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Abstract— We consider an off-policy reinforcement learning
algorithm that gathers input and state data from a nonlinear
system, and uses them to approximate the infinite-horizon
optimal control for that system. However, as this algorithm
relies on neural networks, its convergence depends on restrictive
assumptions regarding the underlying neural network struc-
ture. Moreover, the derived approximate optimal controller that
it yields is stabilizing only within a compact set <) of the state
space, leading to significant issues of robustness and safety for
real-world implementations. Motivated by this, to increase the
robustness and safety guarantees of controllers obtained by
off-policy reinforcement learning procedures, we combine them
with a novel safety net. The safety net is minimally interfering,
leaving the approximate optimal controller unaltered within the
compact set 2 in which it is valid and stabilizing. On the other
hand, the safety net interferes with the approximate optimal
controller whenever the set () is violated, so as to guarantee
the boundedness and integrity of the closed loop. Since the
proposed net is model-agnostic yet learning-free, it provides, for
the first time, hard guarantees of safety, established by rigorous
theoretical analysis and subsequently verified in simulations.

I. INTRODUCTION

Designing control laws to regulate nonlinear systems
around a nominal point of operation is, without a doubt, one
of the most important goals of the field of control theory. In
many cases, however, it is equally important to guarantee that
these laws are optimal, providing a perfect balance between
the time needed to attain system regulation and the overall
control effort expended in the closed loop. In the literature,
this is often known as the infinite-horizon optimal control
problem [1], or as the optimal stabilization problem [2].

The design of optimal controllers, while highly desir-
able, can become challenging when the dynamics of the
underlying system are unknown. In such restrictive settings,
reinforcement learning (RL) [3] has emerged as a significant
tool to obtain optimal decision-making policies exclusively
through data gathered from the system, i.e., through control
input and state trajectories. In fact, RL procedures have
already been tailored to the optimal stabilization problem of
systems with unknown dynamics, typically employing actor-
critic neural networks to approximate the optimal control and
its associated cost function over a compact set €2 [4]-[9].
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A shortcoming of controllers derived from actor-critic
procedures is that they lack robustness guarantees. That is,
since these controllers are optimal and stabilizing only in a
compact set (2, any violation of that set during runtime owed
to, e.g., a disturbance, is likely to put closed-loop stability
and safety in jeopardy. In addition, even if the set €2 is not
violated during runtime, the stabilizing properties of actor-
critic controllers on € rely on restrictive assumptions about
the structure of the actor-critic network, such as its size and
the selection of its basis functions [4]. These assumptions
are typically impossible to verify in advance, leading to sig-
nificant safety implications for real-world implementations.

It is important to mention that the concept of safety in
learning-based optimal stabilization is far from being new. In
particular, there is much prior work on augmenting optimal
stabilization problems with safety specifications, typically
via barrier functions, which allow the incorporation of state
constraints within the cost function of the problem [10]-[14].
Nevertheless, since the barrier-augmented optimal stabiliza-
tion problem is eventually solved using neural networks,
all safety assurances still rely on restrictive assumptions
regarding the underlying neural network structure and its ap-
proximation capabilities. That is, the neural network should
be large enough, with cleverly chosen basis functions.

Contributions: Motivated by these limitations, we embed
controllers derived from off-policy reinforcement learning
with a safety net, to tackle their lack of robustness that
stems from the use of neural networks. The safety net we
propose is minimally interfering, leaving the learning-based
controller unaltered in the compact set {2 where it is valid
and stabilizing. On the other hand, the safety net intervenes
when the set () is violated, to guarantee the safety and
integrity of the closed loop. As one of its most important
qualities, the safety net is model-agnostic but does not use
neural networks. This allows us to establish, for the first time,
hard guarantees on its ability to assure safety — even if the
underlying learning-based controller performs poorly.

Notation: The symbol V denotes the gradient of a func-
tion. For any two matrices A, B, A ® B denotes their
Kronecker product. For a vector ¢v € R", ¥ ®j ¢ de-
notes its half-vectorized Kronecker product, i.e., 1) @ ¥ =
[VF Y1be .. P1thn 3 o3 ... p2]T. For a symmetric
matrix A, Apin(A) denotes the minimum eigenvalue of A.
The matrix /,, denotes the identity matrix of order n.

II. PRELIMINARIES AND PROBLEM FORMULATION
Consider the continuous-time nonlinear system:
l"j = fj(fj) + gj(ﬁcj)scjﬂ, j=1...,n—1,
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where z; € R is the j-th state with initial value z;(0) = x; 0,
Z; = [z1 ... x;]T € RJ, u € R is the control input, and
f5,9; : R — R are locally Lipschitz functions modeling
the system’s dynamics, with unknown analytical expressions.
System (1) can also be written in the compact form

& = f(x) + g(x)u, x(0) = xo, )

with * = [2; ... x,]T, 29 =
fl@) = [filz1) + gr(@1)z2, ..
[0 ... gn(@a)]".

We assume that f;(0) = 0 for all j = 1,...,n, so that the
origin is an equilibrium point of (1) with v = 0. In addition,
we require the following standard controllability assumption.

[Il,O I’mo]T,
5 fn(jn)]T’ and g(x) =

Assumption 1. The functions g;(-) are either strictly positive
or strictly negative. Without loss of generality, we assume
gi(-) = 9, for some unknown 9, > 0. O

A. Optimal Control and Policy Iteration

For any feedback control policy 1 : R™ — R, define its
performance cost as

0
J(xo, 1) = L (Q(z) + rp?) dr, 3)
where @ : R® — R is positive definite, » > 0, and the
integration is taken over the trajectories of (2) with u = p.
The purpose of the infinite-horizon optimal control problem
is to find the policy p* : R™ — R that minimizes the cost
(3) over a set 2 < R™. In other words, we want to find

w*(z) = arg #glpl(rslz) J(x, 1), x e,
where U(2) denotes the set of admissible control policies,
i.e., policies for which the integral (3) is well-defined Vx( €
Q). The corresponding minimum value of the cost is called the
optimal value function, and denoted as V*(x) = J(x, pu*).

Towards finding u* and V'*, note that if the value function
V,.(+) :== J(-, ) of an admissible controller j is continuously
differentiable, then it satisfies the following Lyapunov-like
partial differential equation (PDE) [1]:

VYA D) 4o @nE) +QE)+ri(e) = 0, Vil0) = b

Defining the Hamiltonian

H(z, p, VV,)=VV,(2)" (f (@) +g(2)(2)) +Q(z) +rp* (),

standard optimal control theory requires that p* =
arg min,, H(x, 1, VV*) [1]. Employing the stationarity con-
dition to solve this minimization, we obtain

p (@) = = 5-g" (@) VV* @), ©

Combining (5) and (4) under p = p* yields the so-called
Hamilton-Jacobi-Bellman PDE:

vV () f(x) + Q(x) - %VV*Tg(x)gT(x)VV*(I) =0,
V*(0) =0. (6)

Algorithm 1 Policy Iteration
1: Begin with pg € ¥(Q2), € >0, i = 0.
2: repeat
3:  Policy Evaluation: Solve for V;, Vx € €1, from

YV (@) (f(z) + g(x)pi(x))
+Q(x) + rpf(z) =0, V;(0) =0. (7)

4:  Policy improvement: Let the new policy be given by

1
piv1(x) = —ggT(l’)VVi(JS)- (®)
50 Seti=1q+1.
6: until i > 2 & sup,.q|Vi1(z) — Vi (2)] < e

Apparently, if one can solve the HIB equation (6) for V™,
then the optimal control policy can be directly computed
from (5). Nevertheless, (6) is a nonlinear and complex PDE
for which analytical solutions are almost always impossible
to obtain. For this reason, policy iteration (PI) [15], a
procedure that iteratively evaluates a given controller and
then improves that controller, is usually employed to at least
find V* approximately. This procedure is summarized in
Algorithm 1, and is known to converge to V* [15].

B. Learning-based PI

While Algorithm 1 approximates the optimal value func-
tion and control, it is not implementable as it clearly requires
knowledge of the system’s dynamics functions f and g.
Nevertheless, this requirement of system knowledge can be
waived by following the steps of [4]. In particular, note that
(2) can be written for any 7 € N as

&= f(x) + g(x)pi(x) + g(z)(u = pi(2)).

The derivative of V; in Algorithm 1 then is

Vi = YV (2)(f () + g()pi () + YV (@) g(2) (w—pui ().

Using (7)-(8), this equation turns into

Vi = —Q(x) — rp2(x) — 2rpi () (u — ps(x)).  (9)

Integrating (9) over any interval [¢;, t}] for some positive
instances tj, >t > 0, k€ {0,..., K} =: K, we obtain the
following data-driven equation for expressing V; and fu;41:

m@@»—w@m»+[h

23

(2rpis1 (@) (= pa(a))
+ Q) + rpd(x))dr = 0. (10)

Various methods have been proposed in the literature to
solve (10) for V; and p;41 using neural networks [4], with
convergence guarantees. As a result, Algorithm 1 can be
implemented in a learning-based manner, where instead of
obtaining V; and ;41 from the model-based equations (7)-
(8), one instead obtains them from the data-driven equation
(10) for various values of k£ € N.
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Fig. 1.

The proposed control architecture.

C. Problem Formulation

In the core of all implementations of learning-based PI is
the need to employ neural networks to solve for V; and ;4
in (10) [4]. This requirement creates several issues for the
derived approximate optimal controller, such as

1) the derived controller lacking robustness to uncertain-
ties, as those are not considered in the training model;

2) the derived controller being stabilizing only within a
compact set {2 of the state space;

3) the derived controller being stabilizing and close to
optimality only if the underlying neural network is large
enough, and its basis functions properly chosen [4], both
of which are requirements that are not verifiable a priori.

The implication of these shortcomings is that when an
approximately optimal controller obtained by learning-based
PI is applied to (1), in practice there is no way to verify that
it will be safe, not leading the system to instability.

Problem Statement: Motivated by the aforementioned,

the purpose of this paper is to embed learning-based optimal
controllers derived from PI with a safety net. The safety net,
as shown in Fig. 1, takes the learning-based optimal control
as an input, and outputs a modified control signal for the
system, with the following characteristics:

1) it should be continuously differentiable;

2) it should be identically equal to the learning-based
optimal control within the compact set €2;

3) it should guarantee that the system state x(¢) remains
bounded for all ¢ > 0, irrespectively of the learning-
based controller derived from PI; and

4) it should not employ neural networks in addition to
those used by the learning-based controller, thus keep-
ing the computational complexity at low levels.

The remainder of this paper is focused on deriving this
safety-embedded scheme, depicted in Fig. 1.

III. THE LEARNING-BASED CONTROLLER BLOCK

In this section, we present the design of the learning-based
controller block of Fig. 1, which uses input and state data to
approximate the optimal control v* and value function V*
in the set (2. To that end, note that since V; and ;.1 in (10)
are function variables, an approximation has to take place to
solve for them. In particular, using an actor-critic network,
Vi and ;41 can be approximated as

Vi(x) = wlo(x).
i (x) = oT(z),

where w; € RNe, v; € RMe are neural network weights, and
#(z) € RNe +)(x) € RN+ are basis functions. The weights

(1)

Algorithm 2 Learning-based Policy Iteration
1: Begin with pg € ¥(Q2), € >0, i = 0.
2: repeat
3:  Compute ©; as in (15), and let 7 = ¢ + 1.
4
5

suntil 1 > 2 & ||6i,1 — @Z',QH < €.
: Obtain v; from ©; and set

ug, = v (). (16)

w; and v; must then be trained to force (10) to hold as closely
as possible. To this end, note that the left-most term in (10)
can be approximated as

Vi(x(ty)) — Vila(tr) = (¢(x(ty)) — d(a(te)))Twi, (12)

and the first term inside the integral in (10) as

2rfiis (2) (u — f1i(2)) = 2r(u — 1 (2))y" (2)v;.
Hence, the overall error by approximating (10) with (11):

eik = Vi(z(ty) — Vi(z(t))

+ fk <2rﬂz‘+1(:17)(u —[i(x)) + Q(z) + Tﬂ?(x))dr,

k

(13)

may be written in compact form, using (12)-(13), as
eir =Vir0; + P (14)

where ©; = [w] v.T]T, D, ) = Sg’: (Q(z) + rjp2(z))dr, and

K3

Vin = [(d(2(t},) — d(x(te)))" Sz’; 2r(u— ji;(x))" ()dr].

Defining then the matrices
v, =[],
;= [Piq

L
q)i,K]Tv

the weights ©;, for all ¢ € N can be trained using a least-
sum-of-squares procedure on the error (14), according to

0; = — (¥ U;)"' Ui ;. (15)

Finally, using (15), one obtains Algorithm 2, which is a
learning-based reformulation of Algorithm 1.

According to [4], if the number of bases N., N, is
large enough, then the control wy obtained by Algorithm
2 uniformly approximates the optimal control p* over €.
However, this is subject to an excitation condition on the
measured data, which is needed to guarantee the inversion
in (15) is well-defined. This condition is stated as follows.

Assumption 2. There exist constants 7 > 0 and Ky € N,
such that if K > K| then %Amin(\I/lT\Ili) >n, VieN. [

The condition in Assumption 2 is generally difficult to
verify a priori over an infinite horizon on ¢ € N. However,
in the following Theorem we provide — for the first time —
a way to easily verify that it holds for all 7 € N.

Theorem 1. Let
Bla(ty) - ola(t)
/ Sz: 2rutp(z(T))dr
i =20 (x(r)) @ Y (a(7))dr

Uy, =
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and ¥ = [¥, Ve If 2Amin(PTW) > 0 and
# Amin (¥ Wo) = 1, then 4 Amin (V7 W;) =1 for all i € N.

Proof. Note that for i € N\{0} one has ¥; , = UTW,, where

[ I, 0
Wi=1 0 In, ,
| 0 w1 ®In,

o(x(t4)) — ol (1))
§," 2rup(x(r))dr
|7 —2ry(a(r) @ Y (w(r))dr
and the zeros indicate null matrices of appropriate di-
mensions. In addition, there exists a linear transformation

A e RNax(Na+DNa/2 _ 3 duplication matrix — such that

() ®vY(-) = A(Y(-) ®n (). Hence, denoting

by =

I, 0 0
B=|0 Iy, 0
0 0 A

we obtain ¥, = B}, and thus ¥; , = WT BTW;. Therefore,

K K
UIW; = > UL = Y (UEBTW) BT,
k=1 k=1
K — — — —
= Z WrBY, v B"W, = W' BVTUBTW,. (17)
k=1
If %)\min(\iff@) > 7, then equation (17) implies:
U, > KnWBB™W;. (18)

In addition,

W, BB"W,;=
[INC 0 ! ] e I (19)
. T .
0 Ing (wia®In,) Al | AN (wi1®1n,)
1w 0 > 1
10 In, + (wic1 ®In,)"AAT(wis @ I, )| = TNt Ne

Combining (18) and (19) we obtain U1, > Knly in,,
hence Apin (VTW;) > Kn for all i € N\{0}. Using also the
condition %)\min(\p"of\po) > 1, the result follows. ]

Remark 1. Based on Theorem 1, to guarantee the inversion
in (15) is feasible for all 7 € N, one needs to check that it is
feasible for 7 = 0, and that %)\min(\iﬂ@) > n holds. Hence,
Theorem 1 provides — for the first time — a method to a priori
guarantee the execution of learning-based PI (Algorithm 2)
will not run into numerical issues as ¢ increases. ]

IV. THE SAFETY NET BLOCK

We now proceed to the design of the safety net block
of Fig. 1. As explained in the problem formulation, this
block must ensure that the final control u entering system
(1) is smooth enough, keeps the closed-loop bounded, and is
identical to the learning-based control w;, within the set 2.

Towards designing this block, assume without loss of
generality that (2 is a rectangular region, so that

Q= [—wl, (.4)1] X ... X [—wn,wn] (20)

for some strictly positive constants wy, ..., w,'. In addition,
for any constants w > w > 0, consider the following non-
decreasing, continuously differentiable function over (—1, 1),

having dead zone in [-2,2] < (—1,1) and satisfying
lime 41 T(&; w,w) = Fo0:
(57%)2’&“1(%5)5 EE (%7 1)5
T(€7 wa@): 0, fE [_%7%]7 21
(§+%)2'tan(g£)a 56 (_17_%)'

The design of the safety net block is as follows.
Step j = 1,...,n: Select ©; > wj, kj > 0, ap = 0, and
design the virtual control signals:

a; = —k;T(&; wjy, @;), (22)
G- (23)

Step n + 1: Select the final control signal as
u=up + a. 24)

Remark 2. Core to the safety net is the transformation (21),
the design of which can be understood as follows: i) it has a
deadzone around the origin, which will allow us to guarantee
that the safety net does not interfere with the learning-based
control within the set 2; ii) it increases rapidly once the &-
variable approaches 1, a quality needed to compensate for
the unknown dynamics in (1) should z(t) exit the set £2;
and iii) it is scaled by a quadratically vanishing function, to
guarantee that it is continuously differentiable. O

V. MAIN RESULT

In this section, we show that the proposed control scheme
of Fig. 1, described by (16), (20)-(24), achieves the four
qualities required by the Problem Statement. Since items 1)
and 4) of this statement can be verified by simple inspection,
in what follows we focus on proving items 2) and 3).

Theorem 2. Consider system (1) and Assumption 1. Suppose
that x(0) € Q. Then, the control scheme described by (16),
(20)-(24) guarantees that

1) the closed loop operates approximately optimally within
O, i.e, u(t) = ur(t) when z(t) € Q.
2) the closed loop remains bounded when x(t) ¢ .

Proof. To prove item 1, suppose that z(t) € Q2. Then, x4 (¢) €
[—wi,w1], and thus & (t) € [, Z]. By the definitions
(21), (22), this implies that a;(t) = 0. Next, z(f) € Q
also implies that @2 (t) € [—wa, wo], thus &(t) € [—(2, £2]
since aq(t) = 0. By the definitions (21), (22), this implies
that as(t) = 0 and, following this procedure recursively, it
follows that a,(t) = 0. Given this, according to (24), the
control law applied to the system at time ¢ is u(t) = wup(¢),
i.e., the closed-loop operates approximately optimally.

To prove item 2, note that for j = 1,...,n—1, (23) yields
T; = (I)jfj +aj_1. (25)

If © is not rectangular, it can be inner-approximated by a rectangle.
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Using (25), the dynamics of §; in (23), j = 1,...,n—1, are:

.1

&=z (fi (%) +@j119;(T5)E541+9;(T5)a;—a;-1) , (26)
J

. 1

gn = -

The right-hand side in (25) depends solely on the variables
& and &;_1 and, thus, so does x;. Therefore, denoting § :=
[£1 ... &), system (26)-(27) can be written compactly as

£=F(€) (28)

where F': (—1,1) — R™ models the right-hand sides of (27).
Since T is continuously differentiable on (—1, 1), and since
ur, as well as f;, g;, j = 1,...,n, are locally Lipschitz,
it follows that F(-) is also locally Lipschitz on (—1,1)".
Moreover, based on the reasoning of the previous paragraph,
z(0) € € implies {(0) € [-&, & ] x ... x [-&, 2] <
(—1,1)™. Hence, following standard arguments, system (28)
yields a unique maximal solution &(¢t) € (—1,1)" for
t € [0, Tmax), Where Tmax € (0, 400]. Next, denote ¢; =
T(&; wj, wj) for all j = 1,...,n. The rest of the proof
follows a recursive procedure for all ¢ € [0, Typax)-

Step 1: Consider the energy function V; = %e% Using
(26), (22) and the chain rule, its derivative is:

o (fn(fj) + gn(-fn)uL + gn(in)an - dn—l) . @7

1= % 5?;6(15)1) (f1(21) + @291 (Z1)E2—F191 (T1)er — do)
T (&)
< ;—11 a&l (Mi(t) — krg, ler]), (29)

where M (t) = |f1(Z1) + @291(Z1)& — aol, and where the
non-decreasing property of 7' was used. Note that by (25),
|:E1| < (2}1|§j| + |a0| < w; while ‘§2| < 1 and a9 = 0.
Therefore, by the continuity of f; and g;, the extreme value
theorem implies the existence of a positive constant M; < o0
such that [M;(t)| < M; for all ¢ € [0, Tyax). Hence, (29)
yields |e1 ()| = |T(&1; wi, @1)] < max{|el(0)|,k]§/[—g1} =:
€ for all ¢ € [0,7max). Using this, if we assume that
limsup,_,, _[£(t)] = 1, by the continuity and monotonic-
ity of T' this would imply that limsup, ,, |ei(t)| = oo,
which is contradicting. Hence limsup, ,, [&i(t)] < 1,
hence there exists & € (—1,1) such that & (t) € [—&;,&1]
for all ¢ € [0, Tyax). Finally, since €;(¢) remains bounded,
the existence of finite positive constants d1,aq such that
lai| < @ and |a;| < a; also follows from (22) and (26).

Step j = 2,...,n—1: Defining the energy function V; =
%E? and using the boundedness of a; and @ established frozn
Step 1, the existence of finite positive constants €;,a;, a;
such that |e;| < &, |a;| < @; and |a;| < a; also follows
recursively for all ¢ € [0, Tiax ). Similarly, the existence of a
constant &; € (—1,1) such that &; € [}, &;] also follows.

Step n: Consider the energy function V,, = %ei Using
(27), (24), (22) and the chain rule, its derivative is:

Fig. 2. The approximate value function V and optimal control [
provided by the actor-critic network over 2.

where M,,(t) = |fn(Zn) + gn(Tn)ur —Gn_1], and where the
non-decreasing property of 7' was used. Note that by (25),
|xn| < (Dn|§n| + ‘an71| S w1+ ap-1 while |dn71| < CTlnfl
from the previous step. Therefore, by the continuity of f,,
gn and ur, application of the extreme value theorem implies
the existence of a positive constant M, < oo such that
|M,(t)| < M, for all t € [0, Tmax). Hence, (30) yields
len(t)] = |T(én; wn, @n)l < max{|ea(0)], g} =
€, for all ¢ € [0, Tmax). Using this, if we assume that
limsup,_,, _ [£,(t)| = 1, by the continuity and monotonic-
ity of 7' this would imply that limsup, . |e,(t)| = o,
which is contradicting. Hence limsup,_,,. [§.(t)] < 1,
hence there exists &, € (—1,1) such that &,(t) € [~&,,&,]
for all ¢ € [0, Tax). Finally, since €, (t) remains bounded,
the existence of finite positive constants G, an such that
lan| < @, and |a,| < a; also follows from (22) and (27).
Accordingly, u(t) remains bounded by the boundedness of
Gn, Ty, and the continuity of wuy,.

To conclude, note that by the previous steps, £(t) remains
in the compact set [—¢1,&1] x ... x [=&,, €] © (—1,1)™ for
all t € [0, Tynaz)- Since F'(-) is locally Lipschitz on (—1,1)",
it follows that 7,,,, = o0 [[16], Theorem 3.3]. |

VI. SIMULATIONS

We perform simulations on the Van der Pol oscillator [17]:

T1 = X9, X9 =—x1+ 0.bxy— x% + wu. 31

The objective is to approximate the controller that minimizes
the cost (3) with Q(z) = |[«||>, » = 1, while having
guarantees of closed-loop boundedness and robustness. To
this end, an actor-critic network is employed with basis
functions of monomials up to the third order, and whose
weights are trained by gathering input and state data over
O = [-1,1] x [-1,1] and performing Algorithm 2. The
safety net of Section IV is also concurrently employed, with
parameters wy = wy = 1, w3 = Wy = 1.25 and ky = ky = 1.

o e 0T (o (o _ . . The approximated optimal value function and optimal con-

v, = & F ) an (B s —k FVer —n pproximated optimal value function and optimal con

w06, (fn( n) TG0 @n)ur=kngn(En)én=dn 1) trol provided by the actor-critic network over €2 are depicted

en 0T(&n) in Fig. 2. One may notice that their values are reasonable,

< Gy 06, (M"(t> N k”gn|€"|)’ (30) since the former is positive definite while the latter has a
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Fig. 3. The phase portrait of the closed loop in the three tested
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Fig. 4. The control input trajectories in the three tested scenarios.

stabilizing control direction throughout the state space. To
showcase the efficiency of the proposed combined control
scheme, the approximated optimal control is subsequently
tested with 2o = [—0.6 — 0.6]T in three cases: first, in the
case where u = uy, in (31) and where no uncertainty enters
the system; second, in the case where u = wuj, but where
an additive disturbance d(¢) = 12 is temporarily present in
the control input over ¢ € [0, 2], and vanishes thereafter; and
finally, in the case where w is given by the combined scheme
(24), and where the same additive disturbance is present.

The phase portraits and control inputs for all three cases
are depicted in Fig. 3-4. It can be noticed that while the
standalone learning-based control works quite well in the
first, ideal scenario, it fails to keep the closed-loop bounded
in the disturbed case. This is because the temporary additive
disturbance manages to drive the state trajectory outside

the set {2 over which the approximate optimal control is
valid, and this invalid controller ends up driving the closed
loop to instability. On the other hand, in the case where
the approximate optimal control is applied in tandem with
the safety net, the state trajectories are unable to escape to
infinity, and are in fact constrained to remain close to {2 when
the disturbance is active. In addition, once the disturbance
vanishes, the state trajectory quickly returns into €2, where it
is driven to the origin by the approximate optimal controller.

VII. CONCLUSION

We proposed a safety net, which enhances and ensures the
robustness of approximate optimal controllers derived by off-
policy reinforcement learning, with hard guarantees. Future
work includes an extension to multi-agent systems.
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