those in VTC (p = 0.99). The DNN-SOM fails to match VTC in the other extreme: while the
number of patches in the DNN-SOM is similar to that in VTC (p = 0.15), the patches are

too large (p < 10_10). Joint comparison of models and humans on both patch count and size
(Figure 31i) highlights the strong correspondence between TDANN and human VTC.

A hallmark of higher visual cortex functional organization is the reproducible spatial
arrangement of units selective for different categories, including the close proximity of
face-selective and body-selective regions”>-!114 and the separation between face- and place-
selective regions. Here we measured the co-occurrence of face-selective and body-selective
units (and face-selective and place-selective units) with an overlap score that ranges between
1 (face-selectivity perfectly predicts body-selectivity) to 0.5 (no relationship), to 0 (face- and
body-selectivity perfectly anti-correlated). As expected, Face-Body overlap scores are high
in human VTC (95% CI across subjects and hemispheres: [.66, .72]), whereas Face-Place
overlap was significantly lower (95% CI: [.40, .45], Wilcoxon signed-rank test against
one-sided alternative W = 136; p = 1.5 x 107>; Figure 3j). The same pattern is apparent in
the TDANN: Face-Body Overlap ([.63, .71]) is significantly higher than Face-Place Overlap
([.14, .26]; W = 15; p = .03). In the ITN, the Face-Body overlap score was lower than in
human VTC (.52), but still higher than the Face-Place overlap score (.36). Neither the

the DNN-SOM nor the Task Only models had higher Face-Body overlap than Face-Place
overlap (Figure 3j; ps > 0.5).

To further gain intuition for the tuning profiles of model units, we synthesized images that
optimally drive each region of the VTC-like layer. We make the subjective observation
that optimal stimuli vary smoothly across the cortical surface, and that optimal stimuli in
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face-selective regions often include round objects resembling eyes (Supplemental Figure
S4f,g). We also find that training the TDANN on natural images (either ImageNet?? or
Ecoset®!) produces accurate V1-like and VTC-like maps, whereas training on noise or
simpler hand-crafted stimuli fails to provide a unified account of ventral stream topography
and predicts only V1-like functional organization (Supplemental Figure S6a-c).

Multiple signatures of functional organization emerge at the same spatial constraint

strength

While most of the parameters in the the TDANN framework are set according to empirical
data, the weight of the spatial loss in the training objective, « is a critical free parameter that
cannot be assigned ahead of time. Here, we validate our setting of « = 0.25 for the results
above by demonstrating that many benchmarks of neuronal similarity are simultaneously
satisfied at this value.

Comparison of OPMs in the V1-like layer and category-selectivity maps in the VTC-like
layer in models trained at different levels of « shows that functional organization is absent
when « = 0, is structured at intermediate values of @, and deteriorates at high values (Figure
4a). We quantify the dependence of functional organization on « with three kinds of
benchmarks: functional similarity (Figure 4b), map smoothness (Figure 4c), and presence
of topographic phenomena (i.e., pinwheels and patches; Figure 4d). Considering functional
similarity, we find that the fraction of V1-like layer units that are orientation selective

is closest to macaque V1 when « is low, and representational similarity between the VTC-
like layer and human VTC is maximized at « = 0.25 (Figure 4b). Considering topography,
smoothness of OPMs in the V1-like layer is most brain-like at « = 0.1 and smoothness

of category-selectivity in the VTC-like layer is most brain-like at « = 0.25 (Figure 4c).
Finally, the density of pinwheels in the V1-like layer and category-selectivity patches in
the VTC-like layer are most similar to measurements in macaque V1 and human VTC,
respectively, at a = 0.25 (Figure 4d).

A specific range of « values (0.1 < « < 0.25) thus produces experimentally-observed
outcomes across a variety of functional and topographic benchmarks in multiple brain areas.

Two factors underlying functional organization: self-supervised learning and a scalable
spatial constraint

To understand the constraints that shape the ventral stream’s functional organization,
we construct variants of the TDANN with alternative functional and spatial objectives,
then evaluate how these factors affect the accuracy of the resulting models’ functional
organization.

Most studies comparing neural networks to the brain use models trained for supervised
object categorization (°3:120:70; Figure 5a-bottom left). The TDANN, however, uses
contrastive self-supervision!2%!7. We thus considered a variant topographic model using
standard visual object categorization as the “task component” of its objective function.
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We also investigate how the spatial objective function affects emergent functional

0 recently introduced a spatial loss function that subtracts the inverse of

organization.”
pairwise cortical distances from the magnitude of pairwise response correlations (Figure
Sa-bottom right). We refer to this as Absolute Spatial Loss (SLa,), because minimizing it
requires an absolute match between response correlations and (inverse) cortical distances.
While training models with SL,,, produces clustering of category-selective units in a late
model layer70, we found that in layers with shorter cortical distances, .SL,,, can only be
minimized if response correlations are pathologically high. The TDANN instead uses a more
flexible spatial loss function that we term Relative Spatial Loss (S Lg.); Figure Sa-top right).
S Ly, requires only that inverse cortical distances be correlated with response similarity,
regardless of total cortical surface area. Interestingly, we find that switching from SL,,, to

S Ly, slightly increased performance in linear readouts of object category (Supplemental

Figure S7b).

We compare the full TDANN model (characterized by having both self-supervised task loss
and Relative spatial loss) to these variants both in terms of (1) the smoothness of OPMs and
face-selectivity maps in the V1-like and VTC-like layers, respectively, and (2) the number of
pinwheels and category-selective patches in those layers.

In the V1-like layer, the Categorization-supervised variant was slightly but significantly

less smooth than the TDANN (mean smoothness = 0.56, U = 25, p = 0.008), with an equal
pinwheel density (2.07 pinwheels / column spacing 2; U = 10, p = 0.69). Absolute SL models
resemble the TDANN qualitatively (Figure 5b), but with significantly lower smoothness
(TDANN mean: 0.71, Absolute SL: 0.40; U = 25, p = 0.008; Figure 5d) and lower pinwheel
density (TDANN: 2.14 pinwheels / column spacing 2, Absolute SL: 0.89; U = 21, p = 0.09;
Figure 5e).

In the VTC-like layer, category-selectivity maps were much less organized in the
Categorization-supervised variant than in the self-supervised TDANN. At the same spatial
weight of a = 0.25, clusters of category-selective units are observed in self-supervised but
not categorization-supervised models (Figure 5¢). The Absolute SL models also fail to
form organized category-selectivity maps at this level of . Quantitative comparison reveals
smoother category selectivity maps in the TDANN (mean smoothness of face-selectivity
maps = 0.44) than in either categorization-trained models (0.09; Mann-Whitney U = 25,

p = 0.008; Figure 5f) or in Absolute SL models (0.13). The TDANN also has a significantly
higher number of category selective patches (mean = 1.2) than either categorization-trained
(mean = 0) or Absolute SL alternatives (mean = 0.08; U = 25, p = 0.008; Figure 5g). Thus,
both the specific form of the task objective (self-supervised learning) and the spatial loss
(relative rather than absolute) are critical for producing brain-like functional organization.

Spatial constraints make learned representations more brain-like, reducing intrinsic
dimensionality

A natural question is whether training with spatial objectives also affects the non-
topographic aspects of learned representations.
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One way to test this is to measure how well model unit responses can predict neuronal
responses to a large set of naturalistic stimulil03:12:120:44 When fitting neuronal responses
as a linear combination of model unit responses!20:124:68.103.19 '\e find the TDANN

has similar neuronal predictivity to non-spatial models, and that there is no effect of
model training objective type (Figure 6a). This result is conceptually consistent with

prior work!2419 but somewhat at odds with the dramatic differences between models
observed on topographic benchmarks in the preceding sections. One possible explanation
for this discrepancy is that linear regression may be too permissive of a mapping: even

if a model lacks individual units that resemble recorded neurons, a combination of units
might still allow for accurate predictions. We thus performed a more stringent one-to-one
mapping32, in which individual VTC-like layer model units are assigned to individual
VTC voxels (Supplemental Figure S8a,b). This one-to-one assignment separate models
much more effectively, with the TDANN model exhibiting substantially higher NSD voxel
correlation? than alternative models (Figure 6b). Correlation peaks at « = 0.25, the same
value identified by topographic benchmarks (Figure 4), providing further evidence that
topographic constraints affect functional representations.

Why are the TDANN features more brain-like? To understand this, we next considered the

concept of intrinsic dimensionality,'%®

a measure of the uniqueness of activation patterns
across neurons. Intrinsic dimensionality is low when neurons have similar responses to one
another, and high when neurons respond independently. Recent work has demonstrated that
standard ANN models have higher intrinsic dimensionality than real macaque V1, and that
models with lower dimensionality better predict neuronal responses®! (but cf.101). Because
the TDANN’s spatial constraint encourages units to respond more similarly to one another,

we hypothesized that their intrinsic dimensionality might be reduced.

We computed intrinsic dimensionality with a measure called Effective Dimensionality
(ED)?%-22 (see Methods). We find that the addition of the spatial constraint decreases ED
in the VTC-like layer regardless of the training objective (Figure 6¢, Supplemental Figure
S8). Non-spatial models (« = 0) have higher ED than human VTC (mean across subjects
=16.7), while ED in the VTC-like layer of categorization-trained models (76.8) is much
higher than in self-supervised models (27.8). At the spatial weight where the TDANN
best matches neural data (a = 0.25), the model’s VTC-like layer approaches the ED of
human VTC (TDANN mean = 13.2). The ED of models trained with S L,,, decreases too
quickly (mean = 6.5), while the ED of categorization-trained models remains higher than
human VTC (mean = 42.7). Similar results are observed when summarizing the response
eigenspectrum with power law fits, as in100:61 (Supplemental Figure S8g). Intriguingly, we
find that the ED of the TDANN converges to a common value of approximately 15 at

a = 0.25 across model layers (Figure 6d), raising the possibility that a similar dimension
stabilization phenomenon may occur in the brain. These results provide new evidence that
the computational constraints generating cortical topography also make non-topographic
features more brain-like.
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The TDANN indirectly minimizes between-area (feed-forward) fiber-tract wiring length

Identifying the optimization paradigm that is most consistent with neuronal data provides
insight into the constraints underlying neural development, but prompts a deeper question:
why would these constraints be favored by evolutionary selection in the first place? One
hypothesis is that functionally organized cortical systems also minimize wiring length,
consequently reducing brain size, weight, and power consumption!®54. Though the TDANN
objective does not directly minimize wiring length, we test this hypothesis by asking
whether models that best predict functional organization also reduce a measure of between-
area wiring length. In feed-forward models that lack within-area connectivity, such as the
TDANN, any potential gains in wiring efficiency must be between areas. To test if such
gains occur, we estimate the feed-forward wiring length needed to connect populations of
co-activated model units in adjacent areas modeled in the the TDANN. For each pair of
adjacent layers, we construct virtual fibers that originate in the upstream "source" area and
terminate in the downstream "target" area, adding between-area fibers until the total distance
between each activated unit and its nearest fiber is below a specified threshold (see Methods,
Figure 7a).

In principle, co-activated units could be distributed uniformly throughout the cortical sheet,
but we find that presenting the TDANN with natural images leads to localized clusters of
responses in the VTC-like layer of all models trained with « > 0, with multiple clusters
apparent at higher levels of a (Supplemental Figure S9). Critically, we find that this increase
in clustering within areas also results in shorter wiring length between areas at higher levels
of a (Figure 7b). However, we also find that object categorization performance decreases as
wiring efficiency improves (Figure 7¢), indicating that models at low-to-intermediate levels
of a optimally balance performance with between-area wiring efficiency. This coincidence
of optimal a values suggests that the functional organization of the ventral visual stream
balances inter-area wiring costs with performance. Finally, we also find more efficient
between-area wiring for optimization objectives that yield the most brain-like functional
organization: fiber length is lower in the TDANN than categorization-trained models and the
Absolute SL-trained models (Figure 7d).

Having identified a model that reproduces many aspects of ventral stream functional
organization, it is interesting to consider new opportunities that the TDANN unlocks. In
Box 1 we give examples of using the TDANN to simulate microstimulation of neuronal
populations and a proof-of-principle for the design of cortical prostheses.

Discussion

In this work, we use artificial neural networks models to elucidate principles of functional
organization in the primate ventral visual stream. We found that training a topographic deep
neural network for a specific combination of objectives results in a model, the TDANN, that
captures several key functional and spatial properties of ventral stream responses, from the
pinwheels of V1 to the category-selective patches of higher visual cortex.

We identified two specific factors critical to brain-like functional organization. First, we
find that se/f-supervisedlearning of task-general representations yields more neurally
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correct organization than the more commonly-deployed objective of supervised object
categorization. Self-supervised objectives are a priori compelling because they can be
implemented by the organism without the need for unrealistic supervision labels. While
previous work on self-supervised visual system models!2492 has largely shown parity
between self-supervised and category-supervised objectives in their ability to explain
neural data, our results show how more biologically-plausible self-supervision leads to
quantitatively improved models of the visual system. Moreover, while other work has
suggested that functional specialization to categories in the ventral stream can arise under
joint training for two different supervised recognition tasks, one for faces and one for
objects?>, our results demonstrate that functional specialization can be unified under a single
unsupervised learning objective on a single training set.

Second, we find that the spatial constraint in our model should compare response similarity
and physical similarity according to a metric that scales with the size of each cortical

area. This finding suggests a new idea: that circuits shaping the structure of local response
correlations should scale with the surface area of cortical regions. Our identification of these
two critical factors demonstrates that comparing optimization objectives can yield concrete
insights into principles underlying cortical systems.

An intriguing possibility is that these mechanisms might extend to predict the abundant, yet
largely unexplained, functional organization non-visual sensory cortex. We hypothesize that
the functional organization of auditory>’-?%, somatosensory!!”, entorhinal*2-°! and parietal
cortices*> may also be explained by contrastive self-supervised learning under spatial
smoothness constraints. Under this hypothesis, it is the structure of the input data (e.g.,
auditory experience, somatosensory input) that changes, but the mechanisms for learning
and organization remain universal across cortical systems. Future work can directly test this
hypothesis by training TDANN variants to learn spatially-organized representations specific
to each system.

The TDANN is the first unified model to predict key functional organization signatures

in multiple cortical areas by learning features and topography, from scratch, in an end-to-
end optimization framework trained directly on image inputs. As the TDANN is trained
end-to-end, it provides the opportunity for modeling the interaction between learned
representations and functional organization during development. Preliminary analyses
suggest that trajectories of TDANN functional architecture throughout training roughly
match the faster development of earlier vs higher cortical regions (Supplemental Figure
S6d,e), but more work is needed to develop these ideas. There are several limitations that
can be addressed in future work. First, we benchmarked functional organization in only two
cortical regions: V1 and VTC, as these regions have the most empirical data to compare
against. Future work can test functional organization in all visual areas (Supplemental
Figure S2c includes qualitative results in V4) and include other aspects of the ventral
stream such as eccentricity bias*®33. Second, because the architecture used here is feed-
forward, there are no within-layer connections between units, so wiring-length inferences
can only be made between layers. A more complex architecture could include both within-
layer recurrence and long-range feedback connections®, although our results demonstrate
that explicitly modeling these recurrent connections is not necessary to produce accurate
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topographic maps (see also” for consistent results), raising the possibility that minimization
of the length of long-range fibers may be the key determinant of the functional organization
of visual cortex. Third, the TDANN uses a separate, square-shaped cortical sheet for each
cortical area. An improved model would model all areas with a single cortical sheet,
integrating neuroanatomically-accurate details of the folding and three-dimensional structure
of the cortical surface!16:113:36_ Finally, like all convolutional neural networks, the TDANN
uses the same filter weights across the entire visual field (termed "weight-sharing") to make
large-scale network training feasible. However, weight-sharing is biologically implausible
and potentially interferes with topographic map formation, since changing input weights

to a unit in one part of the cortical sheet will also change the weights of many distant

units. In this work we pre-optimized unit positions in a way that allows the learning of
locally-smooth topographic maps even with weight-sharing.

Weight-sharing also requires our approach to wiring-length optimization to be indirect:
instead of explicitly minimizing wiring length and then checking for within-layer feature
smoothness, we optimize for within-layer smoothness and then test how this affects the
length of between-area virtual fibers. This indirect result is interesting, because it shows
that wiring length minimization can emerge without having to explicitly build it in, and
suggests a simple mechanism by which befween-area wiring length minimization can
emerge purely from a local within-area spatial constraint. Future work can reconcile direct
optimization of wiring length with the restrictions of weight-sharing (see e.g.””). Beyond
issues of computational efficiency, our results raise an intriguing question: to the extent
that wiring length is minimized during brain development, does the biophysical mechanism
that implements this optimization involve direct measurement and control of between-area
fiber length, or is it more akin to our within-area local smoothness constraint, which then
indirectly minimizes feedforward wiring length?

Finally, an exciting application of the TDANN is the simulation of experiments with spatial
manipulations and readouts (Box 1). Indeed, experiments that involve perturbation of local
neuron populations (e.g.,””-104) that are difficult to do in humans could use the TDANN to
predict the downstream behavioral impact of those manipulations. In sum, a unified model
of functional organization, the TDANN, now allows a rich comparison between models and
cortex.

STAR Methods

Resource Availability

Lead Contact.—Further information and requests for resources should be directed to and
will be fulfilled by the lead contact, Eshed Margalit (eshed.margalit@gmail.com).

Materials Availability.—This study did not generate new materials apart from data and
code.
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Data and Code Availability.

1. Original stimuli, data, and model checkpoints produced in this paper have been
deposited at OSF at https://osf.io/64qv3/. Accession numbers for original and
publicly available datasets are listed in the key resource table.

2. All original code has been deposited at https://github.com/neuroailab/ TDANN
and is publicly available as of the date of publication. DOIs are listed in the key
resources table.

3. Any additional information required to reanalyze the data reported in this paper
is available from the lead contact upon request.

Method Details

Neural network architecture and training.

Model training: We build off of the forchvision implementation of ResNet-18*8 and train
models with modifications to the VISSL framework3’. All models were trained for 200
epochs of the ILSVRC-2012 (ImageNet Large-Scale Visual Recognition Challenge:23)
training set. Unless otherwise indicated, models were each trained from five different
random initial seeds. Network parameters were optimized with stochastic gradient descent
with momentum (y = 0.9), a batch size of 512, and a learning rate initialized to 0.6

then decaying according to a cosine learning schedule’*. Models were trained either for
supervised 1000-way object categorization or on the self-supervised contrastive objective
"SimCLR"!7. Following training, categorization accuracy for self-supervised models was
assessed by freezing the parameters of the model and training a linear readout from the
outputs of the final layer. The linear readout is trained for 28 epochs with a batch size of
1.024 and a learning rate initialized to 0.04 and decreasing by a factor of 10 every eight
epochs.

Initialization of model unit positions: Prior to training, model units in each layer are
assigned fixed positions in a two-dimensional cortical sheet that is specific to that layer.

For efficiency, we do not embed the units of the very first convolutional layer. The size of
the cortical sheet in each layer depends on a mapping between model layers and regions

in the human ventral visual pathway, as well as a commitment to the extent of the visual
field being modeled. For example, because we map model Layer 4 to human V1, the surface
area of the cortical sheet in that layer is set to 13 cz: the mean value reported by’ for the
surface area of the section of human V1 that is sensitive to the central 7 degrees of visual
angle. Another critical parameter in our framework is the size of a "cortical neighborhood":
during training, computation of the spatial loss is restricted to units within the same cortical
neighborhood. We set the neighborhood width to match measurements made of the spatial
extent of lateral connections in different cortical areas of the macaque (from!21), then scale
up to achieve estimates that might match the human ventral visual pathway. Table 1 details
the sizes of simulated cortical sheets and cortical neighborhoods in all layers.

Positions are assigned in a two-stage process:
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Because each layer performs a convolution over the previous layer’s outputs, responses are
organized into spatial grids. We preserve this intrinsic organization by assigning each model
unit to a region of the simulated cortical sheet that corresponds to its spatial receptive field.

Convolutional networks share filter weights between units at different locations; thus, local
updates to a single unit entail updates to all units with the same filter weights. It is highly
unlikely that an arbitrary configuration of unit positions will permit local smoothness under
this global coordination constraint. Thus, we perform pre-optimization of unit positions

to identify a set of unit positions for which learning smooth cortical maps is possible.
Specifically, we spatially shuffle the units of a pre-trained DCNN on the cortical sheet

such that nearby units have correlated responses to a set of sine grating images. The

choice of sine gratings here is inspired by observations that edge-like propagating retinal
waves drive experience-independent organization of the visual system in primates and other
mammals82,59,80,34

The spatial shuffling works as follows: 1) Select a cortical neighborhood at random. 2)
Compute the pairwise response correlations of all units in the neighborhood. 3) Choose a
random pair of units, and swap their locations in the cortical sheet. 4) If swapping positions
decreases local correlations (measured as an increase in the Spatial Loss function described
below), undo the swap. 5) Repeat steps 3-4 500 times. 6) Repeat steps 1-5 10,000 times.

Loss functions: We use two kinds of loss functions: spatial losses that encourage
topographic structure, and task losses that encourage the learning of visual representations.
We detail each in turn below:

The spatial loss (SL) function encourages nearby pairs of units to have response profiles
that are more correlated with one another than those of distant of units. Consider a
neighborhood with N units. The vector of pairwise Pearson’s response correlations, 7,

has length M = (];]), the number of unique pairs. Let the corresponding vector of pairwise

N
Euclidean cortical distances be denoted d .

We define two SL variants:

SLaps = |r,— D],

<[-
%S

@

=
SLga=1-Corr(7,D),

(€)

. . . - . . .
where Corr is the Pearson’s correlation function and D is the inverse distance:
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The task loss is computed from the output of the final model layer. We use two task losses:
the object categorization cross-entropy loss used in supervised object recognition (e.g.6”)
and the self-supervised SIimCLR objective!”.

On each batch, model weights are updated to minimize a weighted sum of the task loss and
the spatial loss contributed by each layer:

TDANN Loss = Ly + ). @SLy
k € layers

®)

where a is the weight of the spatial loss.

In summary, models are trained in 6 steps:
1. ResNet-18 is trained on the task loss only.
2. Positions in each layer are initialized to preserve coarse retinotopy (Stage 1).

3. Positions are further pre-optimized in an iterative process that preserves
retinotopy while bringing together units with correlated responses to sine
gratings images (Stage 2).

4. Positions are frozen and never again modified.
5. All network weights are randomly re-initialized.
6. The network is trained to minimize a weighted combination of the spatial and

task loss components.

Benchmarks comparing macaque V1 to model V1-like layers.

Stimuli and Tuning Curves: Tuning to low-level image properties such as orientation,
spatial frequency, and chromaticity was assessed by constructing 224 x 224 pixel sine
grating images that span 8 orientations evenly spaced between 0 and 180 degrees, 8 spatial
frequencies between 0.5 and 12 cycles per degree, 5 spatial phases, and two chromaticities:
black/white gratings and red/cyan gratings.

We evaluated tuning for orientations and spatial frequencies by constructing tuning curves
for each unit. Color-responsiveness is assessed by comparing the mean response to all black
and white gratings to the mean response to all red/cyan gratings. The distribution of model
unit activations for a given layer was rescaled to match the minimum and maximum firing
rates reported in1%0. We quantify the orientation tuning strength of model units using circular
variance (CV), where values closer to 0 correspond to sharper tuning. As in!%0, CV is
defined as:
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CV=1-
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Where 6, is the kth orientation, in radians, and r, is the scaled response to that orientation.
Orientation tuning curves are additionally fit with a von Mises function whose peak is taken
as the preferred orientation.

Models: Our hand-crafted self-organizing map (SOM) implementation uses the MiniSom
library!12, with parameters adapted from!97. We instantiate the SOM as a 128 x 128 grid of
model units.

10,000 training samples were randomly constructed by selecting a random (x, y) location,
orientation ([0, =], spatial frequency ([0. 1]). and chromaticity (black/white, colorful).

As in197, SOM weights were initialized retinotopically with randomly-selected initial
preferred orientations. The SOM is trained by presenting training examples for a total of
700,000 updates. After each example, the "winning" unit (i.e. the one with the highest
response) is updated with a learning rate of ¢ = 0.02 to be more strongly aligned with the
input stimulus, and its neighbors are updated in proportion to their proximity to the winner,
as determined by a Gaussian neighborhood function parameterized by o = 2.5.

Following training, each sine grating in the set of probe stimuli is presented to the SOM by
projecting it into the six-dimensional space of SOM unit tuning and computing the response
of each SOM unit to the stimulus. Once responses to each stimulus are obtained, tuning
curves are constructed as usual.

The DNN-SOM is identical to the hand-crafted SOM, except that 1) the inputs are derived
from the outputs of the first layer of an AlexNet model pretrained for ImageNet object
categorization and 2) the learning rate is increased, which we found helps convergence.
Following the approach of!23, we take the responses of the first AlexNet layer to all
50,000 natural images in the ImageNet dataset, reduce their dimensionality with principal
components analysis, and train the SOM on those examples.

Response Benchmarks: Model responses are compared to macaque V1 by considering
preferred orientations and orientation tuning strength. Orientation tuning strength is
computed as circular variance (CV) and compared between the population of model units
and the empirical distribution provided by!%? with the Kolmogorov-Smirnov distance. To
filter out noisy units, we compute CV for model units with a mean response magnitude of
at least 1.0. The distribution of preferred orientations is also compared to empirical data
collected by?! by counting the number of units preferring each of four orientations: 0, 45,
90, and 135 degrees. In Supplemental Figure S3b we compute a "Cardinality Index": the
fraction of preferred orientations that include, 0, 90, and 180 degrees.

Neuron. Author manuscript; available in PMC 2025 July 17.



1duosnuepy Joyiny 1duosnuepy Joyiny 1diosnuey Joyiny

1diosnuepy Joyiny

Margalit et al.

Page 19

Topographic Benchmarks: Orientation preference maps (OPMs) are compared to

empirical measurements in two ways: counting pinwheels and quantifying map smoothness.

We interpolate the OPM onto a two-dimensional grid by computing the circular mean of

the preferred orientation of units near a given location. If the population of model units

near a grid location has high heterogeneity in preferred orientation, we disqualify that pixel
for having an unreliable estimate of preferred orientation. Each grid location is assigned a
"winding number"!3, computed by considering the preferred orientations of the eight pixels
directly bordering the pixel under consideration. Moving clockwise around the bordering
eight pixels, the change in preferred orientation from pixel fo pixel is summed. A high
winding number indicates a clockwise pinwheel, and a low winding number indicates a
counterclockwise pinwheel, where the thresholds for "high" and "low" are selected to be
consistent with manual annotation of clear pinwheels. When computing pinwheel density,
we report the number of identified pinwheels per "column-spacing", i.e. we normalize to the
distance between iso-orienfation areas. We note that the orientation column spacing in The
TDANN (~ 3.5mm width) does not match macaque V1 (~ Imm). This mismatch, caused in
part by our commitment of the TDANN as a model of human visual cortex and not macaque
visual cortex, can also be overcome by increasing the number of units in the network at the
expense of increased computational cost (see Supplemental Figure S3d-f).

We compute the smoothness of orientation preference maps by constructing a curve relating
pairwise difference in preferred orientation to pairwise cortical distance. First, we restrict
the population of model units to those with the highest 25% peak-to-peak tuning curve
magnitudes. This filtering step removes units with weak responses or responses that would
be indistinguishable from a "cocktail blank" background activity level, and we consider

it equivalent to neuron selection in electrophysiological and optical imaging studies!00-88.
As in similar approaches to quantifying OPM structure (e.g.1#), pairs of units are binned
according to their distance, and the average absolute different in preferred orientation is
plotted for each distance bin. Because there can be hundreds of thousands of units in a given
layer, we restrict this analysis to randomly-selected neighborhoods of a fixed width, then
sample many neighborhoods from each map. Finally we divide the pairwise difference by
the chance value obtained by random resampling of unit pairs, such that a values < 1 indicate
more similar tuning than would be expected by chance.

The OPM curves are compared to reconstructed macaque V1 data from38.

We adopt an identical approach for the construction of a neuronal spatial frequency
preference map, where data are also provided for the same imaging window in38. A similar
strategy was used to recover data on cytochrome oxidase (CO) uptake from’3.

We define a smoothness score for a given map by comparing the tuning similarity for the
nearest model unit pairs to the tuning similarity of the least similar pairs. Concretely. given a
vector x of pairwise tuning similarity values, sorted in order of increasing cortical distance:
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Benchmarks comparing human VTC to model VTC-like layers.

Stimuli: We evaluate the selectivity of neurons and model units to visual object categories
using the “fLoc” functional localizer stimulus set'%. fLoc contains five categories, each
with two subcategories consisting of 144 images each. The categories are faces (adult

and child faces), bodies (headless bodies and limbs), written characters (pseudowords

and numbers), places (houses and corridors), and objects (string instruments and cars).
Selectivity was assessed by computing the z-statistic over the set of functional localizer
stimuli and defining a threshold above which units were considered selective.

Hon — Hoft

2 2
Oon + Ooff
Non ~ Nog

t=

®

where u,, and u,; are the mean responses to the "on" categories (e.g., adult and child
faces) and "off" categories (e.g., all non-face categories), respectively, o2 are the associated
variances of responses to exemplars from those categories, and N is the number of

exemplars being averaged over.

Human Data: We compare models to human data from the Natural Scenes Dataset (NSD)2,
a high-resolution fMRI dataset of responses to 10,000 natural images in each of eight
individuals (see Allen et al. for details). Models are compared to two aspects of this dataset:
single-trial responses to the main set of natural images per participant (see "One-to-one
mapping") and selectivity in response to the "fLoc" stimuli. Single-trial responses were
z-scored across images for each voxel and session and then averaged across three trial
repeats. Selectivity was computed on the "fLoc" experiment as described in the previous
section, generating r-maps for each of the five categories for each individual subject. While
some category-selective regions are pre-defined in the NSD dataset, those regions include
regions with very weak selectivity. To better align with the literature on category selectivity,
we recompute selectivity and patch boundaries in the human data using the same contrasts
and thresholds as the models we compare to. The VTC region of interest (ROI) was drawn
based on anatomical landmarks to follow the convention in the literature!! and is provided in
the NSD data release as the "Ventral" ROI in the "streams" parcellation.

Models: We reconstruct maps from a variant of the ITN in” that was trained and evaluated
on the same images as the remaining models.

Two related approaches for building SOM models of higher visual cortex have recently
been published!23-26, Because neither paper evaluates the resulting topographic maps with
the fLoc stimuli, we approximately reimplement the approach of'23 as follows. We extract
the responses of each unit in the final layer of a pretrained AlexNet to all 50,000 images
in the ImageNet validation set. The responses are then reduced to the first four principal
components. The SOM is initialized as a 200 x 200 grid of model units with a Gaussian
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neighborhood function set to o = 6.2. The learning rate is set to 1.0 and the SOM is trained
for 200,000 total iterations. The fLoc images are presented to the pretrained AlexNet

model and projected into the space spanned by the four principal components computed
previously. The response of each model unit to each fLoc image is computed by taking

the dot product of the unit weight matrix with the projected fLoc images. The SOM is

then treated identically to the VTC-like layer of the TDANN. We note that the DNN-SOM
implemented here does not perfectly replicate the approach of either2® or'23, but uses the
same DNN architecture, weights, and input images. It remains possible that exact replication
of these approaches would yield different results; however, we were unable to achieve

123

stronger results in our exploration of alternative implementations. With respect to' <>, we do

not include a step to warp the simulated cortical tissue to the morphology of human VTC.

Response Benchmarks: We compare functional properties of human VTC and models with
representational similarity analysis (RSA)®. For any given model or human hemisphere, we
compute a representational similarity matrix (RSM) as the pairwise Pearson’s correlation
between patterns of selectivity for each of the five fLoc categories. The diagonal of the RSM
is trivially 1.0 and is ignored in further analysis. The similarity of two RSMs is computed as
Kendall’s 7.

Topographic Benchmarks: We measure pairwise difference in VTC-like layer unit tuning

as a function of cortical distance. We draw 25 randoms samples of 500 units each. Each
sample is filtered to include only units with a mean response of at least 0.5 a.u.. For

each fLoc category, the absolute pairwise difference in selectivity is computed for pairs
of units separated by different cortical distances. Curves are normalized by the chance
value obtained by randomly shuffling unit positions. Smoothness of maps is computed
from these curves, same as in our analysis of V1. To compare a model to a human
hemisphere, we compute the mean category-by-category difference in smoothness, e.g.
comparing model face map smoothness to human face map smoothness, model body map
smoothness to human body map smoothness, etc. Permutation tests randomly assigning
category-by-category smoothness profiles to either "model" or "human" were used to assess
the statistical significance of the mean difference in smoothness.

Patches are automatically detected in maps of category selectivity by identifying contiguous
regions of highly-selective units (or voxels, for human VTC). Patch identification has a
small number of parameters that can be adjusted for maps of different sizes and with
different dynamic ranges of selectivity values. The first step in identifying patches is to
smooth and interpolate discrete selectivity maps. The selectivity map is then thresholded,
and contiguous islands surviving the threshold are retained as candidate patches. Each
candidate patch is further filtered for reasonable size: patches must be at least 100272 and
no larger than 45cn?. Finally, the 2D geometry of the patch is constructed by fitting the
concave hull of the points within the patch.

The following table identifies the relevant parameters for patch identification in human VTC
and for each candidate model class.
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A measure of proximity between face- and body-selective regions was previously introduced
in’%, We determine if units (or voxels, for human VTC) that are selective for a pair of
categories overlap with one another as follows. First, we bin the cortical sheet into discrete
square neighborhoods of width 10mm. In each neighborhood, the fraction of units selective
for Category X and Category Y are recorded. We consider two populations as overlapping

if there is a strong correlation between the proportions recorded across neighborhoods,

i.e., if the frequency of Category 1 selectivity is predictive of Category Y selectivity and
vice-a-versa. The X-Y Overlap score is computed as

1 — RankCorr(X,Y)

Overlap = 3

®

where RankCorr is the Spearman’s rank correlation coefficient and X is the proportion

of units selective for Category X in each cortical neighborhood. The category selectivity
threshold was set at t > 4. One might consider other measures of inter-patch geometry; for
example, face patches are lateral to place-selective patches in human VTC, but this is not
apparent in the TDANN. We have not quantified this kind of inter-patch geometry given the
complexity in registering coordinates between the simulated cortical sheet and human VTC.

Linear regression: Neural predictivity is computed against a given dataset as the mean

variance explained across neurons and splits of the data. In practice we follow the
parameters and design decisions made by the BrainScore team!%3; they are repeated here

for completeness. We use partial least squares (PLS) regression to predict the activity of a
given neuron as a linear weighted sum of model units in a given layer. Model activations

are preprocessed by first projecting unit responses to ImageNet images onto the first

1000 principal components, i.e. each component is a linear mixture of model units. This
projection is used when fitting on the stimuli that were shown to the animal. When fitting IT,
we use data from Majaj, Hong, et al., 201576, which consists of multi-electrode array data in
responses to quasi-naturalistic scenes with a variety of objects on a variety of backgrounds.
Variance explained is corrected by dividing raw predictivity by the internal noise ceiling, a
measure of the consistency of each recorded neuron.

One-to-one mapping of visual cortical responses.: A direct, one-to-one mapping between
units and voxels is computed by assigning each unit in a layer of the network to a single
voxel based on responses to a given dataset. In practice, we correlate individual model unit
activations to the natural images from the Natural Scenes Dataset® with responses to these
same images on the single voxel level for a given subject. Unit-to-voxel assignments are
determined using a polynomial-time optimal assignment algorithm3¢ which maximizes the
overall average correlation between unit and voxel pairs, on a given training set. The 515
shared images that all eight subjects viewed three times were held out as a test set and

all reported one-to-one correlations are calculated on this test set, using the unit-to-voxel
assignments determined from training. Each unit-to-voxel correlation is normalized by the
individual voxel noise ceiling of that assigned voxel (see Allen et al. for information on
the calculation of the intra-individual voxel noise ceilings in NSD). One-to-one correlations
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were calculated on an individual subject basis for each of the self-supervised and supervised
models trained at each level of the spatial weight a.. The inter-individual, or subject-to-
subject, noise ceiling, was calculated in the same manner, this time assigning voxels from
one subject to voxels from another subject based on how correlated responses to the shared
515 images were for each potential voxel pair. For the subject-to-subject assignment, we
used an 80/20 train/test split and averaged results for each subject combination across 5
splits. A similar analysis appears in32.

Wiring Length.: We measure the functional wiring length between two adjacent layers, the
"source" layer and the "target" layer by first identifying the units with the highest responses
in each layer, then computing the length of between-area fibers that would be required to
connect them. First, for a given natural image input, we identify the top p % most responsive
units in each of two adjacent layers. We set p to 5% in the V1-like layers and 1% in the
VTC-like layers. We note that for computational tractability, we restrict our analysis to small
neighborhoods in the V1-like layers and average results across many random neighborhood
selections.

Next, between-area fibers are added one by one, until all activated units in the earlier
"source" layer are sufficiently close to the location at which a fiber originates. In practice,
we find the optimal fiber origination sites using the k-means clustering algorithm, and
continue adding fibers until the total "inertia" of the k-means clustering falls below a
specified threshold, k... Inertia is computed as the sum of the squared distances between
each activated unit and its nearest fiber, and k.., is set such that the mean distance from
each unit to its nearest fiber is not greater than dyea. duses 1S set to 10.0mm in the VTC-like
layer pairs, and is reduced to 0.9mm in the V1-like layer pairs to reflect the smaller cortical
neighborhood. Having established the number of between-area fibers required and their
origination sites in the "source" layer, we identify optimal termination sites for those fibers
in the "target" layer as follows. The set of target layer termination sites is identified as

the centroids from k-means clustering, with k set to the number of fibers. Finally, fibers

are assigned between origination sites and termination sites with the linear sum assignment
algorithm, and the total wiring length is computed as the sum of the lengths of each
individual between-area fiber.

A critical decision when measuring wiring length in this way is how to situate units from
two layers in a common physical space. By design, each TDANN layer occupies a unique
two-dimensional sheet, leaving the spatial relationships between units in different cortical
sheets undefined. Here, we assume that the "source" cortical sheet and "target" cortical sheet
lie in the same 2D plane, joined at one edge. Concretely, we can position the "target" sheet
to the left, right, above, or below the "source" layer. Without reason to choose one of these
strategies, we compute the optimal wiring length for each of the four options and report the
average across all shift directions.

Dimensionality.: In our analyses of dimensionality, we consider the responses of the full
population of model units in each layer to a set of 10,112 natural images from the NSD2.
Following??, we perform spatial max-pooling on the convolutional feature maps, then
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compute the eigenspectrum of these responses. We summarize the dimensionality of the
responses by their effective dimensionality (ED;22):

(Z-4)
LA

ED =

(10)

where 4 is the ith eigenvalue, and N is the number of eigenvectors.

Microstimulation of model units on the simulated cortical sheet.: We simulate the
microstimulation of local populations of model units to 1) gain insight into the functional
properties of local populations, and 2) measure effective connectivity between groups of
units in adjacent layers. In all analyses, stimulation is performed by fixing the activity of
units to values determined by a 2D Gaussian function. Units near the center of the Gaussian
have their activity set to the maximal value, and activity falls off with distance from the
center. We consider the top 5% of units, ranked by activity level, as being responsive in
either the “Source” layer, where activity is set according to the 2D Gaussian, or in the
following “Target” layer, where unit activity is determined by the network architecture and
learned weights.

In VTC-like layers, we measure functional alignment between layers by comparing the
category selectivity of activated units in the Source layer (Layer 8) with the selectivity of
responsive units in the Target layer (Layer 9). For each stimulation site, we compute the
mean selectivity (z-statistic) of the top 5% most activated units for each of the following
categories: faces, bodies, characters, cars, and places. This five-element "selectivity profile"
can then be compared to the profile of the top 5% most strongly responding units in the
Target layer by computing »2 distance between selectivity profiles. Similarity is then taken
as the negative log distance and compared to a shuffle-control in which a random subset of
units is compared instead of the top 5% most active units.

Simulation of a Visual Cortical Prosthesis.: In Box 1, we demonstrate a proof of concept
for using topographic DCNNSs to prototype visual cortical prosthetic devices. This proof of
concept consists of two distinct stages: 1) generating device-achievable stimulation patterns
with a Stimulation Simulator, and 2) generating the estimated percept (Percept Synthesizer)
that would result by stimulating cortical areas with those patterns. To generate stimulation
patterns, we feed a target image into TDANN and record the precise activation magnitude of
each model unit in each layer. If an infinitely high-precision stimulation device with absolute
coverage of the cortical sheet in all cortical areas were available, we would stimulate

cortex with this set of precise activation patterns. However, real stimulation devices are
limited in many ways, including limits to their spatial precision and the set of cortical

areas they can access. Thus, we use TDANN to produce device-achievable stimulation
patterns, i.e., those that are consistent with the limitations of cortical stimulation devices.
Here we take a simple approach by considering degradation of high-precision patterns

into device-achievable patterns by Gaussian blurring. In each layer, we first interpolate the
precise activity patterns onto a high-resolution grid (2500 x 2500 px), then blur the resulting
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pattern with a 2D Gaussian kernel whose ¢ parameter is set according to the desired blur
level. Because different layers have different cortical sheet sizes (e.g. 70mm on an edge in
the VTC-like layer and 37mm on an edge in the V1-like layer), the width of the Gaussian
in pixels is variable, even though the width of the Gaussian in mm is constant. Finally, we
perform a nearest-neighbor lookup such that each model unit adopts the activity level of
the pixel closest to its location. This set of activity patterns is the final "device-achievable"
pattern. The Stimulation Simulator also allows any specific subset of layers to be included;
e.g. the first two layers only, or all eight layers. We consider this restriction comparable to
the limited access a neuronal stimulation device might be restricted to.

Given a set of device-achievable activity patterns, we seek to determine the estimated
percept that would be evoked if that pattern were written into cortex, i.e., the visual input
that is most consistent with those patterns. To this end, we follow the example of>8 and use
gradient-ascent image optimization methods to synthesize an image such that the activity
pattern produced by presenting that image is as close as possible to the device-achievable
target pattern. We use the /ucent Python package to iteratively optimize an image to
minimize the total mean squared error, summed across layers, between the target activity
patterns and the current evoked patterns at that iteration. We optimize the image for 3000
steps at a learning rate of 0.05; further optimization has little effect on reducing the mean
squared error. The optimized result is the predicted percept for a given input image and
theoretical cortical stimulation device.

Quantification and Statistical Analysis

Statistical analyses were performed in Python using the pandas!%8:7% and pingouin!!?

libraries. The statistical tests used, values of n, and measures of spread are indicated either
in the text of the Results section or in figure captions. Where applicable, significance was
defined as a p-value below 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

A unique advantage of a unified topographic model such as the TDANN is that it can be
used to predict the effects of simultaneous spatially-localized stimulation across multiple
cortical areas.

We test this in two scenarios: Electrical stimulation and prototyping a hypothetical
multi-region cortical stimulation device. Mirroring results in macaque IT®3, we find that
stimulating units in a TDANN face patch drives localized activity in a face patch in the
subsequent layer (panels a, b).

6,111.38 we simulate a device with

Based on recent advances in model-driven prostheses
two components: 1) a Stimulation Simulator that transforms desired activity patterns
on the cortical sheet into device-achievable patterns, and 2) a Percept Synthesizer that

visualizes the percept evoked by the stimulation.

Given an image input, the Stimulation Simulator uses the TDANN to predict a spatial
pattern of responses in each layer, and then constrains that pattern into one that is
physically achievable by a specific hypothetical device (panel c). As a proof-of-principle,
we model two such constraints here: spatial precision — the resolution at which the device
can create activity patterns, and regional access — the subset of cortical areas that are
accessible.

The Percept Synthesizer then visualizes an input image which generates the target
activity pattern3%:104 (panel d). Panel e illustrates predicted percepts for cortical
stimulation devices with variable precision and access. Unsurprisingly, a device with
infinitely high spatial stimulation precision yields sharp percepts even when only early
cortical areas are stimulated (panel e, top left). However, percepts quickly deteriorate as
the spatial precision of the device decreases (panel e, lower left). Our simulation suggests
that at lower precision, the quality of percepts can be improved by adding stimulation of
higher cortical areas (panel e, middle rows).

While we have neglected many critical details here, including spatiotemporal processing,
cortical magnification, and the need to behaviorally validate percepts, this proof of
principle motivates the use of the TDANN to make testable predictions about percepts
elicited by cortical stimulation devices.
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Highlights

Single model predicts function and spatial structure in early and late visual
cortex

Best models use self-supervised learning and a scalable spatial constraint

More brain-like responses in spatially-accurate than spatially-unconstrained
models

The local spatial constraint results in lower between-area wiring length
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Figure 1: Constructing a unified model of the functional and spatial constraints of ventral visual
cortex.

(a) TDANNS are artificial neural networks whose units are assigned positions in a two-
dimensional simulated cortical sheet in each layer. Position assignments are retinotopic,
such that location in the cortical sheet corresponds to visual field position. Each dot is

one model unit; purple indicates overlap between a unit’s receptive field and the purple
square on the input image. The TDANN is trained to minimize the sum of a task loss and

a spatial loss (SL). a is a free parameter controlling the relative weight of the SL. (b) The
SL encourages nearby units to develop strong response correlations. Each dot represents the
pairwise similarity of responses (y-axis) and cortical distance (x-axis) for a pair of units.
(c) The TDANN is evaluated on quantitative benchmarks that measure correspondence to
topographic features. Left orientation preference map in the V1-like TDANN layer (Figure
2 for details). Right: category selectivity map in the VTC-like layer (Figure 3 for details).
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Figure 2: The TDANN prediction of V1 topography.
(a) Example grating stimuli used to assess tuning for orientation, spatial frequency, and

color. (b) Tuning curves for orientation (top) and spatial frequency (bottom) for example
units in the V1-like layer. (¢) Smoothed orientation preference map (OPM) in the V1-like
layer of the TDANN. Box corresponds to right panel showing individual units labeled by
preferred orientation. Results for additional model seeds shown in Supplemental Figure S5.
(d) OPMs for Macaque V1 (data adapted with permission from Nauhaus et al.8%), TDANN,
and control models: Task Only and Unoptimized neural networks, the DNN-SOM, and
Hand Crafted SOM. (e) Lefi Pairwise difference in preferred orientations as a function

of pairwise cortical distance, normalized to random-sampling chance level. Right. Map
smoothness for OPMs in macaque V1 (dashed green line, data from Nauhaus et al.®®) and
four candidate models: the TDANN (purple), the Hand-Crafted self-organizing map (SOM,
squares), deep neural network SOM (DNN-SOM, pluses), and Task Only (diamonds).
Error bars: 95% CI across model seeds and cortical neighborhoods. See Supplemental
Figure S3g,h for results from alternative feature spaces. (f) Spatial frequency preference,
shown for the same region of the TDANN V1-like layer and macaque V1 (data adapted
with permission from Nauhaus et al.8%) as in panel (d). (g) Change in preferred spatial
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frequency as a function of cortical distance, normalized to chance, for macaque V1 and each
model. (h) Preference for chromatic stimuli for the same region of the TDANN V1-like
layer. Dark dots: stronger responses to chromatic than achromatic gratings. Macaque data.
reconstruction of cytochrome oxidase staining data adapted from Livingstone & Hubel”
(Copyright 1984 Society for Neuroscience). (i) Fraction of units differing in their chromatic
preference as a function of cortical distance, normalized to chance. (j) Similarity to the
smoothness of macaque OPMs (data from Nauhaus et al.3%) vs. similarity to the distribution
of orientation tuning strengths in macaque V1 (data from Ringach et al.!%%) . Duplicate
markers indicate different initial model seeds. Dashed green: perfect correspondence. (k)
Density of pinwheels detected in TDANNSs, Hand-Crafted SOMs, Task Only models, and
Unoptimized models. Error bars: CI across model seeds. Green: estimated macaque V1
pinwheel density.
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Figure 3: The TDANN prediction of higher visual cortex topography.
(a) Representational similarity matrices (RSMs) for the TDANN and human VTC,

computed across selectivity to five object categories. (b) Functional similarity between

the TDANN, human VTC, and alternative models, measured as the similarity of RSMs.
Green: mean of pairwise human-to-human similarity values. (¢) Selectivity (¢-value), for
each category plotted on the simulated cortical sheet of the VTC-like layer. Responses for
an individual unit, marked by black star, plotted below (individual dots: single images, bar
height: mean across images). Scale bar: 1cm. (d) Difference in selectivity as a function

of cortical distance for pairs of units in each of five candidate models: the TDANN
(purple), deep neural network self-organizing map (DNN-SOM; plus markers), interactive
topographic network ("ITN", Blauch et al.%; circles), Unoptimized ("x" markers), and Task
Only (diamonds). Curves normalized to random-sampling chance. Green: Subject-average
human data. Shaded regions: 95% CI across different unit subsets from models trained with
different initial seeds. (e¢) Smoothness of selectivity maps for each category and model.
Dashed green: human mean. (f) Category-selective patches for an example hemisphere

in human ventral temporal cortex (VTC; see left inset for location, A: Anterior, L:
Lateral), the TDANN, Task Only, DNN-SOM, and "ITN” models. ITN maps adapted with
permission from Blauch et al.. Examples from different seeds in Supplemental Figure

S5. (g) Average number of category-selective patches for each model and human data
(dashed green). ANOVA for patch count difference: F(5,179) = 32.7, p < 10722 Significant

difference between VTC and ITN (p = 1.2 x 107, Post-hoc Tukey’s test). (h) Surface area
of category-selective patches. Same plotting conventions as in (g). ANOVA for patch area
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difference: F(5,187) =154, p < 107! l; Significant difference between VTC and DNN-SOM

(p<10™ 10 post-hoc Tukey’s test). (i) Each human subject and model instance compared to
the mean patch area and patch number in the human data. (j) Overlap between face- and
body-selectivity vs. overlap between face- and place-selectivity, for each human hemisphere
(green dots), each TDANN (purple dots), the ITN (gray dot), each DNN-SOM (gray plus
signs), and each Task Only model (gray diamonds).

Neuron. Author manuscript; available in PMC 2025 July 17.



1duosnuely Joyiny 1duosnuely Joyiny 1duosnuely Joyiny

1duosnuelp Joyiny

Margalit et al. Page 41

a
180
—
> 90 o©
0
Faces
; Characters
Places
Objects
b Function c Map Smoothness d Topographic Phenomena
=1
-------------- 0.8 ——— e ————— - e
S oi b iy N .
22 04 e, £ os RN 23
L n v
== \. 5 O ° °8 2 =%
~— 9_2 \ 2 0.4 \ / o '®
] - £ @ 2 c
= 28 0.2 () = g€ \ )
Sg Z 02 &3 1 ./
g7 Unoptimized @), S 8 o
& 0.0 o oo 0.0 -
T T TT 11 T : T T TT 171 T T T TT 11 T
0 01 1.25 25 0 01 125 25 0 0.1 1.25 25
a a a
Human-to-Human @ 3
%:- .—.‘-.\ g o8
Sn 06 - 30 5 &
(©) = S IS 3 2
= °3 ° £ 04 S
272 & S
> 28 04 \ > 03 & 1
So o 2 *
EE 0.2 < Unoptimize g o2
n : 9 0
I L 1
0 0.1 1.25 25
a a a

Figure 4: Convergence of benchmarks indicates balance between functional and spatial
constraints.

(a) Topographic maps in the V1-like (top) and VTC-like layer (bottom) of TDANNS trained
at different levels of the spatial weight a. 7op: Orientation map structure and pinwheels
apparent at 0.1 < a < = 1.25. Dots: estimated pinwheel locations; black: clockwise, white:
counterclockwise. Botfom: Category selective units (¢ > 12) colored by preferred category.
(b) Functional correspondence to neural data as a function of a. 7op: Fraction of strongly
orientation-selective units (circular variance < 0.6) in the V1-like layer. Dashed green:
macaque V1 (from Ringach et al.199). Dashed gray: mean for Unoptimized models. Shaded
regions.: 95% CI across initial seeds. Botfom: Representational similarity between the VTC-
like layer and human VTC (as in Figure 3). Shaded region: 95% CI across model seeds

and human hemispheres. Vertical line (a« = 0.25): value used in prior figures. (¢) Topographic
map smoothness as a function of «. 7op: OPM smoothness in the V1-like layer. Dashed
green: value in macaque V1. Dashed gray. smoothness in an Unoptimized model. Bottom:
Category selectivity map smoothness in the VTC-like layer. Dashed lines: means across
human hemispheres from the NSD for each category. (d) Density of topographic phenomena
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as a function of @. 7op: Pinwheel density in OPMs from the V1-like layer. Bottom.: Number
of category selective patches in the VTC-like layer. Dashed lines: Human data.
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Figure 5: Self-supervision and scalable spatial constraints underlie the emergence of functional
organization.

In all panels: purple: TDANN, gold: Categorization-trained, red: Absolute SL, and green:
neural data. (a) Left: comparison of task objectives. Contrastive self-supervision (top)
encourages high similarity for representations of two views of the same image, and

low similarity for two views of different images.. Categorization (bottom) compares
predicted class probabilities to the human-labeled correct class. Right: comparison of
spatial objectives. .S;;: response similarity of units i and j. d;;: cortical distance between
units i and j. The TDANN uses the Relative SL (top), which correlates the population

of response similarities and pairwise inverse distances across pairs of units. Prior work?’?
used the Absolute SL (bottom), which directly subtracts inverse cortical distance from
response similarity magnitude. (b) Smoothed orientation preference maps (OPMs) in the
V1-like layer of the TDANN (left), a Categorization trained model (middle), and a model
trained with the Absolute SL (right). Dots: pinwheels. a = 0.25 for each model. (¢) Category
selective units in the VTC-like layer of each model. (d) Right: Smoothness of OPMS in the
V1-like layer of each model (bars) and macaque V1 (dashed line). (e) Density of detected
pinwheels in models (bars) and macaque V1 (line). (f) Right: Smoothness of face selectivity
maps in the VTC-like layer of each model (bars) and human VTC (line). (g) Number of
category-selective patches in the VTC-like layer of each model (bars) and human VTC
(line).
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Figure 6: Spatial constraints make learned representations more brain-like and reduce intrinsic
dimensionality

(a-c) metrics as a function of spatial loss weight « and training objective. (a) Variance
explained under a linear regression mapping between model units and macaque IT neurons.
All fits in Supplemental Figure S8d. (b) Mean correlation between model units and

VTC voxels under a one-to-one mapping. Green. mean human-to-human correlation under
the same one-to-one mapping. (¢) Estimated effective dimensionality (cf. Elmoznino &
Bonner??, Del Giudice??) of the population response in the VTC-like layer of each

model. Green: mean ED in human VTC estimated from the NSD dataset. (d) Effective
dimensionality in the TDANN across all layers and levels of a. Shaded vertical bars:

a = 0.25, demonstrated in prior analyses to best match topographic phenomena.
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Figure 7: Minimization of between-area wiring length in models with brain-like functional

organization.

(a) Example wiring length computation between adjacent layers. Brown dots: top 5% most

active units in the Source layer for an arbitrarily-selected natural image. Green dots: top

5% most active units in the Target layer. Black dots. termination points of virtual fibers

that would be required to connect active populations of units. (b) Wiring length between
layers 4 and 5 (V1-like; left), and layer 8 and 9 (VTC-like, right) as a function of a. Shaded
regions.: 95% CI of measurements from different cortical neighborhoods, model seeds, and

input images. (¢) Accuracy on object categorization vs. wiring length; each dot, different a.

(d) Wiring length of models trained with different tasks and spatial objectives (a = 0.25 for

all). Error bar. 95% CI over images and model seeds.
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Parameters for layer positions. *the value of 1.6mm used in the V1-like layer is known to be inaccurate, but

matching the proper value yields too few units in each cortical neighborhood to compute pairwise distances.

See Supplemental Figure S3d-f for a discussion and solution to this problem.

Layer | # Units | Size of Cortical sheet | Neighborhood Size | Region
Layer2 | 200704 5.7mn? 47um Retina
Layer 3 | 200704 5.7mn? 47um Retina
Layer4 | 100352 13.5¢cn? 1.6 mmr* Vi
Layer 5 | 100352 13.5¢cn? 1.6 mm* \al
Layer 6 | 50176 12cn? 4mm V2
Layer 7 | 50176 ScnP 2.5mm \Z!
Layer8 | 25088 49cn? 31mm VTC
Layer9 | 25088 49cn? 31mm VTC
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Table 2.

Patch detection parameters for human VTC and each model.

Model Selectivity Threshold | Smoothing c | Minimum Size square mm | Maximum Size square mm
Human VTC 4 None 100 None
TDANN 2 2.4 100 4500
ITN 8 0.7 100 4500
DNN-SOM 10 2.4 100 4500
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Key Resources Table
Resource Source Identifier
Deposited Data
Model Weights This paper https://osf.io/64qv3/
Sine Grating Images This paper https://osf.io/64qv3/
Software and Algorithms
Model Training and Evaluation Code This paper https://github.com/neuroailab/ TDANN (DOI: 10.5281/zenodo.10294203)
Other
VISSL Goyal et al. https://github.com/facebookresearch/vissl
fLoc Images Stigliani et al., 2015 https://github.com/VPNL/fLoc
NSD Data and Stimuli Allen et al., 2022 https://naturalscenesdataset.org
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