

Increased cytoplasmic expression of PETase enzymes in *E. coli*

Luke M. Carter^{1,†}, Chris E. MacFarlane^{1,†}, Samuel P. Karlock¹, Tridwip Sen¹, Joel L. Kaar², Jason A. Berberich^{1,*}, Jason T. Boock^{1,*}

¹ Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH, 45056, USA

² Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA

[†] These authors contributed equally to this work

* Corresponding authors

Corresponding Author Information

Dr. Jason Berberich
650 E. High St.
Engineering Building 64
Oxford, OH 45056
berberj@miamioh.edu
513-529-0772

Dr. Jason Boock
650 E. High St.
Engineering Building 66B
Oxford, OH 45056
boockj@miamioh.edu
513-529-0520

1 **Abstract:**

2 **Background:**

3 Depolymerizing polyethylene terephthalate (PET) plastics using enzymes, such as PETase, offers
4 a sustainable chemical recycling route. To enhance degradation, many groups have sought to
5 engineer PETase for faster catalysis on PET and elevated stability. Considerably less effort has
6 been focused toward expressing large quantities of the enzyme, which is necessary for large-
7 scale application and widespread use. In this work, we evaluated several *E. coli* strains for their
8 potential to produce soluble, folded, and active *Is*PETase, and moved the production to a
9 benchtop bioreactor. As PETase is known to require disulfide bonds to be functional, we
10 screened several disulfide-bond promoting strains of *E. coli* to produce *Is*PETase, FAST-PETase
11 and Hot-PETase.

12 **Results:**

13 We found expression in SHuffle T7 Express results in higher active expression of *Is*PETase
14 compared to standard *E. coli* production strains such as BL21(DE3), reaching a purified titer of
15 20 mg enzyme per L of culture from shake flasks using 2xLB medium. We characterized
16 purified *Is*PETase on 4-nitrophenyl acetate and PET microplastics, showing the enzyme
17 produced in the disulfide-bond promoting host has high activity. Using a complex medium with
18 glycerol and a controlled bioreactor, *Is*PETase titer reached 104 mg per L for a 46-hour culture.
19 FAST-PETase was found to be produced at similar levels in BL21(DE3) or SHuffle T7 Express,
20 with purified production reaching 65 mg per L culture when made in BL21(DE3). Hot-PETase
21 titers were greatest in BL21(DE3) reaching 77 mg per L culture.

22 **Conclusions:**

23 We provide protein expression methods to produce three important PETase variants.
24 Importantly, for *Is*PETase, changing expression host, medium optimization and movement to a
25 bioreactor resulted in a 50-fold improvement in production amount with a per cell dry weight
26 productivity of $0.45 \text{ mg}_{\text{PETase}} \text{ g}_{\text{CDW}}^{-1} \text{ hr}^{-1}$, which is 10-fold greater than that for *K. pastoris*. We
27 show that the benefit of using SHuffle T7 Express for expression only extends to *Is*PETase, with
28 FAST-PETase and Hot-PETase better produced and purified from BL21(DE3), which is
29 unexpected given the number of cysteines present. This work represents a systematic evaluation
30 of protein expression and purification conditions for PETase variants to permit further study of
31 these important enzymes.

32

33 **Keywords:**

34 PETase, Protein Expression, Protein Purification, SHuffle, Bioreactor

35

36 **Background:**

37 More than 370 million metric tons of plastic are produced worldwide each year with
38 approximately 10% of it being polyethylene terephthalate (PET) [1, 2]. Plastics are versatile,
39 inexpensive, lightweight, strong, and durable with wide use in packaging, consumer products,
40 building and construction materials, and textiles. Many plastic products have short functional
41 lifetimes, such as PET in water bottles and food packaging, which is often single use. The
42 properties of plastics also make their remediation challenging due to long natural decay times,
43 leading to estimates of 12,000 million metric tons in landfills and the environment by 2050 [2].
44 Creating a circular economy for plastics [1] as well as breaking down current plastic waste is
45 paramount to avoiding such high accumulation.

46 Enzymatic hydrolysis of plastics has emerged over the past 20 years as a promising
47 strategy to break down plastics into monomers that can be resynthesized into high quality
48 plastics [3, 4]. Enzyme-based conversion is advantageous over mechanical and traditional
49 chemical recycling as reactions take place at low temperature and in water; however, turnover is
50 slow and often incomplete. While esterases, specifically cutinases, have shown activity on
51 plastics, the discovery of a naturally-evolved enzyme [5], called *IsPETase*, ushered in a new
52 wave of research due to its higher propensity to act upon PET, earning its own enzyme
53 classification number: 3.1.1.101. While *IsPETase* is active on real PET substrates, its low
54 catalytic rate and moderate thermostability have prompted numerous engineering efforts to
55 improve its properties to make it more industrially useful [3]. In particular, two variants, FAST-
56 PETase [6] and Hot-PETase [7], have become widely used. FAST-PETase combined previously
57 engineered PETase variants with machine learning to develop an enzyme that breaks down
58 plastic in under a week [6]. Hot-PETase resulted from numerous rounds of directed evolution

59 and enzyme activity screening at elevated temperatures as well as rational design to produce an
60 enzyme with substantially improved thermostability and performance on plastics [7].
61 Comparative performance has revealed the advantages of evolved enzymes, unfortunately, low
62 conversions (< 20%) are still observed at bioreactor-scale conditions for reactions with PETases
63 [8].

64 While enzyme engineering and evaluation of reactor conditions, including substrate
65 processing and properties, have received much attention [8, 9], considerably less effort has been
66 given to sourcing the PETase enzyme. Techno-economic analysis has found enzyme cost to
67 account for approximately 4% of total plastic recycling cost [10, 11]; however, cost per kilogram
68 enzyme were estimated using production values similar to that of cellulases, which have yet to be
69 realized for recombinant enzymes such as PETase and can vary widely [12]. Additionally,
70 scanning the literature reveals a wide array of protein production strategies for PETases,
71 including differing organisms, strains, genetic sequences and expression strategies. Most reports
72 which produce and study PETases do not list the enzyme titers achieved. Developing a standard
73 production method at a moderate scale for *Is*PETase and variants serves to benefit researchers
74 working with this class of enzymes as they move from protein engineering and characterization
75 studies requiring small quantities of protein to process development and scale-up requiring more
76 protein for larger reactor studies that better predict performance at an industrial scale [8].

77 *E. coli* remains a common expression host for recombinant proteins, including *Is*PETase
78 and variants. Many studies use the gene for *Is*PETase encoded with its native signal peptide that
79 can be sourced from Addgene (# 112202) combined with the *E. coli* strain C41(DE3) for
80 expression [13]. Using this strategy and 2-YT medium, purified production amounts of 15 mg
81 *Is*PETase per liter culture were achieved [14]. Secretion of recombinant proteins is beneficial for

82 downstream processing and native *IsPETase* is secreted from *Ideonella sakaiensis* [5],
83 potentially making it a strong candidate for extracellular production. Secretion from *E. coli* and
84 *Bacillus subtilis* for *IsPETase* and variants have been explored using different signal sequences
85 and promoters; however, most report titers below 15 mg per liter [15-18]. The most successful
86 prokaryotic secretion method used an *aprE* signal sequence and protease-knockout strain of *B.*
87 *subtilis*, finding *IsPETase* titers reaching 80 mg per liter as determined by activity in the
88 supernatant [19]. High-density fermentations of *Komagataella pastoris* (previously *Pichia*
89 *pastoris*) combined with secretion and glycosylation have proven the most successful for
90 *IsPETase* production, reaching 1.2 g per liter as measured by total protein in the supernatant [20].
91 Using a similar strategy, researchers secreted FAST-PETase from *K. pastoris* using high-density
92 fermentations and intracellular chaperones to achieve a titer of 3.23 g enzyme per liter culture
93 [21].

94 Our approach to increasing PETase production amount involved screening *E. coli*
95 expression hosts, specifically those designed to promote disulfide bond formation in the
96 cytoplasm. PETase contains four cysteine residues, which are expected to form two disulfide
97 bonds. The disulfide between C203 and C239 is interesting since it is evolutionarily distinct from
98 other cutinases that have activity on PET, it is near the active site, and it has been shown to be
99 required for activity [22, 23]. Additionally, PETase is naturally secreted from the Gram-negative
100 *I. sakaiensis* [5], likely using the general secretory pathway to arrive in the oxidizing periplasm,
101 which would permit disulfide bonds to form properly. RosettaGami B has an oxidizing
102 cytoplasm due to mutations to *gor* and *trxB* (termed Origami) as well as contains a plasmid that
103 encodes rare tRNAs and a T7 RNA polymerase (RNAP) gene under control of a *lacUV5*
104 promoter. SHuffle has a similar set of mutations to *gor* and *trxB* to promote disulfide bond

105 formation as well as a cytoplasmic copy of the chaperone disulfide bond isomerase (*dsbC*),
106 which is naturally used to rearrange misconnected disulfides [24]. Similar to RosettaGami B,
107 SHuffle T7 Express has a T7 RNAP gene to permit use with ubiquitous pET plasmid series for
108 high level expression; however, the T7 RNAP gene has been inserted in place of *lacZ* and as
109 such is under the control of the *lac* promoter. Others have used Origami or SHuffle T7 Express
110 for production of *IsPETase* [25] and variants, but few report amounts produced. A mutant
111 PETase was produced with chaperones and autoinduction media in SHuffle T7 Express at 80 mg
112 per liter as measured by activity in lysate. Hot-PETase was found to be made and purified at 12
113 mg per liter and 110 mg per liter when produced from SHuffle T7 Express [9] and Origami II [7]
114 cells, respectively.

115 To better understand the impact of a reducing or oxidizing cytoplasm, we measured the
116 soluble production of *IsPETase* and variants FAST-PETase and Hot-PETase in several *E. coli*
117 strains. Comparisons were made to other strategies that have been used to make PETase in *E.*
118 *coli*. Media optimization and culturing in a controlled bench top bioreactor was performed for
119 *IsPETase* to further elevate production. Few studies have moved SHuffle T7 Express to even the
120 benchtop bioreactor scale [26-29], representing an important step to utilizing this strain that has
121 shown promise in making proteins with multiple disulfides. We also provide characterization of
122 the enzymes using the soluble, colorimetric esterase substrate 4-nitrophenyl acetate (4-NPA) as
123 well as PET microparticles to show the enzymes produced using our methods have similar
124 activity to those made elsewhere. Taken together, this study represents an important
125 standardization for the soluble production of PETase enzymes using common *E. coli* strains,
126 which benefits both laboratory researchers and those working to transition enzymatic recycling
127 to an industrial scale.

128

129 **Methods:**

130 *Plasmid construction and strains*

131 The gene encoding PETase from *Ideonella sakaiensis* (*Is*PETase) was codon optimized
132 for expression in *E. coli* without its 26 base pair signal sequence as was done previously [5]
133 (**Supplemental Information**). The gene was added to a pET21b or pET24a plasmid between
134 *ndeI* and *xhoI* cutsites, which appends the protein with a C-terminal hexa-histidine tag.
135 Traditional restriction enzyme-based cloning followed by ligation were used to generate all
136 plasmids (all supplies from NEB). Assembled plasmids were transformed into DH5 α chemically
137 competent *E. coli* cells for plasmid amplification and cryogenic storage at -80°C in 15 % (v/v)
138 glycerol. After plasmid DNA isolation (Zymo), Sanger or whole-plasmid sequencing was
139 performed to verify assembly (Azenta). Genes encoding FAST-PETase (S121E, D186H, R224Q,
140 N233K, R280A) [6] and Hot-PETase (S58A, S61V, R90T, K95N, Q119K, S121E, M154G,
141 P181V, Q182M, D186H, S207R, N212K, S213E, S214Y, R224L, N233C, N241C, K252M,
142 T270Q, R280A, S282C) [7] were synthesized as gBlocks (IDT) with identical codons as wild-
143 type *Is*PETase used in this study, except internal *ncoI*, *bsaI*, and *sphI* sites were removed with
144 synonymous codons (**Supplemental Information**). Note, all numbering for PETase amino acids
145 used in this paper is based on the primary sequence with the signal peptide as this is what is
146 commonly used in the literature; to determine the amino acid number for the proteins in this
147 study, subtract 26. Genes were added between *ndeI* and *xhoI* sites of pET21b. Select plasmids
148 from this study are available upon request from Addgene. Additionally, pET21b(+-)*Is*-PETase
149 with a signal sequence was purchased from Addgene (# 112202) and pGro7 from Takara.
150 After sequence verification, isolated plasmids were transformed into chemically

151 competent BL21(DE3) (Novagen), Rosetta Gami B(DE3) (Novagen), Shuffle T7 Express
152 (NEB), C41(DE3) (Lucigen), or C43(DE3) (Lucigen), and were plated on Luria Bertani (LB)
153 agar containing 100 $\mu\text{g mL}^{-1}$ ampicillin (pET21b) or 50 $\mu\text{g mL}^{-1}$ kanamycin (pET24a). Strains
154 with pGro7 were also grown in the presence of 34 $\mu\text{g mL}^{-1}$ chloramphenicol. Cultures from
155 colonies were grown at 37°C at 250 RPM in LB medium with the same concentration of
156 antibiotics prior to cryostorage in 15% (v/v) glycerol at -80°C.

157

158 *Medium preparation and protein expression*

159 2xLB medium contained: 10 g L^{-1} yeast extract, 20 g L^{-1} tryptone, and 5 g L^{-1} NaCl. TB
160 medium (Difco) was prepared according to manufacturer directions. Defined medium [30]
161 contained :13.3 g L^{-1} KH_2PO_4 , 4 g L^{-1} $(\text{NH}_4)_2\text{HPO}_4 \cdot \text{H}_2\text{O}$, 1.7 g L^{-1} citrate, 1.2 g L^{-1}
162 $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 4.5 mg L^{-1} thiamine HCl, and 1x trace metals mix. The 100x trace metals mix
163 contained: 10 mg L^{-1} H_3BO_3 , 10 mg L^{-1} $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$, 2.5 g L^{-1} $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$, 400 mg L^{-1}
164 $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$, 10 mg L^{-1} $\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$, 180 mg L^{-1} $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$, 2 g L^{-1} $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$, 10 mg
165 L^{-1} $\text{NiSO}_4 \cdot 6\text{H}_2\text{O}$. Semi-defined medium [30] contained: 13 g L^{-1} KH_2PO_4 , 10 g L^{-1} K_2HPO_4 , 4.6
166 g L^{-1} NaH_2PO_4 , 3 g L^{-1} $(\text{NH}_4)_2\text{HPO}_4 \cdot \text{H}_2\text{O}$, 2 g L^{-1} $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 73.8 mg L^{-1} $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, and
167 1x trace metals mix. Complex medium [30] contained: 5 g L^{-1} yeast extract, 10 g L^{-1} tryptone, 10
168 g L^{-1} NaCl, 8.34 g L^{-1} KH_2PO_4 , 6.74 g L^{-1} , 0.5 g L^{-1} $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 50 mg L^{-1} $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, and
169 1x trace metals mix. Non-defined components with base salts and 580 g L^{-1} glycerol were
170 autoclaved prior to use. Stock 1M $\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$, 1M $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, 1 M isopropyl β -D-1-
171 thiogalactopyranoside (IPTG), 1 g mL^{-1} thiamine HCl, 200 g L^{-1} glucose, 200 g L^{-1} L-arabinose,
172 and 100x trace metals mix were sterile filtered (0.2 μm) prior to use. Defined, semi-defined, and
173 complex medias were prepared fresh prior to use.

174 Overnight cultures were started in identical medium as was used for expression using
175 cells from freezer stocks. Final antibiotic concentration were 100 $\mu\text{g mL}^{-1}$ ampicillin (pET21b),
176 50 $\mu\text{g mL}^{-1}$ kanamycin (pET24a), or 34 $\mu\text{g mL}^{-1}$ chloramphenicol (pGro7). Overnight cultures
177 were grown at 37°C at 250 RPM for 16 to 20 hours. Optical density at 600 nm (OD₆₀₀) (Genesys)
178 was measured. Subcultures were normalized to an optical density of 0.5 A.U.. Small-scale
179 expression experiments were carried out in 25 mL of medium in 125 mL baffled shake flasks
180 (Kimble KIMAX). Cell growth occurred at 37°C at 250 RPM in a shaker incubator (New
181 Brunswick Innova 42) until an OD₆₀₀ of 0.6 A.U. to 0.8 A.U. was reached. At that time, protein
182 production was initiated by the addition of IPTG to 0.5 mM final concentration. For cells with
183 pGro7, chaperone expression was induced for with 5 g L⁻¹ arabinose at the same time IPTG was
184 added. After inducers were added, incubator temperature was dropped to 20°C and protein
185 expression was carried out for 24 hours unless otherwise noted. An OD₆₀₀ reading was taken
186 prior to centrifuging 5 mL or 10 mL of culture at 4,000 rcf for 10 minutes. The supernatant was
187 removed and cell pellet stored at -80°C prior to further analysis.

188

189 *Cell lysis and active PETase quantification*

190 Frozen cell pellets were defrosted at room temperature prior to resuspension in 20mM
191 sodium phosphate buffer (pH 7.4). For lysis per unit volume, 50 μL volume of buffer was added
192 per 1 mL of culture harvested. For lysis per unit optical density, cells were resuspended in buffer
193 to achieve an OD₆₀₀ of 100 A.U.. Resuspended pellets were transferred to a 1.5 mL centrifuge
194 tube, and lysozyme was added to 1 mg mL⁻¹ and Triton 100x was added to 1 $\mu\text{L mL}^{-1}$. Lysis
195 occurred on a multi-tube rocker-rotator (VWR) set to 15 rpm for 20 minutes at room
196 temperature. After initial lysis, DNA disruption was achieved by addition of DNase (Invitrogen)

197 to 5 U mL⁻¹ total lysis volume. Tubes were rotated for an additional 20 minutes at room
198 temperature. Crude lysate-containing tubes were centrifuged for 30 minutes at 4°C and 22,000
199 rcf, and the supernatant was retained as clarified lysate.

200 PETase activity was measured in soluble clarified lysates by activity on 4-nitrophenyl
201 acetate (4-NPA) (Sigma). Samples were set up in a clear 96-well plate with each well containing
202 100 μ L total volume with: 80 μ L of 100 mM potassium phosphate buffer (pH 7), 10 μ L of lysate,
203 and 10 μ L of 10 mM 4-NPA. Stock 10 mM 4-NPA was prepared in acetonitrile. Lysates were
204 diluted over a wide range using 100 mM potassium phosphate buffer (pH 7), targeting a diluted
205 activity of ~0.025 to 0.05 units per well. A unit (U) is defined as 1 μ mol 4-NPA turnover to 4-
206 nitrophenol per minute. The extinction coefficient for 4-nitrophenol was determined by dilution
207 into 100 mM potassium phosphate buffer (pH 7) (**Fig. S1**) and was found to be 11627.5 M⁻¹ cm⁻¹
208 (assumed pathlength of 2 mm). Controls without PETase (10 μ L additional buffer) were
209 similarly set up to subtract off background rate due to non-enzymatic hydrolysis of 4-NPA.
210 Absorbance at a wavelength of 405 nm was measured on a microplate reader (Biotek) every 15
211 seconds for 10 minutes at 25°C. Active PETase concentration, expressed as units of PETase per
212 liter of total culture, was determined by analysis of the initial rate of absorbance change over
213 time, subtraction of a blank rate, and multiplication by appropriate dilution factors. Absorbances
214 below 0.8 A.U. (~300 μ M product) were used for initial rate calculations. Samples with rates
215 above 0.14 A.U. min⁻¹ (6 mU min⁻¹) were eliminated and further diluted to ensure sufficient data
216 points to determine a catalytic rate and that the rate was linear with PETase concentration.
217 Additionally, initial rate was divided by total protein concentration and appropriate dilution
218 factors to calculate units of PETase per gram of total protein. Statistical analysis used a two-
219 tailed Student's t-test assuming equal variance.

220

221 *Total protein quantification*

222 Total protein quantification was carried out using a Pierce BCA kit according to
223 manufacturer specifications and absorbance quantified using a microplate reader (Biotek) at 562
224 nm. For each set of buffers used, a buffer blank was included and the resulting absorbance was
225 subtracted from that of the sample. Total protein amount was determined through comparison to
226 bovine serum albumin standards (0.025 mg mL⁻¹ to 2.0 mg mL⁻¹) with buffer blank subtracted. A
227 linear fit equation through all standard absorbances with a set intercept of 0 A.U. was used to
228 quantify total protein concentration.

229

230 *Protein purification*

231 For quantitative protein purification, PETase expression was scaled up to 500 mL culture
232 in a 2-L baffled flask (Pyrex). All other protein production steps were identical to those used for
233 small-scale experiments. Cell rupture occurred as previously described where the amount of lysis
234 buffer was scaled by final culture optical density, resulting in an OD₆₀₀ of 100 A.U.. An
235 additional sonication step was performed after the DNase treatment of 30% duty cycle for 1.5
236 minutes on ice (3x). To clarify lysates, samples were centrifuged at 18,500 rcf for 30 minutes at
237 4°C. Samples were filtered through a 0.2 µm filter prior to purification.

238 Proteins were purified with an AKTA Go FPLC using two chromatography steps:
239 immobilized metal affinity chromatography (IMAC) followed by desalting into storage buffer.
240 For IMAC, the binding buffer (A) was 20 mM sodium phosphate buffer (pH 7.4) with 500 mM
241 NaCl and 20 mM imidazole, and elution buffer (B) was 20 mM sodium phosphate (pH 7.4), 500
242 mM NaCl, 500 mM imidazole. Imidazole and NaCl were added to clarified lysates to final

243 concentrations of 20 mM and 500 mM, respectively, to eliminate non-specific interactions. A 1
244 mL HisTrap HP (Cytiva) column was used with a flow rate of 1 mL min⁻¹, unless otherwise
245 noted. After clarified lysate was applied to the column, the column was washed with 100% A
246 buffer until absorbance readings were lower than 100 mA.U.. A single step elution, unless
247 otherwise noted, was carried out using 50% B buffer (250 mM imidazole) and 0.5 mL fractions
248 collected. Activity on 4-NPA was used to identify high activity fractions. Proteins were desalted
249 into 50 mM sodium phosphate (pH 7), 30 mM NaCl, 0.01% (w/v) sodium azide using a 5 mL
250 HiTrap PD-10 column (Cytiva). Purified samples were stored at 4°C until use.

251 Total protein concentration was measured using BCA and comparison to BSA standard
252 curve, as described above. Protein purity was assessed by SDS-PAGE (all supplies from
253 BioRAD). Samples were denatured in 1x Laemmli buffer with β -mercaptoethanol at 95°C for 10
254 minutes. Samples containing 2.5 μ g of total protein were loaded on a Stain-free Any kDa gel and
255 separation occurred for 35 minutes at 150 V using 1x tris/glycine/SDS buffer. Precision plus
256 unstained molecular weight standards were used to assess molecular weight and semi-quantify
257 amount. To visualize proteins, stain-free activation occurred for 5 minutes followed by
258 visualization using a Gel Doc XR+ and gel analysis used Image Lab.

259

260 *Specific activity and Michaelis-Menten constant determination*

261 Specific activity, k_{cat} , and K_M were determined for PETase and variants using 4-NPA at
262 25°C, similar to [31, 32]. Samples were set up in a clear 96-well plate with each well containing
263 100 μ L total volume with: 80 μ L of 100 mM potassium phosphate buffer (pH 7), 10 μ L of
264 sample, and 10 μ L of 4-NPA. Controls without PETase (10 μ L additional buffer) were similarly
265 set up to subtract off background rate due to non-enzymatic hydrolysis of 4-NPA. After initial

266 mixing, absorbance at a wavelength of 405 nm was measured on a microplate reader (Biotek)
267 every 15 seconds for 10 minutes. All characterized proteins were produced in SHuffle T7
268 Express.

269 For specific activity, the final concentration of 4-NPA was 1 mM and various PETase
270 concentrations were evaluated (0.5 μ g mL⁻¹ to 20 μ g mL⁻¹ final concentration), each in triplicate.
271 Initial rate was determined until an absorbance of 0.8 A.U. was reached. Samples with activity
272 similar to background buffer or which reached an absorbance of 0.8 A.U. before 5 minutes were
273 eliminated. A unit (U) is defined as 1 μ mol 4-NPA turnover to 4-nitrophenol per minute.
274 Subtracted units were plotted against total protein concentration to determine the specific activity
275 by fitting a linear line through all data and setting the y-intercept to 0 (Kaleidagraph). To
276 determine k_{cat} and K_M , samples contained approximately 1 μ M PETase (actual concentrations
277 listed for each variant). 4-NPA concentrations were tested between 1 mM and 20 mM, each in
278 triplicate. Background hydrolysis was measured at each 4-NPA concentration to be subtracted
279 from the initial rate with enzyme. Subtracted initial rates were plotted as a function of 4-NPA
280 concentration and fit to the Michaelis-Menten equation (Kaleidagraph).

281

282 *Microparticle assay*

283 PETase catalysis of insoluble PET microparticles (Goodfellow, ES30-PD-000131, < 300
284 μ m, 40% crystallinity) was performed as proof of activity on real substrates using a method
285 adapted from [9]. Samples were prepared in 15-mL polypropylene tubes (Falcon), with each
286 containing 5 mL of sodium phosphate buffer (pH 9), 150 mg PET particles (final concentration
287 30 mg mL⁻¹), and PETase at a desired ratio to PET particles (0.34 mg_{PETase} g_{PET}⁻¹, 0.69 mg_{PETase}
288 g_{PET}⁻¹, 1 mg_{PETase} g_{PET}⁻¹). Blank samples contained no PETase. HiC (Strem) concentration was

289 determined by BCA to be 28 mg mL⁻¹ and was assumed pure after analysis by SDS-PAGE.
290 Reactions were carried out in an Eppendorf ThermoMixer C at 1000 rpm and 37°C. At each
291 timepoint, 500 µL of sample was removed and centrifuged at 13,000 rcf for 5 minutes to pellet
292 insoluble remaining PET. The supernatant was removed and reaction was quenched using 2 N
293 HCl at a ratio of 10 µL HCl to 200 µL of sample supernatant. Samples with high concentration of
294 products were cloudy, requiring acetonitrile addition to become clear (up to two-times the final
295 volume). Samples were stored at -20°C prior to analysis by HPLC.

296

297 *High performance liquid chromatography*

298 Standards of terephthalic acid (TPA) (Sigma), 2-hydroxyethyl terephthalic acid (MHET),
299 and bis(2-hydroxyethyl) terephthalic acid (BHET) (Sigma) were prepared in order to quantify
300 reaction products from microparticle catalysis. TPA was dissolved in 20 mM sodium phosphate
301 buffer (pH 7.4) to a concentration of 2 mM. The pH of the solution was adjusted to 7 by
302 dropwise addition of 1.25N NaOH until the solution became clear and volumetric flask used to
303 achieve the final desired volume. BHET was dissolved to a concentration of 2 mM in 24% (v/v)
304 acetonitrile and 76% (v/v) 100 mM potassium phosphate (pH 7) buffer as BHET has poor
305 solubility in water [33]. Further dilution of the 2 mM BHET solution used the 24% acetonitrile-
306 buffer solvent to maintain BHET solubility.

307 MHET was not commercially available, requiring production by enzymatic hydrolysis of
308 BHET using *Humicola insolens* cutinase (HiC, product Novozym® 51032). BHET was
309 dissolved in 24% (v/v) acetonitrile and 76% (v/v) 100mM potassium phosphate (pH 7) buffer
310 before addition of 0.1 g_{HiC} g_{BHET}⁻¹. The reaction volume was 30 mL. Reactions were carried out
311 at 40°C and mixed at 600rpm using a Chemglass heated magnetic mixer. A negative control

312 reaction without HiC addition was included in the experimental setup. Samples of reaction
313 contents were drawn at 0, 3, 24, 48, and 72 hours to determine the extent of reaction from BHET
314 to MHET as measured by HPLC peak area. The reaction was quenched by addition of 50 μ L 2N
315 HCl per 1 mL sample. After 77hr, an additional 0.1g_{HiC} g_{BHET}⁻¹ was added to complete the
316 reaction, which took 144 total hours. The purest MHET sample was determined to be 1.89 mM
317 by HPLC analysis comparing peak areas of BHET to MHET, representing 94% percent
318 conversion. Further dilution of the 1.89 mM MHET solution to desired concentrations used the
319 24% acetonitrile-buffer solvent.

320 Soluble aromatic products TPA, MHET, and BHET produced from reaction of PETase
321 on PET microparticles were separated using high performance liquid chromatography (HPLC).
322 Reverse phase chromatography was performed using Agilent Polaris 3 C18-A column (150 x 3.0
323 mm, 3 μ m) and Thermo HPLC system. Solvents were: (A) water with 0.1% (v/v) formic acid
324 and (B) acetonitrile with 0.1% (v/v) formic acid. Equilibration occurred with 5% B at 0.5 mL
325 min⁻¹ and the column oven was set to 60°C. Sample injections were 5 μ L. Gradient profile was
326 adapted from [34], consisting of: 5% B for 2 minutes, 5% B to 17% B from 2 to 4 minutes, 17%
327 B to 25% B from 4 to 6 minutes, 25% B to 40% B from 6 to 10 minutes, hold at 40% B from 10
328 to 12 minutes and 5% B re-equilibration from 12 to 16 minutes. Retention times, peak
329 separation, and peak area to concentration correlations for TPA, MHET, and BHET were
330 determined for range of concentrations from 0.05 to 1 mM (**Fig. S2**). Linear regression with a set
331 y-intercept of 0 was used to determine an equation for converting peak area to analyte
332 concentration.

333 *Size exclusion chromatography*

334 Size exclusion chromatography (SEC) was used to assess the oligomerization state of
335 PETase. An AKTA Go outfitted with a Superdex 75 Increase 10/300 GL column (Cytiva) was
336 used for the separation. The method was isocratic using 50 mM sodium phosphate (pH 7), 30
337 mM NaCl, 0.01% (w/v) sodium azide flowing at 1 mL min⁻¹. UV absorbance was measured to
338 determine protein retention times. A 100 µL sample of purified PETase was separated and 0.5
339 mL fractions were collected for further analysis of esterase activity on 4-NPA. Only *Is*PETase
340 was analyzed and it was purified from SHuffle T7 Express cultures. Blue dextran (Promega) was
341 used to determine the void volume and protein standards (Sigma) were used to create a standard
342 curve to determine molecular weight.

343

344 *Circular dichroism*

345 Far UV circular dichroism (CD) scans of purified PETase proteins were used to
346 determine secondary structure. PETase samples were made to 0.03 mg mL⁻¹ in 10 mM sodium
347 phosphate buffer (pH 8) and placed in a clean 1 cm quartz cuvette (Fisher Scientific). Scans
348 between 195 nm and 260 nm were made using an Aviv Biomedical Model 435 circular
349 dichroism spectrophotometer. Wavelength step size was 1 nm and three scans were completed
350 per sample. Scans were averaged and a buffer blank subtracted prior to calculating mean residue
351 ellipticity [35].

352

353 *Bioreactor*

354 Bioreactor trials were carried out in an Eppendorf 2-L benchtop bioreactor connected to
355 BioFlo 120 control unit. A 25 mL starter culture in a 125 mL baffled flask (Kimble KIMEX) was
356 inoculated from a freezer stock and grown at 37°C and 250 rpm for 16 to 20 hours. Starter

357 cultures were made in identical media to that used the bioreactor. A volume of the overnight
358 culture was added to the 1.5 L of medium in the reactor to achieve an OD₆₀₀ of 0.05 A.U.. Cells
359 were grown at 37°C until an OD₆₀₀ between 0.6 A.U. and 0.8 A.U. was reached, at which time
360 protein production was induced with 0.5 mM IPTG and the reactor temperature was dropped to
361 20°C. Agitation speed was initially set to 300 rpm and air flow rate to 1.5 L min⁻¹. Cascade
362 control was used to keep the dissolved oxygen amount greater than 30% of saturation by varying
363 impeller speed (max 800 rpm) and air flow rate (max 15 L min⁻¹). A pH window was set between
364 6.8 and 7.2 using addition of either ammonium hydroxide or hydrochloric acid. In addition to the
365 bioreactor, a 100 mL shake flask culture in a 500 mL baffled flask (Kimble KIMEX) was grown
366 using similar setpoints (temperature and induction) as the bioreactor to compare scales and
367 impact of control of process variables. The culture in the shake flask did not have pH or
368 dissolved oxygen control, and was mixed at 250 rpm in a shaker incubator (New Brunswick
369 Innova 42).

370 At each timepoint following induction, 1.5 mL samples were removed for analysis. After
371 measuring OD₆₀₀, samples were centrifuged at 20,000 rcf for 5 minutes at room temperature. The
372 supernatant was removed to determine glycerol substrate consumption and acetate product
373 buildup. Glycerol and acetate were separated using HPLC and an Aminex HPX-87H column
374 (BioRad) at 30°C with isocratic 0.5 mM H₂SO₄ flowing at 0.6 mL min⁻¹ [36]. Compounds were
375 quantified using refractive index and comparisons to standards of pure glycerol and acetate at
376 known concentrations. Culture pellets were stored at -80°C for activity analysis in lysate as
377 described above.

378 A second bioreactor run was carried out for complex medium with 35 g L⁻¹ glycerol to
379 determine reproducibility as well as harvest culture for purification. Time to harvest was

380 determined by taking samples once per hour to track the accumulation of acetate and PETase
381 activity to determine when the peak activity occurred. Once a measurement was made that had
382 decreased activity, the final volume of the reactor was measured (1.3 L) and split into two
383 centrifuge bottles to harvest. The cell pellet from one of the bottles was lysed and *IsPETase*
384 purified using identical procedures as above except a 5 mL HisTrap HP column and 53 mL
385 HiPrep 26/10 Desalting column were used due to the larger scale. Final protein concentration
386 was determined using BCA and purity assessed by SDS-PAGE, both described above.

387

388 **Results:**

389 *Screening IsPETase production hosts*

390 Production using a codon-optimized *IsPETase* without a signal sequence and with a C-
391 terminal hexa-histidine tag (**Supporting Information**) was initially carried out in BL21(DE3) as
392 it is a common laboratory protein production strain. The medium used was 2xLB and protein
393 expression was induced with 0.5 mM IPTG for 24 hours at 20°C as similar protocols have
394 proven successful for *IsPETase* in the past [8]. We found approximately 14 units (U, $\mu\text{mol}_{\text{product}}$
395 min^{-1}) of *IsPETase* produced per liter of culture volume as measured on the soluble substrate 4-
396 nitrophenol acetate (4-NPA) (**Table S1**). A control was performed where an empty pET21b
397 plasmid was used in place of pET21b *IsPETase*, finding 2.6 units per liter culture, suggesting
398 that *IsPETase* is in fact being made. We screened several parameters including induction
399 temperature (37°C), inducer concentration (0.05 mM IPTG), and expression time (48 hours),
400 none of which led to large improvements in soluble and active enzyme production, and in the
401 case of raising the induction temperature, significantly less enzyme activity (**Table S1**).

402 We hypothesized the limitation we observed in production of *IsPETase* in BL21(DE3)
403 was due to the lack of disulfide bond formation in the reducing cytoplasm, and thus potentially
404 *IsPETase* instability. We evaluated two common cytoplasmic disulfide bond forming *E. coli*
405 hosts, RosettaGami B and SHuffle T7 Express, for their ability to produce *IsPETase*. Using the
406 same expression conditions as before, *IsPETase* production was enhanced when produced in
407 RosettaGami B and SHuffle T7 Express, reaching 159 ± 34 and 367 ± 58 units per liter culture,
408 respectively (**Fig 1a**). To ensure that the SHuffle T7 Express was not causing the activity
409 difference, an empty pET21b plasmid was added to SHuffle T7 Express. The background
410 activity of lysates without *IsPETase* on 4-NPA was 2.8 ± 0.6 units per liter culture. These results
411 suggest a vast improvement of cytoplasmic *IsPETase* production when a disulfide bond forming
412 host was used and further enhancement by including a cytoplasmic copy of *dsbC*. We also
413 measured the total protein present in each lysate sample in order to normalize activity to total
414 protein to control for growth and lysis differences finding similar improvement (**Fig. 1b**). We
415 attempted to further increase *IsPETase* production by utilizing a different plasmid, pET24a, as
416 well as co-expressing with chaperones GroEL/ES, finding neither resulted in more *IsPETase*
417 production (**Supplementary Note 1, Table S2**).

418 Cell growth was monitored by optical density to ensure differences in production due to
419 the alternate strains were not due to growth. The SHuffle T7 Express cells grew to a lower
420 optical density of 4.0 ± 0.3 A.U. compared to 6.8 ± 0.2 A.U. for BL21(DE3). Rosetta-Gami
421 B(DE3) grew to an even lower optical density of 1.7 ± 0.1 A.U.. The BL21(DE3) cultures
422 consistently grew to almost double the optical density of the SHuffle T7 Express cultures as
423 measured at 24 hours post induction. To ensure that the cell rupture step was not limiting,
424 BL21(DE3) and SHuffle T7 Express samples were also lysed with the volume of lysis buffer

425 scaled by optical density. When analyzing active protein using this method, the SHuffle T7
426 Express samples were found to have 493 ± 55 units per liter culture and BL21(DE3) had 37 ± 4
427 units per liter culture (**Table S2**). When normalizing by total protein, BL21(DE3) had 47 ± 10 .
428 units per gram, and SHuffle T7 Express had 603 ± 3 units per gram. Using results from the
429 optical density normalized lysis, SHuffle T7 Express produced approximately 13-fold more
430 active *IsPETase* than BL21(DE3).

431 We next sought to compare the SHuffle T7 Express host to other *E. coli* strains that are
432 commonly used to produce *IsPETase*, mainly C41(DE3) [13]. C41 and C43 OverExpress strains
433 have genetic mutations that enhance the production of toxic proteins. Using the plasmid
434 assembled for this study, we found the C41(DE3) and C43(DE3) strains to produce 2.9 and 1.3
435 units per liter culture, much lower than that of BL21(DE3) and similar to that of cells without
436 *petase* (**Fig. 1a**). Surprised by this result, we screened 8 C41(DE3) colonies to ensure all had low
437 activity, which was verified with the highest activity being 3.1 units per liter culture (**Table S3**).
438 Compared to the commonly used plasmid for *IsPETase* production from the plasmid repository
439 Addgene, the *petase_{Is}* gene used in this study has different codon optimization and does not
440 contain a signal sequence. The Addgene plasmid was purchased and tested in C41(DE3) and
441 SHuffle T7 Express, finding the C41(DE3) cells produced 107 units per liter culture and SHuffle
442 T7 Express only made 10.0 units per liter culture, both significantly different than when the
443 signal sequence was removed (**Table S4**). This is unsurprising given the ability of signal
444 sequences to be utilized across species and the benefit to using SHuffle is tied to cytoplasmic
445 expression. We did not measure activity in the supernatant to see if the enzyme was secreted
446 outside the cells. Although commonly used C41(DE3) did have much more intracellular
447 expression when a version of *petase_{Is}* with a signal sequence was produced, it was still 3.4-fold

448 lower than when SHuffle T7 Express was used with a construct that does not contain a signal
449 sequence.

450

451 *Purification and characterization of IsPETase*

452 *IsPETase* was purified to determine the amount of protein produced (**Table 1**).
453 Purification from BL21(DE3) resulted in 1.6 mg of protein at a purity of approximately 50 to
454 65% as measured by densitometry (**Fig. S3**). The lack of purity from BL21(DE3) is not
455 surprising given its low production and is likely due to non-specific binding during the IMAC
456 step. Production from SHuffle T7 Express was 10.5 mg from a 500 mL culture at an estimated
457 99 % purity. Taken together, the purification results suggest a 13-fold improvement upon use of
458 the disulfide bond promoting host, identical to the values found when comparing activities in
459 lysate. Few reports list the purified titer of the original *IsPETase*, with one finding 15 mg of
460 purified protein per L culture when produced from C41(DE3) [14]. Here, we were able to
461 produce 21 mg per L, which represents a 25% improvement. Circular dichroism confirmed that
462 the soluble protein was well-folded (**Fig. S4**). Size exclusion chromatography showed that
463 *IsPETase* is monomeric, as has been found previously (**Fig. S5**) [23]. Further, activity on 4-NPA
464 was measured for SEC fractions (**Fig. S5**), confirming the single peak has all the esterase
465 activity.

466 To ensure the *IsPETase* produced from SHuffle had similar activity to the enzyme
467 produced in other hosts, catalysis was measured on soluble 4-NPA and insoluble PET
468 microparticle substrates. Initial characterization was performed using 1 mM of 4-NPA at a
469 variety of PETase concentrations to determine the specific activity for the enzyme as well as

470 ensure that activity measurements are linearly dependent on protein concentration. Using these
471 conditions, we found that PETase had a specific activity of 5.26 ± 0.14 U/mg or 0.151 ± 0.035
472 U/nmol (**Fig. S6**), with a linear dependence. Michaelis-Menten parameters were determined for
473 4-NPA (**Fig. S7**), providing values of 8.16 ± 0.66 mM for K_m and 30.3 ± 1.1 s⁻¹ for k_{cat} . These
474 values compare similarly to the literature values of K_m of 4.6 mM and k_{cat} of 27 s⁻¹ for wild-type
475 PETase on 4-NPA, albeit their characterization was done at 30°C and ours at 25°C, both in pH 7
476 buffer [31].

477 *IsPETase* activity was determined using PET microparticles to represent realistic
478 substrates. Samples were prepared with three ratios of *IsPETase* to PET particles: 0.34, 0.69, and
479 $1.0 \text{ mg}_{\text{PETase}}/\text{g}_{\text{PET}}$ and soluble TPA, MHET and BHET were measured over time (**Fig. 2**). After
480 96 hours, reactions containing 0.34 mg g⁻¹, 0.69mg g⁻¹, or 1 mg g⁻¹ *IsPETase* released
481 approximately 1.3, 2.1, and 2.5 mM product, over a thousand times higher than the sample
482 without *IsPETase*. For 1 mg g⁻¹ at 48 hours, 1.76 mM of soluble aromatic products were formed,
483 which compares quite similarly to 1.72 mM released when measured in a previous study using
484 similar reaction conditions (40°C, 29 mg mL⁻¹ PET loading, 1 mg *IsPETase* per gram PET) [9].
485 These results suggest that the *IsPETase* produced in this study without a signal sequence and in a
486 disulfide-bond promoting host has similar activity as those produced using other methods.

487

488 *Medium optimization for IsPETase production*

489 Given the success of SHuffle T7 Express to increase the production of *IsPETase*, we next
490 performed a medium optimization. While using a non-defined, complex medium such as 2xLB is
491 possible, moving to a more defined medium with additional carbon and nitrogen sources could

492 benefit both economics and expression [37]. As such, six different medias were assessed at 25
493 mL scale for active *IsPETase* production with varying carbon sources and inducer molecules
494 (**Table S5**). For defined [38] and semi-defined [39] medias, recipes were selected that have
495 previously shown success in increasing biomass and recombinant protein production in *E. coli*
496 [30]. Three non-defined medias were tested, 2xLB, TB, and complex medium [30, 40].

497 Comparing the *IsPETase* activity in 2xLB and Terrific Broth (TB), more than double the
498 activity was observed with 2xLB despite cells growing to double the optical density in TB
499 (**Table 2**). When defined, semi-defined or complex media was tested with glucose as a carbon
500 source, cells all reached higher optical densities than 2xLB, but the best producing complex
501 medium sample only had half of the activity of 2xLB (**Table 2**). Due to the placement of the T7
502 RNAP gene in the *lac* operon in SHuffle [24], production of T7 RNAP is catabolite repressed
503 resulting only in expression of desired protein when glucose levels are depleted, providing a
504 reason why *IsPETase* levels were low even after complete consumption of glucose. Additionally,
505 the genetic construction of SHuffle does not permit lactose to be used as an inducer due to the
506 knockout of *lacZ* [24]. Given the partial success of the complex medium, 35 g L⁻¹ glycerol was
507 substituted for glucose as a carbon source. Using this medium in 25-mL batch cultures,
508 production reached 980 U per L culture with an optical density of almost 10 A.U., both
509 improvements over 2xLB.

510

511 *Production of IsPETase in a bioreactor*

512 Production of *IsPETase* was moved to a 2-L benchtop bioreactor with a 1.5 L working
513 volume in order to have a larger culture volume as well as take advantage of increased aeration,

514 better mixing, and pH control compared to the shake flasks. In addition to the bioreactor, a 100
515 mL culture in a 500 mL baffled shake flask was run simultaneously to determine the impact of
516 improved aeration and pH control in the bioreactor. Complex media with glycerol was selected
517 as it had the highest production in shake flasks (**Table 2**).

518 Culturing in the controlled bioreactor yielded further improvements in PETase production
519 (**Fig. 3**). The optical density of cultures grown in this medium reached 19 A.U. at 48 hours of
520 total culture time. The culture in the 500 mL shake flask grew similarly to that in the bioreactor,
521 reaching a maximum cell density of 16.7 A.U. (**Fig. S8a**). Peak activity in the bioreactor
522 occurred at 45 hours post induction, reaching a value of 1992 units per L. Similarly, the scaled-
523 up shake flask reached 1749 units per L culture at 45 hours post induction (**Fig. S8a**). Enzyme
524 activity dropped significantly over the next 24 hours of culturing, with approximately 66 % lost
525 for the bioreactor culture (**Fig. 3**). An even more precipitous loss was found for the culture in the
526 shake flask culture, where the difference of 2 hours between sample times resulted in 94 % loss
527 (**Fig. S8a**).

528 To determine a reason for the decline in activity, glycerol consumption as well as
529 fermentation product accumulation was tracked using HPLC. Glycerol showed steady
530 consumption throughout the fermentation trial with increased rate as the cells reached higher cell
531 densities. This matches the agitation and aeration rates as they were elevated to compensate for
532 more cells in the bioreactor. Glycerol consumption continued throughout the bioreactor run and
533 was not fully exhausted, with over 11 g L⁻¹ glycerol remaining after 75-hours of culturing,
534 suggesting limitation of carbon source is not an issue. Fermentation product analysis revealed an
535 accumulation of acetate starting at 48 hours and rising throughout the remainder of the culturing
536 time. The same was found for the shake flask sample. This suggests a metabolic imbalance at

537 these late culture times leading to overflow metabolism of glycerol to acetate [41]. The
538 production of acetate at 48 hours seems strongly correlated with the loss of recombinant PETase
539 activity. Since the shake flask culture did not have pH control, the accumulation of acetate and
540 likely drop in pH might explain the large loss of active enzyme.

541 Excited by the increase in PETase production upon moving to the bioreactor, we sought
542 to reproduce the data as well as purify the protein to quantify the amount produced. A repeated
543 bioreactor run largely followed the first one, with an optical density of 13.5 and a peak activity
544 of 2109 units per L at 43 hours post induction (**Fig. S8b**). A time point one hour later indicated a
545 decline in active protein amount to 1859 units per L as well as acetate accumulation to 80 mg L^{-1}
546 1 . At this time the entire bioreactor was harvested for purification. Using the same purification
547 procedure as previous, we found a total of $104 \pm 6 \text{ mg}$ of PETase protein produced per L
548 bioreactor volume, which is an almost 5-fold increase from our earlier purifications using
549 cultures grown on 2xLB, with similar protein purity (**Fig. S8c**). This gave us a volumetric
550 productivity of $2.21 \pm 0.13 \text{ mg L}^{-1} \text{ hr}^{-1}$ for our process.

551

552 *Production and purification of PETase variants*

553 Given the success of using SHuffle T7 Express as a protein production host, we sought to
554 confirm if a similar benefit would be found for some of the recently evolved PETase variants.
555 Using identical codons to the original *petase_{ls}*, genes encoding for FAST-PETase and Hot-
556 PETase were ordered and added to pET21b plasmid with a C-terminal hexa-histidine tag. In
557 addition to SHuffle T7 Express, BL21(DE3) was also explored for production to see if the
558 benefit of including disulfide bond forming machinery was beneficial for the evolved variants.

559 Production experiments were carried out in 2xLB and shake flasks as was done for the WT
560 PETase and enzyme activity was determined in soluble cell lysates.

561 Surprisingly, PETase variants did not demonstrate the same advantage of SHuffle T7
562 Express with Hot-PETase showing improved production in BL21(DE3) (**Fig. 4a**). As before,
563 SHuffle T7 Express produced a statistically significant amount more *Is*PETase than BL21(DE3)
564 ($p=1.38\times 10^{-4}$). The highest observed activities were for FAST-PETase in both BL21(DE3) and
565 SHuffle T7 Express, with activities reaching 896 and 866 units per liter of culture, respectively.
566 The lack of statistical significance between these values ($p=0.49$) indicates that the disulfide
567 bond forming machinery in SHuffle T7 Express cells has no observable impact on the expression
568 of FAST PETase. Further, Hot-PETase was expressed significantly less effectively ($p=0.004$) in
569 SHuffle T7 Express cells than in BL21(DE3) cells, with 717 and 382 units per liter of culture,
570 respectively. This is surprising because Hot-PETase has seven cysteine residues rather than four
571 for *Is*PETase. Similar trends in production amount were found when normalizing activity in
572 lysate to total protein amount (**Fig. 4b**).

573 Enzyme purification followed by characterization was carried out to determine the
574 amounts of PETase variants produced as well as ensure high enzyme activity. Production
575 experiments were carried out in both BL21(DE3) and SHuffle T7 express to validate the activity
576 differences seen in lysates (**Table 3**). FAST-PETase and Hot-PETase were better produced and
577 purified in BL21(DE3) than SHuffle T7 Express, reaching titers of 66 mg per L and 78 mg per L,
578 respectively. Analysis of protein purity, revealed that all proteins were purified to greater than
579 90% purity (**Fig. S9**). A reported titer of 12 mg per L was found for Hot-PETase when produced
580 in SHuffle T7 Express [14], similar to the 19 mg per L here. Using BL21(DE3), we found a 6.5-
581 fold improvement over what was previously observed. Another study found the amount of Hot-

582 PETase to be roughly 110 mg per L when made in Origami 2 cells [7], a bit higher than what we
583 achieved. Far UV CD analysis revealed that purified FAST-PETase and Hot-PETase were
584 similarly well folded regardless of whether they were produced in BL21(DE3) or SHuffle T7
585 Express (**Fig. S10**).

586

587 *Characterization of PETase variants*

588 Specific activity was determined on 4-NPA as was done for the *Is*PETase, revealing that
589 FAST-PETase had slightly higher activity at 25°C compared to the other variants (**Table S6**,
590 **Fig. S11a**). This would explain the elevated activity of the FAST-PETase compared to the other
591 variants in lysate activity analysis, while similar purified protein amounts were found. Likewise,
592 FAST-PETase had an increased k_{cat} compared to the other variants on 4-NPA at 25°C (**Table S6**,
593 **Fig. S11b**). However, when looking at catalytic efficiency, k_{cat}/K_M , on 4-NPA, all the variants
594 were statistically similar to the *Is*PETase, suggesting the improvement of the variants is only
595 relevant at higher temperatures and on PET substrates.

596 Finally, activity on PET microparticles was assessed by measuring soluble aromatic
597 product generation over time at 37°C for all the variants in this study (**Fig. 5**). Additionally, the
598 commercially-available cutinase from *Humicola isolens*, HiC, was included in the study.
599 Analysis of total released soluble analytes after 24 hours revealed that FAST-PETase liberated
600 over 6 mM products, the most amongst any enzyme type tested in this study. Comparatively,
601 Hot-PETase, WT PETase, HiC, and the no enzyme control liberated 5 mM, 1.8 mM, 0.28 mM,
602 and 2 μ M products, respectively at 24 hours. Other works have found HiC to have low activity
603 on PET relative to other enzymes [33]. Reacting on real PET substrates revealed the benefit of

604 the evolved variants even at a modest reaction temperature of 37°C. Converting all soluble
605 products to BHET equivalents, the FAST-PETase percent conversion to soluble products was
606 $6.84 \pm 0.16 \%$, similar to the approximately 8% from another comparative PETase study [8],
607 albeit at different reaction conditions. From the same study, we would expect better performance
608 for Hot-PETase at elevated temperatures.

609

610 **Discussion:**

611 We have found that *IsPETase* is optimally produced in a disulfide bond promoting host
612 which is capable of rearrangement of improperly formed disulfide bonds due to inclusion of a
613 cytoplasmic copy of *dsbC*. In contrast, evolved PETase variants FAST-PETase and Hot-PETase
614 were better produced in BL21(DE3) with a reducing cytoplasm, even though FAST-PETase has
615 the same two disulfides and Hot-PETase a third as well as a free cysteine. Despite the promise of
616 SHuffle for making proteins that require complex disulfide bonding patterns for activity, we have
617 found some limitations working with this host, specifically around genetic construction and
618 purification yield. Medium screening and moving cultures to a controlled and well mixed
619 bioreactor further elevated the production of *IsPETase* to overcome these limitations.
620 Accumulation of acetate in our bioreactor trials seems to be correlated with recombinant enzyme
621 activity loss, suggesting careful monitoring of cultures to ensure titer is maximized.

622 Comparing our bioreactor results to produce *IsPETase* with those for *K. pastoris*,
623 although we purified a lower protein amount per reactor volume, our strategy resulted in better
624 per mass productivities. For our bioreactor trial with complex medium with glycerol, a CDW of
625 5.02 g per liter was achieved (2.69 g of CDW per L culture per OD₆₀₀), with *IsPETase*

626 representing 2.1% of total cell mass. Comparing to *K. pastoris* cultures, CDW was
627 approximately 270 g per L with 1.2 g PETase per L produced [20], or just 0.4% of the total cell
628 mass. Further, converting to a per cell mass productivity, PETase produced in SHuffle was 0.45
629 mg_{PETase} g_{CDW}⁻¹ hr⁻¹, while it was 0.037 mg_{PETase} g_{CDW}⁻¹ hr⁻¹ when made in *K. pastoris*. While the
630 substrates are different for *E. coli* (glucose and glycerol) and *K. pastoris* (methanol), yield and
631 per mass productivities are important for economic considerations as they incorporate the cost to
632 produce biomass as well as reactor size. If a similar per mass yield was kept for SHuffle, the
633 optical density would have to approach 130 to produce 1 g per liter, which may be possible ~~using~~
634 ~~different~~ after further fermentation process optimization (i.e. medium selection, induction
635 strategy, substrate and nutrient feeding, dissolved oxygen level, and mixing) [27]. An advantage
636 of *K. pastoris* is its ability to secrete enzyme which should streamline downstream processing.
637 Lastly, glycosylation using *K. pastoris* may be both advantageous and detrimental to PETase
638 performance. While stability is increased due to glycosylation, depending on the location of
639 glycosylation, the active or PET binding site could be blocked, lowering the specific activity.
640 Both increased stability and loss of activity were found for *IsPETase* made in *K. pastoris* due to
641 glycosylation [20].

642 An unexpected finding of this work is that the evolved variants FAST-PETase and Hot-
643 PETase were better produced and purified from BL21(DE3) than SHuffle T7 Express. It is
644 known that both variants have a higher T_m than *IsPETase*, due to more interactions in their
645 folded structure, especially the extra disulfide bond in Hot-PETase. It is possible that these
646 stabilized enzymes do not require disulfides to achieve the correct folding state, keeping them
647 from forming inclusion bodies and permitting disulfide bond formation after cell lysis. This is
648 most likely for FAST-PETase as its disulfides are formed between consecutive cysteines, with

649 the same being true for *IsPETase*. For FAST- and Hot-PETase it is unknown if the extra
650 disulfide bond in PETase (C203 and C239) compared to other cutinases is necessary for activity
651 as is true for *IsPETase* [23]. Hot-PETase has an extra disulfide bond, rationally added between
652 C233 and C282, as well as one free cysteine, C242. Of any of the variants, this enzyme would be
653 expected to benefit most from a disulfide bond promoting host as well as disulfide bond
654 isomerase to properly form as the two disulfides since they are relatively close to one another in
655 the primary sequence and they are not formed between consecutive cysteines.

656 Hot-PETase production as measured after purification was much lower from SHuffle T7
657 Express (19 mg per liter culture) compared to BL21(DE3) (77 mg per liter). Another study found
658 that Hot-PETase production reached 110 mg per liter using Origami 2 [7], which has an
659 oxidizing cytoplasm but lacks the DsbC chaperone. While they used different media and
660 expression conditions, this potentially shows the benefit of disulfide bond formation and
661 negative impact of DsbC. A similar finding was found for luciferase, which has 10 cysteines,
662 was where less active enzyme was produced in cells with an oxidizing cytoplasm and
663 cytoplasmic DsbC compared to cells with just an oxidizing cytoplasm [24]. The authors suggest
664 oxidized DsbC could impact the folding of a reduced protein. Alternatively, since the extra
665 disulfide bond in Hot-PETase was not evolutionarily derived, it is possible that that the disulfide
666 bond isomerase does not correctly recognize the designed fold to chaperone the protein to the
667 correct confirmation, leading to misfolding and the drop off in production observed for SHuffle
668 T7 Express.

669 In our work we found that purification of *IsPETase* during the IMAC step resulted in a
670 low yield. Active protein was not found in the flow through due to exceeding the binding

671 capacity of the column. For the bioreactor trial and scaled-up purification, we found a similar
672 yield for *Is*PETase to the small-scale expression trials (~30%). Likewise, FAST-PETase and
673 Hot-PETase had low yields for purification of 40% and 29%, respectively, when produced in
674 SHuffle T7 Express (**Table 3**). The yield was much higher for proteins produced in BL21(DE3),
675 89% for FAST-PETase and 72% for Hot-PETase, which is more in line with expectations for the
676 purifications performed. This suggests something in the SHuffle lysate is causing a negative
677 impact on the purification process. Possibly, as the PETase is interacting with the IMAC resin, it
678 is changing structure causing interaction with the overexpressed DsbC. Alternatively, the DsbC
679 could become oxidized and cause unintended reduction of the oxidized PETase product [24]. A
680 similar yield of between 18% and 51% was observed for production and IMAC purification of a
681 chaperone from SHuffle [27], possibly a wide spread problem using SHuffle as a host.

682 Since glycerol is inexpensive and less likely to suffer from overflow metabolism into
683 acetate compared with glucose [42, 43], its utilization as a carbon source has more advantages
684 than simply bypassing catabolite repression [44]. At low cell densities, acetate formation does
685 not seem to occur in ours or other studies [41] when glycerol is used as a carbon source.
686 However, we do see acetate accumulation starting approximately 45 hours after bioreactor
687 inoculation, ultimately reaching 1 g L^{-1} (**Fig. 3**). Acetate accumulation is known to be toxic to
688 cells, even at concentrations of 0.5 g L^{-1} [42], resulting in decrease biomass and recombinant
689 protein production [43] as well as prompting reassimilation [45]. Acetate is hypothesized to have
690 a negative impact on growth due to energetics to maintain intracellular pH or inhibition of
691 methionine synthesis which impacts protein translation [46]. Acetate has also been proposed to
692 have a negative effect on the stability of intracellular proteins [43] and alter transcription [47];
693 however, it is unknown how general the transcription changes are. We see a dramatic loss of

694 *IsPETase* activity, even at low acetate concentrations of 0.05 g L⁻¹, with over 90% loss of
695 activity in just 3 hours for a shake flask culture with uncontrolled pH. It is unknown whether
696 acetate buildup is the cause of the loss of active PETase or if acetate accumulation happens
697 simultaneously with the loss of recombinant protein activity. Co-factor imbalance or metabolite
698 flux limitation likely cause the shift in glycerol metabolism to acetate at these later cell culture
699 times. It is somewhat surprising to see such a precipitous loss of enzyme activity unless it is
700 being scavenged for resource utilization, the enzyme has a short half-life and expression
701 becomes limiting, or it is unfolding and moving to inclusion bodies. Regardless, our results
702 suggest close monitoring of protein activity is necessary to catch a tight window of high
703 production.

704 Our work focused on the expression and purification of soluble and active PETase. It is
705 well established that overexpressed proteins often end up in the inclusion bodies of *E. coli* [48].
706 It is possible that strategies we evaluated such as higher temperature expression, increased
707 inducer concentration, and even host selection led to increased cytoplasmic production of the
708 enzyme into insoluble inclusion bodies. However, while purification of denatured proteins is
709 possible, refolding to active conformations can be a challenge, especially for proteins with
710 complex disulfide patterns [48]. This has led us to focus efforts only on soluble production in
711 this work.

712 This study focused on the development of expression conditions and scale-up for
713 *IsPETase* as well as production of recently evolved variants. Since the discovery of *IsPETase* in
714 2016, considerable work has gone into protein engineering this enzyme for higher stability and
715 activity at elevated temperatures [3]. Based on the Arrhenius relationship, reaction rate should

716 exponentially increase as the temperature is elevated. Additionally, it has been argued that as
717 reaction temperatures approach the glass transition temperature, 60°C to 70°C for PET, catalysis
718 is enhanced [7]. It has been established that PETase has higher activity on amorphous PET than
719 crystalline PET [6]. However, PET recrystallization also occurs near the glass transition
720 temperature which is counterproductive to enzymatic breakdown [8]. From a cost standpoint,
721 increasing temperature of reactions is not desired, rather catalysis near ambient conditions is
722 preferred. This is especially true for remediation of plastics in the environment where
723 temperature cannot be controlled [49]. In our work, we have found that FAST-PETase and Hot-
724 PETase outperformed *Is*PETase based on soluble aromatics formed from PET microparticles at
725 37°C, but reaction rates on 4-NPA were nearly the same at 25°C. *Is*PETase has been shown to be
726 quite active at low temperatures, producing a high degree of ester bonds hydrolyzed in just
727 minutes [50]. At lower temperatures, the advantages of the evolved PETases might not be as
728 extreme as at higher temperatures where *Is*PETase, or even FAST-PETase are not stable [8].

729

730 **Conclusions:**

731 Through this work we have shown that wild-type *Is*PETase is better produced in the
732 cytoplasm of *E. coli* using a disulfide bond forming host with disulfide bond isomerase.
733 Production was increased by 13-fold over often used BL21(DE3) and purity was enhanced due to
734 overexpression. *Is*PETase was purified from SHuffle T7 Express as a soluble, well-folded
735 protein with activity on PET microparticles that is on par with other studies. Moving to another
736 complex medium that was supplemented with glycerol and moving to a controlled bioreactor,
737 protein production reached 104 mg per liter after 46 hours of culturing, with per cell mass

738 productivities greater than what has been achieved with *K. pastoris*. The production benefit of
739 SHuffle T7 Express was not found for evolved FAST-PETase and Hot-PETase, which were
740 better made and purified from BL21(DE3). These results are expected to benefit researchers who
741 need to produce significant quantities of *Is*PETase and related variants in a lab environment for
742 process engineering studies to degrade PET plastics at large scale.

743

744 **List of Abbreviations:**

745 4-NPA: 4-nitrophenyl acetate

746 BCA: bicinchoninic acid assay

747 BHET: bis(2-hydroxyethyl) terephthalic acid

748 BSA: bovine serum albumin

749 CDW: cell dry weight

750 FPLC: fast-protein liquid chromatography

751 HiC: cutinase from *Humicola insolens*

752 HPLC: high-performance liquid chromatography

753 IMAC: immobilized metal affinity chromatography

754 IPTG: isopropyl β -D-1-thiogalactopyranoside

755 LB: Luria Bertani

- 756 MHET: 2-hydroxyethyl terephthalic acid
- 757 OD₆₀₀: optical density measured at 600 nm
- 758 PET: polyethylene terephthalate
- 759 RCF: relative centrifugal force
- 760 RNAP: RNA polymerase
- 761 RPM: revolutions per minute
- 762 SDS-PAGE: sodium dodecyl sulfate – polyacrylamide gel electrophoresis
- 763 TB: terrific broth
- 764 TPA: terephthalic acid
- 765 U: unit of enzyme activity
- 766 UV: ultraviolet
- 767 v/v: volume per volume
- 768 w/v: weight per volume
- 769 YT: yeast tryptone
- 770

771 **Availability of data and materials:**

- 772 All data generated or analyzed during this study are included in this published article in
- 773 Additional File 2. Select plasmids have been deposited and are available from Addgene.

774

775 **Competing interests:**

776 The authors declare that they have no competing interests.

777

778 **Funding:**

779 This work was partially supported by NSF Award Number: CBET-2309899. Additional support
780 was provided by the Miami University Committee for Faculty Research and a Research,
781 Scholarship, and Artistry Grant. LMC and SPK were supported by the Miami University
782 Summer Scholars Program.

783

784 **Authors' contributions:**

785 LMC, CEM, JAB, JTB were responsible for conceptualization of experiments, design of
786 methodology, and data analysis and presentation. LMC conducted host expression screening,
787 protein purification, and enzyme characterization. CEM performed medium optimization and
788 bioreactor experiments. SPK cloned and characterized PETase variants. TS was responsible for
789 circular dichroism data. JLK provided comments on the manuscript and assisted in designing
790 experiments. JAB and JTB were responsible for manuscript preparation and project organization.
791 All authors read and approved the final manuscript.

792

793 **Acknowledgements:**

794 pET21b(+)‐Is‐PETase was a gift from Gregg Beckham and Christopher Johnson (Addgene
795 plasmid # 112202). pGro7 was generously supplied by Dr. J. Andrew Jones. Supplies for the
796 Eppendorf Thermomixer were provided by the Miami University Center for Bioinformatics and
797 Functional Genomics. Eppendorf BioFlo 120 Bioreactor was provided through Miami University
798 Student Technology Fee program.

799

800 **References:**

- 801 1. Melchor-Martinez EM, Macias-Garbett R, Alvarado-Ramirez L, Araujo RG, Sosa-
802 Hernandez JE, Ramirez-Gamboa D, Parra-Arroyo L, Alvarez AG, Monteverde RPB,
803 Cazares KAS, et al: **Towards a Circular Economy of Plastics: An Evaluation of the**
804 **Systematic Transition to a New Generation of Bioplastics.** *Polymers (Basel)* 2022, **14**.
- 805 2. Geyer R, Jambeck JR, Law KL: **Production, use, and fate of all plastics ever made.** *Sci
806 Adv* 2017, **3**:e1700782.
- 807 3. Liu F, Wang T, Yang W, Zhang Y, Gong Y, Fan X, Wang G, Lu Z, Wang J: **Current
808 advances in the structural biology and molecular engineering of PETase.** *Front Bioeng
809 Biotechnol* 2023, **11**:1263996.
- 810 4. Vertommen MA, Nierstrasz VA, Veer M, Warmoeskerken MM: **Enzymatic surface
811 modification of poly(ethylene terephthalate).** *J Biotechnol* 2005, **120**:376-386.
- 812 5. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K,
813 Miyamoto K, Kimura Y, Oda K: **A bacterium that degrades and assimilates**
814 **poly(ethylene terephthalate).** *Science* 2016, **351**:1196-1199.
- 815 6. Lu H, Diaz DJ, Czarnecki NJ, Zhu C, Kim W, Shroff R, Acosta DJ, Alexander BR, Cole
816 HO, Zhang Y, et al: **Machine learning-aided engineering of hydrolases for PET**
817 **depolymerization.** *Nature* 2022, **604**:662-667.
- 818 7. Bell EL, Smithson R, Kilbride S, Foster J, Hardy FJ, Ramachandran S, Tedstone AA,
819 Haigh SJ, Garforth AA, Day PJR, et al: **Directed evolution of an efficient and**
820 **thermostable PET depolymerase.** *Nature Catalysis* 2022, **5**:673-+.

- 821 8. Arnal G, Anglade J, Gavalda S, Tournier V, Chabot N, Bornscheuer UT, Weber G, Marty
822 A: **Assessment of Four Engineered PET Degrading Enzymes Considering Large-
823 Scale Industrial Applications.** *ACS Catal* 2023, **13**:13156-13166.
- 824 9. Erickson E, Shakespeare TJ, Bratti F, Buss BL, Graham R, Hawkins MA, Konig G,
825 Michener WE, Miscall J, Ramirez KJ, et al: **Comparative Performance of PETase as a
826 Function of Reaction Conditions, Substrate Properties, and Product Accumulation.**
827 *ChemSusChem* 2022, **15**:e202101932.
- 828 10. Tournier V, Topham CM, Gilles A, David B, Folgoas C, Moya-Leclair E, Kamionka E,
829 Desrousseaux ML, Texier H, Gavalda S, et al: **An engineered PET depolymerase to
830 break down and recycle plastic bottles.** *Nature* 2020, **580**:216-219.
- 831 11. Singh A, Rorrer NA, Nicholson SR, Erickson E, DesVeaux JS, Avelino AFT, Lamers P,
832 Bhatt A, Zhang Y, Avery G, et al: **Techno-economic, life-cycle, and socioeconomic
833 impact analysis of enzymatic recycling of poly(ethylene terephthalate).** *Joule* 2021,
834 **5**:2479-2503.
- 835 12. Ferreira RDG, Azzoni AR, Freitas S: **Techno-economic analysis of the industrial
836 production of a low-cost enzyme using *E. coli*: the case of recombinant beta-
837 glucosidase.** *Biotechnol Biofuels* 2018, **11**:81.
- 838 13. Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC,
839 Dominick G, Duman R, El Omari K, et al: **Characterization and engineering of a plastic-
840 degrading aromatic polyesterase.** *Proc Natl Acad Sci U S A* 2018, **115**:E4350-E4357.
- 841 14. Avilan L, Lichtenstein BR, Konig G, Zahn M, Allen MD, Oliveira L, Clark M, Bemmer
842 V, Graham R, Austin HP, et al: **Concentration-Dependent Inhibition of Mesophilic
843 PETases on Poly(ethylene terephthalate) Can Be Eliminated by Enzyme Engineering.**
844 *ChemSusChem* 2023, **16**:e202202277.
- 845 15. Seo H, Kim S, Son HF, Sagong HY, Joo S, Kim KJ: **Production of extracellular PETase
846 from *Ideonella sakaiensis* using sec-dependent signal peptides in *E. coli*.** *Biochem
847 Biophys Res Commun* 2019, **508**:250-255.
- 848 16. Shi L, Liu H, Gao S, Weng Y, Zhu L: **Enhanced Extracellular Production of IsPETase
849 in *Escherichia coli* via Engineering of the pelB Signal Peptide.** *J Agric Food Chem*
850 2021, **69**:2245-2252.
- 851 17. Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y: **Tat-Independent Secretion of
852 Polyethylene Terephthalate Hydrolase PETase in *Bacillus subtilis* 168 Mediated by
853 Its Native Signal Peptide.** *J Agric Food Chem* 2018, **66**:13217-13227.
- 854 18. Wang N, Guan F, Lv X, Han D, Zhang Y, Wu N, Xia X, Tian J: **Enhancing secretion of
855 polyethylene terephthalate hydrolase PETase in *Bacillus subtilis* WB600 mediated by
856 the SP(amy) signal peptide.** *Lett Appl Microbiol* 2020, **71**:235-241.

- 857 19. Xi X, Ni K, Hao H, Shang Y, Zhao B, Qian Z: **Secretory expression in *Bacillus subtilis***
858 and **biochemical characterization of a highly thermostable polyethylene terephthalate**
859 **hydrolase from bacterium HR29.** *Enzyme Microb Technol* 2021, **143**:109715.
- 860 20. Deng B, Yue Y, Yang J, Yang M, Xing Q, Peng H, Wang F, Li M, Ma L, Zhai C: **Improving the activity and thermostability of PETase from *Ideonella sakaiensis***
861 **through modulating its post-translational glycan modification.** *Commun Biol* 2023,
862 **6**:39.
- 864 21. Chen C-C, Li X, Min J, Zeng Z, Ning Z, He H, Long X, Niu D, Peng R, Liu X, et al: **Complete decomposition of poly(ethylene terephthalate) by crude PET hydrolytic**
865 **enzyme produced in *Pichia pastoris*.** *Chemical Engineering Journal* 2024, **481**:148418.
- 867 22. Han X, Liu W, Huang JW, Ma J, Zheng Y, Ko TP, Xu L, Cheng YS, Chen CC, Guo RT: **Structural insight into catalytic mechanism of PET hydrolase.** *Nat Commun* 2017,
868 **8**:2106.
- 870 23. Joo S, Cho IJ, Seo H, Son HF, Sagong HY, Shin TJ, Choi SY, Lee SY, Kim KJ: **Structural**
871 **insight into molecular mechanism of poly(ethylene terephthalate) degradation.** *Nat*
872 **Commun** 2018, **9**:382.
- 873 24. Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M: **SHuffle, a novel**
874 ***Escherichia coli* protein expression strain capable of correctly folding disulfide**
875 **bonded proteins in its cytoplasm.** *Microb Cell Fact* 2012, **11**:56.
- 876 25. Palm GJ, Reisky L, Bottcher D, Muller H, Michels EAP, Walczak MC, Berndt L, Weiss
877 MS, Bornscheuer UT, Weber G: **Structure of the plastic-degrading *Ideonella sakaiensis***
878 **MHETase bound to a substrate.** *Nat Commun* 2019, **10**:1717.
- 879 26. Chung WJ, Huang CL, Gong HY, Ou TY, Hsu JL, Hu SY: **Recombinant production of**
880 **biologically active giant grouper (*Epinephelus lanceolatus*) growth hormone from**
881 **inclusion bodies of *Escherichia coli* by fed-batch culture.** *Protein Expr Purif* 2015,
882 **110**:79-88.
- 883 27. Schmuck B, Chen G, Pelzman J, Kronqvist N, Rising A, Johansson J: **Expression of the**
884 **human molecular chaperone domain Bri2 BRICHOS on a gram per liter scale with**
885 **an *E. coli* fed-batch culture.** *Microb Cell Fact* 2021, **20**:150.
- 886 28. da Silva AJ, Horta AC, Velez AM, Iemma MR, Sargo CR, Giordano RL, Novo MT,
887 Giordano RC, Zangirolami TC: **Non-conventional induction strategies for production**
888 **of subunit swine erysipelas vaccine antigen in *rE. coli* fed-batch cultures.** *Springerplus*
889 2013, **2**:322.
- 890 29. Khalilvand AB, Aminzadeh S, Sanati MH, Mahboudi F: **Media optimization for SHuffle**
891 **T7 *Escherichia coli* expressing SUMO-Lispro proinsulin by response surface**
892 **methodology.** *BMC Biotechnol* 2022, **22**:1.

- 893 30. Barros T, Brumano L, Freitas M, Pessoa AJ, Parachin N, Magalhaes PO: **Development of**
894 **Processes for Recombinant L-Asparaginase II Production by Escherichia coli BL21**
895 **(De3): From Shaker to Bioreactors.** *Pharmaceutics* 2020, **13**.
- 896 31. Ma Y, Yao MD, Li BZ, Ding MZ, He B, Chen S, Zhou X, Yuan YJ: **Enhanced**
897 **Poly(ethylene terephthalate) Hydrolase Activity by Protein Engineering.** *Engineering*
898 2018, **4**:888-893.
- 899 32. Wang S-z, Fang B-s: **Microplate Bioassay for Determining Substrate Selectivity of**
900 **Candida rugosa Lipase.** *Journal of Chemical Education* 2012, **89**:409-411.
- 901 33. Baath JA, Borch K, Jensen K, Brask J, Westh P: **Comparative Biochemistry of Four**
902 **Polyester (PET) Hydrolases*.** *Chembiochem* 2021, **22**:1627-1637.
- 903 34. Lusty Beech J, Clare R, Kincannon WM, Erickson E, McGeehan JE, Beckham GT, DuBois
904 **JL: A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic**
905 **subunit hydrolysis.** *RSC Adv* 2022, **12**:8119-8130.
- 906 35. Greenfield NJ: **Using circular dichroism spectra to estimate protein secondary**
907 **structure.** *Nat Protoc* 2006, **1**:2876-2890.
- 908 36. Xie R, Tu M, Wu Y, Adhikari S: **Improvement in HPLC separation of acetic acid and**
909 **levulinic acid in the profiling of biomass hydrolysate.** *Bioresource Technology* 2011,
910 **102**:4938-4942.
- 911 37. Cardoso VM, Campani G, Santos MP, Silva GG, Pires MC, Goncalves VM, de CGR, Sargo
912 **CR, Horta ACL, Zangirolami TC: Cost analysis based on bioreactor cultivation**
913 **conditions: Production of a soluble recombinant protein using Escherichia coli**
914 **BL21(DE3).** *Biotechnol Rep (Amst)* 2020, **26**:e00441.
- 915 38. Riesenberg D, Schulz V, Knorre WA, Pohl HD, Korz D, Sanders EA, Ross A, Deckwer
916 **WD: High cell density cultivation of Escherichia coli at controlled specific growth**
917 **rate.** *J Biotechnol* 1991, **20**:17-27.
- 918 39. Studier FW: **Protein production by auto-induction in high density shaking cultures.**
919 *Protein Expr Purif* 2005, **41**:207-234.
- 920 40. Santos J: **Cultivation of Escherichia coli BL21 (DE3) For Production of L-**
921 **Asparaginase II.** University of Sao Paulo São Paulo, Brazil2017.
- 922 41. Martinez-Gomez K, Flores N, Castaneda HM, Martinez-Batallar G, Hernandez-Chavez G,
923 Ramirez OT, Gosset G, Encarnacion S, Bolivar F: **New insights into Escherichia coli**
924 **metabolism: carbon scavenging, acetate metabolism and carbon recycling responses**
925 **during growth on glycerol.** *Microb Cell Fact* 2012, **11**:46.
- 926 42. Eiteman MA, Altman E: **Overcoming acetate in Escherichia coli recombinant protein**
927 **fermentations.** *Trends Biotechnol* 2006, **24**:530-536.

- 928 43. De Mey M, De Maeseneire S, Soetaert W, Vandamme E: **Minimizing acetate formation**
929 **in *E. coli* fermentations.** *J Ind Microbiol Biotechnol* 2007, **34**:689-700.
- 930 44. Yang F, Hanna MA, Sun R: **Value-added uses for crude glycerol--a byproduct of**
931 **biodiesel production.** *Biotechnol Biofuels* 2012, **5**:13.
- 932 45. Wolfe AJ: **The acetate switch.** *Microbiol Mol Biol Rev* 2005, **69**:12-50.
- 933 46. Pinhal S, Ropers D, Geiselmann J, de Jong H: **Acetate Metabolism and the Inhibition of**
934 **Bacterial Growth by Acetate.** *J Bacteriol* 2019, **201**.
- 935 47. Orr JS, Christensen DG, Wolfe AJ, Rao CV: **Extracellular Acidic pH Inhibits Acetate**
936 **Consumption by Decreasing Gene Transcription of the Tricarboxylic Acid Cycle and**
937 **the Glyoxylate Shunt.** *J Bacteriol* 2019, **201**.
- 938 48. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK: **Protein recovery from**
939 **inclusion bodies of *Escherichia coli* using mild solubilization process.** *Microb Cell Fact*
940 2015, **14**:41.
- 941 49. Bergeson AR, Silvera AJ, Alper HS: **Bottlenecks in biobased approaches to plastic**
942 **degradation.** *Nature Communications* 2024, **15**:4715.
- 943 50. Schubert S, Schaller K, Baath JA, Hunt C, Borch K, Jensen K, Brask J, Westh P: **Reaction**
944 **Pathways for the Enzymatic Degradation of Poly(Ethylene Terephthalate): What**
945 **Characterizes an Efficient PET-Hydrolase?** *Chembiochem* 2023, **24**:e202200516.
- 946
- 947

948 **Figure Legends:**

949 **Figure 1: *IsPETase* production in various strains of *E. coli*.** Production of *IsPETase* as
950 measured by enzyme activity on 4-NPA in clarified cell lysates. Lysis amount was based on
951 culture volume. Activity was normalized to A) culture volume and B) total protein. Activity unit
952 (U) is defined as 1 $\mu\text{mol min}^{-1}$ product formed using 1 mM 4-NPA at room temperature in 100
953 mM potassium phosphate buffer (pH 7). Strains contained pET21b PETase (+) or pET21b
954 Empty (-). Average of at least 3 independent cultures shown and error bars represent the standard
955 deviation. Shown are selected Student's t-test results, * ($p < 0.05$), ** ($p < 0.005$), ***
956 ($p < 0.0005$); statistical comparisons between all samples can be found in the **Supplementary**
957 **Data File.**

958 **Figure 2: *IsPETase* Activity on PET microparticles.** *IsPETase* activity was measured by
959 accumulation of soluble aromatic products over time: A) TPA, B) MHET, C) BHET, and D)
960 total soluble aromatics. Individual series in each plot represent PETase loadings of 0 (orange
961 circles, $n=2$), 0.34 (green squares, $n=2$), 0.69 (red diamonds, $n=2$), and 1.0 (black triangles, $n=1$)
962 milligrams of enzyme per gram of PET (mg g^{-1}). Reactions occurred at 37°C in 50 mM sodium
963 phosphate buffer (pH 9), contained 30 mg PET per mL reaction, and were mixed at 1,000 rpm
964 using an Eppendorf thermomixer. Error bars represent the standard deviation of samples.

965 **Figure 3: Scale-up production of *IsPETase*.** *IsPETase* was produced in a 2-L bioreactor at a
966 1.5 L working volume scale from SHuffle T7 Express cells. Bioreactor runs used complex media
967 with glycerol. Initial growth occurred at 37°C followed by protein production at 20°C after
968 induction with 0.5 mM IPTG. Induction occurred at 3 hrs. Activity unit (U) were determined on
969 1 mM 4-NPA at room temperature in 100 mM potassium phosphate buffer (pH 7) and is

970 normalized to culture volume (black squares). Also measured was optical density at 600 nm (red
971 circles), agitation (purple), and dissolved oxygen (orange). Cascade control of dissolved oxygen
972 was utilized for both reactor runs. pH was controlled between 6.8 and 7.2 for the bioreactor trial
973 with complex media. For the complex media trial, glycerol substrate (blue diamonds) and acetate
974 product (green triangle) concentrations were measured by HPLC.

975 **Figure 4: Variant PETase production in BL21(DE3) and SHuffle T7 Express.** Production of
976 PETase as measured by enzyme activity on 4-NPA in clarified cell lysates from BL21(DE3)
977 (light blue) or SHuffle T7 Express (orange). Lysis amount was based on culture optical density.
978 Activity was normalized to A) culture volume and B) total protein as measured by BCA. Activity
979 unit (U) were measured on 1 mM 4-NPA at room temperature in 100 mM sodium phosphate
980 buffer (pH 7.4). Average of at least 3 independent cultures shown and error bars represent the
981 standard deviation. Shown are Student's t-test results, ns ($p > 0.05$), * ($p < 0.05$), ** ($p < 0.005$),
982 *** ($p < 0.0005$).

983 **Figure 5: Variant PETase activity on PET microparticles.** PETase activity was measured by
984 accumulation of soluble aromatic products over time: A) TPA, B) MHET, C) BHET, and D)
985 total soluble aromatics. Individual series in each plot represent PETase variants: *Is*PETase (black
986 triangles, $n=1$), FAST-PETase (red squares, $n=2$), Hot-PETase (green diamonds, $n=2$), or no
987 enzyme (orange circles, $n=1$). Also tested was HiC (light blue triangles, $n=1$). All samples
988 loaded at 1.0 milligrams of enzyme per gram of PET (mg g^{-1}). Reactions occurred at 37°C in
989 50mM sodium phosphate buffer (pH 9), contained 30 mg PET per mL reaction, and were mixed
990 at 1,000 rpm using an Eppendorf thermomixer. Error bars represent the standard deviation of
991 samples.

