@ l EEE IEEE Open Journal of

=" CSS Control Systems

@

T

Received 28 January 2025; revised 18 April 2025; accepted 13 May 2025. Date of publication 22 May 2025;
date of current version 24 June 2025. Recommended by Senior Editor S. Martinez.

Digital Object Identifier 10.1109/0JCSYS.2025.3572375

Safe and Robust Binary Classification and
Fault Detection Using Reinforcement
Learning

JOSH NETTER
TIMOTHY F. WALSH

! (Graduate Student Member, IEEE), KYRIAKOS G. VAMVOUDAKIS
2, AND JAIDEEP RAY ©2

! (Senior Member, IEEE),

(Intersection of Machine Learning with Control)

! Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30334 USA
2Sandia National Laboratories, Albuquerque, NM 87123 USA

CORRESPONDING AUTHOR: JOSH NETTER (e-mail: jnetter6 @gatech.edu).

This work was supported in part by NSF under Grant CAREER CPS-1851588, Grant CPS-2038589, and Grant CPS-2227185, in part by NASA ULI under
Grant 80NSSC20MO0161, and in part by Sandia. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC (NTESS), a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear
Security Administration (DOE/NNSA) under Contract DE-NA0003525.

ABSTRACT

In this paper, we propose a learning-based method utilizing the Soft Actor-Critic (SAC)

algorithm to train a binary Support Vector Machine (SVM) classifier. This classifier is designed to identify
valid input spaces in high-dimensional, highly constrained systems while minimizing the total runtime of
offline simulations. The simulations adapt their runtime based on the likelihood that a given training input
will be informative to the classifier. Furthermore, we introduce a method for using the trained SAC model
to predict whether a desired system input is likely to violate constraints, along with a technique to adjust
the input as necessary. Additionally, we explore the potential of this model to detect faults or adversarial
attacks within the system. The effectiveness of our approach is demonstrated through various simulations of
challenging classification problems and a constrained quadrotor model.

INDEX TERMS Machine learning, reinforcement learning, robust control.

I. INTRODUCTION

Currently, much of the development of autonomous vehicles
has been driven by the potential of automating certain aspects
of flight, such as planning in urban air mobility (UAM) sce-
narios [1], aerodynamic control [2], and optimizing the design
process [3]. In each of these use cases, designers must ensure
that these autonomous aircraft are safe in a variety of rigorous
operating conditions [4]. However, finding the full extent of
safe operating conditions is often a significant challenge in the
design of these vehicles. When designing an aircraft, one must
first confirm its valid operating conditions through extensive
simulations dependent on a large variety of environmental
parameters, such as velocity, atmospheric pressure, angle of
attack, etc. Vehicles also often have many potential constraints
that must never be violated, such as exceeding certain loads or
temperatures on various components of the aircraft. This may

result in very complex sets of valid flight conditions that may
be non-convex or split into disjoint subsets, and dependent on
a high-dimensional input vector. Fortunately, many challenges
of engineering design can be simplified by constraining the
values of some quantities of interest (Qol), such as tempera-
ture or stress in a given component, below certain thresholds.
These thresholds form a boundary between the valid and in-
valid input space, known as decision boundary, and allow us
to formulate these design challenges as a binary “go/no-go”
classification problem. Even after simplifying the problem to
a binary classification task, training a classifier for a non-
convex or disconnected decision boundary may be difficult.
Many methods of learning classifiers that follow the current
decision boundary estimate [5], [6], [7] have been developed
to minimize the number of training points required to resolve
the decision boundary. However, if only high-fidelity models

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

172

VOLUME 4, 2025

IEEE

IEEE Open Journal of
&

= CSS Control Systems

(@

are used to generate training points, each additional input for
a simulation used to train the model consumes time, and more
complex simulations may take days or weeks to generate suf-
ficient training data. This forces designers to choose between
prohibitively long simulation runtimes or potentially resorting
to low-fidelity models with resulting inaccurate simulations
that increase the misclassification rate. Moreover, even if a
classifier is trained offline sufficiently to capture the entire
decision boundary, real-life conditions such as system noise,
hardware failures, or adversarial attacks can compromise its
accuracy.

In this work, we propose a method to intelligently identify
informative training points using reinforcement learning to se-
lect inputs, thereby quickly training a classifier to recognize a
complex valid input space with minimal prior information. In
addition, we use the learned actor-critic model together with
the trained classifier to assess the probability of constraint
violations, adjust inputs to ensure safety, and measure the
accuracy of the model in real time to determine if it has been
trained accurately or if the system has malfunctioned.

Related Work: First, we examine previous methods of
modeling physics-based systems. In [8], the authors pro-
pose physics-informed neural networks (PINNs), which have
proven effective at modeling problems constrained by laws
of physics defined with partial differential equations (PDEs),
or in discovering these PDEs. This approach was also suc-
cessfully applied in [9] and [10]. For our work, we do not
necessarily require precise Qol values but instead seek a
boundary where these Qols are likely to violate constraints.
PINNs may require too much data to effectively narrow down
the valid input space.

Spiking neural networks, as discussed in [11], [12], work
well with sparse data by transmitting information through
the “firing” of a subset of neurons at a time. However, this
approach is predominantly suitable for real-time input pro-
cessing and not for the offline training simulations considered
in significant portions of this work. Similar concerns apply to
neural networks governed by event-triggered synapses [13].

In [14], neural networks are not used to directly learn the
behavior of a system but to learn the kernel that determines
the structure of a Gaussian process. This somewhat mitigates
the shortcomings of Gaussian processes, which struggle with
modeling particularly erratic or less smooth functions.

We must also discuss methods of binary classification and
their effectiveness in dealing with irregular design spaces. For
example, Gaussian process classification and Bayesian classi-
fication [15], [16] are effective not only in generating a binary
classifier but also in providing a probability that the classifica-
tion is accurate. Support vector machines (SVMs) [17] were
also found to be very effective at classifying these systems
when provided with sufficient training data in our initial tests.
We also examine previous efforts on using learning to train
classifiers on the conditions of real systems. For example,
in [18], the authors successfully use finely tuned deep neural
networks to predict defects in materials with a small training
set. Semi-supervised learning has long been established for

VOLUME 4, 2025

classifying images [19], but more recent work shown in [20]
has combined this approach with physics-informed models to
classify the quality of center-less grinders. In [21], the authors
demonstrate that physics-informed neural networks combined
with a visual classifier can identify bearing fatigue. The au-
thors of [22] alternatively use a learning-based approach for
the classification with costly features (CwCF) problem. In
this work, classification is structured as a Markov decision
process (MDP) where acquiring each feature of an input has
an associated cost, and a Q-learning approach is used to decide
which features to acquire and when to classify the input. In
each of these works, neural networks are successfully used
as classifiers or as supplement classifiers of complex systems.
We seek to expand upon this work by intelligently selecting
informative points to train these networks and an SVM classi-
fier with as small a training set as possible. Previous methods
of intelligently sampling training points, or adaptive sampling,
are seen in [7], [23], [24].

We also refer to prior work on classification and reinforce-
ment learning of noisy systems, as even small amounts of
noise can significantly affect learned models [25]. In [26], the
authors address the issue of classification with noisy samples
by selectively removing outlying data points. In this work, we
do not remove outliers, but instead attempt to weigh the value
of training data relative to the likelihood that the classification
of the data point is incorrect. The authors of [27] utilize con-
text from neighboring data (in this case, pixels) to mitigate the
effects of misclassified pixels in photographs. However, this is
not suitable for our work as our training data is sufficiently
sparse that we cannot refer to the surrounding data points.
The paper [28] formulates a method of learning in noisy real
systems by using a surrogate reward function. In this work,
we also deal with noisy systems, particularly the noise that
is present in simulations of a system. However, our learning
approach instead reduces noise present in these simulations in
later stages of the learning at the cost of increasing simulation
runtime. We also learn with a soft learning approach, similar
to those seen in [29], [30], [31].

Contributions: The contribution of the present paper is
fivefold. First, we formulate the problem of identifying ideal
training inputs as an optimization problem with a cost function
to minimize. Second, we develop a reinforcement learning
method to find an optimal stochastic policy for a multi-armed
bandit problem. Third, we apply this approach to determine
the decision boundary of a binary classifier across the entire
design space without prior random sampling of the input space
to learn an initial estimate of the decision boundary, which
may increase total runtime. Fourth, we use these selected
inputs to train a binary classifier and compare the results
with other intelligent sampling methods. Finally, we extend
this approach by developing a method to use reinforcement
learning for selecting safe control inputs online and a method
to use our learned model to predict system malfunctions by
observing quantities of interest.

This paper expands upon our previously presented
work [32] in several aspects. First, we adapt our presented

173

NETTER ET AL.: SAFE AND ROBUST BINARY CLASSIFICATION AND FAULT DETECTION USING REINFORCEMENT LEARNING

soft actor/critic adaptive sampling algorithm to account for
potential noise in classifier training data. Second, we compare
this approach to additional methods of adaptive sampling such
as the Basudhar-Missoum algorithm [7]. Third, this work ex-
pands on potential uses of the trained actor/critic model by
examining the ability of the trained model to ensure the safety
of given control inputs online, as well as the ability of the
model to predict faults or adversarial attacks in the system.
Structure: The remainder of the paper is structured as
follows. In Section II, we will formulate the problem of se-
lecting effective inputs for training a go/no-go classifier. In
Section III we will formulate the learning-based approach to
selecting these inputs quickly and prove its effectiveness and
elaborate on our method for training a classifier with noisy
data in Section IV. In Section V we consider the uses of
our learned model in online control. Our complete algorithms
are detailed in Section VI, and in Section VII we test these
algorithms in a variety of simulations. In Section VIII we
conclude the paper and discuss possible future work.

Il. PROBLEM FORMULATION
Consider a system with dynamics Vr > 0,

x(t) = glx,u,t)

where x € R”, u € R are the state and control input vectors
of the system, respectively. For convenience, define a com-
bined state and control vector a = [xT uT]T that we refer to
as the input. Consider a function

y = f(a),

where the output y € R is some number p quantities of
interest (Qols) we choose to monitor. Each monitored Qol
vi, 1 € 1,..., pis constrained by a maximum allowed value
Ymax.i- For an input a to be valid,

fila) < Ymax,is Viel,...

where f; refers to the i-th value in the output vector. There
may additionally be minimum constraints ymiy ; that require
fi(a) = ymin.i, but these can be trivially transformed into max-
imum constraints by taking the negative of both f;(a) and

sp7

Ymin,i-

If any constraint is invalid, then the input is marked as
invalid. This is referred to as a “go/no-go” classification prob-
lem. For convenience, we express the total valid input space as
A" and the invalid input space as .A~. These two spaces can
be combined to form the complete input space .A. We assume
that AT, A~ # f, as otherwise the problem is trivial.

Problem 1: In this work, we seek to train a classifier for the
valid input space A" to accurately determine the valid inputs
of a system, and to ensure that the system remains inside these
boundaries in real-world scenarios. While this can often be
done by running an offline physics simulation for all values
a € A and determining which inputs result in violating the
constraints on the output Qols, these simulations are usually
very time-consuming to run. As a result, we seek to accurately
learn A* while also minimizing the amount of time spent

174

running simulations. To do so, we prioritize an approach that
both reduces the number of runs, and shortens the runtime of
each of these runs.

A. OFFLINE CLASSIFICATION TRAINING

To begin, we initially train the classifier offline to avoid any
risk of failure in a real-world system. To find the valid input
space, we first try to simplify the problem. Normalize each
output by defining

fi(a)

Ymax,i

f,-(a): ,Viel,...,p.

These normalized outputs allow us to succinctly describe the
valid input space A™ as the set of inputs such that

filay<1,Viel,...,m Yae A". (1)
The (1) can alternatively be written as,
(1-fi(@)=>0,Viel,...,p,Yaec A". 2)
Given (2), define a combined constrained output,
f@)= min {1-fi@). (3)

iel,...,

Use the combined constraints to finally define the valid input
space as the set of inputs such that

f(a) >0, Yae AT,

and conversely define the invalid input space as f(a) <
0, Va € A™. This simplification allows us to reduce any num-
ber of potentially overlapping constraints to a single function.

With our valid and invalid input spaces defined as non-
negative and negative values of f(a), it follows from the
intermediate value theorem that if f (a) is continuous, then
f(a) = 0 for any inputs on the boundary between the valid
and invalid input spaces. Thus, we define the decision bound-
ary AP such that for an input a® e A,

f@®) =o.

We additionally make the assumption that f(a) is continuous,
as without this assumption it is impossible to quantify the
decision boundary using f(a), and it cannot be intelligently
searched for via f (a).

Assumption 1: Assume that the outputs fi(a),Vie
1, ..., p are continuous even if the slope may be very steep
or not smooth.

With Assumption 1, we can now simplify the problem
of finding the valid input space A" to finding the decision
boundary AP.

B. MITIGATING NOISE IN TRAINING DATA

Collecting data to train a classifier offline may also raise addi-
tional challenges. Scenario-based learning using simulations
or experiments to gather system data is generally imprecise,
and will often not arrive at the true output of the system
Juue(a) for a given input a, but instead will return a value f(a)
that is close to the true value. To express this error, we assume

VOLUME 4, 2025

l E E E IEEE Open Journal of

\= CSS Control Systems

T

20 20

10 10
20 200 20 200

FIGURE 1. A comparison of a real decision boundary of a simple problem
(left), and the learned classifier when training data is subjected to noise
(right). The green area indicates inputs marked by the classifier as valid,
whereas the red area indicates invalid inputs. The dashed line represents
the decision boundary.

the value of the quantities of interest for a given input as a
function,

f(@) = fuue(a) + w(e),

where fiue(a) € R? is the values of the quantities of interest
that would be found if the scenario-based learning concluded
with no measured error with given the chosen input param-
eters a, and w(e) € R” is a noise vector representing errors
in the calculated values as a function of the tolerance €. This
noise vector can result in extremely inaccurate classifiers if it
is allowed to become too large, as shown in Fig. 1, and must
be kept as small as possible. Generally, the noise present in
scenario-based learning results is inversely proportional to tol-
erance (as in, a high tolerance value results in more noisy data,
and vice versa), and therefore intuitively the tolerance should
be set at a low value to ensure accurate results. However, lower
tolerances also significantly increase runtime, and sometimes
for very little gain. As a result, picking a tolerance requires
a difficult balance between accurate results and shorter run-
times.

To achieve this balance, we must evaluate the relative value
of each individual iteration of our scenario-based learning.
For this work, we seek the precise location of the decision
boundary, but we are less concerned with the exact reward of
the scenario at other inputs. With this in mind, we can priori-
tize the the scenario-based learning accuracy with inputs near
the expected location of the decision boundary, and prioritize a
shorter runtime with inputs that are believed to be far from the
decision boundary. As a result, we seek a method to choose the
tolerance value of the scenario for each iteration individually,
with lower values being chosen for inputs close to the decision
boundary.

C. SAFETY AND ROBUSTNESS

Once the valid input space is learned offline, the go/no-go
classifier can be used to inform the state and control inputs
of the real-world system to ensure no constraints are violated.
For example, an online system may be driven by an au-
tonomous controller that supplies the system with a candidate
input vector a; € A. However, the controller cannot guarantee
that the desired input is safe. To address the risk of using an

VOLUME 4, 2025

unsafe input, we must confirm that the candidate input is in
the valid input space, and if not, we must find an alternative
input af € A that is safe and close to the original candidate
input.

A real-world system may also come with unpredictable
safety risks. Potential failures in sensors or control input can
create difficulties in keeping the real system within the valid
input space that were not accounted for in scenario-based
learning. First, assume that the system includes a series of
sensors that return the value of each Qol y;(a), along with a
potential amount of noise w;, for an input a. We define the
observed vector of all Qols as y(a), where y;(a) = yi(a) +
wi, Vi € 1, ..., p. Although some noise is expected, in a real
system there is the potential for a faulty sensor or an adver-
sarial attack to significantly increase the amount of noise,
or to make a certain Qol y; undetectable entirely. In these
situations, we must instead rely on information gathered a
priori to estimate the value of y(a) and determine whether the
difference between y(a) and y(a) is potentially large enough
so that the system cannot operate safely.

IIl. INPUT SELECTION WITH REINFORCEMENT LEARNING
In this section, we present a formulation for an optimal
stochastic policy for selecting actions in a multi-armed bandit
problem, as well as an actor-critic method for finding this
optimal policy.

A. STATELESS SOFT POLICY
First, we require a method to quickly and intelligently find
these optimal inputs. For this, we require a learning approach
that can learn an optimal policy efficiently with a relatively
small number of samples, and consistently even with little to
no prior knowledge of the problem. Our approach also must be
effective at finding the decision boundary even in a continuous
domain and with a nonconvex decision boundary or multiple
disjoint decision boundaries. With these priorities in mind,
we formulate a soft actor-critic (SAC) approach to learn an
optimal policy [30]. This approach utilizes a stochastic actor-
critic approach and has been shown to quickly and reliably
find an optimal policy even for complex functions across con-
tinuous domains. Additionally, the stochastic approach lends
itself naturally to exploration and allows the optimal policy to
avoid being trapped in local minima. While the SAC method
is well-established in previous literature, we use this section to
slightly augment it for the input selection problem and prove
that it will still find an optimal policy despite these changes.
The SAC algorithm seeks to both maximize a reward func-
tion as well as favor stochastic policies by adding a term for
the expected entropy of a policy 7,

T
Jr) =) By 0 lr(si a) — logm([sp)],)

t=0

where s; € S represents a state in the state space S, and
a; € A represents a potential action in the action space A.
For this work, we define the action space as the input space

175

NETTER ET AL.: SAFE AND ROBUST BINARY CLASSIFICATION AND FAULT DETECTION USING REINFORCEMENT LEARNING

of the system previously defined as .A. However, the “state”
of the system is not well defined, as our defined input al-
ready includes both the state and control of the system. It
can be thought of as the constant parameter of every test
(such as, for example, the shape of the body to analyze
or the medium it is travelling through). Instead, it is better
framed as a multi-armed bandit problem [33], or more pre-
cisely an infinite-armed bandit problem [34], where a state
and state transitions are not considered. As a result, the ef-
fect of the state on the reward and entropy of the policy
r(s, a), —logm(+|s;), respectively, can be ignored. We then
augment (4) to a simplified form,

J(7) = Ea~rlr(a) —logm(-)]. ®)

We next discuss how to find the optimal policy 7* such that
0™ (a) > Q" (a)Vr €1, a € A. We begin by defining the
soft Q-value of the policy as shown in [29] to reward a higher
entropy policy,

o]

Quott(ar) = rar) + E[> v - logn(-»}.

=1

In this policy, the term y represents a user-chosen discount
factor meant to augment the reward by including the value
of future states. However, our formulation does not include
future states or state transitions, and we do not wish to
value the reward of future inputs in the reward of a given
input. Thus, we find the discount factor to be unnecessary in
our formulation and choose y = 0. The formulation can then
be simplified to resemble the cost function (5),

Osofi(ar) = Ea,NJT [r(a;) — logm()].

To choose our update rule, we define an entropy-augmented
reward as r (a) = r(a) + E((-)). We then define the update
rule as,

O(ar) < rr(ar). (6)

By using the policy evaluation convergence method described
in [35] provided A < oo and update rule (6) show that 10
approaches the soft Q-value of the policy = as k — oo. The
next step for finding the optimal policy is to iteratively im-
prove the policy, and to project the improved policy onto
the set of possible policies IT. In the original proposed SAC
algorithm in [30], this projection is done by minimizing the
Kullback-Leibler divergence in each step. We adopt a similar
approach, updating the policy in each step and projecting it
onto 7" with,

Tnew = 7?/161?[Dk (7(-)l| exp(Q7(-))) - (N

Lemma 1: Consider a policy moq € I[1 and a policy
Thew Optimized in accordance with (7). Then, Q7. (a) >
Ta@VYa e A, A < oo where Qf. (a), Q7 (a) are the ac-
tion value of the new and old policies, respectively.

176

Proof: Define mpew () as
Tnew(+) = ;nenrl[Dir (' (-)]] exp(Qf4())).

OF Tpew(+) = ming ey Jr ('(+)). Since we can choose
TThew = Tolg If the newer policy ever has a higher cost, it
follows that Jx, (Tnew () < Jryy (To1a(+)), or using (5),

Ea~nncw [Q”old (a) — 10g Tnew (@)]
> Egryy[Q7(a) — log woia(@)].)
By the inequality (8), we see,

Qn(’ld (@) < r(a) — Ea, ~Thew [log mnew(a;)],

which is alternatively expressed as,

Q™ (ay) < Q™ (ay).

Thus, as k — oo the sequence QF approaches the true soft
Q-value of the policy 7pew, QX approaches Q™ I

Theorem 1: As the soft policy evaluation and improvement
are repeatedly applied, any policy 7 € IT will converge to a
policy * such that Q" (a) > Q" (a) for alla € A assuming
|A| < o0.

Proof: First, consider a sequence of policies m;, i =
1,2, ..., where i indicates the current iteration of policy eval-
uation and improvement. In Lemma 1 it is shown that Qi
is monotonically increasing, and because the action space is
bounded this implies the policy converges to some policy 7*.
At that time, J;+(77*(+)) < J+ (7w (+)), Vr € I1, 1 # 7r*, and
as aresult 07" (a) > Q" (a), Va € A. Thus, 7* is the optimal
policy.l

B. ACTOR-CRITIC IMPLEMENTATION

Now that we have proven that our stateless soft policy ap-
proach converges to an optimal policy, we then formulate how
to approximate the Q-function and policy. We begin with a
Q-function Qp(a,) and policy 74 (a,) parameterized by 6 and
¢, respectively. In this case, we model the Q-function param-
eters using a neural network, and the policy as a Gaussian
random vector with means and covariances given by a neural
network. The parameters 6 and ¢ are thus the weights of these
networks. We train both of these approximations to estimate
the Q-value and optimal policy using gradient descent. We
train the Q-function approximation to minimize the residual
error,

1
Jo©) = E, [5<Qe<a,) — (r(ay) — log, (a,»)?} :
with the gradient found to be,
VoJo(6) = VoQp(ar)(Qp(ar)
— r(ar) + By, llog,,, (a))).)

To approximate the policy, we define the cost to minimize as
(7), which can be simplified as,

Jz(¢) = Ee, [log 7 (fp(er) — Qo (fp(e))],

VOLUME 4, 2025

IEEE

IEEE Open Journal of
=

= CSS Control Systems

(@

where fy(€;) is a transformation of the policy including an
input noise vector ¢; to allow for the differentiation of the cost.
This allows us to define the gradient as,

VpJu (@) = Vg log g (ar)
+ (Vq, log s (ar) — Vo, Q@) Vg fp(€r). (10)

We use the gradients (9) and (10) to adjust the values of 8 and
¢ to find the Q-function and the optimal policy.

We now define a reward function r(a) to effectively
search for the boundary inputs using the proposed actor-critic
method. For training the classifier, we want to prioritize inputs
close to the decision boundary regardless of if they are valid or
invalid. As a result, we base our reward on the absolute value
of the combined constrained output defined in (3),

r(a) = —|f(a)|. (11)

It can be trivially seen that given the reward function (11),
the highest possible is r(a) = 0, and an input a* is optimal
if f (a*) = 0. In other words, the reward increases as an in-
put a approaches the decision boundary, and is maximized
when a* represents a input on the decision boundary. In turn,
the reward of the policy as defined by (5) is maximized
when the policy both approaches the decision boundary while
also maximizing expected entropy. With this optimal policy,
we prioritize sampling a large input space where the inputs
are relatively close to the decision boundary, allowing us to
intelligently sample the input regions of most interest for
efficiently training a binary classifier.

IV. EFFICIENT TRAINING FOR CLASSIFICATION

In this section we discuss our methods of improving the total
runtime of training a classifier with the SAC approach, as
well as ensuring the approach accurately models the complete
input space. We first discuss our method of using the estimated
reward of the critic to adaptively select our scenario toler-
ance, and continue with our method of restricting the input
space to certain subspaces to ensure a complete mapping of
the decision boundary.

A. ADAPTIVE RUNTIME TOLERANCE

We have proven that the proposed approach will eventually
converge to the decision boundary during runtime, but there
are no guarantees on the speed of convergence. Instead, it is
unavoidable, particularly when the training set is small, that
many sampled inputs will not be near the decision boundary
as the critic and actor learn the reward function and optimal
policy and take up valuable time in scenario-based learning.
To mitigate the runtime while still obtaining accurate relevant
training data, we formulate a method to use estimates made by
the critic to shorten the time spent on scenario inputs believed
to be far from the decision boundary.

Generally, computationally-intensive simulations for train-
ing the scenario-based learning calculate a quantity of interest
y; first by creating an estimate y; o, and then repeatedly up-
dating this estimate to bring it closer to the true value. The

VOLUME 4, 2025

estimated Qol of an iteration k is defined as y; . The run
has converged at an iteration of k when [y; x — yi -1l <€,
where € is a user-defined tolerance. As a result, higher values
of € result in faster convergence times, whereas lower values
return more accurate estimates of a quantity of interest. With
this in mind, we formulate a method for choosing a value €
for training our actor-critic structure that prioritizes accuracy
near the likely decision boundary and speed when the decision
boundary is unknown.

We define the critic’s estimate of the reward function for an
input a as 7(a). As the highest value of the reward function
is r(a) = 0, it follows that as |7(a)| — O, the input a is ap-
proaching an input the critic believes to be near the decision
boundary. As a result, we seek to decrease the tolerance €(a)
as the estimated reward 7(a) decreases, but we also must
ensure that the tolerance is never so high that scenario-based
learning is useless, and never so low that the scenario-based
learning takes prohibitively long for little gain. We first define
a bounding function,

Xmin X = Xmin
bound(X, Xmin, Xmax) = X Xmin <X < Xmax ~ and
Xmax X = Xmax
then define the tolerance for a training input a' as,
t — ot
€(a’) = bound(|di7(a’)l, €min, €max), (12)

where d; > 0 is a user-chosen constant to tune the relationship
between the estimated reward of the training input and the
tolerance, and €ax > €min > 0 are a maximum and minimum
tolerance, respectively, to ensure a minimum degree of accu-
racy in early stages of training with a shorter runtime in later
stages of training. This adaptive tolerance adjustment allows
us to spend as much total time as possible only on inputs near
the decision boundary and reduce the time spent on inputs far
away as the critic learns.

B. SAMPLING POTENTIAL INPUTS

Although we have shown that our reinforcement learning ap-
proach will eventually accurately evaluate points on or near
the decision boundary, we must also be cautious of testing in-
puts that we expect to only be marginally beneficial. Any one
run of the scenario-based learning used to generate training
data is expected to be very time-consuming, and as a result it is
crucial to ensure that we maximize the information gained by
these runs. However, it is very likely that the actor will even-
tually return an input almost identical to a previously tested
point as it begins to converge. This possibility is made even
more likely if the actor and critic learning are not well-tuned at
first, which may make the policy slow to converge. Simulating
these repeated inputs can be a liability, as we can reasonably
expect these results to be very similar to results, which we
already know and have included in our training data and could
amount to minutes or hours “repeating work” when we want
to spread out the sampled points. To address this, we randomly
sample a large set of potential training points A%™P!d before
we begin to train the actor and critic. Then, for each new input

177

NETTER ET AL.: SAFE AND ROBUST BINARY CLASSIFICATION AND FAULT DETECTION USING REINFORCEMENT LEARNING

a™" returned by the actor, we locate an input @® that is close

to @™V and is defined as,

a® = min (13)

\/ S e — a2
ae Asampled

The input a® is then used as an input and added to the set
of training data A" used both for the SVM classifier and
the actor-critic framework rather than the originally returned
input ¢"®V. Additionally, after the input a® is used for learning,
it is removed from the set A%™P'°d (o ensure that we do not
repeatedly calculate the reward for the same input, and that
we progressively explore the surrounding input space if the
actor repeatedly returns the same or nearly the same input
value a"V. If A%™P1d — ¢ after a certain number of learning
iterations, additional points can be randomly sampled and
added to the set of potential training inputs, thereby ensuring
a guarantee of convergence to an optimal policy.

The proposed method provides a guarantee of finding at
least a single input a* along the decision boundary, but a
single training input is still clearly insufficient for training a
classifier capable of identifying the whole valid input space.
Accurately modeling a complete decision boundary instead
requires numerous training inputs along different points of the
decision boundary to ensure accuracy across the input space.
To find additional inputs and regions close to the decision
boundary, we require a way to drive the actor-critic method to
continue exploring despite already converging to an optimal or
near-optimal policy, and to encourage this exploration without
simulating many unnecessary inputs in A ¢close to the
discovered optimal policy. To accomplish this, we augment
the set A%2™P!d o remove inputs nearby any previously found
input on the decision boundary.

First, we define the set of boundary inputs A® c A,
where A® contains each input a® € A" such that r(a®) > rc,
where r. < 0 is a cut-off selected by the user that represents a
reward considered sufficiently close to the decision boundary.
In simpler terms, the set A" consists of all tested inputs that
are close enough to the decision boundary that we assume
their correlating region of the input space is well-explored.
Once these inputs are found, we then search the set of po-
tential training points A%™Pdand define the set of inputs
AP e gsampled here for each input a™ € A",

(m+n)
abe AP [\/Z

a®™ = min a}’“))2 <dp, (14

where d, > 0 is a user-chosen minimum required distance
from the known boundary points. The set AP, referred to as
the boundary neighborhood, is then removed from A%mpled
to mark portions of the action space as sufficiently explored.
This process can be repeated until a large portion of the total
input space has been examined, or until the classifier has met
any given convergence criteria.

178

V. ONLINE ACTOR-CRITIC CONTROL

Another significant benefit of formulating the initial “go/no-
go” classifier using training inputs supplied through the
actor-critic framework is its adaptability for safe online con-
trol. In this section, we detail a method for ensuring robust
control using a minimax approach to evaluate the risk of a
given candidate input. Additionally, we define a “buffer” re-
gion around the decision boundary to account for any potential
errors in the classifier near the boundary.

A. ROBUST ONLINE CONTROL

Controlling a real-world system requires robustness against
numerous irregularities, such as errors in the model, perturba-
tions in flight conditions, and noise or potential adversarial
attacks in control inputs or sensor outputs. To mitigate the
dangers of these discrepancies, we use a minimax approach to
identify inputs that are the least likely to violate the constraints
on Qols even if subjected to noise.

To begin, the controller supplies a candidate input value
a' € A that the controller seeks to reach. To verify that this
candidate input is in the valid input space, we generate a set
of D perturbation vectors,

Ap ={a1, a2, ..., ap},

where each value «;, i =1,2,...,D is a vector of length
(m + n) consisting of a series of random normal variables
of mean O and user-defined variance o,. We then define D
perturbed test candidate inputs At = {al, az, R a},} where
al. =a'+a;,i=1,...,D. To find the safest input among
these test candidate inputs, we naturally exclude any initial
test inputs that are not possible in our valid input space A™ as
defined by the classifier trained in the offline portion.

After finding each test input believed to be safe, we then
use the critic to estimate their reward. In the offline training
used to find inputs to train the classifier, the critic learns
an approximation #(a) of the reward function r(a) (11). As
the decision boundary of the classifier is defined as inputs
where r(a) = 0, or where one or more quantities of interest
is equal to its maximum allowed value, it follows that as r(a)
decreases, the Qols of the input a are an increasing distance
from the initial constraints. As a result, lower values of the
reward function in the valid input space correlate with more
safe inputs farther away from the decision boundary. With this
in mind, we can restructure this reward function to instead be
a cost function J(a) to be minimized to find the safest test
input. To select these candidate inputs, we utilize a minimax
approach where we seek the minimum cost test input in A",
where the cost J (a%) is defined as

J(a)— rrllax (|r(a W, i=1,2,. (15)

In other words, we seek to find the point that the learned critic
predicts is the farthest away from violating any constraints in
the worst case of potential disturbances. We define this input
as a“*. It should be noted that this method of determining the
safety of various inputs involves numerous calculations of the

VOLUME 4, 2025

IEEE

IEEE Open Journal of
=

= CSS Control Systems

(@

critic’s cost function. Fortunately, evaluating the cost of an
input using a trained critic is not very computationally taxing
compared to full scenario-based learning runs, and can easily
be done many times in a short time-span.

To confirm the safety of an input a“*, we must also account
for errors in learned model of the reward function 7(a). As the
system operates, the actor and the critic are provided with the
current combined state and control of the system a, as well as
the quantities of the vector of interest y. The detected vector
is used to calculate the true reward of the system r(a), and
compared to the reward estimated by the critic 7(a). We define
the critic reward error as 7er(a) = |r(a) — 7(a)|, and define
the maximum reward error Terr max s the maximum detected
value of 7rr(a) in the operation of the system.

Theorem 2: If the maximum reward error 7err max is known,
then the critic can guarantee that a given candidate input a'
does not cross the decision boundary provided that the pre-
dicted reward 7(a") is greater than Ferr max -

Proof: 'We prove this theorem by contradiction. Consider
a candidate input a' that violates some number of constraints
in the real system but is believed by the critic to be a valid
input with a reward 7#(a'). When this occurs, it indicates the
reward error is sufficiently large for the difference between
the expected and actual reward to cross over the decision
boundary, 7(a') > 7(a'). Assume that this input’s calcu-
lated reward 7(a') > Ferr.max» then it is implied that 7 (a') >
F(a') > Ferr.max- This is simplified to Ferr(a') > Ferr.max- We
assumed that 7er(a') > Terr.max,» but by definition, any re-
ward error Ferr(a') < Ferr.max- Therefore, for an invalid input
to be considered valid, it must be true that 7(a') < Ferr.max.
as in this case Fer(a') > F(a') < Ferrmax and the relation
Ferr(@') < Ferr.max May be true. Thus, the theorem is true by
contradiction.ll

Using the critic reward function and Theorem 2 we can
ensure that the test input a“* is safe as the critic reward
function is improved, and the system can use this as its target
input. This approach also presents another advantage of using
an actor-critic approach to find training inputs, as the system
requires a quantitative estimate of how close a candidate input
is to the decision boundary to ensure safety, which cannot
be effectively made without numerical estimates of the quan-
tities of interest. It should additionally be noted that while
this approach to robust control ensures safety, it becomes
more restrictive as the reward function improves over time
and the average reward error decreases. To mitigate this, the
average reward error and error variance may be used to instead
select safety margins for appropriate target inputs.

B. FAULT RECOGNITION

We now formulate how to use the learned critic as well as
real-time data to predict whether the system has suffered any
hardware failure, or if the model is dangerously inaccurate by
comparing the model’s predicted quantities of interest with the
true values of the system. We consider a constrained system
modeled with an actor-critic structure initially learned offline
and outfitted with sensors that detect any quantity of interest.

VOLUME 4, 2025

We consider the system unsafe if,

(16)

Terr(@) > Ferr,cutoff (@),

where 7Ferr cutoff (@) 1s a user-chosen maximum permissible
critic error. If the critic error exceeds this threshold, the model
is flagged as too inaccurate to model the system, and the
system should be shut down to ensure safety. This error may
be due to hardware malfunctions, adversarial attacks, or poor
training of the actor and the critic. The proposed approach to
recognizing faults in the system or model allows us to detect
indicators of malfunctions even when the system is currently
safe by measuring errors in the model, whereas using only a
binary classifier cannot detect any errors unless the system has
already violated some number of constraints.

Choosing a reasonable maximum critic error beforehand
may prove to be impossible in systems where we lack prior
information about the expected level of noise in the system.
To compensate, we define Ferr cutotf @s a function of the error
of some number N prior training inputs,

de YN | Fai)er /€ (ar)
N 9

where d, is a user-defined coefficient. In other words, Ferr cutoff
is determined as a function of the average reward error of the
training data, where each input of the training data is weighed
in inverse proportion to its respective tolerance. This approach
allows us to set the maximum critic error simultaneously with
training the model, ensuring a very high tolerance at first and
progressively decreasing as the model becomes more certain
and approaches the minimum tolerance €y, as defined in 12.

We similarly adjust the value of d, as more data become
available and we acquire more information on the accuracy
and precision of our critic’s reward function. Initially, the
critic is prone to high variance in its errors as it samples
points in less-sampled areas of the input space. However, as
it learns a better reward function, these inputs with extremely
high reward errors become less common. We use this behavior
by modeling the adjusted reward error as a normal random
variable N/ ((Xz\’:1 7(ai)err), Oerr), With a mean of the average
adjusted reward error and a standard deviation oer. We can
then define d, as a multiple of o to adjust d, as necessary
to ensure the desired degree of precision for our fault recog-
nition approach. For example, selecting d, = 20, indicates
that 95% of inputs will not falsely generate significant enough
errors to potentially indicate a fault or adversarial attack in the
system, and d, = 20,y indicates that 99.7% of inputs would
not indicate a fault or an attack. It should be noted that the
scope of this paper only includes sensor error in the form of
bounded noise, and not other potential failures such as a loss
of sensor data.

A7)

T err,cutoff =

VI. ALGORITHMIC FRAMEWORK

We now formulate the complete framework for creating the
offline go/no-go classifier, as well as expand upon this frame-
work for online control. We first initialize the actor and critic
and take repeated training steps where we use the actor to

179

NETTER ET AL.: SAFE AND ROBUST BINARY CLASSIFICATION AND FAULT DETECTION USING REINFORCEMENT LEARNING

select inputs for the problem, and use the results to update
the model weights of both the actor and critic to improve
the policy. With each input returned by the modeled policy,
we calculate the reward with a run of the simulation of the
system with the returned input and a tolerance value selected
as a function of the expected reward as described in (12) and
use it to train the actor-critic framework. We also take note
of each input a® where r(a®) > r. and use this to form the
set of boundary inputs AP. After the learned policy meets
the convergence criteria (such as a pre-determined number of
simulation runs), each saved input is added to the training set
of a soft-margin SVM classifier. We then remove the boundary
neighborhood A" from the action space using A" as defined
by (14). The process is repeated until the classifier reaches the
determined convergence criteria. This complete approach is
shown in Algorithm 1.

In the online portion, the learned classifier and actor-critic
structure are continually updated with new, real-time informa-
tion rather than solely simulation data. This data is also used
by the learned critic model to verify if the system output is still
similar to the output predicted by the critic. If the difference
between the predicted critic reward and the actual reward of
the system exceeds a bound as defined in 17, then the system
is flagged as potentially at risk of failure. In addition, the critic
and the classifier are used to ensure safety and potentially ad-
just the values of a desired input a*. This process is described
in Algorithm 2.

VIl. SIMULATIONS

The proposed method of training an actor-critic method for
binary classification was tested on several problems. The
selected problems are of both varying complexity and dimen-
sionality to measure the effectiveness of the approach with a
variety of valid input spaces, such as both convex and non-
convex input spaces, low- and high-dimensional inputs, and
continuous and disjoint sets of valid input spaces.

For the first problem, we model a bar with a uniform
area cross-section made of N materials, each with a fixed
length /1, l>, ..., Iy and a Young’s modulus Ey, Es, ..., Ey.
We then apply a point force F' at one end along the length of
the bar, displacing the bar by a distance u = F vaz | li"_l, We
seek Young’s moduli values of each material where the bar
displacement does not exceed a given threshold ug. This ex-
ample produces a relatively simple convex valid input space,
and additionally the input vector can be easily scaled to any
desired size to determine the dimensionality of the problem.
In this work, we tested our approach in two cases on a bar
containing 2 and 10 unique segments. The valid input space
for the 2-dimensional case is shown in Fig. 2.

The second problem models a function with an input of size
N, f(a) = 221:1: a@n—1y — |tan (3 + 2)|, with a constraint
that f(a) < c, where c is a user-chosen constant. This results
in an irregular, non-convex valid input space. To visualize the
non-convex valid input space, the 2-dimensional case is shown
in Fig. 3.

180

Algorithm 1: Soft Actor-Critic (SAC) Input Selection.

Input: A - input space; d; - Tolerance constant; €pax -
Maximum tolerance; €., - Minimum tolerance; d, -
boundary neighborhood size; r. - boundary input reward
cutoff; ¢, 6 - SAC parameters; ymax.1, - - -
Output constraints

Output: SVM - trained support vector machine classifier
1: Atrain < {}

2: AP«)

3: Asampled . GenerateSamples(A) >

Initialization
4: while SVM not converged do

» Ymax,n -

5: while 7 not converged do
6: a"™ < Actor(my)
7: a® < ClosestValue(A%mpled gnewy (13)
8: 7 < Critic(a®, Qp)
9: e(a®) < Bound(d,;7(a®), €max, €min) (12)
10: y < SimulationRun(a®, €(a®))
I1: r(a®) <- Reward(y, ymax.1» - - - » Ymax.n)
12: if r(a®) > r. then
13: AP — AP | @
14: end if

15: Atrain < Atrain U as
16: 0 <0 — Vo) (9)
17: ¢ < ¢ — Vyla(9) (10)
18: end while
19: SVM <« TrainClassifier(A"™" e(a®))
20: AP
BoundaryNeighborhood(A"™", A", dy) (14)
21: Asampled < Asampled \ Abn
22: end while
23: return SVM

Our next example again models a function with a 2-
dimensional input f(a) = %&“2_1) — sin 5% with con-
straint f(a) > 1. This results in a heavily multimodal function
that presents significant challenges for traditional sampling
approaches. A picture of the multimodal function valid input
space is provided in Fig. 4.

The fourth problem uses an input of arbitrary length N > 2.
For this problem, each input value a;, i € 1, ..., N falls into
a range dpmin < @; < dmax, I € N where apip < 0, amax > 0.
For this problem, we define a constraint]_[fv= | ai > ¢, where
¢ > 0 1is auser-chosen constant, resulting in numerous disjoint
sets of valid inputs. A visualization of the disjoint problem
valid input space is shown in Fig. 5.

For the final problem, we simulate an aircraft with an input
vectora=1[¢ 0 ¥ ¢ 6 ¥]and outputs

p=¢—ysind

q:écos¢+1/)cos€sin¢
r= —0sinf + 1y cosf cos ¢.

VOLUME 4, 2025

(< l EEE IEEE Open Journal of

\= CSS Control Systems

©

Algorithm 2: Safe Input Selection.

Input: a' - Desired input; o, - Variance of perturbations;
SVM - Trained binary classifier

Output: ¢"* - Predicted safe input

I:a"* < d

2:fori=1,2,...,Ddo

30 a;j < N@O,04), j=1,...,(m+n)

4: d < d+ay

5. if |r(a§)| > |r(at’*)|&IsValid(a§, SVM) then (15)
6: a* < al

7: endif

8: end for

9:if Isvalid(a®*, SVM) then
10: return a“*

11: else

12: return ¢

13: end if

20

10
20 200

FIGURE 2. An illustration of the valid input space of the 2-dimensional
uniaxial bar problem.

10

1
1 10

FIGURE 3. An illustration of the valid input space of the 2-dimensional
non-convex problem when ¢ = 3.

VOLUME 4, 2025

5.5

-0.5
-1.5 4.5

FIGURE 4. An illustration of the valid input space of the 2-dimensional
multimodal problem.

-
5
-5 5

FIGURE 5. An illustration of the valid input space of the 2-dimensional
disjoint problem when ¢ = 2.

This problem has multiple constraints, and an input a is valid
if |p(a)| < 3.5, |¢(a)| < 2.5, and |6(a)| < 2.5. This serves as
both a practical application of the soft actor-critic approach
to classification, as well as a more complex nonlinear system
containing several overlapping constraints.

A. OFFLINE TRAINING WITH NOISY DATA

We first examine the effectiveness of using the proposed soft
actor-critic approach to find boundary inputs to train a bi-
nary classifier offline with potentially noisy data. We compare
our method with several existing algorithms. First, we test a
greedy sampling approach on each experiment as a baseline
that adds two inputs a,j, a, on each iteration k to the training
data used by the classifier. These inputs are defined as

ay = min |yc(x)], @, = min [y(a)],
aeAZ' acA;

where y; represents the SVM decision function at iteration
k, and AF, AI; represent the believed valid and invalid input

181

NETTER ET AL.: SAFE AND ROBUST BINARY CLASSIFICATION AND FAULT DETECTION USING REINFORCEMENT LEARNING

05 Misclassification Rate vs Noise Std. Deviation

045 i

0.35

0.3

0.25

0.2

Misclassification %

0.15

0.1

0.05

O L 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Standard Deviation of Noise

FIGURE 6. The average misclassification rate of the greedy input selection
methods on the 2-dimensional uniaxial bar problem versus the baseline
standard deviation o, of the noise vector over 100 training inputs. The
misclassification rate steadily increases with o, until it reaches a point
where the classifier performs only slightly better than a random guess
(50%).

spaces at iteration k, respectively. This approach attempts to
choose two inputs that are close to the decision boundary and
lie on opposite sides. This approach is further detailed in [5],
and was found to be effective in selecting an informative
training set for several problems, including the uniaxial bar
problem. We also compare the SAC and greedy approaches
with the Basudhar-Missoum point selection algorithm, de-
tailed and shown to be effective in [7].

To determine the efficacy of both approaches when using
noisy data created by imprecise simulations or tests, an input
ais valid if y;(a) + wi(a) < ymax.i» Vi € 1, ..., p, where w is
arandom noise vector where for each valuei € 1, ..., p, w; is
a random normal variable with mean 0 and standard deviation
(00yi), where oy represents a baseline standard deviation cho-
sen by the user. In other words, the noise present for a given
output y; is dependent on the output value itself. The value of
oy for the SAC algorithm is defined as

o = bound(|di7(a")], €min, €max) (18)

to simulate adaptive tolerances. For the greedy input selection
algorithm, oq is defined as a static value because the greedy
approach does not know, quantitatively, how close constraints
are to being violated and, as a result, does not judge how close
it is to the true decision boundary. For the SAC approach,
€min and €y are defined to allow a maximum and minimum
standard deviation value of 50¢ greedy and 0.2070, greedy, T€SpEC-
tively, where 0 greedy is the value of o¢ for simulations using
greedy input selection. These limits are chosen to ensure that
the SAC input selection initially uses noisier data than the
greedy input selection, but will allow the SAC algorithm to
become more precise than oy greedy as more data are added. A

182

il —o — SAC
—— Greedy AC
—— Greedy
44
3 -
3 I
o
2
2 =
g u
01— T T T T T
0 50 100 150 200 250
Iterations

FIGURE 7. The standard deviation of noise for each training input on the
10-dimensional uniaxial bar problem for the SAC, greedy AC, and greedy
approaches.

Misclassification Rate vs Number of Samples (2D Bar)

0.35
Greedy Selection
SAC Selection
031 Bas-Mis Selection
Greedy AC Selection
0.25
X
S
= 0.2
L
‘0
%)
© 015
(3]
2
=
0.1
0.05
0 1 | 1 | 1
50 100 150 200 250 300
Of Samples

FIGURE 8. Comparison of the average misclassification rate of several
input methods on the 2-dimensional uniaxial bar problem.

visualization of the greedy approach’s misclassification rate as
a function of the value of o¢ is shown in Fig. 6 to demonstrate
the effect of this noise on an SVM classifier. To ensure a
reasonable comparison between the algorithms presented in
this work, we also examine the efficacy of a combination of
the greedy and SAC algorithms we refer to as Greedy AC. In
this approach, greedy sampling is used to select the training
points for the classifier and a trained critic reward function
determines the value of op via (18). A comparison of the
noise levels of the SAC, greedy AC, and greedy approaches
is shown in Fig. 7, and illustrates how our adaptive tolerance
approach begins with higher levels of noise in its training
samples, but decreases this noise as the critic learns what
points are close to the decision boundary.

VOLUME 4, 2025

l E E E IEEE Open Journal of
(S

= CSS Control Systems

T

Misclassification Rate vs Number of Samples (10D Bar)

0.5
Greedy Selection
0.45 F SAC S'electlon'
Bas-Mis Selection
Greedy AC Selection
0.4 b

o
w
a

Misclassification %
o
w

0.1 L L | | | | |
50 100 150 200 250 300 350 400

Of Samples

FIGURE 9. Comparison of the average misclassification rate of several
input selection methods on the 10-dimensional uniaxial bar problem.

Misclassification Rate vs Number of Samples (2D Non-Convex

Greedy Selection
SAC Selection
Bas-Mis Selection
Greedy AC Selection

Misclassification %

0 . . | | | | |
50 100 150 200 250 300 350 400

Of Samples

FIGURE 10. Comparison of the average misclassification rate of several
input selection methods on a 2-dimensional non-convex classification
problem.

The resulting average misclassification rates for the uniax-
ial bar experiments as a function of the number of samples
are shown in Figs. 8 and 9. In both cases, we see both
the SAC and greedy AC input selection approaches initially
under-perform both the greedy and Basudhar-Missoum ap-
proaches due to the additional noise present in their training
data. However, as the critic learns to identify points along
the decision boundary and adapt the simulation tolerances ac-
cordingly, both the SAC and greedy AC approaches overtake
the greedy and Basudhar-Missoum approaches. In particular,
the greedy AC approach performs the best by a significant
margin in both cases. This shows that the adaptive tolerance
approach used by the actor-critic is able to mitigate the effects

VOLUME 4, 2025

Misclassification Rate vs Number of Samples (Multimodal)

0.4
Greedy Selection
SAC Selection
0.35 Bas-Mis Selection i
Greedy AC Selection
X 03
c
Ke]
®
2
= L
= 0.25
%)
<
(3]
2
= 021
0.15
01 1 1 1 1 1 1 1

100 200 300 400 500 600 700 800
Of Samples

FIGURE 11. Comparison of the average misclassification rate of several

input selection methods on a 2-dimensional multimodal classification
problem.

Misclassification Rate vs Number of Samples (4D Disjoint)

0.3
Greedy Selection
0.28 SAC Selection 1
Bas-Mis Selection
0.26 Greedy AC Selection |

0.24

0.22

Misclassification %
o
N

0.18
0.16
0.14 - 4
012 b
0.1
100 200 300 400 500 600 700
Of Samples

FIGURE 12. Comparison of the average misclassification rate of several
input selection methods on the 4-dimensional disjoint set problem.

of the noise by quickly learning an optimal policy and running
more precise simulations. This trend is shown to continue for
the greedy AC approach in noisy classifiers trained on the
2-dimensional non-convex problem as well as the multimodal
problem, shown in Figs. 10 and 11, respectively. However, the
SAC approach seems to slightly fall behind in these cases.
We continue by testing all approaches on the 4-dimensional
disjoint sets problem, and show the resulting misclassification
rates in Fig. 12. In this case, all algorithms seem to converge
at approximately the same misclassification rate. This is likely
indicative of a shortcoming of the SVM classifier’s ability
to properly classify valid inputs across numerous disjointed
valid input spaces in higher-dimensional problems. Notably,

183

NETTER ET AL.: SAFE AND ROBUST BINARY CLASSIFICATION AND FAULT DETECTION USING REINFORCEMENT LEARNING

Misclassification Rate vs Number of Samples (Quadrotor)

0.4
Greedy Selection
SAC Selection
0.35 Bas-Mis Selection 4

Greedy AC Selection

X 03

c

ie]

®

[$)

=025

12}

12}

©

(3]

2

= 02r

0.15
0.1 1 | 1 . 1 .
100 200 300 400 500 600 700
Of Samples

FIGURE 13. Comparison of the average misclassification rate of several
input selection methods on a simulated quadrotor with multiple
constraints.

this is not an issue in the lower-dimensional example shown
in Fig. 5.

Finally, the misclassification rates of each algorithm for the
quadrotor problem is shown in Fig. 13. In this scenario we
once again see the greedy AC approach outperform the other
approaches. Interestingly, the SAC input selection method
initially takes significantly longer to see improvements in the
classification rate. This potentially indicates that using the
actor to select points is not as effective in problems with
numerous constraints, as the reward function guiding the actor
to the decision boundary contains numerous local minima.
In total, across most problems SAC input selection remains
competitive with other input selection algorithms, and out-
performs other approaches in several cases. In addition, the
greedy AC input selection performs as well or better than
other tested approaches at all times, showing the efficacy of
our adaptive tolerance method, even when beginning with
significantly noisier training data.

B. ONLINE CONTROL

After conducting offline training for each of the previously
mentioned experiments, we also test our robust online con-
trol methodology for the actor-critic method. The classifier
trained by the greedy approach has no method of predicting
the average noise present in the data, so this approach can
only be applied with the additional information supplied by
the trained critic. After training the initial classifier using the
actor-critic framework, we then test a collection of C ran-
domly generated candidate inputs A = {aj, aa, ..., ac}. For
each candidate input a;, i = 1,2, ..., C, an additional set of
D inputs A; = {a; 1, a;2,...,a;p} is generated, where each
input is defined as

ai,jzai-l—oei,j,j=1,2,...,D,

184

TABLE 1. Comparison of the misclassification rates of a classifier trained
using soft actor-critic input selection on randomly selected inputs, and
inputs believed to be farther from the decision boundary according to the
trained critic for robust control. the inputs chosen for robust control are
found to be significantly more likely to be safe and properly classified.

Misclass. Rate Random Selection | Target Inputs
Uni. Bar (2 Dim) 24 .07
Uni. Bar (10 Dim) 27 18
Non-Convex (2 Dim) 31 27
Quadrotor 32 22
16
14 -
12 A
. 10 -
g
w
8 -
6 -
44
2 L T T T T 3, T T T T
0 25 50 75 100 125 150 175 200
Iteration

FIGURE 14. Change in average error of a critic estimating the reward of
the quadrotor problem as a function of number of test samples.

where «; ; is a randomly generated perturbation vector. For
each set of perturbed inputs, one is selected as the target
input aF using the methodology outlined in Section V with
the goal of selecting a target away from the decision boundary
to protect from noise or variance in real-world systems and
to ensure a higher likelihood that the target input is correctly
classified. Results comparing the misclassification rate of the
classifier on randomly selected candidate inputs, as well as
the misclassification rate of these target inputs, is shown in
Table 1. In these simulations, the classifier finds that these
target inputs are significantly more likely to be properly iden-
tified by the classifier as safe, showing the effectiveness of
using a binary classifier trained offline in conjunction with
an actor-critic structure to select safe inputs for robust online
control.

C. ONLINE FAULT RECOGNITION

For the final set of simulations, we evaluate the ability
of the SAC algorithm to recognize faults in its estimates
of the reward function. To begin with, the SAC algorithm
is first trained with noisy offline data with a value op =
bound(|di7(a")|, €min,» €max). The resulting average error is
shown in Fig. 14. After some time, the values d;, €nyin, €max,
and by extension the noise present in the system, are increased
to simulate either a system fault or adversarial attack. We then

VOLUME 4, 2025

@

l E E E IEEE Open Journal of

= CSS Control Systems

7

30

254

20

10 A

T T T T T T T
0 100 200 300 400 500 600 700
lteration

FIGURE 15. The error of the critic in the quadrotor problem, where the
blue line indicates before any significant error is detected in the system,
and red indicates after a sufficient error is detected. The orange dotted line
indicates the threshold of maximum critic error, defined as 20, over the
mean error. The first 300 iterations are used to learn the reward function
and no attempts are made to identify significant errors. At iteration 300,
we begin to attempt to detect a significant error in the critic reward
function. At time-step 400, noise is introduced into the system and is
almost immediately flagged by our fault recognition.

monitor the time it takes for the critic to mark the system
unsafe as defined by (16) and (17), using a value d, = 20¢.
The real-time error of the simulation over time, both before
and after noise addition, as well as the value d,, is shown in
Fig. 15. This first figure shows the effectiveness of our critic’s
model of the reward function. The second figure shows that
our method of detecting errors in the system both quickly
recognizes additional noise in the system once the critic is
sufficiently trained in real-time and does not falsely report this
noise too early.

VIIl. CONCLUSION

In this work, we introduced an SAC method for creating a
binary classifier for complex dynamic systems, such as flight
vehicles, and explore its applications in both off-line classifi-
cation and on-line robust control. The goals of this approach
were to reduce simulation runtime during offline training
while ensuring the classifier remained robust to noise and
system faults when online. First, we compared this approach
to training a classifier offline with noisy data with several
other algorithms for selecting training inputs. We found that
the learning-based approach was competitive with other algo-
rithms in various example problems, despite the presence of
additional initial noise, and that our proposed adaptive toler-
ance algorithm was very effective in mitigating this noise. We
also found that the learned critic could be used to ensure the
safety of selected system inputs, guide desired inputs toward
safer alternatives, and detect faults in either the system or the
critic itself.

VOLUME 4, 2025

In future work, we will explore potential applications of
combining the adaptive tolerance of our SAC approach with
other input selection strategies to reduce simulation runtime
without compromising classifier accuracy. Furthermore, fu-
ture work will include integrating the SAC approach directly
with a flight controller to enhance safe autonomous control.
We also consider potential improvements, such as experiment-
ing with normalizing both input parameters and the expected
reward of a problem to achieve more consistent results in cases
with rapidly changing reward functions. We will also consider
methods of detecting more intricate sensor failures such as
loss of data.

ACKNOWLEDGMENT

Any subjective views or opinions that might be expressed in
the written work do not necessarily represent the views of
the U.S. Government. The publisher acknowledges that the
U.S. Government retains a non-exclusive, paid-up, irrevoca-
ble, world-wide license to publish or reproduce the published
form of this written work or allow others to do so, for U.S.
Government purposes. The DOE will provide public access
to results of federally sponsored research in accordance with
the DOE Public Access Plan. This written work is authored
by an employee of NTESS. The employee, not NTESS, owns
the right, title and interest in and to the written work and is
responsible for its contents.

REFERENCES

[1] A. Straubinger, R. Rothfeld, M. Shamiyeh, K. -D. Biichter, J. Kaiser,
and K. O. Plotner, “An overview of current research and developments
in urban air mobility—setting the scene for UAM introduction,” J. Air
Transport Manage., vol. 87, 2020, Art. no. 101852.

[2] W.R. Johnson, P. Lu, and S. Stachowiak, “Automated re-entry system
using FNPEG,” in Proc. AIAA Guid., Navigation, Control Conf., 2017,
p. 1899.

[3] V. Shukla, A. Gelsey, M. Schwabacher, D. Smith, and D. D. Knight,
“Automated design optimization for hypersonic inlets,” AIAA J. Aircr.,
1996.

[4] M. Vrdoljak, O. Halbe, T. Mehling, and M. Hajek, “Flight guidance
concepts to mitigate flight control system degradation in urban air
mobility scenarios,” IEEE Aerosp. Electron. Syst. Mag., vol. 38, no. 5,
pp. 18-33, May 2023.

[5] T. Walsh et al., “Support vector machines for estimating decision
boundaries with numerical simulations,” Sandia Nat. Lab., Albu-
querque, NM, USA, Tech. Rep. SAND2022-11061, 2022.

[6] W. Aquino et al., “Assessing decision boundaries under uncertainty,”
Struct. Multidisciplinary Optim., vol. 67, 2024, Art. no. 113.

[7]1 A.Basudhar and S. Missoum, “An improved adaptive sampling scheme
for the construction of explicit boundaries,” Struct. Multidisciplinary
Optim., vol. 42, pp. 517-529, 2010.

[8] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,” J.
Comput. Phys., vol. 378, pp. 686-707, 2019.

[9] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis, “Physics-

informed neural networks (PINNs) for fluid mechanics: A review,” Acta

Mechanica Sinica, vol. 37, no. 12, pp. 1727-1738, 2021.

S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis,

“Physics-informed neural networks for heat transfer problems,” J. Heat

Transfer, vol. 143, no. 6, 2021, Art. no. 060801.

S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,” Int. J.

Neural Syst., vol. 19, no. 04, pp. 295-308, 2009.

A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A.

Maida, “Deep learning in spiking neural networks,” Neural Networks,

vol. 111, pp. 47-63, 2019.

[10]

(1]
[12]

185

NETTER ET AL.: SAFE AND ROBUST BINARY CLASSIFICATION AND FAULT DETECTION USING REINFORCEMENT LEARNING

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

186

R. Zheng, X. Yi, W. Lu, and T. Chen, “Stability of analytic neural
networks with event-triggered synaptic feedbacks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 2, pp. 483—494, Feb. 2016.

I. R. Goumiri, B. W. Priest, and M. D. Schneider, “Reinforcement
learning via Gaussian processes with neural network dual kernels,” in
Proc. 2020 IEEE Conf. Games, 2020, pp. 1-8.

C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine
Learning, vol. 2. Cambridge, MA, USA: MIT Press, 2006.

C. K. Williams and D. Barber, “Bayesian classification with Gaussian
processes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12,
pp. 1342-1351, Dec. 1998.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, pp. 273-297, 1995.

S. Feng, H. Zhou, and H. Dong, “Using deep neural network with
small dataset to predict material defects,” Materials Des., vol. 162,
pp. 300-310, 2019. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0264127518308682

M. Guillaumin, J. Verbeek, and C. Schmid, “Multimodal semi-
supervised learning for image classification,” in Proc. 2010 IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2010, pp. 902-909.
M. Leonesio and L. Fagiano, “A semi-supervised physics-informed
classifier for centerless grinding operations,” in Proc. 2022 IEEE Conf.
Control Technol. Appl., 2022, pp. 977-982.

Y. A. Yucesan and F. A. Viana, “Hybrid physics-informed neural net-
works for main bearing fatigue prognosis with visual grease inspection,”
Comput. Industry, vol. 125, 2021, Art. no. 103386.

J. Janisch, T. Pevny, and V. Lisy, “Classification with costly features
using deep reinforcement learning,” in Proc. AAAI Conf. Artif. Intell.,
2019, vol. 33, no. 01, pp. 3959-3966.

G. Kampmann, N. Kieft, and O. Nelles, “Support vector machines for
design space exploration,” in Proc. World Congr. Eng. Comput. Sci.,
2012, vol. 2, pp. 1116-1121.

M. E. Cholette, P. Borghesani, E. Di Gialleonardo, and F. Braghin,
“Using support vector machines for the computationally efficient identi-
fication of acceptable design parameters in computer-aided engineering
applications,” Expert Syst. Appl., vol. 81, pp. 39-52, 2017.

S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adver-
sarial attacks on neural network policies,” in Comput. Res. Repository,
2017.

K. Lee, S. Yun, K. Lee, H. Lee, B. Li, and J. Shin, “Robust inference
via generative classifiers for handling noisy labels,” in Proc. Int. Conf.
Mach. Learn., 2019, pp. 3763-3772.

L. Bruzzone and C. Persello, “A novel context-sensitive semisupervised
SVM classifier robust to mislabeled training samples,” IEEE Trans.
Geosci. Remote Sens., vol. 47, no. 7, pp. 2142-2154, Jul. 2009.

J. Wang, Y. Liu, and B. Li, “Reinforcement learning with perturbed
rewards,” in Proc. AAAI Conf. Artif. Intell., 2020, vol. 34, no. 04,
pp. 6202-6209.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine, “Reinforcement learn-
ing with deep energy-based policies,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1352-1361.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861-1870.

R. Fox, A. Pakman, and N. Tishby, “G-Learning: Taming the noise
in reinforcement learning via soft updates,” Comput. Res. Repository,
2015.

J. Netter, K. G. Vamvoudakis, T. F. Walsh, and J. Ray, “Decision bound-
ary estimation using reinforcement learning for complex classification
problems,” in Proc. 63rd IEEE Conf. Decis. Control, 2024, pp. 3396—
3401.

V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” Comput. Res. Repository, 2014.

Y. Wang, J. -Y. Audibert, and R. Munos, “Algorithms for infinitely
many-armed bandits,” in Proc. Adv. Neural Inf. Process. Syst., 2008,
vol. 21, pp. 1729-1736.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

JOSH NETTER (Graduate Student Member, IEEE)
is from Athens, Georgia, USA. He received the
bachelor’s degree in aerospace engineering and
computer science from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2018, and the
Master of Science degree in aerospace engineering
in 2020 from Georgia Tech, Atlanta, GA, where he
is currently working toward the Ph.D. degree under
Dr. Kyriakos G. Vamvoudakis with the Guggen-
heim School of Aerospace Engineering. He is a
Graduate Research Assistant with the Guggenheim
School of Aerospace Engineering, Georgia Tech. His expertise is primarily in
control theory, safe autonomy, game theory, bounded rationality, urban air
mobility, and reinforcement learning.

KYRIAKOS G. VAMVOUDAKIS (Senior Member,
IEEE) was born in Athens, Greece. He received
the Diploma (graduating with highest Hons.) in
electronic and computer engineering (equivalent to
a Master of Science) from the Technical University
of Crete, Kounoupidiana, Greece, in 2006, and the
M.S. and Ph.D. degrees in electrical engineering
from The University of Texas at Arlington, Ar-
lington, TX, USA, under the guidance of Frank
L. Lewis, in 2008 and 2011, respectively. From
2011 to 2012, he was an Adjunct Professor and
Faculty Research Associate with The University of Texas at Arlington and
the Automation and Robotics Research Institute. Between 2012 and 2016,
he was a Project Research Scientist with the Center for Control, Dynamical
Systems, and Computation, University of California, Santa Barbara, Santa
Barbara, CA, USA. He joined the Kevin T. Crofton Department of Aerospace
and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA, as an Assistant
Professor, till 2018. He is currently the Dutton-Ducoffe Endowed Professor
with the Daniel Guggenheim School of Aerospace Engineering, Georgia
Tech, Atlanta, GA, USA. He holds a secondary appointment with the School
of Electrical and Computer Engineering. His expertise is in reinforcement
learning, control theory, game theory, cyber-physical security, bounded ratio-
nality, and safe/assured autonomy.

TIMOTHY F. WALSH received the Ph.D. degree in computational and
applied mathematics from The University of Texas at Austin, Austin, TX,
USA, in 2001. He is a Distinguished Member of Technical Staft with Sandia
National Laboratories, NM. His research interests include optimization, in-
verse methods, and machine learning in computational mechanics.

JAIDEEP RAY received the Ph.D. degree in me-
chanical and aerospace engineering from Rut-
gers, The State University of New Jersey, New
Brunswick, NJ, USA, in 1999. He is a Distin-
guished Member of the Technical Staff with Sandia
National Laboratories, CA. His research interests
include machine learning, bayesian inference us-
ing scientific and engineering models, and high
performance computing. He has contributed to
compressible fluid dynamics and turbulence mod-
eling. He has developed high-order methods for
simulating reactive flows on block-structured adaptive meshes. He maintains
and distributes open-source software. Details can be found at http:/www.
sandia.gov/-jairay

VOLUME 4, 2025

