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Abstract—The rise of Machine Learning (ML) and the wide use of

Deep Neural Networks (DNNs) have led to the development of specialized

DNN accelerators, aimed at improving the computing capabilities of

ML systems. While these accelerators have been beneficial in enhancing

computational efficiency, their design presents significant challenges due

to the complexity of hardware configurations. Additionally, it is critical

to consider and address the environmental implications and challenges.

Unfortunately, these aspects have often been neglected during the design

of ML systems. The carbon footprint, both operational and embodied,

of these accelerators is a growing concern, with the latter becoming

increasingly significant. This paper presents a framework for designing

DNN accelerators with an emphasis on embodied carbon footprint.

Using a genetic algorithm, we address the balance between performance

and sustainability, focusing on reducing the embodied carbon footprint.

Experimental results on different types of DNNs show that our method, by

exploiting the properties of on-chip logic and memory, can generate DNN

accelerators with considerably less embodied carbon and with a negligible

performance overhead.

Index Terms—Deep Neural Networks, Embodied Carbon Footprint,

DNN Accelerators, Sustainable Computing

I. INTRODUCTION

The growth of Machine Learning (ML) in the last years has been

remarkable, making Deep Neural Networks (DNNs) a key component

in modern computing systems. This has led to an increased demand

for specialized DNN accelerators, which are computing architectures

tailored to efficiently process the complex operations of DNNs. These

accelerators are important for enhancing the speed and efficiency of

ML systems, enabling them to handle more complex tasks faster than

conventional computing components.

Designing hardware accelerators, within specific area constraints,

presents a significant challenge, particularly due to the vast design

space for hardware configurations and mappings [1]. This complexity

is based on deciding the number of Processing Elements (PEs), as well

as the configurations of local and global memories, which can greatly

differ and significantly affect the accelerator’s performance. The task

of mapping DNNs onto these hardware accelerators introduces another

dimension of complexity, significantly increasing the search space.

This complexity is further increased due to the inter-dependencies

between hardware configurations and DNN mapping strategies, where

choices in one area can severely influence outcomes in the other.

Previous works have shown that the possible hardware configurations

are in the order of billions [2]. These factors highlight the critical

need for developing sophisticated automation methods capable of co-

exploration of hardware configurations and DNN mappings, avoiding

also manual tuning.

Although the field of ML is evolving rapidly, it is critical to consider

and address the environmental implications and challenges. Unfortu-

nately, these aspects have often been neglected during the design of

hardware accelerators [3]. In particular, operating and designing hard-

ware accelerators carries a substantial environmental operational and

embodied carbon footprint. The term operational refers to the carbon

footprint associated with the ongoing operation and maintenance of the

ML systems, including energy consumption and cooling requirements,

while embodied refers to the carbon footprint associated with the

entire life cycle of the devices, including their design, manufacturing,

and disposal. Although, previous works focus on the impact of

operational carbon footprint [4], [5], recent studies showed that the

embodied carbon footprint of systems is becoming a dominating

factor for ML’s overall environmental impact [6] and optimizations

at that level are still unexplored. In particular, previous studies have

demonstrated that the use of hardware accelerators can substantially

reduce the operational carbon footprint and energy consumption of

DNN training [7]. However, these accelerators require more system

resources, leading to larger embodied carbon footprints [8].

Therefore, designing sustainability-based DNN accelerators should

move beyond traditional optimization methods. Specifically, the em-

bodied carbon footprint can be reduced by scaling down energy-

efficient hardware accelerators and lowering footprint circuit design.

However, this approach introduces a performance and sustainability-

oriented dilemma. On one hand, minimizing the size and increasing

the efficiency of hardware components can lead to lower energy

consumption during operation, contributing to a reduced operational

and embodied carbon footprint. On the other hand, targeting high per-

formance requires sophisticated and often resource-intensive hardware

designs, which can increase the embodied carbon footprint through the

use of more complex manufacturing processes, and increased resource

utilization. This delicate balance between enhancing performance and

reducing embodied carbon poses significant challenges.

In this paper, we present a framework for carbon-aware design

of DNN accelerators. In particular, we present a genetic algorithm-

oriented method to design hardware accelerators, under a specific

area budget, considering hardware architecture, mapping of DNNs,

and embodied carbon. The innovations of our work are manyfold:

(1) Our framework simultaneously considers sustainability alongside

traditional first-order metrics like performance and power efficiency

for optimization, ensuring a holistic approach to accelerator design.

(2) We integrate embodied carbon modeling directly into the design

process of DNN accelerators, utilizing sustainability-oriented metrics

as key decision-making tools. (3) Our approach reduces the embodied

carbon footprint of the DNN accelerator with negligible performance

impact.

II. RELATED WORK

Modern research towards the estimation of embodied carbon emis-

sions has been derived from data in Life Cycle Assessment (LCA)

reports [9], [10]. Although the investigation of such analyses is very

important, LCA summaries cannot be considered in early-stage design

space exploration, as they provide coarse-grained information, that

usually corresponds to older semiconductor technologies [11]. Other

models [12], [13] may correlate embodied carbon footprint with only

one parameter like the die area or the manufacturing cost. However,

as it has been proven, the CO2 emissions depend on multiple factors,

like the fab characteristics and the technology of the transistors [14],

so a more detailed method should be deployed.



Although there have been various studies [15], [16] that investigate

the energy efficiency and the optimal utilization of hardware resources

in DNN accelerators, it is not sufficient concerning the sustainabil-

ity. In reality, such methods may even increase the manufacturing

footprint, due to the additional circuit control complexity [17]. The

need for sustainability has led to novel optimization metrics, used

during the accelerator design phase. Apart from performance, power

and area, the device carbon footprint is also taken into account.

There have been several approaches [11], [6], [18] that combine

both embodied and operational CO2 emissions throughout the life

of the accelerator. Nevertheless, operational and embodied carbon

are estimated on different scales and therefore cannot be practically

compared [19]. For this reason, in our optimization strategy, we

consider only the embodied carbon footprint, which is responsible

for most of the environmental impact of edge devices [6].

Regarding the DNN accelerator Design Space Exploration (DSE),

previous methodologies tend to use optimization methods that examine

both the hardware configuration and the mapping strategy, given a

specific workload. Many studies [20], [2], [21], [22] divide the

workload in layers and perform an optimization strategy examining

each layer separately, ignoring any inter-layer modification. Each final

design point has to satisfy some resource constraints, such as power

consumption and area, which are very crucial in edge devices. Certain

tools [21], [22] may find an optimal solution using a two-loop

searching algorithm, by first selecting a hardware configuration and

then reaching the most efficient mapping strategy for the predefined

architecture. The process recurs in a feedback closed loop, according

to the optimization procedure. However, this method results in a very

large sample space and, in order to get a solution in a reasonable

time, the authors have to substantially restrict the possible design

points. Other works [20], [2] choose to flatten the hardware dataflow

search space into one loop and thereby achieve faster results and better

sample efficiency. Among these DSE solutions, Digamma framework

[2] implements a domain-aware genetic algorithm to find an optimal

solution under specific resource constraints, for a given neural network.

The estimation of latency, energy and hardware requirements is

employed by the cost model MAESTRO [23]. The differentiators

of our work lies in the formulation of the embodied carbon for DNN

accelerators, the integration of this metric into the design process, and

the exploration of the vast design space.

III. BACKGROUND AND MOTIVATION

The need for DNN accelerators arises from the increasing com-

plexity and computational demands of modern neural networks. These

accelerators are designed to efficiently execute the massive number of

computations required by DNNs, enabling faster and more energy-

efficient inference and training processes. In this work, we utilize

the Eyeriss accelerator [24] as the architectural template for our

exploration. The Eyeriss accelerator has a unique internal architecture

that enables efficient processing of convolutional neural networks. At

its core, Eyeriss consists of a large array of Processing Elements

(PEs) organized in a mesh-like structure. Each PE is responsible

for executing a specific portion of the neural network computation.

The PEs are connected through a network-on-chip that facilitates

data communication and synchronization between them. Additionally,

Eyeriss incorporates a dedicated memory hierarchy that includes local

memories associated with each PE, as well as a shared buffer for

storing intermediate results. This hierarchical memory organization

minimizes data movement and maximizes data reuse, leading to

improved energy efficiency and performance.

As aforementioned, the embodied carbon footprint refers to the

footprint associated with the entire life cycle of the devices, including
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Fig. 1: Pareto front between cycle count (latency) and normalized

embodied CO2 for the first three layers of the VGG network.

their design, manufacturing, and disposal. The goal of this work

is to associate the embodied carbon footprint with the architectural

characteristics of the accelerator considering a standard manufacturing

process. Particularly, considering a DNN accelerator that follows the

Eyeriss architectural template, the embodied carbon emissions origi-

nate predominantly from the fabrication of PEs, the SRAM memories

(local and global) and the chip packaging. However, the calculation of

such a quantity is a multidimensional process that cannot be simplified

into a linear model based solely on chip area or financial cost [11],

[18]. Thus, to derive the CO2 emissions, we follow the computation

of the overall embodied carbon of the accelerator using ACT [11]

as a baseline. Since ACT follows a more coarse-grain approach, we

enriched it with more on-chip information using the model in [18].

Specifically, we considered the internal architecture of the accelerators,

in terms of PEs and memories, the footprint of raw material extraction,

the node technology in use, the wafer yield, as well as the final die

packaging. For a single DNN accelerator chip, the embodied carbon

footprint is calculated as:

Cembodied = Clogic + Cmemory + Cpackaging (1)

where the embodied carbon of each component is given by the

formula [11]:

C
i
embodied = (CIfab × EPA+MPA+GPA)×

A

Y
(2)

The carbon intensity of the fabrication facility’s electrical grid is

denoted as CIfab, while EPA represents the energy used by the

fab per unit area of the die. MPA indicates the carbon footprint of

materials procured for manufacturing per unit area, and GPA refers

to the direct emissions from gases used in the fabrication process.

A stands for the area of the die, and Y symbolizes the yield of the

fabrication process.

Previous research has demonstrated that designing DNN acceler-

ators solely with performance metrics in mind significantly impacts

the embodied carbon of these systems [11]. Recognizing this, we



present a motivational example that shows the importance of including

embodied carbon in the design criteria for DNN accelerators. Our

primary objective is to demonstrate that it is possible to design

DNN accelerators with considerably lower embodied carbon without

compromising on performance. In our motivational example, we utilize

MAESTRO [23] to model and evaluate DNN accelerator designs and

mappings under the same area budget (the exact experimental set

up will be presented in detail in Section V). Specifically, we focus

on the first three layers of the VGG16 network. Understanding that

different layers may require distinct architectural optimizations, we

used MAESTRO to generate mutliple random DNN architectures for

each of the three layers, all within an area constraint of 0.2mm
2. This

approach aligns with previous works showing that the optimal design

varies significantly from layer to layer [2]. Figure 1 shows the Pareto

front between cycle count (latency) and normalized embodied CO2

for the three first three layers of VGG16.

Based on Figure 1, we observe that accelerator designs that achieve

lower latency tend to have higher embodied carbon, primarily due

to the need for more PEs. This correlation suggests that designs

optimized solely for speed may inadvertently lead to an increased

embodied carbon footprint. Interestingly, our example also shows

that for all layers examined, there are viable design solutions that

achieve substantially lower embodied carbon while still maintaining

low latency. This is particularly important as it pinpoints that focusing

exclusively on latency can lead to over-design. Often, such strict

optimization for minimal latency may not always be necessary, and

a more balanced approach could yield equally effective, yet more

sustainable solutions. Additionally, all the setups that we showed

were randomly generated. This is because the whole design space

is vast. For example, in a static hardware architecture a single layer

of a DNN can be mapped in O(1024) different ways [2]. This

leads to an important question: How can we effectively explore this

expansive space to identify designs that optimally balance perfor-

mance with reduced embodied carbon? Efficient exploration strategies

are essential for systematically identifying the most sustainable and

efficient designs, while still achieving low latency. Finally, another

interesting aspect is that the first layers of the VGG network are more

compute-intensive compared to later layers. This characteristic affects

the design strategies that can be applied, as the early layers may

require more robust hardware configurations, potentially impacting

both performance and embodied carbon.

Based on the previous analysis, first-order metrics, such as latency,

provide valuable insights into the performance of a DNN accelerator

architecture. However, they are not sufficient for a comprehensive eval-

uation that takes into account the environmental impact. To integrate

and quantify the carbon footprint associated with the accelerator, it

is necessary to introduce new metrics. In this work, we utilize the

carbon delay product (CDP) as a metric that combines the performance

aspects with the embodied carbon footprint. The CDP metric considers

the total delay incurred by the accelerator during the execution of

a neural network, taking into account both the computational time

and the associated embodied carbon footprint. By incorporating the

CDP metric, we can evaluate the architectural characteristics of the

accelerator in terms of its impact on both performance and embodied

carbon footprint.

IV. METHODOLOGY

Figure 2 presents an overview of our proposed methodology. Our

objective is to design the hardware architecture of a DNN accelerator

(for each layer of a DNN) and determine the corresponding mapping to

optimize the Carbon Delay Product (CDP). As previously mentioned,
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Fig. 2: Overview of the proposed methodology

the CDP is a metric that integrates performance measures with the

embodied carbon footprint, offering a holistic assessment. In our

methodology, we explore various hardware characteristics, including

the width and height of the DNN accelerator, defined by the number

of Processing Elements (PEs), the capacity of the local buffer for each

PE, and the size of the shared global buffer. Additionally, the mapping

characteristics considered are tiling, order, and level of parallelism

of execution. Given the vast design space of potential solutions, we

employ a genetic algorithm to navigate this complexity efficiently. Our

approach aims to generate a Pareto front that represents optimal trade-

offs between performance and embodied carbon, under the constraint

of a predefined area budget for the final designs.

The first step in our methodology is the design of the chromosome,

later used in the genetic algorithm for optimizing DNN accelerator de-

signs. In genetic algorithms, a chromosome is essentially a structured

representation of a solution’s variables. In this work, the chromosome

encodes comprehensive information about both hardware characteris-

tics and mapping strategies of the DNN accelerator. Regarding the

hardware aspects, the chromosome includes information such as the

number of Processing Elements (PEs), organized in an XY mesh

to support specific interconnections and data flow strategies. It also

contains the capacity of the local buffer for each PE and the size of the

shared global buffer. These elements are vital as both PEs and memory

systems are the major sources of a chip’s embodied carbon footprint.

Moreover, their arrangement and cooperation impact execution run-

time significantly, as the logic and memory elements present complex

inter-dependencies that need to be investigated in depth, for an optimal

selection. We mainly focus on DNN models that are either explicitly

Convolutional Neural Networks (CNN), or their operations can be

simplified into a set of convolutions, even if they are not traditional

CNNs. This approach allows us to represent every layer operations

with a multi-dimensional for-loop, that is flexible in terms of loop

ordering, sectioning and parallelization. Accordingly, the mapping

part of our chromosome follows the optimizations described in [2],

a comprehensive framework for hardware mapping. This includes

tiling, which defines how tensors are sliced, stored, and fetched within

the memory hierarchy, effectively managing data locality and access

patterns. It also includes the compute order, specifying the sequence

in which computational operations are executed, and the level of

parallelism, which determines how computations are distributed across



the PEs. These mapping characteristics are critical as they directly

affect the execution speed and efficiency of the DNN, ensuring that the

hardware’s capabilities are fully utilized. By integrating both hardware

characteristics and mapping strategies in a single chromosome, the

algorithm achieves design space co-exploration, providing both sample

efficacy and convergence speed. Moreover, the efficient selection of

the sample design points leads to identifying solutions that optimize

the CDP while addressing the trade-offs between performance and

embodied carbon footprint.

In the context of designing DNN accelerators under specific con-

straints, our problem formulation requires finding the optimal configu-

ration of Processing Elements (PEs), local buffers, global buffers, and

efficient mapping for each layer of a DNN. The goal is to optimize the

Carbon Delay Product (CDP), balancing performance and embodied

carbon footprint, all within a predetermined chip area budget.

A genetic algorithm (GA) is a search heuristic that mimics the

process of natural selection. This algorithm represents potential so-

lutions as chromosomes, which evolve over generations to find the

most optimal solution to a problem. In our case, as mentioned above,

each chromosome encodes different configurations of hardware and

mappings that collectively determine the accelerator’s performance

and carbon footprint. The fitness of each chromosome is evaluated

using the CDP as a reward function, which integrates latency with

embodied carbon footprint considerations. If a solution exceeds the

chip area budget, it is penalized, effectively receiving a fitness score

of negative infinity. This ensures that non-viable solutions are quickly

discarded from the population pool. The algorithm iteratively refines

the population through the processes of selection, crossover, mutation,

and aging. Crossover is a process where segments of two parent

chromosomes are combined to produce offspring, potentially inheriting

the strengths of both parents. Mutation, on the other hand, introduces

random alterations to a chromosome. This helps maintain diversity

within the gene pool and prevents the algorithm from becoming

stuck in local optima. Aging is another mechanism used in GAs

to prevent the stagnation of the population. Older solutions may be

phased out over time, allowing newer solutions, potentially with better

adaptability to the problem constraints, to dominate the population.

This ensures that the population does not converge prematurely and

continues to explore new areas of the solution space. Over time, as less

fit solutions are discarded and more promising solutions are promoted,

the GA converges towards a solution that optimally balances the CDP

while adhering to the area constraint. Through these mechanisms, the

genetic algorithm effectively searches through a vast and complex

design space, gradually evolving and converging toward an optimal

solution that meets the specific needs of DNN accelerator design

within the constraints provided.

V. EVALUATION

In this section, we evaluate the effectiveness of our proposed

framework through a detailed analysis of various DNNs. We have

enhanced the functionality of the ACT framework [11] by improving

its support for on-chip components specifically designed for DNN

accelerators. Subsequently, we integrated our enhanced model into

MAESTRO, a tool used for modeling and evaluating the performance

of different dataflows in DNN architectures. This integration allows

us to assess the impact of our method across multiple DNNs

We evaluated five distinct DNNs from various domains to investi-

gate their performance and the associated embodied carbon footprint

of each solution. These included VGG16 and Alexnet for computer

vision, BERT and ALBERT for language processing, and T5 for

text processing. For each layer within these DNNs, we used our
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Fig. 3: Comparative analysis of normalized latency and embodied

carbon for DNN accelerators designed for VGG16 using different

optimization methods.

methodology to identify the architecture that provided the best Carbon

Delay Product (CDP) reward. We then assessed the performance of

these optimized architectures in terms of execution latency (measured

in cycles) and the associated embodied carbon. For comparison, we

used Digamma [2], a hardware-mapping co-optimization framework,

examining how each layer performed when optimized for different

criteria: 1) latency; 2) energy delay product (EDP); and 3) latency

area product (LAP). It is important to note that an area constraint of

0.2mm
2 was set across all these optimization metrics. This number

is often used for edge-based accelerators [25] and allowed us to fairly

assess the trade-offs and efficiencies of the different optimization

strategies. Finally, the design optimized for latency was selected as

the baseline for all the following experiments.

In our experimental analysis of VGG16, presented in Figure 3,

we show the normalized latency and normalized embodied carbon

footprint under four different metrics. The results for each layer are

presented individually, while the groups of bars at the end shows

the averages across all layers. As expected, the method focused on

optimizing latency achieves the highest performance. However, our

approach demonstrates a small performance overhead of only about

5% on average. Despite this slight increase in latency, the CDP method

significantly reduces the embodied carbon footprint by 11% compared

to the baseline. The other two methods, EDP and LAP, also reduced

even more the embodied carbon footprint, with reductions up to 17%

on average compared to the baseline. Nonetheless, these benefits came

at a considerable cost to latency performance. Notably, the LAP

method increased latency by more than 40%, highlighting a substantial

trade-off between embodied carbon footprint and performance. This

analysis underscores the complexity of balancing performance with

sustainability in DNN accelerator design, particularly when adapting

to various optimization priorities.

Figure 4 shows the comparison of the DNN accelerators’s designs

under the four different optimization metrics for Alexnet. Similarly,

our method that focuses on CDP, achieves an average reduction of

18% regarding the embodied carbon footprint, with a performance

overhead of only 6%. Interestingly, the LAP method achieved even

lower embodied carbon footprint, but with a considerable performance

overhead of 31%.

In our analysis of the experimental results for ALBERT, presented
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Fig. 4: Comparative analysis of normalized latency and embodied

carbon for DNN accelerators designed for Alexnet using different

optimization methods.
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Fig. 5: Comparative analysis of normalized latency and embodied

carbon for DNN accelerators designed for ALBERT using different

optimization methods.

in Figure 5, we examined the normalized latency and normalized

embodied carbon footprint across the various optimization metrics

and methods for each layer of the DNN. Again, as expected, the

optimization method focused solely on minimizing latency had the

highest performance (lowest latency). Conversely, our CDP-based

method introduced a minimal performance overhead, averaging only

about 4%. Additionally, it also reduced the embodied carbon footprint

by 8% compared to the baseline. The other two methods, EDP and

LAP, while also reducing the embodied carbon footprint relative to the

baseline, had a more substantial impact on latency, with an average

increase of up to 15%. This happened due to their inability to simulta-

neously account for the effects that logic and memory configurations

have on both performance and embodied carbon. Overall, the results

confirm that it is feasible to design DNN accelerators for ALBERT

that significantly lower the embodied carbon footprint with only a

negligible compromise in performance, showcasing the effectiveness

of our CDP approach.
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Fig. 6: Comparative analysis of normalized latency and embodied

carbon for DNN accelerators designed for BERT using different

optimization methods.
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Fig. 7: Comparative analysis of normalized latency and embodied car-

bon for DNN accelerators designed for T5 using different optimization

methods.

Figure 6 and Figure 7 shows the results for BERT and T5

accordingly. The experimental results exhibited patterns consistent

with those observed in our previous experiments. In these cases, the

baseline configuration achieved the lowest cycle, indicating the highest

performance in terms of speed. However, our method achieved the

most advantageous balance between performance and the embodied

carbon footprint. Although the LAP method did achieve the lowest

embodied carbon footprint among the strategies tested, it came with a

considerable performance overhead. This significant increase in cycle

count under the LAP optimization illustrates the trade-offs inherent

in prioritizing environmental metrics over operational speed. Such

results underscore the effectiveness of our CDP method in providing

a more holistic approach to DNN accelerator design, optimizing both

environmental impact and computational efficiency.



VI. CONCLUSION

The rapid advancement of machine learning and the increasing

use of DNNs require the development of specialized accelerators

designed with both performance and environmental considerations in

mind. In this paper, we emphasize the importance of incorporating

carbon-aware principles into the design of these accelerators, which

extends beyond traditional performance metrics. By using a genetic

algorithm that evaluates hardware architecture, DNN mappings, and

sustainability within a specific area constraint, our approach tackles

the complex design challenges posed by numerous potential hardware

configurations. The outcomes demonstrate the feasibility of reducing

the embodied carbon footprint with negligible performance overhead,

offering an alternative approach to more sustainable ML operations.
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