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Abstract—1In this paper, we propose a method for quickly
training a binary support vector machine (SVM) classifier
for recognizing valid input spaces in high-dimensional, highly
constrained systems by using reinforcement learning to find
inputs along the decision boundary of the classifier while
minimizing the number of runs of a simulation representing the
system. We find training points by first defining an optimization
problem where the action space consists of points to test, and
the reward is a function that searches for points that are close
to violating the given constraints and are a sufficient distance
from one another. After formulating this process, we use a Q-
learning framework to find inputs that maximize the reward,
and then use these inputs to train the classifier so the decision
boundary is quickly well-defined. The efficacy of this approach
is then shown in simulations.

I. INTRODUCTION

Currently, much of the development of autonomous vehi-
cles has been driven by the potential of automating certain
aspects of flight, such planning in urban air mobility (UAM)
scenarios [1], the control of a vehicle in re-entry [2], or even
optimizing design of hypersonic components [3]. In each of
these use cases, designers must ensure that these autonomous
aircraft are safe in a variety of operating conditions, to the
point that these craft may be subject to even more rigorous
standards than current aircraft [4]. However, these crucial
simulated tests are often a major bottleneck in engineering
design in recent years.

When designing an aircraft, one must consider and rig-
orously confirm its valid operating conditions, which are
normally dependent on a wide variety of environmental
parameters such as velocity, or atmospheric pressure and
temperature. The effects that these conditions may have on
the operation of a vehicle often fluctuate wildly and are
difficult to predict, and the vehicles often have many potential
constraints on some quantities of interest (Qols) that must
never be violated such as exceeding certain loads or tempera-
tures on various components of the aircraft. This often results
in very complex sets of valid flight conditions, that may be
non-convex or split into disjoint subsets, and dependent on a
high-dimensional input vector. These design challenges can
be formulated as a binary ”go/no-go” classification problem,
where we seek the decision boundary between the valid input
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spaces where all Qols are below their given thresholds, and
the invalid input spaces where one or more constraints are
violated.

Training a classifier for a non-convex or disconnected
decision boundary is still a significant challenge. It is crucial
to select training points intelligently to accurately model the
complete decision boundary in these cases, but ironically
even selecting points intelligently often requires numerous
initial random samples to find good candidate points or
some prior knowledge of the system to narrow down an
area of interest in the decision space. In addition, because of
the complex effects of many environmental conditions on a
vehicle, simulating each potential set of parameters may take
hours to run to convergence, making the process of training a
classifier days or even weeks long. In this work, we propose
a method to intelligently find informative training points
using reinforcement learning to quickly train a classifier to
recognize a complex valid input space with minimal prior
information and minimal training data.

First, we consider previous methods of modelling physics-
based systems. In [5], the authors propose physics-informed
neural networks (PINNs) which proved to be effective at
modelling problems constrained by laws of physics defined
with partial differential equations, or with finding these
PDEs. For our work we do not necessarily require precise
Qol values, but instead seek a boundary of when these
Qols are likely to violate constraints. In [6], neural nets
are not used to directly learn the behavior of a system,
but instead are used to learn the kernel determining the
structure of a Gaussian process. This somewhat mitigates
the shortcomings of Gaussian processes, which cannot model
particularly erratic functions, and may still struggle with less
smooth functions.

We must also discuss methods of binary classification,
and how effective they are in dealing with irregular design
spaces. For example, we first consider Gaussian process
classification and Bayesian classification [7], [8], which are
effective at not only generating a binary classifier but can
additionally provide a probability that the classification is
accurate. Support vector machines (SVMs) [9] were also
found to be very effective at classifying these systems
when provided with sufficient training data in our initial
tests. We also examine previous efforts on using learning
to train classifiers on the conditions of real systems. For
example, in [10], the authors show that physics-informed
neural networks combined with a visual classifier can be used
to identify bearing fatigue. The authors of [11] alternatively
use a learning-based approach for the classification with
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costly features (CwCF) problem. In this work, classification
is structured as a Markov decision process (MDP) where
acquiring each feature of an input has an associated cost, and
a Q-learning approach is used to decide which features to ac-
quire and when to classify the input. In each of these works,
neural networks are successfully used either as classifiers or
to supplement classifiers of complex systems. We seek to
expand upon this work by intelligently selecting informative
points to train these networks and an SVM classifier with as
small of a training set as possible.

The contributions of the present paper are fourfold. We
first formulate the problem of finding ideal training points as
an optimization problem with a cost we seek to minimize. We
then formulate a reinforcement learning method for finding
an optimal stochastic policy for a problem without a defined
state space. We apply this approach to the problem of finding
the decision boundary of a binary classifier across the total
design space with no prior information. Lastly, we use these
selected points to train a binary classifier and compare the
results to other methods of intelligent sampling.

Structure: In Section II, we will formulate the problem
of selecting effective points for training a go/no-go classifier.
In Section III we will detail the learning-based approach
to selecting these points quickly. In Section IV we test
this approach in a variety of simulations. In Section V we
conclude the paper and discuss possible future directions for
this research.

II. PROBLEM FORMULATION

Consider a function,

y=f(x), (1

where x € R” is the current state and/or control input vector
of the system, and the output is some number m quantities
of interest (Qols) y € R™ we choose to monitor. Each
monitored Qol y;, 1 < 7 < m is constrained by a maximum
allowed value ymax, ;. For a state of the system « to be valid,

fb('r) < Ymax,i, Vi e 1, oo, m,

where f; refers to the i-th value in the output vector. There
may additionally be minimum constraints ¥,in,; that require
fi(xt) = Ymins, but these can be trivially transformed
into maximum constraints by taking the negative of both
fi(xt) and Ymin,;. If any constraint is invalid, then the state
is considered invalid. This is referred to as a “go/no-go”
classification problem. For convenience, we express the total
valid input space as X", the invalid input space as X' ~, and
the complete simulation input space X. In this work, we
seek to learn the valid input space X' in order to accurately
determine the valid states of a system. While this can often be
done by running an offline physics simulation for all values
r € X and determining which inputs result in violating the
constraints on the output Qols, these simulations we consider
are usually very time-consuming to run. As a result, we seek
to learn X" with as few simulation runs as possible.

To begin, we assume that X, X~ # (¥, as otherwise
the problem is trivial. To then find the valid input space, we

first try to simplify the problem. We assume that the outputs
fi(x),Vi € 1,...,m are continuous even if the slope may
be very steep or not smooth. We normalize each output by
defining f(z) such that

filz) =

These normalized outputs allow us to succinctly describe
the valid input space X' as the set of inputs such that

filz) <1,Viel,...,m,Voe Xt.

fi(x)

Ymax,i

VYiel,...,m. 2)

With this equation, we then define a combined constrained
output,

fl@) = min {1 fi(z)}. (3)

We use the combined constraints to define the valid input
space as the set of inputs such that

f(x)=0,VeeXxt, 4)

and conversely define the invalid input space as f (z) <
0,Vre X~.

With our valid and invalid input spaces defined, we define
the decision boundary X such that for an input z® € X'?,

fz") =0, 5)

We can now simplify the problem of finding the valid input
space X't to finding the decision boundary X°.

ITII. POINT SELECTION WITH REINFORCEMENT
LEARNING

In this section, we present a formulation for an optimal
stochastic policy for selecting actions in problems without
a well-defined state, as well as an actor-critic method for
finding this optimal policy. First, we require a method of
quickly and intelligently finding these optimal inputs. For
this, we formulate a learning approach that can learn an
optimal policy efficiently with a relatively small number of
samples and little to no prior knowledge of the problem.
Our approach also must be effective at finding the deci-
sion boundary even in a continuous domain and with a
non-convex decision boundary or multiple disjoint decision
boundaries. With these priorities in mind, we consider a soft
actor-critic (SAC) approach to learn an optimal policy [12].
This approach utilizes a stochastic actor-critic approach and
has been shown to quickly and reliably find an optimal policy
even for complex functions across continuous domains.

The SAC algorithm seeks to both maximize a reward
function as well as favor stochastic policies by adding a term
for the expected entropy of a policy T,

T
J(1) = . By, a,[r(se,ar) —logm(-[s)],  (6)
t=0

where s; € S represents a state in the state space S, and
a; € A represents a potential action in the action space
A. For this work, we define the action space as the input
space of a simulation, A = X. The “state” of the system,
however, is not well-defined. It can be thought of as the
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constant parameter of every test (such as, for example, the
shape of the body to analyze or the medium it is travelling
through). As a consequence, we augment (6) to a simplified
stateless form,

J(7T> = ]Ea~7r[r(a) — log ﬂ-()] (7

We then consider how to find the optimal policy 7* such
that Q™ (a) = Q™ (a) V7 € II, a € A. We begin by finding
the soft Q-value of the policy, defined in [13] to reward a
higher entropy policy,

o0
Qsoft (st,at) =1t +Es, ) [ Z Y (resr —logm(-[se11)) |-
=1

We consider any function @ : A — R, and then define a
similar Bellman operator to that in [12],

T"Q(ar) = r(at) +VEa,, ~r[Q(ar41) —log m(ai11)], (8)

and define Q**! = T7Q*. We then define the entropy-
augmented reward as r(a) = r(a) + E(n(-)), and subse-
quently rewrite the update rule as

Q(at) A rﬂ'(a’t) + WEat+1~ﬂ[Q(at+1)]' )

By using the policy evaluation convergence method de-
scribed in [14] provided A < oo, the Bellman equation (8)
and update rule (9) show that Q¥ approaches the soft Q-
value of the policy 7 as k — oo0. The next step for finding
the optimal policy is to iteratively improve the policy. In
the original proposed SAC algorithm in [12], this is done
by minimizing the Kullback-Leibler divergence in each step.
We adopt a similar approach, updating the policy in each
step as

Tnew = E}ln Dxkr (77/(') | |eXp(QTr01d ())) :

in (10)

The proof that this converges to an optimal policy is
omitted for the journal paper.

We then formulate how to approximate the Q-function
and policy. We consider a Q-function Qy(s, a;) and policy
7y (a¢|sy) parameterized by € and ¢, respectively. In this
case, we model the Q-function parameters using a neural
network, and the policy as a Gaussian random vector with
means and covariances given by a neural network. The
parameters 6 and ¢ are thus the weights of these networks.
We train both of these approximations to estimate the Q-
value and optimal policy using gradient descent. We train
the Q-function approximation to minimize the residual error,

1
Ja6) = Ea, [5(Qolar)
- (r(a’t) + ’YEat+1 [Qe(a’tJrl) - 10g‘n’¢ (at+1)]))2]7
with the gradient found to be,

VeJo(0) = VeQo(ar)(Qe(ayr)

- (r(at) + ’y]EatJrl[Qe(atJrl) - logﬂ‘d, (at+1)])'
(11)

To approximate the policy, we define the cost to minimize
as Equation (10), which can be simplified as,

Jr(0) = Ee, [logmy(fo(er)) — Qo(fo(er))]

where fy(e;) is a transformation of the policy including an
input noise vector €; to allow for differentiation of the cost.
This allows us to define the gradient simply as,

Vgdr(d) = Vg logmy(ar)
+ (vat log 7r¢(at) - vatQ(at))vqﬁfg‘b(et)' (13)

We use the gradients (11) and (13) to adjust the values of 6
and ¢ to find the Q-function and the optimal policy.

We now define a reward function 7(a) to effectively
search for the boundary inputs using the proposed actor-critic
method. For training a classifier, we want to prioritize points
close to the decision boundary regardless of if they are valid
or invalid. As a result, we base our reward on the square of
the combined constrained output defined in Equation (3),

r(a) = —f(a)*.

It can be trivially seen that given the reward function (14),
the highest possible is r(a) = 0, and an input a* is optimal
if f(a*) = 0. In other words, the reward increases as a point
a approaches the decision boundary, and is maximized when
a* represents a point on the decision boundary. In turn, the
reward of the policy as defined by Equation (7) is maximized
when the policy both approaches the decision boundary while
also maximizing expected entropy. With this optimal policy,
we prioritize sampling a large input space where the inputs
are relatively close to the decision boundary, allowing us to
intelligently sample the input regions of most interest for
efficiently training a binary classifier.

To create the go/no-go classifier, we first initialize the
actor and critic and use the actor to select inputs along a
series of steps. After each step, the model weights of both
the actor and critic are updated to improve the policy. With
each input returned by the modeled policy, we calculate the
reward using a run of the simulation. Once a simulation is
run, both the input and its reward are saved for future use if
the policy once again returns the same input. This continues
until enough points have been simulated to train the classifier.
This complete approach is shown in Algorithm 1.

12)

(14)

IV. SIMULATIONS

The proposed method of selecting training points was
tested in a variety of binary classification problems of varying
complexity to measure the effectiveness of the approach.
In each of these problems, the selected training points are
used to train an SVM to determine if a certain constraint is
violated. In each example problem, a value b; is chosen based
on the range of potential values of the i-th value of the input
a; such that (b;(@max; — @min.i))?> = 1, where amyay; and
@min,; are the maximum and minimum values of the input
respectively. For example, for an input with a range [20, 30],
we take b; to equal %. With this, we normalize the effect
each value of the input vector has on the measured “distance”
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Algorithm 1 Learned Sampling

Input: b1, ..., b, - input distance constants; ¢, 0 - SAC parameters;
Ymax,1s - - - y Ymax,n - Output constraints

QOutput: SVM - trained support vector machine classifier

1: while 7 not converged do
2 Gnew < Actor(me)

3 if (@new € Atrain) then
4 T(anew) «— T(atrain)
5: else
6‘
7

8

Yy < SimulationRun(@new)

7(Gnew) < Reward(y, Ymax,1,- - - » Ymax,n)
: Atrain < Atrain U Gnew

9: end if

10: 0—0—Vodg(0) (11)

1 ¢« ¢—VuJr(o) (13)

12: end while

13: SVM « TrainClassifier(A¢rain)

14: return SVM

between inputs. For each simulation, we also use a greedy
sampling approach as a baseline that, on each iteration k,
adds two points x,j,x,; to the training data used by the
classifier. These points are defined as
7 = min |y(2)],2; = min [y(2)],
:CEX): TEX,

where yy, represents the SVM decision function at iteration k,
and X", X, represent the believed valid and invalid input
spaces at iteration k, respectively. This approach attempts
to choose two points that are both close to the decision
boundary, and on opposite sides of the decision boundary.
This approach is detailed in [15] and is shown to be effective
at selecting an informative training set. A key difference
between these two approaches is that our SAC approach
is informed by the actual simulation, whereas the greedy
approach is informed by the classifier. This means that
the greedy approach does not know, quantitatively, how
close constraints are to being violated. This may lead to
worse performance along non-convex decision boundaries
which require more sampling in certain areas close to the
constraints.

For the first problem, we consider a bar of unit area made
of N materials, each of with a fixed length [1,[5, ...,y and
a Young’s modulus Fy, Es, ..., Ex. We then apply a point
force F' at one end along the length of the bar, displacing the
bar by a distance u = FZZJ\;1 1{3—1 We seek Young’s moduli
values of each material where the bar displacement does
not exceed a given threshold ug. This example produces a
relatively simple convex valid input space. In our simulations
we use a bar with 2 segments, or N = 2, as well as one where
N =10 to test the effectiveness of the actor-critic approach
in problems of higher dimensionality. The misclassification
rate as a function of number of samples for both the actor-
critic method as well as the previous greedy method is shown
in Figure 1 for N = 2, and Figure 2 for N = 2. The model
learned using SAC and the “true” model for N = 2 is shown
in Figure 3 to illustrate their similarity. Figure 3 also shows
how the selected training points follow closely along the
decision boundary across much of the input space.

6.1 Misclassification Rate vs Number of Points

Greedy
——SAC
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Misclassification Rate
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15 20 25 30
Number of Points

Fig. 1: Comparison of the average misclassification rate of
the greedy and learned sampling point selection methods
on the 2-dimensional uniaxial bar problem with a small
sample size. The misclassification rates of the approaches
are comparable despite the greedy approach being supplied
with initial training samples.

. Misclassification Rate vs Number of Points
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Fig. 2: Comparison of the average misclassification rate of
the greedy and learned sampling point selection methods on
the 10-dimensional uniaxial bar problem. Despite no initial
training data across a very large input space, the SAC method
remains competitive with the greedy approach.

For the second problem, we consider a function with a
two-dimensional input f(r) = xzp — [tan(% + 2)| with a
constraint that f(z) < 3. This results in an irregular, non-
convex valid input space. The misclassification rates for this
problem are shown in Figure 4. The model trained with a
small training set supplied by our actor-critic approach, as
well as the true decision boundary, is shown in Figure 5.
Unlike the uniaxial bar problem tested previously, the SAC
sampling method outperforms the greedy method used in
previous work.

In our final experiment, we considered a basic aerody-
namic simulation using the Sandia Parallel Aerodynamics
Reentry Code (SPARC) [16]. We model the flight of the
Sandia Test Vehicle (STV), and take velocity in meters per
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Fig. 3: The left image shows the 2-dimensional uniaxial
bar classifier formed using learned sampling with a shown
small sample size, and the right shows the decision boundary
learned with significantly more samples. As the problem is
rather simple, both the greedy and learned sampling approach
quickly approach a >95% successful classification rate.

Misclassification Rate vs Number of Points

0.24

Greedy
0.22 ——SAC

0.2

Misclassification Rate

10 15 20 25 30
Number of Points

Fig. 4: Comparison of the average misclassification rate of
the greedy and learned sampling point selection methods on
a non-convex classification problem with a small sample size.
On this problem, our learned sampling approach outperforms
the previous greedy approach even without initial training
samples.

Fig. 5: The left image shows the non-convex classifier formed
using learned sampling with a shown small sample size, and
the right shows the decision boundary of the problem learned
with significantly more samples. Even with a small sample

size, many of the points on the left image clearly show rapid
convergence to the location of the later decision boundary.

second, angle of attack in degrees, and air temperature in
Kelvin as our independent variables. We then set a single
constraint on the maximum tolerated air pressure on the

surface of the vehicle and classify any inputs resulting in
a pressure exceeding this constraint as invalid. We show the
resultant misclassification rates for this problem in Figure
6, and the initial and final leaned models in Figures 7
and 8, respectively. In this experiment, the SAC approach
went through several iterations without gathering meaningful
training points, resulting in a higher misclassification rate at
first. This is likely due to a volatile reward function at first,
where small changes in policy parameter weights drastically
affect the reward. However, after a few iterations when the
policy begins to converge, the misclassification rate sharply
drops and approaches the misclassification rate of the greedy
approach, which saw a much steadier, slower decrease.

5 Misclassification Rate vs Number of Points
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Fig. 6: Comparison of the misclassification rate of the greedy
and learned sampling point selection methods on the STV
pressure classification problem with a small sample size.
Both classifiers start off very inaccurate, but the STV takes
some additional iterations to converge.

)

\?00

\?50

(deg) . % T(K)

Fig. 7: The STV pressure classifier formed using learned
sampling with a shown small sample size. Yellow and purple
dots signify positive and negative samples, respectively.
The image shows the samples clustering at edges of the
simulation from initial sampling, following by converging
towards the true boundary in the center.
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Fig. 8: The decision boundary of the STV pressure learned
with significantly more samples.
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3,

To summarize our results, the two approaches perform
comparably well on each test problem. We found that
the traditional greedy sampling method was more effective
on a high-dimensionality problem with a convex decision
boundary, whereas learned sampling was more successful at
finding points along a more complicated non-convex decision
boundary. Additionally, we note the repeated success of the
learned sampling approach even though it does not require
any prior knowledge of the decision boundary, which is
required for the greedy approach. This means that randomly
selected initial training samples can be kept to a minimum
to reduce the amount of necessary simulation runs.

V. CONCLUSION

In this work we introduce a learning-based method of effi-
ciently selecting training points for classifying the valid input
space of computationally intensive simulations of complex
dynamic systems such as flight vehicles. We compared this
approach to a greedy method of selecting training points and
found it to be competitive in a variety of example problems
as well as a flight simulation despite not being supplied with
an initial training set. In our future work, we will experiment
with normalizing both input parameters and the expected
reward of a problem to see if this can make results more
consistent, rather than unpredictable sharp improvements like
those seen in the STV test. Future work will also include
testing this approach with more complex systems with a
larger input space and multiple constraints to determine the
valid input space, which we anticipate will create difficulties
in the greedy approach from previous work. Additionally, as
the learned sampling approach requires no initial data, we
also consider the possibility of supplementing the classifier
with data gathered online during flight to learn the valid input
space more accurately in real-time. This unique advantage

will also allow us to measure the effectiveness of entirely
relearning a valid input classifier in the case of unforeseen
interference on the system, such as inclement weather or
hardware failure.
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