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Abstract—In this article, we introduce the notion of safe
predefined-time stability and address an optimal safe predefined-
time stabilization problem. In particular, safe predefined-time
stability characterizes parameter-dependent nonlinear dynamical
systems whose trajectories starting in a given set of admissible
states remain in the set of admissible states for all time and con-
verge to an equilibrium point in a predefined time. Furthermore,
we provide a Lyapunov theorem establishing sufficient conditions
for safe predefined-time stability. We address the optimal safe
predefined-time stabilization problem by synthesizing feedback
controllers that guarantee closed-loop system safe predefined-
time stability while optimizing a given performance measure.
Specifically, safe predefined-time stability of the closed-loop
system is guaranteed via a Lyapunov function satisfying a differ-
ential inequality while simultaneously serving as a solution to the
steady-state Hamilton-Jacobi-Bellman (HJB) equation ensuring
optimality. Given that the HJB equation is generally difficult
to solve, we develop a physics-informed machine learning-based
algorithm for learning the safely predefined-time stabilizing
solution to the steady-state HJB equation. Several simulation
results are provided to demonstrate the efficacy of the proposed
approach.

Index Terms—Optimal feedback control, physics-informed
neural networks (PINNs), predefined-time stability, safety-critical
control.

I. INTRODUCTION

N CONTROL systems engineering, the term autonomy
concerns controlled systems that can function without
involving a supervisor [1]. Systems featuring this property
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are commonly referred to as intelligent autonomous systems
(IASs) including drones, humanoid robots, and self-driving
cars, to mention but a few examples. However, there have
been many reported cases wherein IASs have accidentally
crashed, demonstrating that IASs are safety-critical systems.
Consequently, ensuring safety becomes a necessity, leading
to the emergence of safe autonomy [2]. To enable safe
autonomy, the control systems community can leverage the
benefits of nonlinear [3] and optimal control theory [4] to
endow IASs with control mechanisms guaranteeing safety,
stability, and performance. To ensure the efficient and safe
operation of IASs in view of an uncertain and dynamic envi-
ronment, it is necessary for the decision-making mechanism
to generate optimal safe policies that allow for adaptability
in a predefined time rather than in an infinite or finite
time.

Optimal control theory deals with finding a control law
for a given dynamical system so that a user-prescribed cost
functional is optimized [4]. In the infinite horizon optimal
control problem, the notions of optimality and asymptotic
stability are intertwined [5]. Specifically, the optimal control
policy is a state feedback control law ensuring closed-loop
system asymptotic stability while minimizing a given cost
functional. The concept of asymptotic stability in dynamical
systems enables the convergence of system trajectories to a
Lyapunov stable equilibrium point over the infinite horizon
[3]. In contrast, the notion of finite-time stability allows the
convergence of the system solutions to a Lyapunov stable
equilibrium state in finite-time [6]. The problem of optimal
finite-time stabilization [7] merges the notions of finite-time
stability and optimality characterizing feedback controllers that
optimize a given cost functional while establishing finite-
time stability of the closed-loop system. A key limitation of
finite-time stability is that the settling-time function is not
necessarily uniformly upper-bounded, whereas the stronger
notion of fixed-time stability involves a uniformly upper-
bounded settling-time function, which implies the convergence
of the system trajectories to a finite-time stable equilibrium
point in a fixed-time [8], [9]. However, the upper bound of
the settling-time function may not necessarily be predefined.
Alternatively, the concept of predefined-time stability [10],
[11] involves fixed-time stable parameter-dependent dynamical
systems whose upper bound of the settling-time function can
be chosen via an appropriate selection of the system param-
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eters. The optimal predefined-time stabilization problem [12]
brings together the concepts of predefined-time stability and
optimality to synthesize feedback control laws guaranteeing
closed-loop system predefined-time stability while optimizing
a given cost functional. In light of the above, while the
aforementioned control architectures ensure optimality and
stability, safety is not a design consideration.

Safety-critical control theory involves the analysis and syn-
thesis of a controller for a safety-critical dynamical system
to ensure the satisfaction of safety specifications [13]. Safety
specifications can be expressed as forward invariance [3] of
a set of safe system states. Control barrier functions (CBF)
have been widely employed for ensuring the safety of a control
system by rendering a safe set forward invariant [14], [15],
[16]. Romdlony and Jayawardhana [17] proposed a control
method predicated on a control Lyapunov—Barrier function
(CLBF) that addresses the problem of asymptotic stabiliza-
tion with guaranteed safety by merging a control Lyapunov
function (CLF) [18] and a CBF [14]. However, it is shown in
[19] that a CLBF cannot exist. Alternatively, quadratic pro-
gramming (QP) has been used to combine a CLF and a CBF
to construct controllers for safe asymptotic stabilization of
nonlinear systems [20], [21], [22]. However, CBF-based QPs
introduce undesirable asymptotically stable equilibria [23],
[24], do not optimize the closed-loop system performance,
and do not incorporate time constraints. To the best of our
knowledge, a control architecture that simultaneously ensures
safety, predefined-time stability, and optimality is absent from
the literature.

To derive the optimal control policy for an optimal sta-
bilization problem, one needs first to determine the optimal
cost function (value function), which is a stabilizing solution
to a nonlinear partial differential equation, the steady-state
Hamilton—Jacobi—Bellman (HJB) equation, which is generally
intractable aside from special cases [25]. Adaptive dynamic
programming (ADP) [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35] unifies optimal and adaptive [36] control by
designing adaptive learning algorithms to learn a solution
to the steady-state HJB online via data measured along the
system trajectories. Most adaptive learning algorithms [37],
[38] converge to a near-optimal control if a persistence of exci-
tation (PE) [36] condition is satisfied. Alternatively, concurrent
learning/experience replay-based ADP algorithms [39], [40]
enable the learning of a solution to an optimal stabilization
problem by requiring a weaker form of a PE condition to
be satisfied to compose a sufficiently rich dataset [41], [42],
[43]. Building on these results, safe experience replay-based
reinforcement learning architectures have been developed [44],
[45], [46], [47], [48], [49] assuming a sufficiently rich dataset
is given, for which, however, there are no sufficient con-
ditions guaranteeing its existence for a nonlinear dynamical
system [36].

Physics-informed neural networks (PINNs), initially intro-
duced in [50], showcase the capability of learning a solution
to the steady-state HIB equation associated with the optimal
asymptotic stabilization problem [51]. One challenge in apply-
ing PINNs for approximately solving the steady-state HIB
equation lies in the presence of multiple solutions. Fotiadis
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and Vamvoudakis [52] overcome this issue by proposing a
learning framework applying PINNS to a finite-horizon variant
of the steady-state HJB equation with a unique solution,
which uniformly approximates the infinite-horizon optimal
cost function as the horizon increases. Nevertheless, the
fact that the value function is a Lyapunov function and is
the unique asymptotically stabilizing solution to the steady-
state HIB equation is not considered in the aforementioned
learning frameworks. To the best of our knowledge, a physics-
informed learning architecture approximating the unique
stabilizing solution to the steady-state HIB is absent from the
literature.

Contributions: The contributions of the present article are
fourfold. First, the notion of safe predefined-time stability for
general parameter-dependent nonlinear dynamical systems is
introduced. Then, sufficient conditions for safe predefined-
time stability are given in terms of a Lyapunov function.
Subsequently, an optimal safe predefined-time stabilization
problem is addressed, and sufficient conditions for charac-
terizing an optimal nonlinear feedback controller ensuring
safe predefined-time stability of the closed-loop system are
provided. Finally, a physics-informed machine learning-based
algorithm is developed for learning the solution to the optimal
safe predefined-time stabilization problem.

Structure: The remainder of the article is structured as
follows. Section II defines the notion of safe predefined-time
stability for general parameter-dependent nonlinear dynamical
systems, whereas the optimal safe predefined-time stabilization
problem is stated in Section III. In Section IV, the optimal
and inverse optimal safe predefined-time stabilization problem
tailored to parameter-dependent nonlinear affine dynamical
systems is introduced. Section V develops a physics-informed
machine learning-based algorithm for learning the solution to
the optimal safe predefined-time stabilization problem. Sec-
tion VI presents two illustrative numerical examples. Finally,
Section VII provides conclusions and outlines future research
directions.

Notation: The notation used in this article is standard.
Specifically, |||, = [Z;’:I |x,-|”]1/p ,1 < p < o0, denotes the £7-
norm of a vector. We interchangeably use the notation V’(x)
and V,(x) to denote the gradient of a scalar-valued function V
with respect to a vector-valued variable x, which is defined as a
row vector. The signum function sgn: R — {-1,0, 1} is defined
as sgn(x) = x/|x|,x # 0, and sgn(0) = 0. We define the gamma
function I'(:) as I'(x) = fooo e 't*"1dt, x > 0. The indicator func-
tion of a set A C R” is the function 14: R" — {0, 1} defined
by 14(x) 2 1,x€ A, and 14(x) = 0,x ¢ A. Let [-]7 = ||"sgn(-),
where || and sgn(:) operate componentwise and n > 0. The
distance of a point xop € R” to a closed set C C R” in the
norm ||| is defined as dist(xy, C) £ infyec{|[Xo — x||}. Finally,
the notation S denotes the boundary of the set S.

II. SAFE PREDEFINED-TIME STABILITY

In this section, we define the notion of safe predefined-time
stability to characterize a class of nonlinear dynamical systems
with the property that every trajectory starting in a given set
of admissible states containing an equilibrium point remains
in the set of admissible states for all time and converges to the
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equilibrium point in a predefined time. Moreover, we provide
sufficient conditions for safe predefined-time stability in terms
of a Lyapunov function.

To define the notions of finite- and fixed-time stability, con-
sider the parameter-independent nonlinear dynamical system
given by

i) = f(x(1)),

where x(f) € D € R",t > 0, is a system state vector, D is
an open set with 0 € D, f: D — R”" is continuous on D and
satisfies f(0) = 0.

Definition 1 [6]: The equilibrium point x, = 0 of (1)
is finite-time stable if it is Lyapunov stable and finite-time
convergent, i.e., for all x(0) € A'\{0}, where N/ C D is an open
neighborhood of the origin, lim,_,7(y Xx(¢) = 0, where T'(-) is
the settling-time function such that 7'(x(0)) < oo, x(0) € N.
The equilibrium point x, = 0 of (1) is globally finite-time
stable if it is finite-time stable with A" = D = R". O

Definition 2 [9]: The equilibrium point x, = 0 of (1) is
fixed-time stable if it is finite-time stable and the settling-time
function 7'(-) is uniformly bounded, i.e., there exists Tpx > 0
such that T(x(0)) £ Tmax, x(0) € N. The equilibrium point
X, = 0 of (1) is globally fixed-time stable if it is fixed-time
stable with ' = D = R". m]

The key difference between the notions of finite- and fixed-
time stability arises from the fact that in finite-time stability
the settling-time function is not necessarily uniformly upper-
bounded unlike fixed-time stability involving a uniformly
upper-bounded settling-time function.

Alternatively, to define the notion of predefined-time sta-
bility, consider the parameter-dependent nonlinear dynamical
system given by

x(1) = f(x(2),0),

x(0) =xp, t>0 (1)

x(0)=xp, t=0 2)

where for every t > 0, x(f) € D C R" is the system state vector,
D is an open set with 0 € D, 6 € R is a system parameter
vector, f: DxRN — R" is such that f(-,0) is continuous on
D for all @ € RN and £(0,-) = 0. We write s(z, xo,6),¢ > 0, to
denote the solution to (2) with initial condition xy and system
parameter 6.

Definition 3 [11]: The equilibrium point x, = 0 of (2)
is predefined-time stable with a predefined time 7, > 0 if
there exists a system parameter vector § € RY such that the
equilibrium point x, = 0 of (2) is fixed-time stable with the
settling-time function 7'(-, #) being uniformly bounded by T,
ie., T(x(0),0) < T,,x(0) € N. The equilibrium point x, = 0
of (2) is globally predefined-time stable with a predefined time
T, > 0if it is predefined stable with a predefined time 7, > 0
with N' =D =R", O

The key difference between the notions of fixed- and
predefined-time stability lies in the fact that in predefined-
time stability, the upper bound of the settling-time function is
defined a priori as an explicit function of the system parame-
ters. In contrast, the upper bound of the settling-time function
associated with fixed-time stability is not necessarily prede-
fined. In essence, fixed-time stability concerns the stability of a
parameter-independent nonlinear system, whereas predefined-
time stability involves parameter-dependent nonlinear systems.

Lyapunov theorems for finite-, fixed-, and predefined-time
stability are given in [6], [9], and [11], respectively. However,
for completeness of exposition, the next theorem gives suffi-
cient conditions for predefined-time stability of the nonlinear
dynamical system given by (2).

Theorem 1 [11]: Consider the nonlinear dynamical system
(2). Let T, > 0 be a predefined time. Assume that there exist
a continuously differentiable function V: D — R, a system
parameter vector @ € R, a neighborhood A/ C D of the origin,
and real numbers «a, S, p, g, r > 0 such that pr < 1,gr > 1, and

V() =0
V(x) >0, xeN\{0}
V() f(x,0) < —Tl @VP(x) +BVI)Y . xeN
P

where

Y

L=rp rq=1 17
() (a)w”

aT(r)(g-p \B

Then, the equilibrium point x, = 0 of (2) is predefined-time
stable with predefined time T,. If, in addition, D = N =
R" and V(:) is radially unbounded, then the equilibrium point
X, = 0 of (2) is globally predefined-time stable with predefined
time T,.

Remark 1: Note that the system parameter vector 6 € RV is
constant and implicitly depends on the predefined time 7,. O

A set of admissible states S C D is called a safe set
with respect to the parameter-dependent nonlinear dynamical
system (2) if there exists a system parameter € RN such
that, for every xy € S, the solution s(z, xp,6),t > 0, to (2)
satisfies dist(s(t, Xg,6),S) = 0. In other words, the set S is
safe if there exists a system parameter vector such that S is
positively invariant with respect to (2).

The following definition introduces the notion of safe
predefined-time stability.

Definition 4: Let S € D be a set of admissible states with
0 € S and let T, > 0 be a predefined time. The equilibrium
point x, = 0 of (2) is safely predefined-time stable with
predefined time 7', with respect to the set of admissible states
S if there exists a system parameter 6 € RY such that, for
every xo € S, the solution s(z,xg,0),t > 0, to (2) satisfies
dist(s(t, X, 6),S) = 0 and s(t, x9,0) =0 for all > T,. ]

Remark 2: Note that safe predefined-time stability unifies
safety and predefined-time stability since positive invariance
of the set of admissible states and predefined-time stability of
the origin are simultaneously established. Furthermore, note
that the system parameter vector 6 implicitly depends on the
predefined time 7, and the set of admissible states S. O

The following key lemma is needed for the main result of
this section. First, however, we give the definition of a coercive
function.

Definition 5 [53]: Let S € R"” be an unbounded set.
A function V : § — R is called coercive if, for every
sequence {xz},>, in S such that limy_, [|x:|l = oo, we have
limk_m V(xk) = 0. O
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Lemma 1: Let S € D be a set of admissible states. Suppose
that there exists a continuous function V : § — R such that

V0)=0 3)
V(x) >0, xe8\{0} 4)
V(x) = o0 as x = IS. 4)

If either S is bounded or both S is unbounded and V() is
coercive, then the set S, = {x € S : V(x) < ¢} is compact and
is contained in S for all ¢ > 0.

Proof: First, suppose that S is bounded. Note that, for all
¢ >0, S. is compact if it is closed and bounded. By continuity
of V(-), S, is closed for all ¢ > 0. Furthermore, S, is bounded
for all ¢ > O since S is bounded and S, is a subset of S.
Hence, S, is compact for all ¢ > 0.

Next, suppose that S is unbounded and V(-) is coercive.
Using an identical argument as above, it can be shown that S,
is closed for all ¢ > 0. Now, to show boundedness, suppose, ad
absurdum, that there exists ¢* > 0 such that S« is unbounded,
which implies that there exists x* € S.» such that ||x*|| — oo
and V(x*) < ¢*, which leads to a contradiction. Hence, S, is
bounded for all ¢ > 0, which implies that S, is compact. =

The next theorem gives sufficient conditions for safe
predefined-time stability of a parameter-dependent nonlinear
dynamical system.

Theorem 2: Consider the parameter-dependent nonlinear
dynamical system (2). Let S € D be a set of admissible
states with 0 € S and let T, > 0 be a predefined time.
Assume that there exist a continuously differentiable function
V : 8§ — R, a system parameter vector 6 € RV, and real
numbers «a, S, p,q,r > 0 such that pr < 1,gr > 1, and

V(©0)=0 (6)
V(x) >0, xe8\{0} (7)
V(x) = o0 as x — dS 3

V'(x)f(x,9>s—Tlmvpu)qu(x))’, xeS 9
p

where

r (ﬂ) r (rq—l) 1-rp
R q-p q-p a\ rr
yE———t— (—) . (10)
aT(rg-p \B
If either S is bounded or both & is unbounded and V(-) is
coercive, then the equilibrium point x, = 0 of (2) is safely
predefined-time stable with predefined time 7, with respect to
the set of admissible states S.
Proof: Let xy € S and let x(7),¢ > 0, be the solution to (2).

Let ¢y, > 0 be such that V(xp) < ¢y, and define

Se,, EXeS V) <cyf- (11)

Note that S, contains 0 and xo by definition and is a compact
subset of S by Lemma 1. Furthermore, it follows from (9) that
V(x) <0 for all x € S, , which implies that V(x(1)) < V(xo) <
¢y, for all ¢+ > 0, and hence, dist(x(t), Scxo) = 0, which shows
that S, is a compact positively invariant set with respect to
(2). Thus, it follows that for every xy € S, there exists a
compact positively invariant set S;, C S given by (11), which
implies that S is a positively invariant set with respect to (2).

Finally, Theorem 1, (6), (7), and (9) imply predefined-time
stability of the equilibrium point x, = 0 of (2), which along
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with the positive invariance of S, implies safe predefined-time
stability of the equilibrium point x, = 0 of (2). |

A continuously differentiable function V() satisfying
(6)—(8) is called a safely predefined-time stabilizing Lyapunov
function candidate for the nonlinear dynamical system (2). If,
additionally, V() satisfies (9), V(:) is called a safely predefined-
time stabilizing Lyapunov function for the nonlinear dynamical
system (2).

Remark 3: Theorem 2 examines safe predefined-time stabil-
ity for the nonlinear dynamical system (2) without knowledge
of the system trajectories. O

III. OPTIMAL SAFE PREDEFINED-TIME STABILIZATION

In this section, we address the problem of characterizing
optimal feedback controllers that render the equilibrium point
of the closed-loop system safely predefined-time stable while
optimizing the closed-loop system performance. Specifically,
we provide sufficient conditions for nonlinear system optimal
safe predefined-time stabilization.

Consider the controlled parameter-dependent nonlinear
dynamical system given by

x(t) = F(x(1), 05, u(t)), x(0)=xp, t =0 (12)

where for every t+ > 0, x(r) € D C R” is the state vector,
D is an open set with 0 € D, 6, € RN is the system
parameter vector, u(t) € U C R™ is the control input with
0 € U, F: DxR¥sxU — R”" is such that F(-,6,,) is jointly
continuous on DxU for all §, € RY and F(0,-,0) = 0.
The control u(-) in (12) belongs to the class of admissible
controls U = {u : [0,00) — U : u(-) is Lebesgue measurable}.
We assume that the required properties for the existence and
uniqueness of solutions to (12) are satisfied, and we write
s(t, xo, 05, u(+)),t > 0, to denote the solution to (12) with initial
condition x(, system parameter 6, and admissible control u(-).

A mapping u*: SxR¥ — U such that u*(-,6.) is a
Lebesgue measurable function on S for every control param-
eter vector 6. € RY and u*(0,-) = 0 is called a control
law. Moreover, If u(t) = u*(x(7),0.),t > 0, where u*(-,-) is
a control law and x(¢) is a solution to (12), then we call
u(-) a feedback control law. Note that a feedback control law
is an admissible control since u*(-,-) takes values in U and
is Lebesgue measurable. Given a control law u*(-,-) and a
feedback control law u(z) = u*(x(¢),6.),t > 0, the closed-loop
system is given by

X(1) = F (x(0), 05, u* (x(1),6,)) ,

which can be cast in the form of (2) with N = N, + N,
6 =[6L,011", and f(x,6) = F(x, 0, u*(x,6,)).

We now define the notion of a safely predefined-time
stabilizing feedback control law.

Definition 6: Consider the controlled parameter-dependent
nonlinear dynamical system given by (12). Let S ¢ D be
a set of admissible states with 0 € S and let 7, > 0 be a
predefined time. The feedback control law u(-) = u*(x(-),6,)
is safely predefined-time stabilizing if there exists a system
parameter 6, € R such that the equilibrium point x, = 0 of
the closed-loop system (13) is safely predefined-time stable

x(0)=xp, 120  (13)
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with predefined time 7', with respect to the set of admissible
states S. O

Given a set of admissible states S ¢ D with 0 € S and a
predefined time 7, > 0, we define for every xy € S the set
of safely predefined-time stabilizing feedback controllers by
F(x0,8,Tp) = {u : [0,00) — U : u(-) is a feedback control
law and s(t, xg, 05, u(-)),t > 0, is a solution to (12) satisfying
dist(s(t, Xg, s, u(+)),S) = 0 and s(t, xg, O, u(-)) = 0 for all ¢ >
T,}cU.

To assess the performance of the controlled parameter-
dependent nonlinear dynamical system (12) over the time
interval [0,7,] for a given predefined time 7, > 0 and a
set of admissible states S with 0 € S, we define for every
X0 €8,6, € RY, and u(-) € U the cost functional

TP
J (x0, 05, u()) = [ L(x(), u(r))dt (14)
0

where L: SxU — R is jointly continuous in x and u.
In light of the above, we now state the optimal safe
predefined-time stabilization problem.

Problem 1: Consider the controlled parameter-dependent
nonlinear dynamical system given by (12) with the cost
functional (14). Let S € D be a set of admissible states with
0 €S and let T, > 0 be a predefined time. For every xy € S,
let F(x0,S,T,) C U be the set of safely predefined-time sta-
bilizing feedback controllers and suppose that F(xg,S,T)) is
nonempty. Then, for every initial condition xy € S, determine
u*(-) € F(xp,S,T,) such that the equilibrium point x, = 0 of
the closed-loop system (13) is safely predefined-time stable
with predefined time 7, with respect to the set of admissible
states S and the cost functional (14) is minimized. m]

The optimal safe predefined-time stabilization problem
involves the minimization

min  J(x,05,u(-)), x€S

u(-)e]—'(xo,S,T,,)
subject to (12).

In the sequel, we present a theorem providing sufficient con-
ditions for the existence of a safely predefined-time stabilizing
feedback control law solving the optimal safe predefined-time
stabilization problem. For the statement of this result, we need
to define the Hamiltonian function

H(x,0,u, 1) = L(x,u) + A" F(x, 65, u)

(x,05,u,2) € S x RV x U x R™, (15)

Theorem 3: Consider the controlled parameter-dependent
nonlinear dynamical system given by (12) with the cost
functional (14). Let S ¢ D be a set of admissible states
with 0 € S and let T, > 0 be a predefined time. For
every xo € S, let F(x0,S,T,) C U be the set of safely
predefined-time stabilizing feedback controllers and suppose
that F(xo,S,T,) is nonempty. Assume that there exist a
continuously differentiable function V: S — R, a system
parameter vector 6; € R, real numbers «, B.p,q,r > 0 such
that pr < 1 and gr > 1, and a control law u*: SxRM — U
such that

H(x,0,u* (x,0),VT(x) =0, xeS8 (16)

H (x, 05, u, V'T (x)) >0, (x,u)eSxU 17
w*(0,6,) = 0 (18)

V(0) = 0 (19)

V(x)>0, xeS\{0} (20)

V(x) > 00, as x— 9IS 20

V/(OF (5,00 (x,0,)) < =2 (@V?(x) + V()
p
xeS (22

where

Y

(&) () (0) =
aT(r)(g-p) \B '

If either S is bounded or both S is unbounded and V() is
coercive, then with the feedback control u(-) = u*(x(-),6.),
the equilibrium point x, = 0 of (12) is safely predefined-
time stable with predefined time 7, with respect to the set
of admissible states S, and

J (x0, 8, ™ (x(-), 6:)) = V(x0),

Furthermore, if xy € S, then the feedback control u(-) =
u*(x(+), 6.) minimizes J(xo, 05, u(-)) in the sense that

J (X(), 03" M* (x () ’ GL‘)) = J (.X(), gs’ u(')) .

xp €S. (23)

min

24
u()eF (x0,S.T)) @4)

Proof: Safe predefined-time-time stability follows from
(19)—(22) using Theorem 2.

Next, to show optimality, let xo € S, let u(-) = u*(x(-), 6,),
and let x(r) = s(z, xo, 05, u*(x(+), 6,)), t > 0, be the solution to
(12). Then, since safe predefined-time stability of (13) implies
x(t) € S,t > 0, and the time derivative of V(-) along the
trajectories of the closed-loop system (13) is defined by

V(x() £ V' (x())F (x (1), 05, u* (x(1),6,)),

it follows from (16) that

t>0

H(x(2), 05, u* (x(2), 60,), VT (x(2)))
=L (x, u* (x(@), 9c)) + V(x(1))

=0, x(nesS, t>0. (25)

Now, integrating (25) over the time interval [0, 7,] and using
the definition of the cost functional (14) yields

J (%0, 05, u™(x(-), 60)) + V(x(T)) = V (x0)

which, since V(x(T,)) = 0 using (19) along with safe
predefined-time stability of (13), implies (23).

Next, let xp € S, let u(-) € F(xo,S,Tp), and let x(¢) =
s(t, xg, 05, u(-)), t > 0, be the solution to (12). Then, since u(-) €
F(x0,S,Tp) implies x(¢) € S,t > 0, and

V(x(0) £ V' (x()F (x (1), 05, u (x (1)),
it follows from (17) that

H(x(t), 0, u(x(t)), VT (x(2))) = L(x(t), u(x(t))) + V(x(1)
>0, x(nesS, t>0.

t>0

(26)
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Now, integrating (26) over [0,7,] and using (14), (19), and
(23), along with the fact that u(-) € F(xo,S,T,), we obtain

J (x0, 65, u(-)) 2 V (xo)
= J (XO, 6S7 M*(.x('), 9()))

which yields (24). [

It is important to note that Theorem 3 examines optimal
safe predefined-time stabilization for the controlled parameter-
dependent nonlinear system (12) with the cost functional (14)
without knowledge of the system trajectories, unlike QP-based
methods being system trajectory dependent.

Remark 4: The following observations provide insights into
the optimal safe predefined-time stabilization problem.

1) Equation (16) is the steady-state HJB equation for
the controlled parameter-dependent nonlinear dynamical
system (12) with the cost functional (14). Furthermore,
note that (16) and (17) imply

min [H(x, 05, u, V'(x)] =0, x€S8
uelU

which is an alternative expression for the steady-state
HIB equation (16).

2) Equation (24) asserts that the safely predefined-time
stabilizing feedback control law u*(x(-), ) is optimal
with respect to the set of safely predefined-time stabi-
lizing feedback controllers F(xo,S,T,) for all xyp € S.
However, an explicit description of F(xp,S,T),) is not
required.

3) Conditions (19)—(22) ensure safe predefined-time stabil-
ity, whereas conditions (16) and (17) establish optimality
over the set of admissible control values U. The
optimal safely predefined-time stabilizing control law
u*(x,6.) minimizes the Hamiltonian function (15) for
every x € S with respect to U, that is, u*(x,6.) =

argmin H(x,6,,u, V'T(x)), and hence, it follows that
uelU
u*(x,0.) is optimal regardless of the initial condition

X0-

4) Equation (23) shows that the safely predefined-time
stabilizing Lyapunov function V(-) for the closed-loop
system (13) serves as a value function.

5) As shown by [6], the zero solution x(¢) = 0 to (12) can be
extended over the entire infinite time interval, allowing
us to assess the system performance over the infinite
horizon even though our optimal feedback control prob-
lem exhibits predefined-time stability properties. Hence,
it follows that L(x(t), u*(x(?),6.)) = 0,¢ > T,, which in
turn implies

T/,
/ L(x(1), u* (x(1), 6,))dt
0

= / ) L(x(t), u* (x(1), 0.))dt.
0

6) Although an explicit expression for the settling-time
function 7'(-, -) cannot be provided, safe predefined-time
stability ensures that there exists a parameter vector
6 € RN such that the settling-time function T'(-,6) is
uniformly bounded by T, that is, sup, s T'(x0,0) < T),.
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7) The system parameter vector 6, € R"s and the control
parameter vector . € RM implicitly depend on the
predefined time 7', and the set of admissible states S.0

IV. OPTIMAL AND INVERSE OPTIMAL SAFE
PREDEFINED-TIME STABILIZATION FOR NONLINEAR
AFFINE SYSTEMS

In this section, we specialize the results of Section III to
parameter-dependent nonlinear affine dynamical systems of the
form

x(1) = f(x(0),07) + G(x(1), Oc)u(t), x(0)=xp, 120

27

where for every t > 0, x(f) € R", u(t) € R, f: R"xRM — R"
is such that f(-,6;) is continuous on R" for all 6y € RV and
£(0,) =0, and G: R"xRNe — R™™ is such that G(-, ) is
continuous on R” for all 65 € RV¢. Furthermore, we consider
running costs L(x, u) of the form

L(x,u) = Li(x) + Ly(X)u + u"R(x)u, (x,u) €S x R"

(28)

where Li: S —» R, [,: S —» R and R: S — R"™ " are
continuous on &, and R(x) > 0,x € S. In this case, the cost
functional (14) with 6, = [6T,6%]T becomes

T,
J (30,00 4()) = / (L (x(0) + Lo (O)u(t)
0

+ " OREOu@)) dr. (29)

Next, we specialize Theorem 3 to parameter-dependent
nonlinear affine dynamical systems (27) with the cost
functional (29).

Corollary 1: Consider the parameter-dependent nonlinear
affine dynamical system (27) with cost functional (29). Let S C
R”" be a set of admissible states with 0 € S and let T}, > 0 be a
predefined time. For every xo € S, let F(xo,S,T,) C U be the
set of safely predefined-time stabilizing feedback controllers
and suppose that F(xo, S, T,) is nonempty. Assume that there
exist a continuously differentiable function V: § — R, system
parameter vectors 6, € R" and 6; € RY¢, and real numbers
a,f, p,q,r > 0 such that pr < 1,gr > 1, and

1
Li(x) + V() f(x, 0f) = 1 (V' (0G(x,06) + Lo(x))

R ) (V(0G(x,06) + L) =0, xeS  (30)
Ly(0)=0 (31)
V(0)=0 (32)
V(x) >0, xeS\{0} (33)
V(x) = o0 as x — IS (34)
1
V'(x) (f(x, 0p) - 5G(x, )R~ (x)L3 (x)

- %G(x, 06)R™ ()G (x, HG)V’T(x))

< —Tl @VP(x) + BVI(0), x€S (35)

P
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where

LT@&H)r(sE) (2) =
7T TaTg-p \B)
If either S is bounded or both S is unbounded and V() is
coercive, then there exists a control parameter vector 6, € RNe
such that with the feedback control

u(t) = u*(x(1),60.)

1 -1 ’ T
= — R (x(0) (La(x(0) + V' (x(1))G(x(1), 65))

2
x(HeS, >0 (36)
the equilibrium point x, = 0 of
(1) = f(x(0),0p) + G(x(1), O)u™ (x(t), 0c)
x(0) = xg, t >0 37

is safely predefined-time stable with predefined time 7, with
respect to the set of admissible states S, (23) holds, and the
cost functional (29) is minimized in the sense of (24).

Proof: The proof follows directly from Theorem 3 with D =
R", U =R", 0, = [6},05]", F(x,65,u) = f(x,0f) + G(x,0c)u,
and L(x,u) = Ly(x) + Ly(x)u + u"R(x)u. In particular, the
Hamiltonian function becomes

H (x,05,u, V" (x)) = Li(x) + Ly(x)u + u" R(x)u
+ V(%) (f(x,0f) + G(x,06)u)

(x,0,,u) €S x RM x R™ (38)

which, using (16), yields
H (x, O, u, VT (x))
= H (x,05,u, V'" (x)) = H (x, 05, 0" (x,6.), V' (%))

L(x,u) + V'(x) (f(x, 0r) + G(x, HG)u)
-L (x, u* (x, 0(‘))
- V'(x) (f(x, 0r) + G(x, O u™ (x, 96))
(Lz(x) + V'(x)G(x, GG)) (u —u*(x, 9C))

+ u"R(x)u — u*T(x, 6.)R(x)u* (x, 6,)

and hence, using (36), we obtain
H (x, O, u, V'T (x))
= 22u*T(x,6,)R(x) (u —u*(x, 96))
+ u"R()u — u*T(x,0,)R(x)u*(x,6,)
= (1= u*(x,0.) RO (10— u*(x,6.)) .
Now, since R(x) > 0, x € S, it follows that

H(x,0,,u,VT(x)) = (u —u*(x, 66.)T R(x) (u —u*(x, 05))
>0, (x,u)e S xR"

which implies (17).

Next, applying the stationarity condition to the Hamilto-
nian function (38), we obtain the feedback control law (36)
as a global minimizer of the Hamiltonian function since
H(x, 6, u, V'T(x)) is convex in u for every x € S. Furthermore,
since V(-) is continuously differentiable and x = 0 is a local
minimum of V(-), we have V’(0) = 0, and hence, it follows
from (31) and (36) that u*(0,6.) = 0, which verifies (18).

Finally, (32)-(35) are equivalent to (19)—(22), respectively,

with u*(x, 8,) given by (36). The result now follows as a direct

consequence of Theorem 3. |
Remark 5: Using (16), note that L(x, «) can be written as

L(x,u) = L(x,u) — H(x,0,,u*(x,6,), V’T(x))
= Lo(x) (u — u*(x,6,))
+ u"R()u — u*T(x, 6.)R(x)u*(x,6,)
= V'(x) (f(x, 05) + G(x, 06)u*(x,6,.))
(x,u) e S xR™

which, with u*(x, 6,.) given by (36), can be rewritten as
1o T !
Lx,u)={u+ ER (x)Ly(x) ) R(x)
1
. (u + ER_l(x)Lg(x))

- VWG )R (WG, 60V ()
- V'(x) (f(x,0y) + G(x,06)u* (x,6,))

(x,u) e S x R™.
Since  R(x) > 0,x € S, and V(x) =
V/(x) (f(x.0p) + G(x,06)u*(x,60:)) < 0,x € S, by (35),
we have

T
(u + %Rl(x)Lg(x)) R(x) (u + %RI(X)LE(X))

= V'(x) (f(x,0)) + G(x,06)u* (x,6,)) = 0
(x,u) e S x R"

and hence, it follows that

L(x,u) > —%V’(x)G(x, )R ()G (x,05)V' T (x)
(x,u) e S xR™

which shows that L(x,u) may be negative since

- %V’(x)G(x, )R ()G T (x,0)V'T(x) <0
(x,u) e S x R™.

Consequently, there may exist an admissible control input
u(-) € U for which the cost functional J(xo, €;, u(+)) is negative.
However, if the control law u(:) is a safely predefined-time
stabilizing feedback controller, i.e., u(-) € F(xo, S, T)), then it
follows from (23) and (24) that
](XO, 9&9 M()) > V(X()) > 09
u(-) € F (%0, S, T,).

Moreover, if u(-) = u*(x(-), 6,), it follows from (16) that

L(x,u*(x,6.) = =V'(x) (f(x, 05) + G(x, 06)u™ (x, 9c))
>0, xed8.

X()ES

O

Next, to circumvent the complexity in solving the steady-
state HIB equation, we consider an inverse optimal feedback
control problem [54], [55], wherein we do not aim to minimize
a given cost functional, but instead, we parameterize a class
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of safely predefined-time stabilizing feedback control laws
that minimize a derived cost functional, thereby providing
flexibility in specifying the controller.

Corollary 2: Consider the parameter-dependent nonlinear
affine dynamical system (27) with cost functional (29). Let S C
R" be a set of admissible states with 0 € S and let T}, > 0 be a
predefined time. For every xo € S, let F(xy,S,T,) CU be the
set of safely predefined-time stabilizing feedback controllers
and suppose that F(xo,S,T,) is nonempty. Assume that there
exist a continuously differentiable function V : § — R, a
continuous function L, : S — R!*™_ a continuous positive-
definite matrix function R : & — R™*™ system parameter
vectors 6 € RV and 6 € RS, and real numbers .3, p, q,r >
0 such that pr < 1,qr > 1, and (31)—(35) hold. If either S is
bounded or both S is unbounded and V(-) is coercive, then
with the feedback control (36), the equilibrium point x, = 0
of (37) is safely predefined-time stable with predefined time
T, with respect to the set of admissible states S, (23) holds,
and the cost functional (29), with

Li(x) = u*"(x,0)R(X)u*(x,0.) = V() f(x,0;), x€S (39)
is minimized in the sense of (24).

Proof: The proof is similar to the proof of Corollary | and
thus is omitted. L]

Remark 6: The following observations are important.

1) The function L;(x) in the running cost (28) given by (39)
explicitly depends on the nonlinear system dynamics,
the Lyapunov function of the closed-loop system, and
the safely predefined-time stabilizing feedback control
law, wherein the coupling arises from the steady-state
HIJB equation (16).

2) The function L,(x) in the running cost (28) provides
flexibility in the design of the controller since L,(x) is
an arbitrary function of x € S subject to conditions (31)
and (35). m]

In light of the above observations, note that by varying
the parameters in the Lyapunov function and the running
cost, we can characterize a family of safely predefined-time
stabilizing feedback control laws that can satisfy closed-loop
system response requirements.

V. PINNS FOR OPTIMAL SAFETY-CRITICAL CONTROL

Unlike the inverse optimal control problem, whose value
function is known, the problem of the optimal safe predefined-
time stabilization amounts to solving the steady-state HJB
equation (30) subject to the constraints (32)—(35), which is, in
general, intractable aside from special cases. In this section,
we build on the results of [56] to develop a novel physics-
informed machine learning architecture for approximating the
safely predefined-time stabilizing solution of the steady-state
HIB equation.

To find the safely predefined-time stabilizing solution V(:)
to (30), a surrogate model V(-,w) is introduced as an approx-
imator using the universal approximation property of deep
neural networks for any continuously differentiable function
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[57], where w € RV denotes the trainable model parameters.
To enforce the constraints (32)—(34), we set

V(x,w) = h(Van(x, w)B(x), x€ S (40)

where h: R — (0, 0) is a user-defined continuously differen-
tiable function, Vyn: SXRY — R is a standard fully connected
neural network, and B: S — R is a user-defined continuously
differentiable function satisfying B(0) = 0, B(x) > 0,x €
S\{0}, and B(x) — o0 as x — dS. If S is unbounded, then
B(-) is additionally coercive.

Suppose M points {xi}f‘i , are randomly sampled in S. The
problem of learning the safely predefined-time stabilizing
solution V(-) to (30) can be cast as a constrained optimization
problem, which involves the minimization

min E(w) 41
weRN
subject to
Lw)y<0, i=1,....M (42)
where

M
Ew) 2 Y | Lixi) + Vilxi, w) f (xi, 0)

i=1

| N
7 (Vi(xi, w)G(x1,06) + La(x:))

R 2
R (Vo WG 00) + Law) | (43)

and
Liw) 2 Vi(xi,w)

1
: (f(x,-, 0p) = 5G(x; 06)R™" (x1)L3 (x;)
- 56 0R™ ()G (3, 00) VT x, w))

+ Tl (VP (xiw) + BV (i ) (44)
P

We now convert the constrained optimization problem
described by (41) and (42) into an unconstrained optimiza-
tion problem via the augmented Lagrangian method. Thus,
the optimization process is formulated as a K-step iterative
scheme, where the weights for constraints vary at each itera-
tion. Specifically, the optimization problem at the kth iteration
involves the minimization

min &E(w)
weRN

(45)

where

M
Ew) = Ew) + Z (/Jk—l ]l{[,(w)zo\/,l;;iPo}l,'Z(W) + /l;l{_lli(w))
i=1

with V being the or operator. The Lagrange multipliers y and
Ai are updated based on the rules

M = Ol

and . .
A = max {0, _; + 21 l; (W)}

where ¢ and g are hyperparameters that can be tuned, and

,,,,,
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L HJB Equation (30)
st constraints (32)-(35)

Sufficient conditions

{Ophma\ Safe Predefined-Time Stab\\izalion]

Fig. 1. PINN architecture for solving the optimal safe predefined-time
stabilization problem.

optimization problem (45) can be solved efficiently using
modern numerical optimization solvers, such as Adam [58]
and L-BFGS [59].

Assume that the minimizer wg is obtained after K iterations,
then, V(-,wk) represents the approximate value function.
The corresponding optimal controller (-, wg) can be found
by substituting the approximate value function V(-,wg) into
(36). A pseudocode describing the proposed physics-informed
machine learning optimal safety-critical control framework
is given in Algorithm 1, whose architecture is illustrated in
Fig. 1.

Algorithm 1 Training Procedure of Safe PINN
Hyperparameters: «,8,y,T,, p,q,r,0, 1o
Input: Training data points {x;}¥, € S
Output: Value function V(-,WK)

1: procedure

2 Ay—0for1<i<M

3. Initialize network parameters wy € RY
4: for k=1---K do

5: &« Ewi-r)

6 i1 '(Wk—l)

> (43)

> (44)
2 . ~

7: Ep — F3 + Z(ﬂk 11 {li=0v2; >0|l + /1;(_11,-)

i=1
Wy < arg min,, &

: Hie < Oftg-1 ' ~
10: Ay & max{0, 4, + 2up_1 L}
11: end for
12: end procedure

The next theorem shows the asymptotic convergence of
Algorithm 1.

Theorem 4: Let V: § — R be the unique stabilizing
solution of the steady-state HIB equation (30), which satisfies
the constraints (32)—(35). Furthermore, let V(-,wg) be the
approximate value function generated by Algorithm 1 after
K iterations. Then, as K — oo, V(-, wg) converges to V*(), an
approximation of V(-), and satisfies the constraints (32)—(35).

Proof: As K — oo, the sequence of solutions to the
unconstrained optimization problem (45) converges to the
solution \7*(~) of the constrained optimization problem (41)

and (42), which is an approximation of V(-). However, the
convergence analysis of Algorithm 1 is similar to that of the
standard augmented Lagrangian method (see [60] and [61]),
and is hence omitted. [

Remark 7: The criticality of enforcing stability condi-
tions (32)—(35) to avoid multiple solutions when solving
the optimal stabilization control problem using PINNSs has
not been considered. Our article fills this gap using the
augmented Lagrangian method that integrates the constraints
effectively. O

VI. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, we provide two illustrative numerical exam-
ples to demonstrate the proposed optimal safe predefined-time
control and physics-informed learning framework.

A. Abstract Dynamical System

Consider the nonlinear affine dynamical system given by

X1(t) = — tanh (x1 () x2(2)) x2(8) + w1 (1)
x1(0) =x19, >0 (46)
X2(t) = tanh (x; (1)x2(2)) x1(2) + ux(t),  x2(0) = xp9.  (47)

Note that (46) and (47) can be cast in the form of (27) with
n=2m=2x=[x;, x|, u=I{u,u]"

1, gf) _ |:—tanh (x1x2) XQi|

tanh (x;x2) x|
and G(X, QG) = 12.
To characterize the set of admissible states S, let s: RZ —» R
be a continuously differentiable function such that s(0) > 0 and
define

S {xeR*:s(x) >0} (48)

whose boundary is given by
oS = {x€R2 : s(x):O}.

Note that S is an open set with 0 € S defined as a zero-strict
superlevel set of s(-).

Next, given the set of admissible states S and a predefined
time 7', we use Corollary 2 to design an inverse optimal safely
predefined-time stabilizing control law u*(x, 8,). Specifically,
we consider both the case of a bounded and the case of an
unbounded set of admissible states.

1) Bounded Safe Set: Let s(x) = 1 — ||x||%,x € R2, and let
V(x) =||x||% /(2s(x)), x € S, be the value function, whereas the
terms composing the running cost (28) are given by

Li(x) = l [lx{% [ﬁn xeS8S
2|5 5T,
T
L - ( B rxV )
s ()

X3\ xT
_(]+s(x)) ) xeS

and R(x) =(1/2)I,x € S, where y; € (0,1) and y, > 1. Hence,
with 6. = [y1,y»]7, the inverse optimal controller is given by

u*(x,6,) = _( [ﬂ% +
s (x)

|—ny2

o , xe8&.
s (x)
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Fig. 2. Value function and optimal control in the case of the bounded
safe set. Exact value function V and exact optimal controller u* (left).
Approximate value function ¥ and approximate optimal controller & (middle).
The symmetric mean absolute error of learning the value function and optimal
control policy (right).

Furthermore, note that

. Ixl2
V(x) = —( nt oy

11

s 2 (x) s¢ (x)

yi+1 y2+1
g (R
Sz(x) s%(x) s%(x)

||x||71+1 v2+1
1 1
<— =3 +—-F—). res. @9

s 2 (x) snzﬁ (x)

+1
[l )

[l

Now, by the monotonicity property of {-norms [62], we
have ||xll, < |Ixl,,4+1 since 2 > ¥ + 1 > 0. Also, by
the equivalence of vector norms on R"” [62], it follows that
llxll, < 202~ D/CO2+D)|IxL .| since 2 <y, + 1, and hence, (49)
can be further bounded as
Vo< 2" v () —2vE (), xeS

which implies that (35) is satisfied with y = T,, a =
2R B =2.p = (1 + /2.9 = (4 1)/2, and r = 1,
and hence, by Corollary 2, the equilibrium point x, = 0 of the
closed-loop system is safely predefined-time stable.

Let T, = 3.4259 so that y; = 0.5 and y, = 1.5. For
our PINN (40), we set h(x) = e',x € R, and B(x) =
||x||%/(1 —||xllx),x € S. Furthermore, our PINN architecture
consists of a 6-layer fully connected neural network with 100
neurons in each hidden layer, using the hyperbolic tangent
activation function tanh(-). Note that we use the L-BFGS-B
optimizer to simultaneously minimize the loss function with
respect to all trainable parameters (see [59]).

Fig. 2 illustrates the approximate value function V and
the approximate optimal control & generated by Algorithm 1,
alongside the exact value function V and optimal controller
u* for comparison. To assess the performance of our learn-
ing algorithm, we define the symmetric mean absolute error
(SMAE) of learning the value function V and the optimal
controller u* as

M

o1
SMAE(V,V):M;

IV(x) = V)l

_—— (50)
[Vl + V(x|
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and
[lee* (x;) — @(x;)l |1

ll* (el + NGl

1 M
SMAE(u*, i) = — (51)

M5
Note that this metric is also referred to as symmetric mean
absolute percentage error (SMAPE) in the field of time series
modeling [63]. It can be seen that our learning architecture
achieves a low symmetric mean absolute error in S. The left
plot of Fig. 3 shows the controlled state trajectories, which
evolve within the safe set S and converge to the origin.
The right plot shows the predefined-time convergence of the
Euclidean norm of the controlled state trajectories, which
confirms the result 7(x(0),6,) < 3.4259, x(0) € S.
2) Unbounded Safe Set: Let s(x) =1 — x%,x € R?, and let
Vix) = ||x||§/(2s(x)),x € S, be the value function, while the
derived terms in the running cost (28) are given by

1 |'xJ71 |'xJ72
Li(x) = 2| ]
sT(x) sT ()|,
I1x13
+ tanh (x;x3) x;x2, x€8
s2(x)

T
7 7
Lz(x)=( o )
s (x) s (x)
_ 1(1+%) x| s
s(x) s(x) )7 s(x) |’

and R(x) =(1/2)I,x € S, where y; € (0,1) and y, > 1. Hence,
with 6. = [y}, 7>]7, the inverse optimal controller is given by

8 = ( T
s (x)

Moreover, we have

. Il
V(x) = —( ntl

[x)”

e , x€e8.
s (x)

+1
Il 1) )

1+l

1
s 2 (x) 2

s (x)

llx113 e g !
-3 2 tanh (x1x2) X1 X2 + e + =5
s2(x n= -
(x) s (x) s (x)
+1 v2+1
[EY[i% (B3]
i+l y2+1
<-|57—+—57— ] x€S (52)
s 2 (x) s 2 (x)

Now, as in the previous case, by the monotonicity property
of ¢{P-norms and by the equivalence of vector norms on R”, it
follows that (52) can be further bounded as

y1+! y1+!

y2+1
> V2 (x)=2V 2 (x), xeS8

V(ix) <=2

and hence, (35) is satisfied with y = T, @ = 201+D/2 g =
2,p = (n+1/2.qg = (y2+1)/2, and r = 1, which, by
Corollary 2, implies that the equilibrium point x, = 0 of the
closed-loop system is safely predefined-time stable.

We utilize identical values as in the previous case for the
parameters T, y;, and y,. Regarding our PINN (40), we set
h(x) = ¢*,x € R, and B(x) = [|X|3/(V2 - (2 + D'/?),x € S.
Moreover, our PINN has the same architecture as in the
previous case. Fig. 4 shows the estimated value function V
and the estimated optimal control # generated by Algorithm
1 versus the exact value function V and the exact optimal
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Fig. 3. Optimal safe predefined-time stabilization in the case of the bounded
safe set. Controlled state trajectories x(7),¢ > 0, starting from different initial
conditions in the safe set S, each marked with a unique color (left). The arrows
indicate the direction of time evolution for each trajectory. Time evolution of
the Euclidean norm of the controlled state trajectories |[x(#)|[>,¢ > 0, starting
from the same initial conditions in the safe set S as the trajectories shown
in the left plot (right). Note that trajectories starting from identical initial
conditions are marked with the same color in both plots to indicate their
correspondence.

Fig. 4. Value function and optimal control in the case of the unbounded
safe set. Exact value function V and exact optimal controller u* (left).
Approximate value function ¥V and approximate optimal controller # (middle).
The symmetric mean absolute error of learning the value function and optimal
control policy (right).

control u*. Note that our learning framework yields a low
symmetric mean absolute error within the training domain
(=1, 1)x[—40,40]. The left plot of Fig. 5 shows the evolution
of the controlled state trajectories within the safe set S and
the convergence to the origin, while the right plot of Fig.
5 shows the predefined-time convergence of the Euclidean
norm of the controlled state trajectories, which verifies that
T(x(0),6,) < 3.4259,x(0) € S.

B. Spacecraft Dynamical System

Unlike our first example involving an abstract dynamical
system, we now verify the efficacy of our framework on a
real-world dynamical system. Consider a spacecraft with one
axis of symmetry given by [64]

w1 (1) = Lawszwa (1) + u (1),
Wy (1) = —Izwsw (1) + us(1),

wi(0) =wy, 120 (53)

w1(0) = wyo (54)

where I3 = (I, — I3)/11, 1, I, and I3 represent the spacecraft
principal moments of inertia such that 0 < I} = I, < I3, w; :
[0,00) = R,w; :[0,00) = R, and w3 € R are the components
of the angular velocity vector with respect to a given inertial
reference frame expressed in a central body reference frame,

Fig. 5. Optimal safe predefined-time stabilization in the case of the unbounded
safe set. Controlled state trajectories x(7),7 > 0, starting from various initial
states within the safe set S, each marked with a unique color (left). The arrows
indicate the direction of time evolution for each trajectory. Time evolution of
the Euclidean norm of the controlled state trajectories |[x(#)|l>,¢ > 0, starting
from the same initial conditions in the safe set S as the trajectories shown
in the left plot (right). Note that trajectories starting from identical initial
conditions are marked with the same color in both plots to indicate their
correspondence.

and u; and u, denote the spacecraft control moments. The
dynamical system (53) and (54) can be cast in the form of
Q7)) withn=2,m=2,x=[w,w T, u = [u,u]"

hiwzw,
Jx.0p) = |:—123a)3a)] ]
and G(x, 9(;) = 12.

Next, we use Corollary 2 to synthesize an inverse optimal
safely predefined-time stabilizing control u*(x, 6,.) for a given
set of admissible states S (48) and a predefined time 7,. Let
s(x) = 2—||x||§—e”"”%, x € R?, and let V(x) :||x||§/(2s(x)), x €S,
be the value function. The terms of the running cost (28) are
given by

L=+ [ﬁm [xJn , xe8
2 s () s ()|,
Y1 Y2
Lo = |2 e
s (x) s (x)
I3 (1+¢48) ] o
T s 0

and R(x) =(1/2)I,x € S, where y; € (0,1) and y, > 1. Hence,
with 6. = [y1,v»]7, the inverse optimal controller is given by

|'xJ71

-1
snT(x)

|'ny2

-1
snT(x)

u*(x,0,) = — x€S.

Now, computing the time derivative of V(x) along the
trajectories of (53) and (54) yields

yi+1 Y1
Vo) = 12 e Bt
(x)=- 71+ v+l
s (x) s (%)
2 ||x||§) yi+1 72+
Bk (1 e™8) (gt et
s2(x) s s ()
+1 +1
W
< xeS
BN y2+1
s 2 (x) N (x)
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Fig. 6. Value function and optimal control for the optimal safe predefined-
time stabilization of spacecraft. Exact value function V and exact optimal
controller u* (left). Approximate value function V and approximate optimal
controller & (middle). The symmetric mean absolute error of learning the value
function and optimal control policy (right).
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Fig. 7. Optimal safe predefined-time stabilization of spacecraft. Controlled
state trajectories x(), ¢ > 0, starting from different initial conditions in the safe
set S, each marked with a unique color (left). The arrows indicate the direction
of time evolution for each trajectory. Time evolution of the Euclidean norm
of the controlled state trajectories ||x(¢)||2, t > 0, starting from the same initial
conditions in the safe set S as the trajectories shown in the left plot (right).
Note that trajectories starting from identical initial conditions are marked with
the same color in both plots to indicate their correspondence.

which, by the monotonicity property of £’-norms and by the
equivalence of vector norms on R”, can be further bounded as

y1+1 71
2

+1 ntt
V2 (x)=2V72 (x), x€8

V(ix) <=2

which, by Corollary 2, implies that the equilibrium point
X, = 0 of the closed-loop system is safely predefined-time
stable since (35) is satisfied with y = T, @ = 201 FTD/2 g =
2,p=m+1D/2,g=(2+1)/2,and r = 1.

We use identical values as in our first example for the
parameters T,, y;, and y,. For our PINN (40), we set
h(x) = €*,x € R, and B(x) = |IxI3/(k — [Ixll), x € S, where
k is the positive root of 2 — «* — ¢ = 0. Furthermore,
our PINN has the same architecture as in our first example.
Fig. 6 shows the approximate value function V and the
approximate optimal control # generated by Algorithm 1,
along with the exact value function V and the exact optimal
controller u*. Note that our learning architecture achieves a
low symmetric mean absolute error in S. The left plot of
Fig. 7 shows the evolution of the controlled state trajectories
within the safe set S, converging to the origin. The right
plot shows the predefined-time convergence of the Euclidean
norm of the controlled state trajectories, confirming the result
T(x(0),6,) < 3.4259,x(0) € S.
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Fig. 8. Benchmark comparison for optimal safe predefined-time stabilization
of a spacecraft using the physics-informed learning framework developed in
[50]. Note that the controlled state trajectories x(f), r > 0, starting from several
initial conditions in a neighborhood of the boundary of the safe set dS fail
to converge to the equilibrium point x, = 0. (a) Value function and optimal
control. (b) Controlled state trajectories.

Finally, we further demonstrate the efficacy of the proposed
approach by benchmarking our physics-informed learning
framework against [50], which does not incorporate the sta-
bility conditions (33)—(35). The results are shown in Fig. 8.
Stress that the controlled state trajectories starting from several
initial conditions in a neighborhood of the boundary of the
safe set dS fail to converge to the equilibrium point since
the value function and the optimal control are not effectively
approximated in the neighborhood of dS as shown in Fig. 8(a).

VII. CONCLUSION

In this article, the notion of safe predefined-time stability
is introduced characterizing parameter-dependent nonlinear
dynamical systems whose trajectories starting in a given set
of admissible states remain in the set of admissible states
for all time and converge to an equilibrium point in a
predefined time. Sufficient conditions for safe predefined-
time stability are presented in a Lyapunov theorem. An
optimal safe predefined-time stabilization problem is stated,
and sufficient conditions are provided characterizing an opti-
mal feedback controller that guarantees closed-loop system
safe predefined-time stability. Specifically, safe predefined-
time stability of the closed-loop system is guaranteed via
a Lyapunov function that simultaneously satisfies a certain
differential inequality and the steady-state HJB equation. In
light of the intractability of the latter, we developed a physics-
informed machine learning-based algorithm for learning the
safely predefined-time stabilizing solution to the steady-state
HJB equation. Future research will focus on developing
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reinforcement learning-based techniques to solve the optimal
safe predefined-time stabilization problem.
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