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Summary
A key feature of cortical systems is functional organization: the arrangement of functionally 
distinct neurons in characteristic spatial patterns. However, the principles underlying the 
emergence of functional organization in cortex are poorly understood. Here we develop the 
Topographic Deep Artificial Neural Network (TDANN), the first model to predict several aspects 
of the functional organization of multiple cortical areas in the primate visual system. We analyze 
the factors driving the TDANN’s success and find that it balances two objectives: learning a 
task-general sensory representation and maximizing the spatial smoothness of responses according 
to a metric that scales with cortical surface area. In turn, the representations learned by the 
TDANN are more brain-like than in spatially-unconstrained models. Finally, we provide evidence 
that the TDANN’s functional organization balances performance with between-area connection 
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length. Our results offer a unified principle for understanding the functional organization of the 
primate ventral visual system.

eTOC Blurb
Margalit et al. develop a topographic artificial neural network that predicts both functional 
responses and spatial organization of multiple cortical areas of the primate visual system. In turn, 
the model minimizes between-area wiring length and produces more brain-like responses to visual 
stimuli than spatially unconstrained alternative models.

Introduction
Sensory cortical systems can be measured in two ways: by the response patterns of neurons 
as a function of stimulus input, and by the spatial arrangement of those neurons across 
the cortical surface. The confluence of these observations is referred to as functional 
organization, the reproducible spatial arrangement of neurons within a cortical area 
according to their response properties. Functional organization is among the most ubiquitous 
of neuroscience findings, appearing in the topographic maps of the visual system50, and in 
auditory52, parietal45, sensorimotor117, and entorhinal areas91,42. These organized structures 
anchor our understanding of cortical development, function, and dysfunction. Yet, it remains 
a mystery what processes govern their emergence, and what computational function they 
serve.

Any theory of functional organization must explain both neuronal response 
properties and the physical arrangement of neurons. Furthermore, a complete 
unified theory should account for functional organization in all cortical areas. Prior 
computational models of the organization within single cortical areas have been 
developed5,60,92,28,107,123,26,72,84,83,13,54,65,9,53,3, but these approaches do not generalize 
to multiple areas. Moreover, many prior models utilize hand-crafted features, and thus 
cannot explain how neuronal response properties are learned from realistic sensory 
inputs. Deep artificial neural networks (DANNs) trained with large naturalistic datasets 
are increasingly being used to model neuronal responses in visual, auditory, and 
language regions19,57,118,120,58,44,12,68,103,102. However, standard DANNs impose no spatial 
arrangement among model units, and thus cannot explain the organization of neurons across 
the cortical sheet.

Here, we introduce the Topographic Deep Artificial Neural Network (TDANN), a model 
that takes a step toward unification by predicting many features of functional organization 
in multiple cortical areas from a single learning framework. The TDANN implements 
the hypothesis that neural systems are optimized to address two key goals: supporting 
ecologically-relevant behaviors by producing useful neural representations76, and doing 
so in a biophysically efficient manner. A critical component of biophysical efficiency is 
the minimization of neuronal wiring length, which is theorized to result in the smooth 
topographic organization observed in many cortical areas16,65,54. The TDANN embeds each 
layer’s units in a two-dimensional simulated cortical sheet, then optimizes a composite 
objective function with two components: a functional objective that drives the learning 
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of useful representations, and a spatial constraint that encourages efficiency with smooth 
response patterns across the simulated cortical sheet. We test this framework in the 
primate ventral visual stream, a cortical system in which functional organization has been 
extensively documented.

The ventral stream is a hierarchical series of cortical areas that support visual recognition, 
beginning with primary visual cortex (V1) and ascending through intermediate areas to 
high-level regions: inferotemporal (IT) cortex in macaques and ventral temporal cortex 
(VTC) in humans. Well-known neuronal response properties in V1 include tuning to 
edge orientation50,100,21, spatial frequency20, and color122,73. These response properties 
are coupled with topography: orientation preferences form a smooth cortical map with 
pinwheel-like discontinuities8,40,10,51,88; spatial frequency is organized in a quasi-periodic 
map51,88,43; and color-preferring neurons cluster in punctate blobs73 across V1. Higher-level 
regions such as primate IT24,41,96,109 and the analogous human VTC contain neurons 
with stronger responses for items of specific categories (e.g., faces vs non-faces), a 
property known as category selectivity. A core characteristic of functional organization in 
IT109,95 and VTC55,30,27,78,94,115,39 is that neurons selective for certain ecologically-relevant 
categories – including faces, places, limbs, and visual wordforms – cluster into spatial 
patches, with characteristic patch sizes, counts, and inter-patch distances. The location of 
category-selective regions in human VTC has been related to eccentricity biases71,46,35, 
spatial frequency and curvature preferences87,4, chromatic preference69, and real-world 
size64. Functional organization in V1 has been related to endogenous activity patterns prior 
to birth1 and efficient encoding of visual inputs93. Here, we apply the TDANN to test if core 
phenomenology in multiple cortical areas can be predicted by a single computational model.

We find that the TDANN reproduces several key aspects of the functional organization of 
multiple regions in the ventral stream, including smooth orientation maps with pinwheels 
in an earlier model layer, and category-selective patches in a later layer that match the 
number and size of selective regions in human VTC. We then test which specific functional 
and spatial constraints of the TDANN are critical to its success by instantiating alternative 
models and measuring their capacity to predict neuronal data. We find that the combination 
of task and spatial objectives that best matches the functional organization of the ventral 
stream also makes learned representations more brain-like by constraining their intrinsic 
dimensionality. We also find that the TDANN learns these representations while indirectly 
minimizing between-area wiring length, providing further evidence that brain-like functional 
organization effectively balances performance with metabolic costs.

Finally, because the the TDANN accurately predicts key aspects of the functional 
organization of the ventral stream, it provides an exciting new platform for simulating 
experiments that are challenging to implement empirically. As a proof of principle, we 
perform in silico experiments simulating the effect of cortical microstimulation devices that 
vary in their spatial precision and cortical coverage (Box 1). Taken together, our experiments 
suggest that the TDANN provides a framework for understanding the emergence of 
functional organization in multiple cortical areas of the ventral visual stream.
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Results
Instantiating models that balance task performance with spatial smoothness

Building on optimization-based approaches in computational neuroscience98,119, we seek a 
model architecture and an objective function that generate a neural network which matches 
the neuronal responses and topography of the primate ventral visual stream.

Because standard DANNs have no within-area spatial structure beyond retinotopy, we must 
augment their architecture to model spatial topography. Specifically, we take the ResNet-18 
architecture48, a DANN with strong object recognition performance and accurate prediction 
of neuronal responses throughout the ventral visual stream103, and augment it by embedding 
the units of each convolutional layer into a two-dimensional simulated cortical sheet (Figure 
1a). Given that neurons in visual cortex are organized retinotopically at birth4, we assign 
model unit positions retinotopically, such that units responding to similar regions of input 
images are nearby in the simulated cortical sheet. The size of the simulated cortical sheet 
in each layer is anchored by estimates of cortical surface area in the human ventral visual 
stream (Figure 1a). We refer to the resulting model as the Topographic DANN (TDANN).

Given this architecture, the core of the TDANN approach is to train on a composite 
objective function that sums two components: a task objective encouraging the learning of 
behaviorally-useful functional representations, and a spatial objective driving the emergence 
of topographic properties. Recent work has illustrated the training of (non-topographic) 
DANNs with constrastive self-supervised objectives as models of the ventral pathway124,63. 
Contrastive self-supervised networks learn representations that achieve equally strong 
neural predictivity as category-supervised networks, but without the need for biologicially-
implausible category supervision labels. Here we use SimCLR17, a simple but especially 
effective contrastive self-supervised objective, as the task component of the TDANN loss 
function.

For the spatial loss (SL), we introduce an objective that encourages nearby pairs of units to 
have more correlated responses than distant pairs of units (Figure 1b, see Methods). The SL 
is computed separately in each convolutional layer, then summed across layers:

TDANN Loss = �task + ∑
� ∈ layers

��SL�

(1)

where �� is the weight of the spatial loss in the �th layer, set to �� = 0.25 for all layers. The 
value of � is a free parameter that was selected based on quantitative benchmarks comparing 
model predictions to neuronal functional organization (Figure 4). Other parameters that 
impact the spatial loss – including the size of each cortical sheet and the maximum distance 
across which different units can participate in the spatial loss computation – are fixed based 
on empirical measurements (see Methods).

Training the TDANN on ImageNet23 successfully minimized both task and spatial 
losses (Supplemental Figure S1a,b). We tested if adding the spatial loss interferes with 
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representation learning by measuring the model’s object categorization performance with 
a linear readout. Categorization accuracy was only slightly lower for the TDANN (median 
across initialization seeds = 43.9%) than "Task Only" models with no spatial loss (� = 0, 
median = 48.5%; Mann-Whitney � = 25, � = .008). Moreover, adding the spatial loss term 
had the intended effect of increasing spatial smoothness (Supplemental Figure S1c,d).

To determine if this learned correlation structure corresponds to brain-like topographic 
maps, we constructed a battery of quantitative benchmarks comparing model predictions 
with neural data in two stages of the ventral pathway: V1 and VTC, (Figure 1c). Initial 
results for intermediate ventral visual areas are presented in Supplemental Figure S2, but 
we do not include them in our core benchmarks due to a relative lack of empirical data 
to compare against. As in prior work12,120, we find that earlier model layers best predict 
V1 responses and later layers best predict responses in higher visual cortex (Supplemental 
Figure S2d). Accordingly, we designate the fourth and ninth convolutional layers as the 
"V1-like" and "VTC-like" layers, respectively, and restrict our analyses to these layers when 
evaluating benchmarks of functional organization.

The TDANN predicts the functional organization of primary visual cortex

Neurons in primate V1 are organized into maps of preferred stimulus orientation, spatial 
frequency, and color73,88,15. Because data at the resolution necessary to visualize these 
maps is not available for human V1, we compare the TDANN to macaque V1 using 
scale-invariant metrics. We tested if the V1-like TDANN layer captures the functional 
organization of macaque V1 with three quantitative benchmarks. First, we evaluate 
functional correspondence by asking if model units in the TDANN V1-like layer have 
similar preferred orientations and orientation tuning strengths as neurons in macaque V1. 
Second, we assay cortical map structure by measuring pairwise tuning similarity as a 
function of cortical distance. Third, we measure the density of pinwheel-like discontinuities 
in the orientation preference map. In addition to the TDANN, we evaluate four control 
models on these benchmarks. To test the impact of model training and pre-optimization unit 
shuffling, we used an Unoptimized TDANN, in which model weights and unit positions are 
left randomly initialized. To determine the effect of the spatial constraint in the loss function, 
we trained a Task Only variant with � = 0. The other two controls are self-organizing 
maps (SOMs), which have been proposed as models of V1 functional organization107,28: a 
traditional SOM in which feature dimensions are manually predetermined (as in107), referred 
to here as the "Hand-Crafted SOM", and the DNN-SOM, a novel SOM that organizes the 
output of a deep neural network (AlexNet) V1-like layer (inspired by26,123).

The TDANN matches orientation tuning in V1—We measured orientation tuning 
strength by presenting a set of oriented sine grating images to the model (Figure 2a), 
computing a tuning curve for each unit, and calculating the circular variance (CV; lower 
values for sharper tuning) of each tuning curve. We find that the TDANN V1-like layer has 
a significantly greater proportion of selective units (CV < 0.6, range across model seeds: 
[20%, 31%]) than Unoptimized models ([1%, 3%]; Mann-Whitney � = 25; � = .008, Figure 
2b), but fewer than Task Only models ([35%, 50%]; � = 25; � = .008) or macaque V1 (45%; 
Supplemental Figure S3c). In contrast, neither the Hand-Crafted SOM nor the DNN-SOM 
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exhibited any units with sharp orientation tuning. We also find that TDANN and Task Only 
models (but not SOMs or Unoptimized models) show an over-representation of cardinal 
orientations (0 and 90 degrees) as in macaque V121 (Supplemental Figure S3b; see also 
Henderson & Serences49).

The TDANN predicts the arrangement of orientation-selective V1 neurons—To 
evaluate whether the TDANN V1-like layer captures the topographic properties of macaque 
V1, we consider the spatial distribution of orientation-selective units – the orientation 
preference map (OPM) – and find a smooth progression of preferred orientations that 
resembles macaque V1 (Figure 2c, d). Following prior work14,31,99, we quantify this 
structure by measuring the absolute pairwise difference in preferred orientation as a function 
of cortical distance. In both the TDANN and macaque V1 (data from88), we find that 
nearby units have smaller differences in orientation preference than distant pairs (Figure 2e). 
In contrast, orientation preference similarity does not vary with cortical distance in Task 
Only or Unoptimized models, and both the Hand-Crafted and DNN-SOMs exhibit OPMs 
with abnormally high orientation tuning similarity (Figure 2e, Supplemental Figure S3a). 
We summarize these profiles by computing a smoothness score that measures the increase 
in tuning similarity for nearby unit pairs compared to distant unit pairs. Smoothness of 
TDANN OPMs ([min, max] across random initialization: [.64, .83]) was consistent with 
macaque V1 (.68); however, OPMs in the Hand-Crafted SOM ([.92, .92]) and DNN-SOMs 
([.81, .86]) were smoother than in macaque V1. In turn, macaque V1 OPMs were smoother 
than Unoptimized ([.03, .04]) and Task Only ([.28, .39]) models. Jointly comparing each 
model to macaque V1 orientation tuning strength and OPM smoothness highlights that the 
TDANN is the only model class that satisfies both criteria (Figure 2j).

As a more stringent test of OPM structure, we computed the density of pinwheel-like 
discontinuities in the OPM10 and compared to the expected value of ~3.1 pinwheels / 
mm2 in macaque V156. Multiple pinwheels are apparent in both the TDANN and the 
Hand-Crafted SOM (Figure 2k). We find that the TDANN has lower pinwheel density 
(range across seeds = [2.0, 2.3] pinwheels / column spacing2) than macaque V1, but 
significantly higher than either the Task Only ([0.2, 0.8]; Mann-Whitney � = 25, � = .008) or 
Unoptimized models (0 pinwheels; Figure 2k). The Hand-Crafted SOM has higher pinwheel 
density ([3.7, 4.5]) than the TDANN, but the DNN-SOM has no detectable pinwheels. We 
note that absolute pinwheel density can depend on model architecture (Supplemental Figure 
S3).

The TDANN predicts maps of spatial frequency and color preference in V1
—While OPMs are the best-studied feature of V1 functional organization, the cortical 
sheet simultaneously accommodates organized maps of spatial frequency88 and chromatic 
tuning33,73. An accurate model of V1 should also predict these maps. We compared spatial 
frequency preference maps in macaque V1 (data from88) and in the TDANN V1-like layer 
and found a smooth progression of preferred spatial frequency in both (Figure 2f). The 
TDANN map of spatial frequency preference across random initializations = [.38, .54] 
([min, max]) is as smooth as the map in macaque V1 (0.53; Figure 2g), whereas maps 
from Task Only ([.23, .36]) and Unoptimized models ([.02, .03]) are less smooth than 

Margalit et al. Page 6

Neuron. Author manuscript; available in PMC 2025 July 17.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



macaque V1, and both the Hand-Crafted SOM ([.79, .81]) and the DNN-SOM ([.83, .86]) 
are far smoother than the neuronal data. We observe similar results for maps of chromatic 
preference (Figure 2h, i), where comparisons are made to imaging of cytochrome oxidase 
uptake that is prevalent in color-tuned neurons (data from Livingstone & Hubel73). In 
the TDANN chromatic map, the fraction of units with opposite color-tuning increases 
with cortical distance, again exhibiting comparable smoothness to macaque V1 (TDANN 
smoothness: [.38, .54], macaque: .53). Together, our analyses demonstrate that the TDANN 
predicts the multifaceted functional organization of macaque V1, providing a stronger match 
to neuronal data than existing models.

The TDANN reproduces many features of higher visual cortex functional organization

Because benchmarks measuring the topographic similarity between models and higher 
visual cortex, i.e. primate inferior temporal (IT) and human ventral temporal cortex (VTC), 
are underdeveloped, we introduce five quantitative benchmarks that compare both responses 
and topography. Response properties are compared by measuring the similarity of category 
selectivity patterns with representational similarity analysis (RSA, Kriegeskorte et al.66), 
as in Margalit et al.77, Haxby et al.47. Topographic properties are then compared against 
four complementary benchmarks: 1) the smoothness of category selectivity maps, 2) the 
number of category selective patches, 3) the area of these patches, and 4) the spatial overlap 
among units selective for different categories. We compute these metrics for the TDANN’s 
VTC-like layer and for VTC data from eight human subjects in the Natural Scenes Dataset 
(NSD)2 (Supplemental Figure S4e).

We also evaluate two alternative models of VTC topography: an SOM trained on the outputs 
of a categorization-pretrained AlexNet (DNN-SOM, cf26,123) and an Interactive Topographic 
Network (ITN) that is trained on the same dataset (ImageNet) we used9. Human subjects 
and models were presented a common set of 1,440 grayscale images from five categories105: 
faces, bodies, written characters, places, and objects.

The TDANN predicts patterns of category selectivity—We characterize neuronal 
responses in VTC by computing a representational similarity matrix (RSM): the similarity 
among distributed selectivity patterns for each of the five object categories. The average 
RSM from human VTC indicates high similarity between distributed selectivity patterns 
for faces and bodies, and low similarity between distributed selectivity for faces and places 
(Figure 3a). RSMs from different subjects and hemispheres were very similar, with the 
95% CI of Kendall’s � = [.72, .75]. We then compute RSMs for each model and find that 
some models provide a closer match to human VTC than others (ANOVA � (4, 331) = 630; 
� < 10−152). TDANN RSMs closely mirror those in human VTC (� = [.69, .73]), significantly 
better than DNN-SOM (� = [.31, .35]; post-hoc Tukey’s HSD � < 10−13), ITN (� = [.46, .56]; 
� < 10−13), Task Only (� = [.65, .68]; � = .001) and Unoptimized (� = [.11, .14]; � < 10−13) 
models (Figure 3b).

The TDANN predicts category-selectivity maps—To compare models against 
topographic benchmarks, we generate selectivity maps for each of the five object categories 
(Figure 3c), then quantify their structure by measuring the difference in selectivity as a 

Margalit et al. Page 7

Neuron. Author manuscript; available in PMC 2025 July 17.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



function of cortical distance between pairs of units (Figure 3d). We find that many models 
have similar selectivity profiles, with nearby units having more similar selectivity than 
distant pairs of units (Figure 3d). Summarizing the curves with the same smoothness metric 
used in V1 (Figure 3e), we find no significant differences between smoothness in human 
VTC and the TDANN VTC-like layer (permutation test: � = 0.30). The ITN also exhibits 
VTC-like smoothness (� = 0.10), although the maps from the Task Only and Unoptimized 
models were less smooth than human VTC (�� < 0.001), and maps from the DNN-SOM 
were smoother than human VTC (� < .001).

For the remaining topographic benchmarks, we follow the literature by thresholding 
selectivity maps to find strongly selective units (Supplemental Figure S4a-d). Clusters of 
selective units are identifiable in human VTC, TDANN, the SOM, and ITN models, but 
not in Task Only or Unoptimized models. We computationally identify large contiguous 
clusters of selective units as "patches" (Figure 3f). We find similar sets of patches in VTC 
and the TDANN: both contain a few patches selective for each category. There are two 
notable exceptions: object-selective patches are present in the TDANN but not VTC, and the 
TDANN exhibits a large central place-selective patch flanked by face-selective patches, an 
arrangement not found in VTC. Quantitative comparison supports the similarity of human 
VTC and TDANN: there is no significant difference in patch count (� = 0.99, Figure 3g) 
or patch area (� = 0.67; Figure 3h). In contrast, we find that the ITN has more than twice 
as many patches as VTC (� = 1.2 × 10−5), although the patches are as large on average as 
those in VTC (� = 0.99). The DNN-SOM fails to match VTC in the other extreme: while the 
number of patches in the DNN-SOM is similar to that in VTC (� = 0.15), the patches are 
too large (� < 10−10). Joint comparison of models and humans on both patch count and size 
(Figure 3i) highlights the strong correspondence between TDANN and human VTC.

A hallmark of higher visual cortex functional organization is the reproducible spatial 
arrangement of units selective for different categories, including the close proximity of 
face-selective and body-selective regions95,114 and the separation between face- and place-
selective regions. Here we measured the co-occurrence of face-selective and body-selective 
units (and face-selective and place-selective units) with an overlap score that ranges between 
1 (face-selectivity perfectly predicts body-selectivity) to 0.5 (no relationship), to 0 (face- and 
body-selectivity perfectly anti-correlated). As expected, Face-Body overlap scores are high 
in human VTC (95% CI across subjects and hemispheres: [.66, .72]), whereas Face-Place 
overlap was significantly lower (95% CI: [.40, .45], Wilcoxon signed-rank test against 
one-sided alternative � = 136; � = 1.5 × 10−5; Figure 3j). The same pattern is apparent in 
the TDANN: Face-Body Overlap ([.63, .71]) is significantly higher than Face-Place Overlap 
([.14, .26]; � = 15; � = .03). In the ITN, the Face-Body overlap score was lower than in 
human VTC (.52), but still higher than the Face-Place overlap score (.36). Neither the 
the DNN-SOM nor the Task Only models had higher Face-Body overlap than Face-Place 
overlap (Figure 3j; �� > 0.5).

To further gain intuition for the tuning profiles of model units, we synthesized images that 
optimally drive each region of the VTC-like layer. We make the subjective observation 
that optimal stimuli vary smoothly across the cortical surface, and that optimal stimuli in 
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face-selective regions often include round objects resembling eyes (Supplemental Figure 
S4f,g). We also find that training the TDANN on natural images (either ImageNet23 or 
Ecoset81) produces accurate V1-like and VTC-like maps, whereas training on noise or 
simpler hand-crafted stimuli fails to provide a unified account of ventral stream topography 
and predicts only V1-like functional organization (Supplemental Figure S6a-c).

Multiple signatures of functional organization emerge at the same spatial constraint 
strength

While most of the parameters in the the TDANN framework are set according to empirical 
data, the weight of the spatial loss in the training objective, � is a critical free parameter that 
cannot be assigned ahead of time. Here, we validate our setting of � = 0.25 for the results 
above by demonstrating that many benchmarks of neuronal similarity are simultaneously 
satisfied at this value.

Comparison of OPMs in the V1-like layer and category-selectivity maps in the VTC-like 
layer in models trained at different levels of � shows that functional organization is absent 
when � = 0, is structured at intermediate values of �, and deteriorates at high values (Figure 
4a). We quantify the dependence of functional organization on � with three kinds of 
benchmarks: functional similarity (Figure 4b), map smoothness (Figure 4c), and presence 
of topographic phenomena (i.e., pinwheels and patches; Figure 4d). Considering functional 
similarity, we find that the fraction of V1-like layer units that are orientation selective 
is closest to macaque V1 when � is low, and representational similarity between the VTC-
like layer and human VTC is maximized at � = 0.25 (Figure 4b). Considering topography, 
smoothness of OPMs in the V1-like layer is most brain-like at � = 0.1 and smoothness 
of category-selectivity in the VTC-like layer is most brain-like at � = 0.25 (Figure 4c). 
Finally, the density of pinwheels in the V1-like layer and category-selectivity patches in 
the VTC-like layer are most similar to measurements in macaque V1 and human VTC, 
respectively, at � = 0.25 (Figure 4d).

A specific range of � values (0.1 ≤ � ≤ 0.25) thus produces experimentally-observed 
outcomes across a variety of functional and topographic benchmarks in multiple brain areas.

Two factors underlying functional organization: self-supervised learning and a scalable 
spatial constraint

To understand the constraints that shape the ventral stream’s functional organization, 
we construct variants of the TDANN with alternative functional and spatial objectives, 
then evaluate how these factors affect the accuracy of the resulting models’ functional 
organization.

Most studies comparing neural networks to the brain use models trained for supervised 
object categorization (58,120,70; Figure 5a-bottom left). The TDANN, however, uses 
contrastive self-supervision124,17. We thus considered a variant topographic model using 
standard visual object categorization as the “task component” of its objective function.
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We also investigate how the spatial objective function affects emergent functional 
organization.70 recently introduced a spatial loss function that subtracts the inverse of 
pairwise cortical distances from the magnitude of pairwise response correlations (Figure 
5a-bottom right). We refer to this as Absolute Spatial Loss (��Abs), because minimizing it 
requires an absolute match between response correlations and (inverse) cortical distances. 
While training models with ��Abs produces clustering of category-selective units in a late 
model layer70, we found that in layers with shorter cortical distances, ��Abs can only be 
minimized if response correlations are pathologically high. The TDANN instead uses a more 
flexible spatial loss function that we term Relative Spatial Loss (��Rel); Figure 5a-top right). 
��Rel requires only that inverse cortical distances be correlated with response similarity, 
regardless of total cortical surface area. Interestingly, we find that switching from ��Abs to 
��Rel slightly increased performance in linear readouts of object category (Supplemental 
Figure S7b).

We compare the full TDANN model (characterized by having both self-supervised task loss 
and Relative spatial loss) to these variants both in terms of (1) the smoothness of OPMs and 
face-selectivity maps in the V1-like and VTC-like layers, respectively, and (2) the number of 
pinwheels and category-selective patches in those layers.

In the V1-like layer, the Categorization-supervised variant was slightly but significantly 
less smooth than the TDANN (mean smoothness = 0.56, � = 25, � = 0.008), with an equal 
pinwheel density (2.07 pinwheels / column spacing 2; � = 10, � = 0.69). Absolute SL models 
resemble the TDANN qualitatively (Figure 5b), but with significantly lower smoothness 
(TDANN mean: 0.71, Absolute SL: 0.40; � = 25, � = 0.008; Figure 5d) and lower pinwheel 
density (TDANN: 2.14 pinwheels / column spacing 2, Absolute SL: 0.89; � = 21, � = 0.09; 
Figure 5e).

In the VTC-like layer, category-selectivity maps were much less organized in the 
Categorization-supervised variant than in the self-supervised TDANN. At the same spatial 
weight of � = 0.25, clusters of category-selective units are observed in self-supervised but 
not categorization-supervised models (Figure 5c). The Absolute SL models also fail to 
form organized category-selectivity maps at this level of �. Quantitative comparison reveals 
smoother category selectivity maps in the TDANN (mean smoothness of face-selectivity 
maps = 0.44) than in either categorization-trained models (0.09; Mann-Whitney � = 25, 
� = 0.008; Figure 5f) or in Absolute SL models (0.13). The TDANN also has a significantly 
higher number of category selective patches (mean = 1.2) than either categorization-trained 
(mean = 0) or Absolute SL alternatives (mean = 0.08; � = 25, � = 0.008; Figure 5g). Thus, 
both the specific form of the task objective (self-supervised learning) and the spatial loss 
(relative rather than absolute) are critical for producing brain-like functional organization.

Spatial constraints make learned representations more brain-like, reducing intrinsic 
dimensionality

A natural question is whether training with spatial objectives also affects the non-
topographic aspects of learned representations.
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One way to test this is to measure how well model unit responses can predict neuronal 
responses to a large set of naturalistic stimuli103,12,120,44. When fitting neuronal responses 
as a linear combination of model unit responses120,124,68,103,19, we find the TDANN 
has similar neuronal predictivity to non-spatial models, and that there is no effect of 
model training objective type (Figure 6a). This result is conceptually consistent with 
prior work124,19, but somewhat at odds with the dramatic differences between models 
observed on topographic benchmarks in the preceding sections. One possible explanation 
for this discrepancy is that linear regression may be too permissive of a mapping: even 
if a model lacks individual units that resemble recorded neurons, a combination of units 
might still allow for accurate predictions. We thus performed a more stringent one-to-one 
mapping32, in which individual VTC-like layer model units are assigned to individual 
VTC voxels (Supplemental Figure S8a,b). This one-to-one assignment separate models 
much more effectively, with the TDANN model exhibiting substantially higher NSD voxel 
correlation2 than alternative models (Figure 6b). Correlation peaks at � = 0.25, the same 
value identified by topographic benchmarks (Figure 4), providing further evidence that 
topographic constraints affect functional representations.

Why are the TDANN features more brain-like? To understand this, we next considered the 
concept of intrinsic dimensionality,106 a measure of the uniqueness of activation patterns 
across neurons. Intrinsic dimensionality is low when neurons have similar responses to one 
another, and high when neurons respond independently. Recent work has demonstrated that 
standard ANN models have higher intrinsic dimensionality than real macaque V1, and that 
models with lower dimensionality better predict neuronal responses61 (but cf.101). Because 
the TDANN’s spatial constraint encourages units to respond more similarly to one another, 
we hypothesized that their intrinsic dimensionality might be reduced.

We computed intrinsic dimensionality with a measure called Effective Dimensionality 
(ED)29,22 (see Methods). We find that the addition of the spatial constraint decreases ED 
in the VTC-like layer regardless of the training objective (Figure 6c, Supplemental Figure 
S8). Non-spatial models (� = 0) have higher ED than human VTC (mean across subjects 
= 16.7), while ED in the VTC-like layer of categorization-trained models (76.8) is much 
higher than in self-supervised models (27.8). At the spatial weight where the TDANN 
best matches neural data (� = 0.25), the model’s VTC-like layer approaches the ED of 
human VTC (TDANN mean = 13.2). The ED of models trained with ��Abs decreases too 
quickly (mean = 6.5), while the ED of categorization-trained models remains higher than 
human VTC (mean = 42.7). Similar results are observed when summarizing the response 
eigenspectrum with power law fits, as in106,61 (Supplemental Figure S8g). Intriguingly, we 
find that the ED of the TDANN converges to a common value of approximately 15 at 
� = 0.25 across model layers (Figure 6d), raising the possibility that a similar dimension 
stabilization phenomenon may occur in the brain. These results provide new evidence that 
the computational constraints generating cortical topography also make non-topographic 
features more brain-like.
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The TDANN indirectly minimizes between-area (feed-forward) fiber-tract wiring length

Identifying the optimization paradigm that is most consistent with neuronal data provides 
insight into the constraints underlying neural development, but prompts a deeper question: 
why would these constraints be favored by evolutionary selection in the first place? One 
hypothesis is that functionally organized cortical systems also minimize wiring length, 
consequently reducing brain size, weight, and power consumption18,54. Though the TDANN 
objective does not directly minimize wiring length, we test this hypothesis by asking 
whether models that best predict functional organization also reduce a measure of between-
area wiring length. In feed-forward models that lack within-area connectivity, such as the 
TDANN, any potential gains in wiring efficiency must be between areas. To test if such 
gains occur, we estimate the feed-forward wiring length needed to connect populations of 
co-activated model units in adjacent areas modeled in the the TDANN. For each pair of 
adjacent layers, we construct virtual fibers that originate in the upstream "source" area and 
terminate in the downstream "target" area, adding between-area fibers until the total distance 
between each activated unit and its nearest fiber is below a specified threshold (see Methods, 
Figure 7a).

In principle, co-activated units could be distributed uniformly throughout the cortical sheet, 
but we find that presenting the TDANN with natural images leads to localized clusters of 
responses in the VTC-like layer of all models trained with � > 0, with multiple clusters 
apparent at higher levels of � (Supplemental Figure S9). Critically, we find that this increase 
in clustering within areas also results in shorter wiring length between areas at higher levels 
of � (Figure 7b). However, we also find that object categorization performance decreases as 
wiring efficiency improves (Figure 7c), indicating that models at low-to-intermediate levels 
of � optimally balance performance with between-area wiring efficiency. This coincidence 
of optimal � values suggests that the functional organization of the ventral visual stream 
balances inter-area wiring costs with performance. Finally, we also find more efficient 
between-area wiring for optimization objectives that yield the most brain-like functional 
organization: fiber length is lower in the TDANN than categorization-trained models and the 
Absolute SL-trained models (Figure 7d).

Having identified a model that reproduces many aspects of ventral stream functional 
organization, it is interesting to consider new opportunities that the TDANN unlocks. In 
Box 1 we give examples of using the TDANN to simulate microstimulation of neuronal 
populations and a proof-of-principle for the design of cortical prostheses.

Discussion
In this work, we use artificial neural networks models to elucidate principles of functional 
organization in the primate ventral visual stream. We found that training a topographic deep 
neural network for a specific combination of objectives results in a model, the TDANN, that 
captures several key functional and spatial properties of ventral stream responses, from the 
pinwheels of V1 to the category-selective patches of higher visual cortex.

We identified two specific factors critical to brain-like functional organization. First, we 
find that self-supervised learning of task-general representations yields more neurally 
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correct organization than the more commonly-deployed objective of supervised object 
categorization. Self-supervised objectives are a priori compelling because they can be 
implemented by the organism without the need for unrealistic supervision labels. While 
previous work on self-supervised visual system models124,62 has largely shown parity 
between self-supervised and category-supervised objectives in their ability to explain 
neural data, our results show how more biologically-plausible self-supervision leads to 
quantitatively improved models of the visual system. Moreover, while other work has 
suggested that functional specialization to categories in the ventral stream can arise under 
joint training for two different supervised recognition tasks, one for faces and one for 
objects25, our results demonstrate that functional specialization can be unified under a single 
unsupervised learning objective on a single training set.

Second, we find that the spatial constraint in our model should compare response similarity 
and physical similarity according to a metric that scales with the size of each cortical 
area. This finding suggests a new idea: that circuits shaping the structure of local response 
correlations should scale with the surface area of cortical regions. Our identification of these 
two critical factors demonstrates that comparing optimization objectives can yield concrete 
insights into principles underlying cortical systems.

An intriguing possibility is that these mechanisms might extend to predict the abundant, yet 
largely unexplained, functional organization non-visual sensory cortex. We hypothesize that 
the functional organization of auditory57,90, somatosensory117, entorhinal42,91 and parietal 
cortices45 may also be explained by contrastive self-supervised learning under spatial 
smoothness constraints. Under this hypothesis, it is the structure of the input data (e.g., 
auditory experience, somatosensory input) that changes, but the mechanisms for learning 
and organization remain universal across cortical systems. Future work can directly test this 
hypothesis by training TDANN variants to learn spatially-organized representations specific 
to each system.

The TDANN is the first unified model to predict key functional organization signatures 
in multiple cortical areas by learning features and topography, from scratch, in an end-to-
end optimization framework trained directly on image inputs. As the TDANN is trained 
end-to-end, it provides the opportunity for modeling the interaction between learned 
representations and functional organization during development. Preliminary analyses 
suggest that trajectories of TDANN functional architecture throughout training roughly 
match the faster development of earlier vs higher cortical regions (Supplemental Figure 
S6d,e), but more work is needed to develop these ideas. There are several limitations that 
can be addressed in future work. First, we benchmarked functional organization in only two 
cortical regions: V1 and VTC, as these regions have the most empirical data to compare 
against. Future work can test functional organization in all visual areas (Supplemental 
Figure S2c includes qualitative results in V4) and include other aspects of the ventral 
stream such as eccentricity bias46,35. Second, because the architecture used here is feed-
forward, there are no within-layer connections between units, so wiring-length inferences 
can only be made between layers. A more complex architecture could include both within-
layer recurrence and long-range feedback connections89, although our results demonstrate 
that explicitly modeling these recurrent connections is not necessary to produce accurate 
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topographic maps (see also9 for consistent results), raising the possibility that minimization 
of the length of long-range fibers may be the key determinant of the functional organization 
of visual cortex. Third, the TDANN uses a separate, square-shaped cortical sheet for each 
cortical area. An improved model would model all areas with a single cortical sheet, 
integrating neuroanatomically-accurate details of the folding and three-dimensional structure 
of the cortical surface116,113,36. Finally, like all convolutional neural networks, the TDANN 
uses the same filter weights across the entire visual field (termed "weight-sharing") to make 
large-scale network training feasible. However, weight-sharing is biologically implausible 
and potentially interferes with topographic map formation, since changing input weights 
to a unit in one part of the cortical sheet will also change the weights of many distant 
units. In this work we pre-optimized unit positions in a way that allows the learning of 
locally-smooth topographic maps even with weight-sharing.

Weight-sharing also requires our approach to wiring-length optimization to be indirect: 
instead of explicitly minimizing wiring length and then checking for within-layer feature 
smoothness, we optimize for within-layer smoothness and then test how this affects the 
length of between-area virtual fibers. This indirect result is interesting, because it shows 
that wiring length minimization can emerge without having to explicitly build it in, and 
suggests a simple mechanism by which between-area wiring length minimization can 
emerge purely from a local within-area spatial constraint. Future work can reconcile direct 
optimization of wiring length with the restrictions of weight-sharing (see e.g.75). Beyond 
issues of computational efficiency, our results raise an intriguing question: to the extent 
that wiring length is minimized during brain development, does the biophysical mechanism 
that implements this optimization involve direct measurement and control of between-area 
fiber length, or is it more akin to our within-area local smoothness constraint, which then 
indirectly minimizes feedforward wiring length?

Finally, an exciting application of the TDANN is the simulation of experiments with spatial 
manipulations and readouts (Box 1). Indeed, experiments that involve perturbation of local 
neuron populations (e.g.,97,104) that are difficult to do in humans could use the TDANN to 
predict the downstream behavioral impact of those manipulations. In sum, a unified model 
of functional organization, the TDANN, now allows a rich comparison between models and 
cortex.

STAR Methods
Resource Availability

Lead Contact.—Further information and requests for resources should be directed to and 
will be fulfilled by the lead contact, Eshed Margalit (eshed.margalit@gmail.com).

Materials Availability.—This study did not generate new materials apart from data and 
code.
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Because each layer performs a convolution over the previous layer’s outputs, responses are 
organized into spatial grids. We preserve this intrinsic organization by assigning each model 
unit to a region of the simulated cortical sheet that corresponds to its spatial receptive field.

Convolutional networks share filter weights between units at different locations; thus, local 
updates to a single unit entail updates to all units with the same filter weights. It is highly 
unlikely that an arbitrary configuration of unit positions will permit local smoothness under 
this global coordination constraint. Thus, we perform pre-optimization of unit positions 
to identify a set of unit positions for which learning smooth cortical maps is possible. 
Specifically, we spatially shuffle the units of a pre-trained DCNN on the cortical sheet 
such that nearby units have correlated responses to a set of sine grating images. The 
choice of sine gratings here is inspired by observations that edge-like propagating retinal 
waves drive experience-independent organization of the visual system in primates and other 
mammals82,59,80,34.

The spatial shuffling works as follows: 1) Select a cortical neighborhood at random. 2) 
Compute the pairwise response correlations of all units in the neighborhood. 3) Choose a 
random pair of units, and swap their locations in the cortical sheet. 4) If swapping positions 
decreases local correlations (measured as an increase in the Spatial Loss function described 
below), undo the swap. 5) Repeat steps 3-4 500 times. 6) Repeat steps 1-5 10,000 times.

Loss functions: We use two kinds of loss functions: spatial losses that encourage 
topographic structure, and task losses that encourage the learning of visual representations. 
We detail each in turn below:

The spatial loss (SL) function encourages nearby pairs of units to have response profiles 
that are more correlated with one another than those of distant of units. Consider a 
neighborhood with � units. The vector of pairwise Pearson’s response correlations, � , 

has length � = (�2 ), the number of unique pairs. Let the corresponding vector of pairwise 

Euclidean cortical distances be denoted � .

We define two SL variants:

��Abs = 1
� ∑

� = 1

�
∣ �� −�� ∣ ,

(2)

��Rel = 1 − ����( � ,� ),

(3)

where ���� is the Pearson’s correlation function and �  is the inverse distance:
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�� = 1
�� + 1

(4)

The task loss is computed from the output of the final model layer. We use two task losses: 
the object categorization cross-entropy loss used in supervised object recognition (e.g.67) 
and the self-supervised SimCLR objective17.

On each batch, model weights are updated to minimize a weighted sum of the task loss and 
the spatial loss contributed by each layer:

TDANN Loss = �task + ∑
� ∈ layers

��SL�

(5)

where � is the weight of the spatial loss.

In summary, models are trained in 6 steps:

1. ResNet-18 is trained on the task loss only.

2. Positions in each layer are initialized to preserve coarse retinotopy (Stage 1).

3. Positions are further pre-optimized in an iterative process that preserves 
retinotopy while bringing together units with correlated responses to sine 
gratings images (Stage 2).

4. Positions are frozen and never again modified.

5. All network weights are randomly re-initialized.

6. The network is trained to minimize a weighted combination of the spatial and 
task loss components.

Benchmarks comparing macaque V1 to model V1-like layers.

Stimuli and Tuning Curves: Tuning to low-level image properties such as orientation, 
spatial frequency, and chromaticity was assessed by constructing 224 × 224 pixel sine 
grating images that span 8 orientations evenly spaced between 0 and 180 degrees, 8 spatial 
frequencies between 0.5 and 12 cycles per degree, 5 spatial phases, and two chromaticities: 
black/white gratings and red/cyan gratings.

We evaluated tuning for orientations and spatial frequencies by constructing tuning curves 
for each unit. Color-responsiveness is assessed by comparing the mean response to all black 
and white gratings to the mean response to all red/cyan gratings. The distribution of model 
unit activations for a given layer was rescaled to match the minimum and maximum firing 
rates reported in100. We quantify the orientation tuning strength of model units using circular 
variance (CV), where values closer to 0 correspond to sharper tuning. As in100, CV is 
defined as:

Margalit et al. Page 17

Neuron. Author manuscript; available in PMC 2025 July 17.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



C V = 1 −
∑ k r k e

i2 θ k

∑ k r k

( 6)

W h er e θ k  is t h e k t h ori e nt ati o n, i n r a di a ns, a n d r k  is t h e s c al e d r es p o ns e t o t h at ori e nt ati o n. 

Ori e nt ati o n t u ni n g c ur v es ar e a d diti o n all y fit wit h a v o n Mis es f u n cti o n w h os e p e a k is t a k e n 

as t h e pr ef err e d ori e nt ati o n.

M o d els:  O ur h a n d- cr aft e d s elf- or g a ni zi n g m a p ( S O M) i m pl e m e nt ati o n us es t h e Mi ni S o m 

li br ar y1 1 2 , wit h p ar a m et ers a d a pt e d fr o m1 0 7 . We i nst a nti at e t h e S O M as a 1 2 8 x 1 2 8 gri d of 

m o d el u nits.

1 0, 0 0 0 tr ai ni n g s a m pl es w er e r a n d o ml y c o nstr u ct e d b y s el e cti n g a r a n d o m ( x , y ) l o c ati o n, 

ori e nt ati o n ([ 0, π ], s p ati al fr e q u e n c y ([ 0, 1]), a n d c hr o m ati cit y ( bl a c k/ w hit e, c ol orf ul).

As i n 1 0 7 , S O M w ei g hts w er e i niti ali z e d r eti n ot o pi c all y wit h r a n d o ml y-s el e ct e d i niti al 

pr ef err e d ori e nt ati o ns. T h e S O M is tr ai n e d b y pr es e nti n g tr ai ni n g e x a m pl es f or a t ot al of 

7 0 0, 0 0 0 u p d at es. Aft er e a c h e x a m pl e, t h e " wi n ni n g " u nit (i. e. t h e o n e wit h t h e hi g h est 

r es p o ns e) is u p d at e d wit h a l e ar ni n g r at e of ϵ = 0. 0 2  t o b e m or e str o n gl y ali g n e d wit h t h e 

i n p ut sti m ul us, a n d its n ei g h b ors ar e u p d at e d i n pr o p orti o n t o t h eir pr o xi mit y t o t h e wi n n er, 

as d et er mi n e d b y a G a ussi a n n ei g h b or h o o d f u n cti o n p ar a m et eri z e d b y σ = 2. 5 .

F oll o wi n g tr ai ni n g, e a c h si n e gr ati n g i n t h e s et of pr o b e sti m uli is pr es e nt e d t o t h e S O M b y 

pr oj e cti n g it i nt o t h e si x- di m e nsi o n al s p a c e of S O M u nit t u ni n g a n d c o m p uti n g t h e r es p o ns e 

of e a c h S O M u nit t o t h e sti m ul us. O n c e r es p o ns es t o e a c h sti m ul us ar e o bt ai n e d, t u ni n g 

c ur v es ar e c o nstr u ct e d as us u al.

T h e D N N- S O M is i d e nti c al t o t h e h a n d- cr aft e d S O M, e x c e pt t h at 1) t h e i n p uts ar e d eri v e d 

fr o m t h e o ut p uts of t h e first l a y er of a n Al e x N et m o d el pr etr ai n e d f or I m a g e N et o bj e ct 

c at e g ori z ati o n a n d 2) t h e l e ar ni n g r at e is i n cr e as e d, w hi c h w e f o u n d h el ps c o n v er g e n c e. 

F oll o wi n g t h e a p pr o a c h of 1 2 3 , w e t a k e t h e r es p o ns es of t h e first Al e x N et l a y er t o all 

5 0, 0 0 0 n at ur al i m a g es i n t h e I m a g e N et d at as et, r e d u c e t h eir di m e nsi o n alit y wit h pri n ci p al 

c o m p o n e nts a n al ysis, a n d tr ai n t h e S O M o n t h os e e x a m pl es.

R es p o ns e B e n c h m a r ks:   M o d el r es p o ns es ar e c o m p ar e d t o m a c a q u e V 1 b y c o nsi d eri n g 

pr ef err e d ori e nt ati o ns a n d ori e nt ati o n t u ni n g str e n gt h. Ori e nt ati o n t u ni n g str e n gt h is 

c o m p ut e d as cir c ul ar v ari a n c e ( C V) a n d c o m p ar e d b et w e e n t h e p o p ul ati o n of m o d el u nits 

a n d t h e e m piri c al distri b uti o n pr o vi d e d b y 1 0 0  wit h t h e K ol m o g or o v- S mir n o v dist a n c e. T o 

filt er o ut n ois y u nits, w e c o m p ut e C V f or m o d el u nits wit h a m e a n r es p o ns e m a g nit u d e of 

at l e ast 1. 0. T h e distri b uti o n of pr ef err e d ori e nt ati o ns is als o c o m p ar e d t o e m piri c al d at a 

c oll e ct e d b y 2 1  b y c o u nti n g t h e n u m b er of u nits pr ef erri n g e a c h of f o ur ori e nt ati o ns: 0, 4 5, 

9 0, a n d 1 3 5 d e gr e es. I n S u p pl e m e nt al Fi g ur e S 3 b w e c o m p ut e a " C ar di n alit y I n d e x ": t h e 

fr a cti o n of pr ef err e d ori e nt ati o ns t h at i n cl u d e, 0, 9 0, a n d 1 8 0 d egr e es.
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T o p o g r a p hi c B e n c h m a r ks:   Ori e nt ati o n pr ef er e n c e m a ps ( O P Ms) ar e c o m p ar e d t o 

e m piri c al m e as ur e m e nts i n t w o w a ys: c o u nti n g pi n w h e els a n d q u a ntif yi n g m a p s m o ot h n ess.

We i nt er p ol at e t h e O P M o nt o a t w o- di m e nsi o n al gri d b y c o m p uti n g t h e cir c ul ar m e a n of 

t h e pr ef err e d ori e nt ati o n of u nits n e ar a gi v e n l o c ati o n. If t h e p o p ul ati o n of m o d el u nits 

n e ar a gri d l o c ati o n h as hi g h h et er o g e n eit y i n pr ef err e d ori e nt ati o n, w e dis q u alif y t h at pi x el 

f or h a vi n g a n u nr eli a bl e esti m at e of pr ef err e d ori e nt ati o n. E a c h gri d l o c ati o n is assi g n e d a 

" wi n di n g n u m b er " 1 3 , c o m p ut e d b y c o nsi d eri n g t h e pr ef err e d ori e nt ati o ns of t h e ei g ht pi xels 

dir e ctl y b or d eri n g t h e pi x el u n d er c o nsi d er ati o n. M o vi n g cl o c k wis e ar o u n d t h e b or d eri n g 

ei g ht pi x els, t h e c h a n g e i n pr ef err e d ori e nt ati o n fr o m pi x el t o pi x el is s u m m e d. A hi g h 

wi n di n g n u m b er i n di c at es a cl o c k wis e pi n w h e el, a n d a l o w wi n di n g n u m b er i n di c at es a 

c o u nt er cl o c k wis e pi n w h e el, w h er e t h e t hr es h ol ds f or " hi g h " a n d "l o w " ar e s el e ct e d t o b e 

c o nsist e nt wit h m a n u al a n n ot ati o n of cl e ar pi n w h e els. W h e n c o m p uti n g pi n w h e el d e nsit y , 

w e r e p ort t h e n u m b er of i d e ntifi e d pi n w h e els p er " c ol u m n-s p a ci n g ", i. e. w e n or m ali z e t o t h e 

dist a n c e b et w e e n is o- ori e nt ati o n ar e as. We n ot e t h at t h e ori e nt ati o n c ol u m n s p a ci n g i n T h e 

T D A N N ( ~ 3. 5 m m wi dt h) d o es n ot m at c h m a c a q u e V 1 ( ~ 1 m m). T his mis m at c h, c a us e d i n 

p art b y o ur c o m mit m e nt of t h e T D A N N as a m o d el of h u m a n vis u al c ort e x a n d n ot m a c a q u e 

vis u al c ort e x, c a n als o b e o v er c o m e b y i n cr e asi n g t h e n u m b er of u nits i n t h e n et w or k at t h e 

e x p e ns e of i n cr e as e d c o m p ut ati o n al c ost (s e e S u p pl e m e nt al Fi g ur e S 3 d-f).

We c o m p ut e t h e s m o ot h n ess of ori e nt ati o n pr ef er e n c e m a ps b y c o nstr u cti n g a c ur v e r el ati n g 

p air wis e diff er e n c e i n pr ef err e d ori e nt ati o n t o p air wis e c orti c al dist a n c e. First, w e r estri ct 

t h e p o p ul ati o n of m o d el u nits t o t h os e wit h t h e hi g h est 2 5 % p e a k-t o- p e a k t u ni n g c ur ve 

m a g nit u d es. T his filt eri n g st e p r e m o v es u nits wit h w e a k r es p o ns es or r es p o ns es t h at w o ul d 

b e i n disti n g uis h a bl e fr o m a " c o c kt ail bl a n k " b a c k gr o u n d a cti vit y l e v el, a n d w e c o nsi d er 

it e q ui v al e nt t o n e ur o n s el e cti o n i n el e ctr o p h ysi ol o gi c al a n d o pti c al i m a gi n g st u di es1 0 0 ,8 8 . 

As i n si mil ar a p pr o a c h es t o q u a ntif yi n g O P M str u ct ur e ( e. g. 1 4 ), p airs of u nits ar e bi n n e d 

a c c or di n g t o t h eir dist a n c e, a n d t h e a v er a g e a bs ol ut e dif f er e nt i n pr ef err e d ori e nt ati o n is 

pl ott e d f or e a c h dist a n c e bi n. B e c a us e t h er e c a n b e h u n dr e ds of t h o us a n ds of u nits i n a gi v e n 

l a y er, w e r estri ct t his a n al ysis t o r a n d o ml y-s el e ct e d n ei g h b or h o o ds of a fi x e d wi dt h, t h e n 

s a m pl e m a n y n ei g h b or h o o ds fr o m e a c h m a p. Fi n all y w e di vi d e t h e p air wis e diff er e n c e b y 

t h e c h a n c e v al u e o bt ai n e d b y r a n d o m r es a m pli n g of u nit p airs, s u c h t h at a v al u es < 1 i n di c at e 

m or e si mil ar t u ni n g t h a n w o ul d b e e x p e ct e d b y c h a n c e.

T h e O P M c ur v es ar e c o m p ar e d t o r e c o nstr u ct e d m a c a q u e V 1 d at a fr o m 8 8 .

We a d o pt a n i d e nti c al a p pr o a c h f or t h e c o nstr u cti o n of a n e ur o n al s p ati al fr e q u e n c y 

pr ef er e n c e m a p, w h er e d at a ar e als o pr o vi d e d f or t h e s a m e i m a gi n g wi n d o w i n 8 8 . A si mil ar 

str at eg y w as us e d t o r e c o v er d at a o n c yt o c hr o m e o xi d as e ( C O) u pt a k e fr o m 7 3 .

We d efi n e a s m o ot h n ess s c or e f or a gi v e n m a p b y c o m p ari n g t h e t u ni n g si mil arit y f or t h e 

n e ar est m o d el u nit p airs t o t h e t u ni n g si mil arit y of t h e l e ast si mil ar p airs. C o n cr et el y , gi ve n a 

v e ct or x  of p air wis e t u ni n g si mil arit y v al u es, s ort e d i n or d er of i n cr e asi n g c orti c al dist a n c e:

S (x ) =
m a x( x ) − x 0

x 0
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(7)

Benchmarks comparing human VTC to model VTC-like layers.

Stimuli: We evaluate the selectivity of neurons and model units to visual object categories 
using the “fLoc” functional localizer stimulus set105. fLoc contains five categories, each 
with two subcategories consisting of 144 images each. The categories are faces (adult 
and child faces), bodies (headless bodies and limbs), written characters (pseudowords 
and numbers), places (houses and corridors), and objects (string instruments and cars). 
Selectivity was assessed by computing the µ-statistic over the set of functional localizer 
stimuli and defining a threshold above which units were considered selective.

µ = ¾on − ¾off

 on2
�on

+  off2

�off

,

(8)

where ¾on and ¾off are the mean responses to the "on" categories (e.g., adult and child 
faces) and "off" categories (e.g., all non-face categories), respectively,  2 are the associated 
variances of responses to exemplars from those categories, and � is the number of 
exemplars being averaged over.

Human Data: We compare models to human data from the Natural Scenes Dataset (NSD)2, 
a high-resolution fMRI dataset of responses to 10,000 natural images in each of eight 
individuals (see Allen et al. for details). Models are compared to two aspects of this dataset: 
single-trial responses to the main set of natural images per participant (see "One-to-one 
mapping") and selectivity in response to the "fLoc" stimuli. Single-trial responses were 
À-scored across images for each voxel and session and then averaged across three trial 
repeats. Selectivity was computed on the "fLoc" experiment as described in the previous 
section, generating µ-maps for each of the five categories for each individual subject. While 
some category-selective regions are pre-defined in the NSD dataset, those regions include 
regions with very weak selectivity. To better align with the literature on category selectivity, 
we recompute selectivity and patch boundaries in the human data using the same contrasts 
and thresholds as the models we compare to. The VTC region of interest (ROI) was drawn 
based on anatomical landmarks to follow the convention in the literature11 and is provided in 
the NSD data release as the "Ventral" ROI in the "streams" parcellation.

Models: We reconstruct maps from a variant of the ITN in9 that was trained and evaluated 
on the same images as the remaining models.

Two related approaches for building SOM models of higher visual cortex have recently 
been published123,26. Because neither paper evaluates the resulting topographic maps with 
the fLoc stimuli, we approximately reimplement the approach of123 as follows. We extract 
the responses of each unit in the final layer of a pretrained AlexNet to all 50,000 images 
in the ImageNet validation set. The responses are then reduced to the first four principal 
components. The SOM is initialized as a 200 x 200 grid of model units with a Gaussian 
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neighborhood function set to   = 6.2. The learning rate is set to 1.0 and the SOM is trained 
for 200,000 total iterations. The fLoc images are presented to the pretrained AlexNet 
model and projected into the space spanned by the four principal components computed 
previously. The response of each model unit to each fLoc image is computed by taking 
the dot product of the unit weight matrix with the projected fLoc images. The SOM is 
then treated identically to the VTC-like layer of the TDANN. We note that the DNN-SOM 
implemented here does not perfectly replicate the approach of either26 or123, but uses the 
same DNN architecture, weights, and input images. It remains possible that exact replication 
of these approaches would yield different results; however, we were unable to achieve 
stronger results in our exploration of alternative implementations. With respect to123, we do 
not include a step to warp the simulated cortical tissue to the morphology of human VTC.

Response Benchmarks: We compare functional properties of human VTC and models with 
representational similarity analysis (RSA)66. For any given model or human hemisphere, we 
compute a representational similarity matrix (RSM) as the pairwise Pearson’s correlation 
between patterns of selectivity for each of the five fLoc categories. The diagonal of the RSM 
is trivially 1.0 and is ignored in further analysis. The similarity of two RSMs is computed as 
Kendall’s �.

Topographic Benchmarks: We measure pairwise difference in VTC-like layer unit tuning 
as a function of cortical distance. We draw 25 randoms samples of 500 units each. Each 
sample is filtered to include only units with a mean response of at least 0.5 a.u.. For 
each fLoc category, the absolute pairwise difference in selectivity is computed for pairs 
of units separated by different cortical distances. Curves are normalized by the chance 
value obtained by randomly shuffling unit positions. Smoothness of maps is computed 
from these curves, same as in our analysis of V1. To compare a model to a human 
hemisphere, we compute the mean category-by-category difference in smoothness, e.g. 
comparing model face map smoothness to human face map smoothness, model body map 
smoothness to human body map smoothness, etc. Permutation tests randomly assigning 
category-by-category smoothness profiles to either "model" or "human" were used to assess 
the statistical significance of the mean difference in smoothness.

Patches are automatically detected in maps of category selectivity by identifying contiguous 
regions of highly-selective units (or voxels, for human VTC). Patch identification has a 
small number of parameters that can be adjusted for maps of different sizes and with 
different dynamic ranges of selectivity values. The first step in identifying patches is to 
smooth and interpolate discrete selectivity maps. The selectivity map is then thresholded, 
and contiguous islands surviving the threshold are retained as candidate patches. Each 
candidate patch is further filtered for reasonable size: patches must be at least 100mm2 and 
no larger than 45cm2. Finally, the 2D geometry of the patch is constructed by fitting the 
concave hull of the points within the patch.

The following table identifies the relevant parameters for patch identification in human VTC 
and for each candidate model class.
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A measure of proximity between face- and body-selective regions was previously introduced 
in70. We determine if units (or voxels, for human VTC) that are selective for a pair of 
categories overlap with one another as follows. First, we bin the cortical sheet into discrete 
square neighborhoods of width 10mm. In each neighborhood, the fraction of units selective 
for Category X and Category Y are recorded. We consider two populations as overlapping 
if there is a strong correlation between the proportions recorded across neighborhoods, 
i.e., if the frequency of Category 1 selectivity is predictive of Category Y selectivity and 
vice-a-versa. The X-Y Overlap score is computed as

Overlap = 1 −ÉÌÑ�����(Ò, Ó )
2 ,

(9)

where RankCorr is the Spearman’s rank correlation coefficient and Ò  is the proportion 
of units selective for Category X in each cortical neighborhood. The category selectivity 
threshold was set at µ > 4. One might consider other measures of inter-patch geometry; for 
example, face patches are lateral to place-selective patches in human VTC, but this is not 
apparent in the TDANN. We have not quantified this kind of inter-patch geometry given the 
complexity in registering coordinates between the simulated cortical sheet and human VTC.

Linear regression: Neural predictivity is computed against a given dataset as the mean 
variance explained across neurons and splits of the data. In practice we follow the 
parameters and design decisions made by the BrainScore team103; they are repeated here 
for completeness. We use partial least squares (PLS) regression to predict the activity of a 
given neuron as a linear weighted sum of model units in a given layer. Model activations 
are preprocessed by first projecting unit responses to ImageNet images onto the first 
1000 principal components, i.e. each component is a linear mixture of model units. This 
projection is used when fitting on the stimuli that were shown to the animal. When fitting IT, 
we use data from Majaj, Hong, et al., 201576, which consists of multi-electrode array data in 
responses to quasi-naturalistic scenes with a variety of objects on a variety of backgrounds. 
Variance explained is corrected by dividing raw predictivity by the internal noise ceiling, a 
measure of the consistency of each recorded neuron.

One-to-one mapping of visual cortical responses.: A direct, one-to-one mapping between 
units and voxels is computed by assigning each unit in a layer of the network to a single 
voxel based on responses to a given dataset. In practice, we correlate individual model unit 
activations to the natural images from the Natural Scenes Dataset2 with responses to these 
same images on the single voxel level for a given subject. Unit-to-voxel assignments are 
determined using a polynomial-time optimal assignment algorithm86 which maximizes the 
overall average correlation between unit and voxel pairs, on a given training set. The 515 
shared images that all eight subjects viewed three times were held out as a test set and 
all reported one-to-one correlations are calculated on this test set, using the unit-to-voxel 
assignments determined from training. Each unit-to-voxel correlation is normalized by the 
individual voxel noise ceiling of that assigned voxel (see Allen et al. for information on 
the calculation of the intra-individual voxel noise ceilings in NSD). One-to-one correlations 
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were calculated on an individual subject basis for each of the self-supervised and supervised 
models trained at each level of the spatial weight α. The inter-individual, or subject-to-
subject, noise ceiling, was calculated in the same manner, this time assigning voxels from 
one subject to voxels from another subject based on how correlated responses to the shared 
515 images were for each potential voxel pair. For the subject-to-subject assignment, we 
used an 80/20 train/test split and averaged results for each subject combination across 5 
splits. A similar analysis appears in32.

Wiring Length.: We measure the functional wiring length between two adjacent layers, the 
"source" layer and the "target" layer by first identifying the units with the highest responses 
in each layer, then computing the length of between-area fibers that would be required to 
connect them. First, for a given natural image input, we identify the top �% most responsive 
units in each of two adjacent layers. We set � to 5% in the V1-like layers and 1% in the 
VTC-like layers. We note that for computational tractability, we restrict our analysis to small 
neighborhoods in the V1-like layers and average results across many random neighborhood 
selections.

Next, between-area fibers are added one by one, until all activated units in the earlier 
"source" layer are sufficiently close to the location at which a fiber originates. In practice, 
we find the optimal fiber origination sites using the �-means clustering algorithm, and 
continue adding fibers until the total "inertia" of the �-means clustering falls below a 
specified threshold, �thresh. Inertia is computed as the sum of the squared distances between 
each activated unit and its nearest fiber, and �thresh is set such that the mean distance from 
each unit to its nearest fiber is not greater than �thresh. �thresh is set to 10.0mm in the VTC-like 
layer pairs, and is reduced to 0.9mm in the V1-like layer pairs to reflect the smaller cortical 
neighborhood. Having established the number of between-area fibers required and their 
origination sites in the "source" layer, we identify optimal termination sites for those fibers 
in the "target" layer as follows. The set of target layer termination sites is identified as 
the centroids from �-means clustering, with � set to the number of fibers. Finally, fibers 
are assigned between origination sites and termination sites with the linear sum assignment 
algorithm, and the total wiring length is computed as the sum of the lengths of each 
individual between-area fiber.

A critical decision when measuring wiring length in this way is how to situate units from 
two layers in a common physical space. By design, each TDANN layer occupies a unique 
two-dimensional sheet, leaving the spatial relationships between units in different cortical 
sheets undefined. Here, we assume that the "source" cortical sheet and "target" cortical sheet 
lie in the same 2D plane, joined at one edge. Concretely, we can position the "target" sheet 
to the left, right, above, or below the "source" layer. Without reason to choose one of these 
strategies, we compute the optimal wiring length for each of the four options and report the 
average across all shift directions.

Dimensionality.: In our analyses of dimensionality, we consider the responses of the full 
population of model units in each layer to a set of 10,112 natural images from the NSD2. 
Following29, we perform spatial max-pooling on the convolutional feature maps, then 
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compute the eigenspectrum of these responses. We summarize the dimensionality of the 
responses by their effective dimensionality (ED;22):

Ô� = ∑� = 1
� Õ� 2

∑� = 1
� Õ�2

,

(10)

where Õ� is the �th eigenvalue, and � is the number of eigenvectors.

Microstimulation of model units on the simulated cortical sheet.: We simulate the 
microstimulation of local populations of model units to 1) gain insight into the functional 
properties of local populations, and 2) measure effective connectivity between groups of 
units in adjacent layers. In all analyses, stimulation is performed by fixing the activity of 
units to values determined by a 2D Gaussian function. Units near the center of the Gaussian 
have their activity set to the maximal value, and activity falls off with distance from the 
center. We consider the top 5% of units, ranked by activity level, as being responsive in 
either the “Source” layer, where activity is set according to the 2D Gaussian, or in the 
following “Target” layer, where unit activity is determined by the network architecture and 
learned weights.

In VTC-like layers, we measure functional alignment between layers by comparing the 
category selectivity of activated units in the Source layer (Layer 8) with the selectivity of 
responsive units in the Target layer (Layer 9). For each stimulation site, we compute the 
mean selectivity (µ-statistic) of the top 5% most activated units for each of the following 
categories: faces, bodies, characters, cars, and places. This five-element "selectivity profile" 
can then be compared to the profile of the top 5% most strongly responding units in the 
Target layer by computing Ö2 distance between selectivity profiles. Similarity is then taken 
as the negative log distance and compared to a shuffle-control in which a random subset of 
units is compared instead of the top 5% most active units.

Simulation of a Visual Cortical Prosthesis.: In Box 1, we demonstrate a proof of concept 
for using topographic DCNNs to prototype visual cortical prosthetic devices. This proof of 
concept consists of two distinct stages: 1) generating device-achievable stimulation patterns 
with a Stimulation Simulator, and 2) generating the estimated percept (Percept Synthesizer) 
that would result by stimulating cortical areas with those patterns. To generate stimulation 
patterns, we feed a target image into TDANN and record the precise activation magnitude of 
each model unit in each layer. If an infinitely high-precision stimulation device with absolute 
coverage of the cortical sheet in all cortical areas were available, we would stimulate 
cortex with this set of precise activation patterns. However, real stimulation devices are 
limited in many ways, including limits to their spatial precision and the set of cortical 
areas they can access. Thus, we use TDANN to produce device-achievable stimulation 
patterns, i.e., those that are consistent with the limitations of cortical stimulation devices. 
Here we take a simple approach by considering degradation of high-precision patterns 
into device-achievable patterns by Gaussian blurring. In each layer, we first interpolate the 
precise activity patterns onto a high-resolution grid (2500 × 2500 px), then blur the resulting 
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pattern with a 2D Gaussian kernel whose   parameter is set according to the desired blur 
level. Because different layers have different cortical sheet sizes (e.g. 70mm on an edge in 
the VTC-like layer and 37mm on an edge in the V1-like layer), the width of the Gaussian 
in pixels is variable, even though the width of the Gaussian in mm is constant. Finally, we 
perform a nearest-neighbor lookup such that each model unit adopts the activity level of 
the pixel closest to its location. This set of activity patterns is the final "device-achievable" 
pattern. The Stimulation Simulator also allows any specific subset of layers to be included; 
e.g. the first two layers only, or all eight layers. We consider this restriction comparable to 
the limited access a neuronal stimulation device might be restricted to.

Given a set of device-achievable activity patterns, we seek to determine the estimated 
percept that would be evoked if that pattern were written into cortex, i.e., the visual input 
that is most consistent with those patterns. To this end, we follow the example of38 and use 
gradient-ascent image optimization methods to synthesize an image such that the activity 
pattern produced by presenting that image is as close as possible to the device-achievable 
target pattern. We use the lucent Python package to iteratively optimize an image to 
minimize the total mean squared error, summed across layers, between the target activity 
patterns and the current evoked patterns at that iteration. We optimize the image for 3000 
steps at a learning rate of 0.05; further optimization has little effect on reducing the mean 
squared error. The optimized result is the predicted percept for a given input image and 
theoretical cortical stimulation device.

Quantification and Statistical Analysis

Statistical analyses were performed in Python using the pandas108,79 and pingouin110 

libraries. The statistical tests used, values of n, and measures of spread are indicated either 
in the text of the Results section or in figure captions. Where applicable, significance was 
defined as a �-value below 0.05.
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Box 1

A unique advantage of a unified topographic model such as the TDANN is that it can be 
used to predict the effects of simultaneous spatially-localized stimulation across multiple 
cortical areas.

We test this in two scenarios: Electrical stimulation and prototyping a hypothetical 
multi-region cortical stimulation device. Mirroring results in macaque IT85, we find that 
stimulating units in a TDANN face patch drives localized activity in a face patch in the 
subsequent layer (panels a, b).

Based on recent advances in model-driven prostheses6,111,38, we simulate a device with 
two components: 1) a Stimulation Simulator that transforms desired activity patterns 
on the cortical sheet into device-achievable patterns, and 2) a Percept Synthesizer that 
visualizes the percept evoked by the stimulation.

Given an image input, the Stimulation Simulator uses the TDANN to predict a spatial 
pattern of responses in each layer, and then constrains that pattern into one that is 
physically achievable by a specific hypothetical device (panel c). As a proof-of-principle, 
we model two such constraints here: spatial precision – the resolution at which the device 
can create activity patterns, and regional access – the subset of cortical areas that are 
accessible.

The Percept Synthesizer then visualizes an input image which generates the target 
activity pattern38,104 (panel d). Panel e illustrates predicted percepts for cortical 
stimulation devices with variable precision and access. Unsurprisingly, a device with 
infinitely high spatial stimulation precision yields sharp percepts even when only early 
cortical areas are stimulated (panel e, top left). However, percepts quickly deteriorate as 
the spatial precision of the device decreases (panel e, lower left). Our simulation suggests 
that at lower precision, the quality of percepts can be improved by adding stimulation of 
higher cortical areas (panel e, middle rows).

While we have neglected many critical details here, including spatiotemporal processing, 
cortical magnification, and the need to behaviorally validate percepts, this proof of 
principle motivates the use of the TDANN to make testable predictions about percepts 
elicited by cortical stimulation devices.
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Highlights

1. Single model predicts function and spatial structure in early and late visual 
cortex

2. Best models use self-supervised learning and a scalable spatial constraint

3. More brain-like responses in spatially-accurate than spatially-unconstrained 
models

4. The local spatial constraint results in lower between-area wiring length
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Figure 1: Constructing a unified model of the functional and spatial constraints of ventral visual 
cortex.
(a) TDANNs are artificial neural networks whose units are assigned positions in a two-
dimensional simulated cortical sheet in each layer. Position assignments are retinotopic, 
such that location in the cortical sheet corresponds to visual field position. Each dot is 
one model unit; purple indicates overlap between a unit’s receptive field and the purple 
square on the input image. The TDANN is trained to minimize the sum of a task loss and 
a spatial loss (SL). � is a free parameter controlling the relative weight of the SL. (b) The 
SL encourages nearby units to develop strong response correlations. Each dot represents the 
pairwise similarity of responses (y-axis) and cortical distance (x-axis) for a pair of units. 
(c) The TDANN is evaluated on quantitative benchmarks that measure correspondence to 
topographic features. Left: orientation preference map in the V1-like TDANN layer (Figure 
2 for details). Right: category selectivity map in the VTC-like layer (Figure 3 for details).
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Figure 2: The TDANN prediction of V1 topography.
(a) Example grating stimuli used to assess tuning for orientation, spatial frequency, and 
color. (b) Tuning curves for orientation (top) and spatial frequency (bottom) for example 
units in the V1-like layer. (c) Smoothed orientation preference map (OPM) in the V1-like 
layer of the TDANN. Box corresponds to right panel showing individual units labeled by 
preferred orientation. Results for additional model seeds shown in Supplemental Figure S5. 
(d) OPMs for Macaque V1 (data adapted with permission from Nauhaus et al.88), TDANN, 
and control models: Task Only and Unoptimized neural networks, the DNN-SOM, and 
Hand Crafted SOM. (e) Left: Pairwise difference in preferred orientations as a function 
of pairwise cortical distance, normalized to random-sampling chance level. Right: Map 
smoothness for OPMs in macaque V1 (dashed green line, data from Nauhaus et al.88) and 
four candidate models: the TDANN (purple), the Hand-Crafted self-organizing map (SOM, 
squares), deep neural network SOM (DNN-SOM, pluses), and Task Only (diamonds). 
Error bars: 95% CI across model seeds and cortical neighborhoods. See Supplemental 
Figure S3g,h for results from alternative feature spaces. (f) Spatial frequency preference, 
shown for the same region of the TDANN V1-like layer and macaque V1 (data adapted 
with permission from Nauhaus et al.88) as in panel (d). (g) Change in preferred spatial 
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frequency as a function of cortical distance, normalized to chance, for macaque V1 and each 
model. (h) Preference for chromatic stimuli for the same region of the TDANN V1-like 
layer. Dark dots: stronger responses to chromatic than achromatic gratings. Macaque data: 
reconstruction of cytochrome oxidase staining data adapted from Livingstone & Hubel73 

(Copyright 1984 Society for Neuroscience). (i) Fraction of units differing in their chromatic 
preference as a function of cortical distance, normalized to chance. (j) Similarity to the 
smoothness of macaque OPMs (data from Nauhaus et al.88) vs. similarity to the distribution 
of orientation tuning strengths in macaque V1 (data from Ringach et al.100) . Duplicate 
markers indicate different initial model seeds. Dashed green: perfect correspondence. (k) 
Density of pinwheels detected in TDANNs, Hand-Crafted SOMs, Task Only models, and 
Unoptimized models. Error bars: CI across model seeds. Green: estimated macaque V1 
pinwheel density.
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Figure 3: The TDANN prediction of higher visual cortex topography.
(a) Representational similarity matrices (RSMs) for the TDANN and human VTC, 
computed across selectivity to five object categories. (b) Functional similarity between 
the TDANN, human VTC, and alternative models, measured as the similarity of RSMs. 
Green: mean of pairwise human-to-human similarity values. (c) Selectivity (µ-value), for 
each category plotted on the simulated cortical sheet of the VTC-like layer. Responses for 
an individual unit, marked by black star, plotted below (individual dots: single images, bar 
height: mean across images). Scale bar: 1cm. (d) Difference in selectivity as a function 
of cortical distance for pairs of units in each of five candidate models: the TDANN 
(purple), deep neural network self-organizing map (DNN-SOM; plus markers), interactive 
topographic network ("ITN", Blauch et al.9; circles), Unoptimized ("x" markers), and Task 
Only (diamonds). Curves normalized to random-sampling chance. Green: Subject-average 
human data. Shaded regions: 95% CI across different unit subsets from models trained with 
different initial seeds. (e) Smoothness of selectivity maps for each category and model. 
Dashed green: human mean. (f) Category-selective patches for an example hemisphere 
in human ventral temporal cortex (VTC; see left inset for location, A: Anterior, L: 
Lateral), the TDANN, Task Only, DNN-SOM, and "ITN” models. ITN maps adapted with 
permission from Blauch et al.9. Examples from different seeds in Supplemental Figure 
S5. (g) Average number of category-selective patches for each model and human data 
(dashed green). ANOVA for patch count difference: � (5, 179) = 32.7, � < 10−22; Significant 
difference between VTC and ITN (� = 1.2 × 10−5, Post-hoc Tukey’s test). (h) Surface area 
of category-selective patches. Same plotting conventions as in (g). ANOVA for patch area 
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difference: � (5, 187) = 15.4, � < 10−11; Significant difference between VTC and DNN-SOM 
(� < 10−10, Post-hoc Tukey’s test). (i) Each human subject and model instance compared to 
the mean patch area and patch number in the human data. (j) Overlap between face- and 
body-selectivity vs. overlap between face- and place-selectivity, for each human hemisphere 
(green dots), each TDANN (purple dots), the ITN (gray dot), each DNN-SOM (gray plus 
signs), and each Task Only model (gray diamonds).
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Figure 4: Convergence of benchmarks indicates balance between functional and spatial 
constraints.
(a) Topographic maps in the V1-like (top) and VTC-like layer (bottom) of TDANNs trained 
at different levels of the spatial weight �. Top: Orientation map structure and pinwheels 
apparent at 0.1 < � < = 1.25. Dots: estimated pinwheel locations; black: clockwise, white: 
counterclockwise. Bottom: Category selective units (µ > 12) colored by preferred category. 
(b) Functional correspondence to neural data as a function of �. Top: Fraction of strongly 
orientation-selective units (circular variance ≤ 0.6) in the V1-like layer. Dashed green: 
macaque V1 (from Ringach et al.100). Dashed gray: mean for Unoptimized models. Shaded 
regions: 95% CI across initial seeds. Bottom: Representational similarity between the VTC-
like layer and human VTC (as in Figure 3). Shaded region: 95% CI across model seeds 
and human hemispheres. Vertical line (� = 0.25): value used in prior figures. (c) Topographic 
map smoothness as a function of �. Top: OPM smoothness in the V1-like layer. Dashed 
green: value in macaque V1. Dashed gray: smoothness in an Unoptimized model. Bottom: 
Category selectivity map smoothness in the VTC-like layer. Dashed lines: means across 
human hemispheres from the NSD for each category. (d) Density of topographic phenomena 
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as a function of �. Top: Pinwheel density in OPMs from the V1-like layer. Bottom: Number 
of category selective patches in the VTC-like layer. Dashed lines: Human data.
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Figure 5: Self-supervision and scalable spatial constraints underlie the emergence of functional 
organization.
In all panels: purple: TDANN, gold: Categorization-trained, red: Absolute SL, and green: 
neural data. (a) Left: comparison of task objectives. Contrastive self-supervision (top) 
encourages high similarity for representations of two views of the same image, and 
low similarity for two views of different images.. Categorization (bottom) compares 
predicted class probabilities to the human-labeled correct class. Right: comparison of 
spatial objectives. ��×: response similarity of units � and ×. ��×: cortical distance between 
units � and ×. The TDANN uses the Relative SL (top), which correlates the population 
of response similarities and pairwise inverse distances across pairs of units. Prior work70 

used the Absolute SL (bottom), which directly subtracts inverse cortical distance from 
response similarity magnitude. (b) Smoothed orientation preference maps (OPMs) in the 
V1-like layer of the TDANN (left), a Categorization trained model (middle), and a model 
trained with the Absolute SL (right). Dots: pinwheels. � = 0.25 for each model. (c) Category 
selective units in the VTC-like layer of each model. (d) Right: Smoothness of OPMS in the 
V1-like layer of each model (bars) and macaque V1 (dashed line). (e) Density of detected 
pinwheels in models (bars) and macaque V1 (line). (f) Right: Smoothness of face selectivity 
maps in the VTC-like layer of each model (bars) and human VTC (line). (g) Number of 
category-selective patches in the VTC-like layer of each model (bars) and human VTC 
(line).
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Figure 6: Spatial constraints make learned representations more brain-like and reduce intrinsic 
dimensionality
(a-c) metrics as a function of spatial loss weight � and training objective. (a) Variance 
explained under a linear regression mapping between model units and macaque IT neurons. 
All fits in Supplemental Figure S8d. (b) Mean correlation between model units and 
VTC voxels under a one-to-one mapping. Green: mean human-to-human correlation under 
the same one-to-one mapping. (c) Estimated effective dimensionality (cf. Elmoznino & 
Bonner29, Del Giudice22) of the population response in the VTC-like layer of each 
model. Green: mean ED in human VTC estimated from the NSD dataset. (d) Effective 
dimensionality in the TDANN across all layers and levels of �. Shaded vertical bars: 
� = 0.25, demonstrated in prior analyses to best match topographic phenomena.
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Figure 7: Minimization of between-area wiring length in models with brain-like functional 
organization.
(a) Example wiring length computation between adjacent layers. Brown dots: top 5% most 
active units in the Source layer for an arbitrarily-selected natural image. Green dots: top 
5% most active units in the Target layer. Black dots: termination points of virtual fibers 
that would be required to connect active populations of units. (b) Wiring length between 
layers 4 and 5 (V1-like; left), and layer 8 and 9 (VTC-like, right) as a function of �. Shaded 
regions: 95% CI of measurements from different cortical neighborhoods, model seeds, and 
input images. (c) Accuracy on object categorization vs. wiring length; each dot, different �. 
(d) Wiring length of models trained with different tasks and spatial objectives (� = 0.25 for 
all). Error bar: 95% CI over images and model seeds.

Margalit et al. Page 45

Neuron. Author manuscript; available in PMC 2025 July 17.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Margalit et al. Page 46

Table 1.

Parameters for layer positions. *the value of 1.6mm used in the V1-like layer is known to be inaccurate, but 
matching the proper value yields too few units in each cortical neighborhood to compute pairwise distances. 
See Supplemental Figure S3d-f for a discussion and solution to this problem.

Layer # Units Size of Cortical sheet Neighborhood Size Region

Layer 2 200704 5.7mm2 47μm Retina

Layer 3 200704 5.7mm2 47μm Retina

Layer 4 100352 13.5cm2 1.6mm* V1

Layer 5 100352 13.5cm2 1.6mm* V1

Layer 6 50176 12cm2 4mm V2

Layer 7 50176 5cm2 2.5mm V4

Layer 8 25088 49cm2 31mm VTC

Layer 9 25088 49cm2 31mm VTC
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Table 2.

Patch detection parameters for human VTC and each model.

Model Selectivity Threshold Smoothing   Minimum Size square mm Maximum Size square mm

Human VTC 4 None 100 None

TDANN 2 2.4 100 4500

ITN 8 0.7 100 4500

DNN-SOM 10 2.4 100 4500
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Key Resources Table

Resource Source Identifier

Deposited Data

Model Weights This paper https://osf.io/64qv3/

Sine Grating Images This paper https://osf.io/64qv3/

Software and Algorithms

Model Training and Evaluation Code This paper https://github.com/neuroailab/TDANN (DOI: 10.5281/zenodo.10294203)

Other

VISSL Goyal et al. https://github.com/facebookresearch/vissl

fLoc Images Stigliani et al., 2015 https://github.com/VPNL/fLoc

NSD Data and Stimuli Allen et al., 2022 https://naturalscenesdataset.org
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