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Abstract—Tracking plant cells in three-dimensional (3D) tissue
captured through light microscopy presents significant challenges
due to the large number of densely packed cells, non-uniform
growth patterns, and variations in cell division planes across
different cell layers. In addition, images of deeper tissue layers
are often noisy, and systemic imaging errors further exacerbate
the complexity of the task. In this paper, we propose a novel
learning-based method DEGAST3D: Learning Deformable 3D
GrAph Similarity to Track Plant Cells in Unregistered Time Lapse
Images exploits the tightly packed 3D cell structure of plant cells
to create a three-dimensional graph for accurate cell tracking. We
also propose a novel algorithm for cell division detection and an
effective three-dimensional registration, improving state-of-the-art
algorithms. On a public dataset, our novel cell pair matching
method outperforms the baseline by 6.83%, 5.96%, 6.40% in
precision, recall, and F-1 score, respectively. On the same dataset,
our proposed novel cell division technique improves the results of
the baseline method by 15.38% and 14.78% in terms of recall
and Fl-score, respectively.

Index Terms—Cell tracking, cell division, 3D segmentation, 3D
registration, graph matching, deep learning.

1. INTRODUCTION

ORPHOGENETIC analysis is a cardinal topic of interest
in computational biology, which analyzes the develop-
ment of various biological forms, including cell growth and
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division patterns in both plant and animal tissues. Tracking the
development of these cells over time provides a quantitative
description of cell growth and division characteristics [1], [2],
[3]. [4], gene expression [5], [6], enzyme/protein localiza-
tion [7], [8], [9] and analyzing bio signals [10].

The plant of interest for this study is Arabidopsis thaliana.
This plant is a genetic model system and a representative
system to study shoot apical meristem (SAM) morphology of
dicotyledenous plants. Thus, its study aids in understanding
the morphological processes of several other plants as dis-
cussed by the authors of [11], [12]. In order to analyze the cell
growth and division characteristics, this work focuses on the
Shoot Apical Meristems (SAM) [13] of the plant. Shoot Apical
Meristems (SAM) are densely packed multi-layer tissues that
provide cells for the development of leaves, stems, and branches.
With the advancement of microscopy imaging techniques, time-
lapse images of long time series can be collected from SAM
by Confocal Laser Scanning Microscopy (CLSM) [14] based
live cell imaging. In this imaging technique, a laser beam is
moved along the depth of the SAM tissue, which results in
a series of two-dimensional images. The two-dimensional im-
ages are referred to as slices, which, when put together, forms
the image stack of the SAM. Fig. 1 shows some exemplar
slices of the SAM region of Arabidopsis thaliana captured by
CLSM.

The Shoot Apical Meristems (SAM) of Arabidopsis Thaliana
is a tightly packed structure with many cells. Spatio-temporal
tracking of such a large number of cells is computationally
expensive and time-consuming. In addition, the images captured
from the deep layers of SAM suffer from low signal-to-noise
ratio (SNR), as mentioned in [15], which makes the problem of
tracking deep-layer cells very challenging. Further, the plant has
a natural tendency of growing towards the light source it gets
exposed to [16]. As aresult, when a plant is kept in a non-uniform
lighting setup, the plant leans toward the light source and gets
tilted. The live cell imaging technique can not capture this
information as it only captures two-dimensional images on X-Y
plane (or, top view), thus further complicating the problem of
tracking plant cells. Hence, there’s a need for an automated, fast,
and robust algorithm that can perform tracking of plant cells
in Shoot Apical Meristems (SAM) of Arabidopsis Thaliana.
In this paper, we propose a novel deep learning-based method,
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Fig. 1.

A 4

The time series of microscopic plant cell images are shown. There is a time axis and a Z-axis. Z-axis which goes along the depth of the plant indicates

the slice number and the time axis indicates the time passed during imaging. According to the dataset [4], time difference between two time points is 4 hours. On
Z-axis, images of 3 slices are shown. Those slices are sampled from the top, middle, and bottom of the SAM, respectively.

DEGAST3D: DEformable 3D GrAph Similarity to Track plant
cells and detect cell division events.

A. Related Work

There are several studies on plant cell tracking. Most of
them are based on two-dimensional local-graph matching [17],
[18], [19], [20], which exploits the tight spatial topology of
neighboring cells. In those studies, a two-dimensional local star
graph [21] is constructed by connecting the centroid of the cell
of consideration to the centroids of its neighboring cells. This
graph structure represents the neighboring structure of the cell of
consideration. Two cells from different time points that have the
closest graph structure are considered the corresponding cells
(also known as matching cells). In these works, cell correspon-
dences are done between a pair of slices of two consecutive
time points, combined to obtain pairwise tracks over the entire
stack. Chakraborty et al. [22] proposed a conditional random
field (CRF) [23] based approach where all cells located on a slice
are considered as nodes of the graph and all cells having common
boundary are connected to form the graph. Marginal posteriors
of each node are calculated using loopy belief propagation [24]
followed by a graph labeling method to obtain the optimal
correspondence.

Although this method gives very accurate results, it is not
scalable for larger datasets as the graph labeling optimization
step is fairly slow. A few recent works [25], [26] form a three-
dimensional local graph of a cell by combining two-dimensional
local star graphs of adjacent slices. However, these approaches

do not use the inter-slice connection among the cells, thus ig-
noring the three-dimensional spatial information of the cells. In
addition, these works assume that two matching cells must have
the same number of neighbors which makes these approaches
very susceptible to segmentation error. Another recent method,
DeepSeed [18], uses the weighted sum of shape similarity and
neighboring structure similarity scores between the cells. The
corresponding cell pairs (seed pairs) are then selected based on
a similarity score threshold. This is followed by using relative
position concerning the seed pairs to track the rest of the cells
iteratively. Instead of using the shape similarity of individual
cells, [27] compares the patches of cells of two different time
points and uses the K-M algorithm [28] for patch association.
However, these methods are highly dependent on segmentation
accuracy and hence resultin subpar performance for deeper layer
cells of the plant.

Another limitation of the algorithms [18], [22], [27] is that
they solve tracking problems only in a two-dimensional plane.
This assumption ignores phenomena like the tilting of plants.
Fig. 2 illustrates that when tilt occurs, the same cells change
shape or size when the same cross-section is observed. As a
result, the methods largely dependent on two-dimensional cell
shape in tracking fail under tilting conditions of the SAM.

B. Contributions

To address the limitations of existing approaches, our pro-
posed method, DEGAST3D, makes the following contributions.
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Fig. 2.  (a) The overlay of SAM in two time-points when tilting occurs. The
blue solid and red dotted lines indicate time ¢1 and t2, respectively. (b) The
cross-section view with respect to the green line in (a) is shown. The patches
marked by yellow circles reveal that the shape and size of the same cells captured
in the two-dimensional plane change due to tilt.

® We develop a novel learning-based tracking algorithm for
plant cells that uses three-dimensional geometric informa-
tion of the tightly packed plant cell structure.
® We develop a 3D registration technique that aligns the plant
in two different time points.
® We propose a three-dimensional graph matching technique
where graphs are connected to k nearest neighbors to ex-
tract contextual information of the cell structure, increasing
tracking accuracy.
® We further develop a novel learning-based cell division
detection technique that uses three-dimensional shape and
local graph similarity to detect mother and daughter pairs.
The organization of this paper is as follows: Section II
provides a detailed description of the proposed methodology.
Experiments and results are discussed in Section III. Finally,
Section IV concludes the paper.

II. METHODOLOGY

This paper tackles the core problem of tracking SAM cells
over long time periods. The inputs are unregistered plant image
stacks of multiple time points with constant intervals. Over this
time period, some cells divide. The objective is to track tightly
packed plant cells and detect cell division events to determine
cell lineages that develop over a period of time. In this section,
we elaborate on our proposed pipeline for performing robust
tracking of plant cells. First, three-dimensional segmentation
of CLSM plant stack images is done. Then, three-dimensional
registration aligns the SAM image stacks over time. Finally,
a novel learning-based three-dimensional local graph matching
technique is employed to find cell pair matches of tightly packed

plant cells and detect cell division events. Fig. 3 shows the entire
workflow of our proposed algorithm.

A. Segmentation

Cell segmentation is the first step for cell-tracking algorithms,
which helps identify individual cells, present in the SAM tissue.
State-of-the-art cell tracking methods such as [18], [22], [27] fo-
cused on watershed segmentation [29] technique that segments
the cell border on every slice. However, watershed segmentation
does not provide the three-dimensional spatial relationships of
the cells among the slices. Recently, learning-based techniques
such as spherical harmonics [30], U-Net watershed [31], Cell-
pose3D [32] have been proposed, which provide instances of
every cell in three-dimensional space. Among these works,
Cellpose3D [32] provides the best segmentation performance
on the plant cells. Hence, this technique has been used in this
paper. Cellpose3D learns the gradient map along the X, Y,
and Z-axis. Using that gradient map and some post-processing
steps, it predicts the instances of the plant cells. Fig. 4 shows the
application of Cellpose3D to get the instances of plant cells.

B. Registration

Cell growth and division cause physiological changes in the
structure of the plant, which result in slight orientation and
shift along the X, Y, and Z axes. Also, during the live imaging
technique, the plant has to be physically moved between image
acquisition time intervals. These incidents misalign the image
stacks at different time points.

As plant cells are tightly packed, the positions of the cells do
not change abruptly in a short time interval. Hence, if image
stacks are aligned (or registered) properly, we can focus on a
small region of interest in the image stack instead of searching
the cell on the entire stack to track a particular cell. Thus,
registration saves time and computational costs. Authors of [33]
proposed a landmark-based registration algorithm that obtained
state-of-the-art results on registering two-dimensional slices.
However, the algorithm shows subpar performance where three-
dimensional registration is needed (for example, the tilting case
of Fig. 2). This motivates us to propose a novel 3D registration
algorithm, an overview of which has been shown in Fig. 5.

Our proposed algorithm involves three steps. The first step ob-
tains three-dimensional instance segmentation maps using pre-
trained Cellpose3D models [32]. The second step obtains several
high-confidence pairwise cell correspondences (also known as
seed pairs) using the algorithm proposed in [18]. Finally, the
Random Sample Consensus (RANSAC) algorithm [34] is used
to determine the rotation and translation matrix from the point
clouds of matching seed pair cells. The use of RANSAC is
motivated by the fact that some false positive matches can be
found in determining seed pairs in the second step. RANSAC can
estimate the parameters of a mathematical model from a set of
matching data containing false positive matches. The estimated
rotation and translation matrix is used to perform registration
between two plant image stacks. Fig. 6 shows the overlays
of two-time points from the top before and after registration.
However, the SAM is considered arigid object in this registration
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The entire workflow is shown in the figure. Image stacks obtained by CLSM imaging are segmented using a 3D segmentation technique (Section II-A).

Then, registration is done for pairwise time points using our proposed 3D registration method (Section II-B). Finally, our novel learning-based approach is used

for cell pair matching (Section II-C) and cell division detection (Section II-D).

Fig. 4. Segmentation of plant cells using Cellpose3D. (a) Cell segmentation
in a horizontal slice. (b) Cell segmentation on the vertical slice. (c) 3D recon-
struction using the 3D instance segmentation.

technique, which is not practically true. We considered a region
of interest for tracking cells described in the next sub-section to
address this issue.

C. Cell Pair Matching

The SAM cells are non-rigid due to cell growth and cell
division. Hence, the segmentation map of a cell gets deformed
as it grows over time. In addition, over-segmentation and under-
segmentation may occur due to image noise. As a result, when
we overlay the image stacks of two consecutive time points,
the corresponding cells do not always overlap. To tackle this
issue, we consider a region of interest to find a match for every
cell. Let us consider a cell s;, of time point ¢£; which has
centroid at coordinate ¢;, € R3. There are total ¢ number of cells

D A sg‘” in the next time point ¢3 with their centroid

Stz 1St2 ]
coordinate at cg) ; cg), ERE cg‘j), respectively.

In order to find the corresponding cell of s;, at time point
ta, we consider n number of candidate cells of set % =

{SS ), sg),- ‘e sg)} which have lowest distance from coordi-
nate c;, among all other cells at time point ¢3. Mathematically
49 -] < 2 - < [0 =
< cg) —eg ||

The region of interest comprises the cells in 22 as shown in Fig. 7.
We use a 3D geometric feature extractor [35] and propose a 3D
graph matching algorithm to predict the corresponding cell of
sy, out of those candidates in Z2.

1) 3D Graph Matching: The local graph for a particular cell
comprises total n, nodes where the centroids of that cell and
its np — 1 number of nearest neighbors in the three-dimensional

space are considered. All these nodes are connected to k-nearest
neighbors, forming the local 3D graph as shown in Fig. 8.
The formation of this type of graph helps us in two ways.
First, our graph is capable of extracting enriched features in
three-dimensional space. The local graphs presented in [18],
[26] consider a two-dimensional star graph that mainly uses
the positional information of neighboring cells with respect to
the center cell only. On the other hand, our 3D local graph
uses positional information with respect to not only the central
cell but also the neighboring cells among themselves, which
extracts rich three-dimensional spatial information. Second, our
3D local graph reduces computational cost compared to the
graph proposed in [22] where the local graph is not formed.
Rather, all the cells of a slice are considered nodes of the
graph, and all nodes corresponding to the cells with common
boundaries are connected. However, the formation of this kind of
large graph makes the optimization computationally expensive
and time-consuming. On the contrary, the 3D local graph is more
inference-friendly with less computational expense.

We propose a learning-based 3D graph matching approach
where the input is an anchor graph (the 3D local graph of the
cell we want to track) and » number of local 3D graphs of
potential matching candidate cells in the next time point. The
objective is to point out the candidate graph which has the highest
similarity to the anchor graph. Fig. 9 shows the graph similarity
model where the inputs are the three-dimensional coordinates
of two graphs. A geometric feature extractor [35] has been used
in order to extract the three-dimensional geometric features of
each node in a k-nearest neighbor connected graph. The outputs
of the model are the point-to-point similarity score (shown as y; )
and overall graph similarity score(shown as ). As two graphs
have the same number of nodes, we can make the one-to-one
association of nodes between two graphs based on their distance.
The point-to-point similarity score indicates how similar the
node pairs are based on their spatial orientation. The overall
graph similarity score indicates the overall similarity between
two graphs.

2) Training: The 3D local graph matching involves joint
training on both overall graph similarity and point-to-point sim-
ilarity. Overall graph similarity indicates which candidate graph
is the most similar to the anchor graph out of n candidates. This
supervision can be obtained directly from the ground truth of
the dataset where information regarding pairwise correspondent
cells are provided.
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Fig.5. Proposed method for registration of plant stacks. At first, the three-dimensional instance segmentation is obtained using Cellpose3D. Then, the number of
correspondent cell pairs (seed pairs) is determined using the method described in [18]. The point cloud of seed pair cells of each stack is extracted. Using the FPFH
(Fast Point Feature Histogram) feature of the point cloud, RANSAC algorithm is used to determine the translation and rotation matrix that is used for registration.

(a) (b)

Fig. 6. Overlay of cell borders of plant image stacks are shown. The red \v‘

and green channels indicate cell borders of two different time points of SAM.
(a) When plant image stacks are unregistered, cell borders of two-time points
are visible separately. (b) After registration, the cell borders of two-time points
get overlapped in most of the cases.

Fig. 8. A three-dimensional graph generated by connecting the k-nearest
neighbors. The central cell is shown by the red circle, and its neighboring cells
are shown by yellow circles. Every cell is connected to its k-nearest neighbors
(in the figure k = 5).

In the ground truth of our dataset, pairwise correspondences
are not provides for all the cell pairs; instead, only a subset
of cell pairs have them. Given a pair of correspondent cells
in a tightly packed cell structure of two time points, we can
assume that most of the neighbors of those correspondent cells
exhibit one-to-one matching despite the matching information
for all the neighboring cells is not provided in the ground
truth. It leads to point-to-point similarity supervision, which is
described in Fig. 10 in detail. Hence, training on point-to-point
similarity is a semi-supervised process that involves pairwise
node correspondence between two graphs.

Mathematically, there are n candidate graphs and (ym

(1 B (ylz), (2)) 2 ..,(y1 ,y2 )) are the outputs of the net-
works, p(), p(2), .,p™ are the point-to-point similarity
ground truth and GTgmph is the overall graph similarity ground
truth.

Binary cross-entropy loss (BCE) is used to train the point-
Fig. 7. Longitudinal section of plant for two consecutive time points where to-point supervision. The point-to-point supervision loss (Lypp)
(a) and (b) indicate the former and later time point, respectively. In (a), the cell ~ Can be eXpressed b)"
with the yellow circle is the cell that needs to be tracked. In (b), cells marked by

the blue circle are the candidates of matching, and the cell with a red border is (k1)
the true matching. The green circle indicates our region of interest. pp = Z Z BCE (.7,"1 ks Py )

(D

k1=1ka=1
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n, X f
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Graph Similarity Model

Fig.9. Graph Similarity Model (GSM) shown by the green box. There are two inputs of this model: three-dimensional coordinates of two graphs where each graph
has n, number of points. The model provides two outputs. They are point-to-point similarity prediction (y; ) for each point, and overall graph similarity prediction
(y2). The block diagram G, (.), o, F'C indicates geometric feature extractor, dot product, sigmoid activation function and fully connected layer, respectively. In
the figure, the input and output shape of every block is shown.

® ® Overlay «———

(c) (d) (e)

Fig. 10.  This figure describes how point-to-point supervision is obtained. Every circle represents the centroid of a cell. (a) The brown and blue circles represent
the center of the graph and its neighbors, respectively, at the one-time point. (b) The purple and yellow circles represent the center of the graph and its neighbors,
respectively, at another time point. From the ground truth, we only know whether brown and purple cells are corresponding cells or not. The centers of two graphs
(brown and purple circles) are overlaid at the red color circle, and there can be three cases as shown in (c)—(e). Case - 1 : (c) the cells are matching cells according
to the ground truth, and two local graphs are less deformed. Point-to-point supervision is set to 1 for all point pairs (shown in the figure). Case 2: (d) the cells
are matching cells, but local graphs are slightly different due to deformation. In this case, some point pairs are far apart. The point pairs with distances within a
threshold value are set to 1. Otherwise, the ground truth is set to 0. Case -3 : (e) If the two cells are non-matching, all the pairwise point-to-point ground truths are
set to 0.
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Fig. 11. (a) and (b) indicate the cells of former and later time points, re-
spectively. The circles indicate centroids of the cells. Using the learning-based
tracking method, most of the cells are tracked. The same colored cells indicate
the matching pairs. However, the white color circles indicate the cells that our
method could not track. Using the relative positions of the tracked cells (colored),
we can associate the untracked cells (shown by the dotted arrow).

We note some cases where cell deformation or segmentation
errors occur very much. In those cases, the region of interest
shown in Fig. 7 does not always include the true matching cell.
Hence, we considered an extra class y/. for graph similarity
supervision which indicates the anchor graph does not match
with any candidate graph. The score for 3’ can be expressed by

y' =1—max (yél),yéz), - -,yé")) : 2)

Hence, the anchor graph can match with any of the members of
set Yoana = {o8", 482, - - -, y8™ 4/} which is guided by cross-
entropy (CE) loss. The overall graph similarity supervision (L)

loss can be expressed by
Lq = CE(GTgraph; Yeana) - 3)
Now the total loss can be written as
Liotar = ALpp + Ly, “)

where A is a non-negative hyper-parameter that controls the
weight of point-to-point similarity supervision in the joint loss
function.

The figure of overall training procedure is provided in the
supplementary. Although this approach can find most of the
matching cell pairs, some cells remain unmatched. Inspired
by [18], we can track the unmatched cells using their relative
positions with respect to matching pair cells (demonstrated in
Fig. 11).

D. Cell Division Detection

Cell division [36] is the process by which a mother cell
divides into two daughter cells. The state-of-the-art cell division
detection techniques [37], [38] were based on two assumptions:

® The combined area of daughter cells is almost equal to the

area of mother cells.

® The combined cell borders of daughter cells are almost

identical to the mother cell’s border.

However, the outcome from these assumptions is highly
dependent on the segmentation accuracy, and it also does not
consider cell growth over time. In this paper, we have introduced

a novel learning-based method for detecting cell division. This
method uses two sources of information to detect cell division:
the 3D shape similarity between mother and daughter cells and
the 3D local graph similarity between mother and daughter cells.
For every potential mother cell, a region of interest (same as
Fig. 7) is selected in the next time point, and potential daughter
cell pairs are selected by taking pairs of adjacent cells in that
region of interest.

1) 3D Shape and Volume Similarity: In three-dimensional
space, the shape and volume of combined daughter cells are
almost equal to the shape and volume of the mother cell. To use
this physical property, we present a workflow shown in Fig. 12,
which is totally data-driven. Voxelization [39] is done on the
point clouds of mother and daughter cells. Then, subtraction
is done between the voxelized mother cell and concatenated
voxelized daughter cells. The subtracted result represents dis-
tinct patterns based on whether the input point clouds are from
mother-daughter cell pairings. A 3D convolutional neural net-
work [40] is trained to do binary classification between these
two separate patterns, which is guided by a BCE loss. Yy, is
the model output, which is a probability score on how similar
the mother and daughter pairs are in a three-dimensional shape.
GT4iy is the ground truth for cell division. If the inputs are true,
mother-daughters GTy;, is 1, otherwise 0.

Leen sim = BCE (Yaiv, GTaiv) - (5)

2) Pairwise Local Graph Similarity: Spatially, the mother
and daughter cells occupy almost the same location in the
SAM. Hence, the 3D local graph of the mother cell and each
of the daughter cells are almost similar. To quantify how similar
between two local 3D graphs, we train the network presented in
Fig. 9 using the loss function

Lgraph pair — Z BCE(yl,k: pk) + BCE (y‘Z: GTgraph pajr) .

k=1

(6)
GTyraph pair €an be obtained from the ground truth where pairwise
cell correspondences are provided. If a pair of cells are corre-
sponding cells their 3D local graphs are similar and GTgraph pair
is set to 1 otherwise, it is set to 0. The overall graph similarity
score y» predicts a score based on the similarity of two local 3D
graph inputs.

Let m is the mother and (d;, d2) are daughter pairs. For each
of theinputs of (m, d1 ) and (m, d2) the network of Fig. 9 predicts
overall graph similarity score y2 4, and ys g, respectively. The
cell division score can be expressed by

(y2,4, +v2,4)

5 v (D

Scoredgiy = wa¥aiv + (1 — wq)

where w, is a weighting factor for cell division which is set to
0.5. If the value of Scoregiy is higher than a threshold, then it is
reasonable to assume that cell division occurred.
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Fig. 12.

Three-dimensional shape and volume similarity prediction between mother and combined daughter cells. Both the point cloud of mother cell and

concatenated daughter cell pair is voxelized and subtracted. The subtracted result is trained by 3D convolutional model (C3D model). The training is guided by

Binary Cross Entropy (BCE) loss.

III. EXPERIMENTS AND RESULTS
A. Dataset

For the experiments, we have used a publicly available confo-
cal imaging-based plant cell dataset [4] consisting of six plants.
For each plant, on average, 20 time points data were provided
with a gap of four hours between two consecutive time points.
Each time point image stack has around 200 slices, and each
slice has the size 512 x 512 pixel. Two types of ground truth
are provided with this dataset. One is for segmentation, and
another is for tracking. In segmentation ground truth, instance
segmentation of each cell was given. The tracking ground truth
provides pairwise cell correspondence between two-time points.

B. Experimental Settings

Out of the available six plant data for cell tracking, four plants
have been used for training, one for validation, and one for
testing. We also engaged cross-validation to avoid bias. From
the recent 3D segmentation techniques such as spherical har-
monics [30], Cellpose3D [32], we have used Cellpose3D. The
spherical harmonics approach does not preserve the polygonal
shape of the cell, which makes this approach inappropriate for
detecting cell division. On the other hand, Cellpose3D preserves
the plant cell’s polygonal shape, making this approach suitable
for our work. The pre-trained model of Cellpose3D is publicly
available, and according to [32], experiments on segmentation
were done on the same dataset with the same data-split we have
used.

C. Results

We compare the tracking performance of our proposed
method with the method described in [22]. This method has used
watershed segmentation [29], which segments the cell border of
the plant cell. In our work, we have used Cellpose3D for segmen-
tation. While comparing with [22], we have used the cell borders
from the segmentation provided by Cellpose3D instead of using
noisy watershed segmentation to make a fair comparison. In

TABLE 1
PERFORMANCE COMPARISON ON DIFFERENT METHODS FOR CELL PAIR
MATCHING AND CELL DIVISION

Cell Pair Matching

Method | Reg. | Precision Recall FI1 Score
Chakraborty etal. [22] | 2D [33] 07645 08118  0.7874
Chakraborty et al. [22] | 3D (ours) 0.9209 0.8992 0.9099
DEGAST3D (Ours) 3D (ours) 0.9894 0.9588 0.9739
Cell Division
Method | Reg. | Precision Recall F1 Score
Chakraborty et al. [22] 2D [33] 0.9302 0.2857 0.4372
Chakraborty etal.[22] | 3D (ours) | 1.0000 03521  0.5208
DEGAST3D (Ours) 3D (ours) 0.9862 0.5059 0.6687

addition, the method described in [22] uses landmark-based 2D
registration [33], while we use 3D registration. Hence, we have
provided a comparative results for both 2D and 3D registration.

1) Performance of Cell Pair Matching: We compare our
novel method with [22] in Table I for pairwise cell matching. The
comparison includes both the landmark-based two-dimensional
registration [33] and proposed three-dimensional registration
technique. The evaluation indices are precision, recall and F1
score. From Table I,. We observe that proposed 3D registration
has improved the performance of the method described in [22]
compared to 2D registration. Overall, our method has secured
6.83%, 5.96%and, 6.40% improvement in terms of precision,
recall and F1 score, respectively when 3D registration is con-
sidered. Fig. 13 shows some visual results of cell pair matching
using our method.

2) Performance on Cell Division Detection: Table 1 shows
the comparison of performances of our novel method with [22]
for cell division. It is evident that our method outperforms
the [22] (2D registration) in all metrics. When 3D registration
is considered for [22], our method shows competitive results on
precision and shows 15.38% and 14.78% improvement in recall
and F1-score, respectively. Fig. 14 some visual results of cell
division using our method.
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(a) (b)

Fig. 13. (a) and (b) indicates the tracked cells of former and later time point,
respectively. The same colored cells of these figures indicate the matching cell
pairs.

Fig. 14. Coloured cells of (a) indicate the mother cells and colored cells
of (b) indicate the daughter cells. The arrow sign shows mother-daughter
correspondence.

TABLE II
PERFORMANCE COMPARISON ON DETERMINING LONG-TIME TRAJECTORY
ACCURACY
Method | Registration | Accuracy (%)
Chakraborty et al. [22] 2D [33] 47.96
Chakraborty etal. [22] | 3D (Ours) 58.29
DEGAST3D (Ours) 3D (Ours) 70.99

3) Performance on 3D Registration: Most of the previous
works [18], [22], [27] are based on two-dimensional registration
while we have proposed and and implemented a 3D registra-
tion method. In Table I, we compare the performance of 2D
registration [33] and our proposed 3D registration method for
the same tracking approach. Our 3D registration significantly
enhances the results of [22] in both cell pair matching and cell
division detection. Specifically, for cell pair matching, precision,
recall, and Fl-score improve by 15.64%, 8.74%, and 12.25%,
respectively. For cell division detection, precision, recall, and
Fl-score increase by 6.98%, 6.64%, and 8.36%, respectively.

4) Cell Lineage Generation: Inspired by [41], Xie et al. [27]
proposed a node chaining method for plant cell trajectories,
which we adopted for long-term lineage generation. Table II

TABLE III
PERFORMANCE COMPARISON ON DIFFERENT SEGMENTATION TECHNIQUES

Cell Pair Matching

Segmentation Method | Precision Recall F-1 Score
Cellpose3D [32] 0.9892 0.9588 0.9739
Spherical Harmonics (SH) [30] | 09611 09715  0.9663
Unet Watershed (UW) [31] 0.9358 09113 0.9234
Cell Division
Segmentation Method | Precision Recall F-1 Score
Cellpose3D [32] 0.9862 0.5059 0.6687
Spherical Harmonics (SH) [30] 1.0 0.0462 0.0882
Unet Watershed (UW) [31] 1.0 0.4125 0.5842

compares the accuracy of three methods for determining long-
term cell lineages. We note that dataset [4] does not provide
long-time lineages of all the cells. In the evaluation of long-time
tracks, we have only considered those cells which have ground
truth tracks of at least 16 hours. Accuracy, measured as the
percentage of experimental lineages matching ground truth,
shows our method outperforming the others by 23.03 % and
12.96 %, respectively.

D. Effects of Errors in Segmentation

The quality of segmentation can be judged in two aspects.
First, whether the segmentation technique can detect cells cor-
rectly, and second, whether the segmentation technique pre-
serves the shape of the cells. We used Cellpose3D [32] as a
3D segmentation method of plant cells. There are other 3D
segmentation techniques such as Spherical Harmonics (SH) [30]
and Unet Watershed (UW) [31]. The SH method, while avoiding
under-segmentation, fails to preserve cell shapes. In contrast,
UW is more effective at retaining cell shapes but suffers from
under-segmentation, leading to fewer detected cells compared
to the ground truth. Cellpose3D outperforms both SH and UW
in terms of cell detection and shape representation. Our method
focuses on two objectives: cell pair matching and cell division
detection. Cell pair matching only uses the centroids of the cells
in 3D, no shape information is utilized here. Conversely, cell
division detection is highly dependent on accurate cell shape
representation. As shown in Table III, SH segmentation exhibits
a massive performance drop in cell division detection (Recall
and F-1 Score) due to its failure in preserving cell shapes. SH
segmentation exhibits only a slight performance drop in cell
pair matching, as it is nearly as effective as Cellpose3D in
detecting cells. Meanwhile, UW outperforms SH in cell division
detection due to its shape-preserving characteristics but shows
the worst performance in cell pair matching because of under-
segmentation. Cellpose3D is efficient in both cell detection and
shape preservation and so it exhibits the best results for both
cell pair matching and cell division detection. In summary,
the performance of DEGAST3D improves with higher-quality
segmentation. While the algorithm remains robust in cell pair
matching even without shape preservation, accurate cell division
detection necessitates shape-preserving segmentation.
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TABLE IV
PERFORMANCE COMPARISON OF CELL PAIR MATCHING IN 2D SLICE TRACKING

Method | Precision Recall F-1 Score

Chakraborty etal. [22] | 09209  0.8992  0.9099

Liu etal. [18] 0.4461 0.5910 0.5085

Liu et al. [27] 0.3730 0.4789 0.4194

DEGAST3D (ours) 0.9461 0.9114 0.9285
TABLE V

EFFECT OF CHANGING THE NUMBER OF COLLECTIONS WITH NEIGHBORS (k)

Two-step Tracking

| One-step Tracking |
|

k| Prec. Recall F-1Sc. | Prec. Recall F-1Sc.
4 1 09801 09074 09423 | 09781 09567 0.9673
5| 09880 09130 09491 | 09804 09575 0.9688
6 | 09909 09219 09551 | 0.9894 09588 0.9739

E. Performance With 2D Single Slice-Based Tracking

Most of the previous works [18], [22], [27] consider 2D star
graph in order to perform cell pair matching. On the other hand
we consider 3D k-nearest neighbor connected graph for the same
purpose. In Table I'V we investigate how our algorithm performs
if we consider only 2D slices for cell pair matching without
considering any 3D structure. To be specific we want to evaluate
how does 2D k-nearest neighbor connected graph perform with
respect to 2D star graph based methods. We consider that all
the methods incorporate same registration method. We observe
from Table IV our approach outperforms all the other methods
in two-dimensional slice-by-slice cell matching. It indicates the
superiorty of proposed cell-matching approach over existing
approaches.

F. Ablation Study

The proposed cell pair matching method has two steps. In the
first step, we find pairwise cell matching using a deep neural net-
work. However, some cells are left unmatched in this step. In the
second step, we track those untracked cells using their relative
position with respect to the tracked cells. Clearly, in the second
step, no learning-based approach is involved. In our ablation
study, we show the comparison between one-step and two-step
tracking while changing different factors of tracking, such as
the number of connections to neighbors in graph formation, the
size of the region of interest, and the impact of modified loss
function during training.

1) Effect of Changing the Number of Connections With
Neighbors in Graph Formation: Given the centroids of n, num-
ber of cells, we form the graph by joining k nearest points among
themselves. In Table V, we show how the results of cell matching
change with different values of k. We note that the precision
value increases with the increase of k. Because an increase of k
means more information is used regarding the spatial orientation
of the nodes. Hence, cell matching accuracy increases with the
increase of k. In addition, while using one-step tracking, some
cells are left untracked. Some untracked cells can find their
matching pairs in two-step tracking. As a result, we observe
an increase in recall value in two-step tracking.

TABLE VI
EFFECT OF CHANGING THE NUMBER OF MATCHING CANDIDATES (12)

| One-step Tracking | Two-step Tracking
n | Precision Recall F1 | Precision Recall F1
5 0.9978 0.8887 0.9401 0.9937 09694 0.9814
10 0.9858 0.9058  0.9441 0.9819 09503 0.9658
20 0.9909 0.9219 0.9551 0.9894 09588 0.9739
TABLE VII
IMPACT OF INDIVIDUAL LOSS TERMS
| One-step Tracking | Two-step Tracking
Loss | Precision Recall | Precision Recall
Ly 0.9408 0.3605 0.8305 0.8819
Ly 0.9394 0.6928 0.9316 0.9132
Lpp + Lyg 0.9909 0.9219 0.9894 0.9588

2) Effect of Changing the Size of the Region of Interest: The
size of the region of interest is related to n, which indicates
how many candidate graphs are compared against the anchor
graph. Table VI shows when n increases, the precision value
decreases while the recall value increases in one-step tracking.
It is because when n is lower, the network learns to classify for
fewer classes, which is easier. Hence, the precision value gets
higher when alow value of n is used. On the other hand, with the
lower value of n, the region of interest does not always cover the
true matching cell. As a result, the number of unmatched cells
increases, lowering the recall value.

3) Effect of Individual Loss Terms: Two losses guided the
learning-based 3D graph matching. They are point-to-point
similarity supervision loss (Lpp) and overall graph similarity
supervision loss (Lg). In Table VII, we demonstrate the impor-
tance of both of the loss terms. If we train the network with
only one loss term, all metrics show lower values in one- and
two-step tracking. Hence, both of the loss terms are necessary
for effective cell tracking.

G. Scalability to Larger Dataset

Larger datasets can be addressed in two aspects: the increased
number of average cells per plant and the increased number of
time points. If the region of interest (ROI) is fixed, the running
time of the algorithm is linearly proportional to the number
of average cells per plant and time points. Additionally, if we
consider n number of cells in the ROI, the cell pair matching
and cell division detection have time complexity of O(n) and
O(n?), respectively. However, our efficient 3D registration,
combined with the densely packed nature of plant cells, enables
the selection of a small ROI rather than processing the entire
stack. Consequently, a small value of n is sufficient for cell pair
matching and detecting cell division. Hence, it is possible of
scale our approach to larger datasets keeping the size of ROI (n
cells) unchanged.

IV. CONCLUSION

This paper proposes a novel learning-based method to
automatically track plant cells in any three-dimensional,
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unregistered condition. Unlike the state-of-the-art methods
where tracking was done by two-dimensional graph matching,
our proposed method constructs a three-dimensional graph
that extracts the tight spatial features in a more sophisticated
way, taking cell growth and deformity into consideration. The
method also introduces a unique learning-based cell division
detection algorithm, utilizing volumetric and structural data for
improved accuracy. Additionally, the proposed 3D registration
method can be applied to any computational biology related
application. DEGAST3D’s robustness against segmentation
quality to track cells, scalability to larger datasets, and ability
to handle 3D unregistered conditions make it a versatile tool
for computational biology, particularly in scenarios involving
tightly packed cell structures.
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