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A B S T R A C T

Blood coagulation, which involves a group of complex biochemical reactions, is a crucial step in hemostasis
to stop bleeding at the injury site of a blood vessel. Coagulation abnormalities, such as hypercoagulation
and hypocoagulation, could either cause thrombosis or hemorrhage, resulting in severe clinical consequences.
Mathematical models of blood coagulation have been widely used to improve the understanding of the
pathophysiology of coagulation disorders, guide the design and testing of new anticoagulants or other
therapeutic agents, and promote precision medicine. However, estimating the parameters in these coagulation
models has been challenging as not all reaction rate constants and new parameters derived from model
assumptions are measurable. Although various conventional methods have been employed for parameter
estimation for coagulation models, the existing approaches have several shortcomings. Inspired by the physics-
informed neural networks, we propose Coagulo-Net, which synergizes the strengths of deep neural networks
with the mechanistic understanding of the blood coagulation processes to enhance the mathematical models of
the blood coagulation cascade. We assess the performance of the Coagulo-Net using two existing coagulation
models with different extents of complexity. Our simulation results illustrate that Coagulo-Net can efficiently
infer the unknown model parameters and dynamics of species based on sparse measurement data and data
contaminated with noise. In addition, we show that Coagulo-Net can process a mixture of synthetic and
experimental data and refine the predictions of existing mathematical models of coagulation. These results
demonstrate the promise of Coagulo-Net in enhancing current coagulation models and aiding the creation of
novel models for physiological and pathological research. These results showcase the potential of Coagulo-Net
to advance computational modeling in the study of blood coagulation, improving both research methodologies
and the development of new therapies for treating patients with coagulation disorders.
1. Introduction

The human blood coagulation cascade is a complex biochemical
process (Dahlbäck, 2000) with a crucial role in reducing blood loss
during vascular damage due to physical injury. The process, known as
hemostasis, involves the body stopping blood loss post-injury through
enzyme activation that drives the formation of a clot over the wound.
The body achieves homeostasis by balancing three critical hemostatic
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processes: vasodilation, blood coagulation, and clot dissolution. An
imbalance in these processes can cause abnormal hemostasis, leading
to potentially life-threatening conditions. For instance, a deficiency
in coagulation factors, such as in hemophilia (Butenas, van’t Veer,
& Mann, 1999) or irregular fibrinolysis (Bachman, 1987), can result
in rapid blood loss. Conversely, a mutation in coagulation factors,
like the Factor V Leiden Mutation, makes the protein more resistant
to degradation by the body’s natural anticoagulant, protein C. This
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data mining, AI training, and similar technologies. 
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resistance allows factor V to stay active, resulting in excessive clotting
(thrombosis) (Herrmann et al., 1997; Vandenbroucke et al., 1994). Both
hemorrhagic and thrombotic diseases could potentially lead to fatal
clinical outcomes (Li, Zhao, Ma, Gao, & Zhao, 2024). Thus, maintaining
a balance in hemostatic processes is essential for healthy physiological
functioning.

The coagulation cascade is divided into four distinct phases: ini-
tiation, amplification, propagation, and stabilization (Furie & Furie,
2008; Hoffman & Monroe III, 2001). The initiation phase begins with
tissue factor (TF) expression at the site of vessel damage, leading to the
activation of clotting proteins factor IX and X by factor VIIa (Camerer,
Huang, & Coughlin, 2000). The TF-VIIa complex, forming at the injury
site, links the intrinsic and extrinsic coagulation pathways (Palta, Saroa,
& Palta, 2014). This complex’s formation can be halted using a TF
inhibitor to prevent thrombin generation (Chatterjee, Denney, Jing and
Diamond, 2010). During the amplification phase, there is a significant
increase in thrombin generation, which, in turn, activates platelets.
Thrombin also activates factors VIII and V, which are crucial for form-
ing tenase and prothrombinase complexes on activated platelets. These
complexes greatly enhance prothrombin activation. In the propagation
phase, these complexes accumulate on platelet surfaces, supporting
continuous thrombin generation and fibrin formation at the injury
site. Finally, the stabilization phase is marked by the activation of
factor XIII, which cross-links fibrin strands into stable fibrin plugs.
Additionally, thrombin-activatable fibrinolysis inhibitors (TAFI) are
activated, supporting the newly formed fibrin and preventing excessive
fibrinolysis.

The area of blood coagulation and hemostasis encompasses a wide
range of significant topics, including the kinetics of coagulation factors,
the spatial–temporal structure of blood clots, the influence of fluid flow
on clotting, system pharmacology modeling of clotting, among others.
However, a significant challenge in current research is the dependency
on extensive, costly lab experiments. Predicting thrombosis and other
thrombotic events in clinical settings is difficult due to the lengthy time
required for laboratory testing (Lippi & Favaloro, 2020). This delay in
test results poses a challenge in the clinical management of thrombosis.
Many researchers are turning to mathematical and computational mod-
eling to overcome this issue. Over the past three decades, mathematical
and computational modeling has been increasingly used to gain insights
into hemostasis (see reviews Anand, Panteleev, & Ataullakhanov, 2022;
Belyaev, Dunster, Gibbins, Panteleev, & Volpert, 2018; Leiderman &
Fogelson, 2014; Leiderman, Sindi, Monroe, Fogelson, & Neeves, 2021;
Link et al., 2021; Neeves & Leiderman, 2016; Zhu, Modepalli, Anand, &
Li, 2023) and offer practical solutions by simulating how the dynamics
of the blood coagulation cascade vary under different physiological
conditions.

Current mathematical models for simulating hemostasis at the con-
tinuum level are categorized into two main types: ordinary differential
equation (ODE) models and partial differential equation (PDE) mod-
els. ODE models, which are designed to mimic thrombin and fibrin
generation assays, operate on the principle that biochemical reactions
can be represented as kinetic equations derived from experimental
data (Beltrami & Jesty, 1995; Bungay, Gentry, & Gentry, 2003; Chatter-
jee, Purvis, Brass and Diamond, 2010; Dashkevich et al., 2012; Fogelson
& Tania, 2005; Hockin, Jones, Everse, & Mann, 2002; Kuharsky &
Fogelson, 2001). These models focus on temporal changes, illustrating
how coagulation factor concentrations evolve over time under spa-
tially uniform conditions. They are particularly useful for predicting
concentration changes and identifying new reaction mechanisms, es-
pecially when there is a discrepancy between model predictions and
actual data. In contrast, PDE models are utilized to simulate thrombus
growth, taking into account both unstirred systems and blood flow
conditions (Bouchnita, 2017; Bouchnita, Terekhov, Nony, Vassilevski,
& Volpert, 2020; Bouchnita & Volpert, 2019; Bouchnita, Yadav, Llored,
Gurovich, & Volpert, 2023; Leiderman & Fogelson, 2011, 2013; Pan-

teleev et al., 2006; Zarnitsina, Pokhilko, & Ataullakhanov, 1996). These

2 
spatio-temporal models are essential for understanding clot growth
within blood vessels, as they consider spatial concentration variations
and can integrate blood flow velocity, often through a convection term,
to provide deeper insights into the clot formation and growth dynamics.

It is noted that not all rate constants involved in the coagulation
model can be measured. In addition, when model assumptions and
approximations are made, new parameters that are not measurable
are sometimes generated. In these cases, model parameters must be
assessed based on mostly experimental data. Thus, parameter estima-
tion is crucial in validating existing models and developing accurate
and reliable new models for the blood coagulation process. Various
methods have been widely used for parameter estimation when build-
ing coagulation models, including least squares estimation, maximum
likelihood estimation, Bayesian methods, and global optimization tech-
niques. However, these conventional methods have their drawbacks,
including being time and labor-intensive, particularly for extensive
parameter spaces, functioning only under specific assumptions, and ne-
cessitating fine-tuning parameters for optimal algorithm performance.
Therefore, it is essential to investigate novel algorithms capable of
efficiently estimating unmeasurable model parameters, which will aid
in developing computational biology models. Recently, there has been
a surge in the use of scientific machine learning models that blend
neural networks (NNs) with physics-based modeling. These scientific
machine-learning models are particularly effective for training NNs
with limited data (Li et al., 2023; Raissi, 2018; Raissi, Perdikaris,
& Karniadakis, 2019). Physics-informed neural networks (PINNs) and
their emerging extensions have become popular for addressing inverse
or complex problems (De Ryck, Jagtap, & Mishra, 2024; Jagtap & Kar-
niadakis, 2020; Jagtap, Kawaguchi, & Em Karniadakis, 2020a; Jagtap,
Kawaguchi, & Karniadakis, 2020b; Jagtap, Kharazmi and Karniadakis,
2020; Jagtap, Mao, Adams, & Karniadakis, 2022; Mao, Jagtap, & Kar-
niadakis, 2020; Shukla, Jagtap, Blackshire, Sparkman and Karniadakis,
2021; Shukla, Jagtap and Karniadakis, 2021). They integrate ordinary
or partial differential equation models with sparse data sources like
measurements or images (Cai et al., 2021; Kissas et al., 2020; Lei, Liu,
& Wang, 2022; Nguyen, Dairay, Meunier, & Mougeot, 2022; Ouyang
et al., 2023; Sahli Costabal, Yang, Perdikaris, Hurtado, & Kuhl, 2020).
PINNs have been successfully used in various applications to deduce
unknown parameters in these equation models by optimizing an ob-
jective function constrained by both the model and data loss (Cai,
Mao, Wang, Yin, & Karniadakis, 2022; Du, Zhu, & Wang, 2022; Jagtap,
Kharazmi et al., 2020; Karniadakis et al., 2021; Lorenzo et al., 2022;
Ren, Rao, Sun, & Liu, 2022; Yang, Meng, & Karniadakis, 2021; Zhang,
Dao, Karniadakis, & Suresh, 2022).

Building on the concept of PINNs (Raissi et al., 2019), we introduce
a method to integrate the mathematical models of the blood coagula-
tion cascade into the loss functions of a neural network, which we call
Coagulo-Net. As shown in Fig. 1, this approach allows the unknown
model parameters to be treated as trainable, determined by minimizing
the loss function. Moreover, the enforcement of the equations in the loss
function also adds a regularization effect that makes this algorithm ro-
bust to noise. Prior work of Yazdani, Lu, Raissi, and Karniadakis (2020)
has demonstrated that PINNs enable inference of unknown kinetic rates
and missing dynamics of the species in several simple biological ODE
models with only partial data. In this work, we will systematically in-
vestigate the performance of the Coagulo-Net on learning the unknown
model parameters of the coagulation models. The remainder of the
paper is organized as follows: In Section 2 (Models and methods), we
introduce the structure and each component of Coagulo-Net as well as
two mathematical models of blood coagulation we incorporate into the
Coagulo-Net. In Section 3 (Results), we demonstrate the effectiveness
of Coagulo-Net in inferring unknown parameters from two coagulation
models with different levels of complexity. We conclude in Section 4
(Discussion and summary) with an overview of the current study, a

summary of the model limitations, and a list of potential future work.
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Fig. 1. The structure of Coagulo-Net. Coagulo-Net takes time t as input and output the coagulation factors u involved in the coagulation models. The loss function of the
Coagulo-Net consists of two parts: data loss and physics-informed loss. Physics-informed loss is composed of loss calculated from initial conditions and residuals of the ODEs.
2. Models and methods

2.1. Two mathematical models of blood coagulation with different levels of
complexity

One of the earliest spatial–temporal models for blood coagulation
was proposed by Zarnitsina et al. (1996) (hereafter referred to as
arnitsina’s model), and it models the intrinsic pathway. Zarnitsina’s
odel consists of ODEs for eight factors, with tenase and prothrombi-
ase being calculated as ‘‘quick’’ variables (quasi-stationary concentra-
ions) and factor XI being specified as an initial condition. Although
arnitsina’s model does not capture the kinetics of many enzymes, the
DE model can still be used as an effective mathematical model to

imulate clotting dynamics under certain conditions. Here, to demon-
trate the effectiveness of Coagulo-Net, we will use the homogeneous
arnitsina’s model, which consists of only 8 ODEs. In addition to
arnitsina’s model, we employ another mathematical model developed
y Susree and Anand (2017) (hereafter referred to as Susree’s model),
hich consists of ODEs for 34 species to consider more coagulation

actors and the role of activated platelets (as a separate species, as well
s in binding of tenase/prothrombinase complexes) in clot formation
nd growth.

The typical form of the ODEs employed in either Zarnitsina’s or
usree’s models is of the form listed in Eq. (1):
𝑑𝑢(𝑡)
𝑑𝑡

= 𝑔(𝑢(𝑡), 𝑡). (1)

In the above equation, 𝑢(𝑡) is the concentration of species 𝑢 as a func-
tion of time 𝑡. The detailed mathematical expressions of Zarnitsina’s
and Susree’s models are listed in Appendices A and B, respectively.
Numerical computations for the system of differential equations in
each model were performed by variable order method (Cash & Karp,
1990) in MATLAB environment (MATLAB 2021b Academic Version).
The kinetic constants for each reaction in the models follow the value
used in the original work of Susree and Anand (2017) and Zarnitsina
et al. (1996), respectively. The model parameters and initial values of
each species used for the mathematical model simulations are adopted
from the original publication of Susree’s model (Susree & Anand, 2017)
3 
and Zarnitsina’s model (Zarnitsina et al., 1996). The initial values of the
coagulation factors and the model parameters for the two models are
attached in the Appendix.

2.2. Integrating coagulation models with neural network using Coagulo-Net

As illustrated in Fig. 1, the Coagulo-Net consists of a fully connected
neural network made of three hidden layers with 100 neurons in each
layer. Coagulo-Net takes time as input and outputs eight state variables
in the case of Zarnitsina’s model and 34 state variables in the case
of Susree’s model, corresponding to the coagulation factors involved
in the two coagulation models. All the state variables will be used to
calculate the loss of data. To facilitate training the Coagulo-net, all
the coagulation factors are scaled by their magnitude such that they
are varied between 0 and 10. The effect of the coagulation model is
incorporated into the training of Coagulo-Net by computing the loss of
ODE. The total loss of Coagulo-Net equals the sum of the loss of data
and loss of ODE, and it can expressed as

 = 𝑤𝑑𝑎𝑡𝑎𝑑𝑎𝑡𝑎 +𝑤𝑂𝐷𝐸𝑂𝐷𝐸 , (2)

where 𝑤𝑑𝑎𝑡𝑎 and 𝑤𝑂𝐷𝐸 are weights that are adjusted to ensure the data
loss and ODE loss are on the same scale. The data loss is computed by

𝑑𝑎𝑡𝑎 =
1

𝑁𝑑𝑎𝑡𝑎

𝑁𝑑𝑎𝑡𝑎
∑

𝑖=1
|𝑢(𝑡𝑖) − 𝑢̂(𝑡𝑖)|

2, (3)

where 𝑢(𝑡𝑖) is the predictions of the Coagulo-Net whereas 𝑢̂(𝑡𝑖) is the
label data. It is noted that ideally, label data is considered to be the ex-
perimental data. However, in many real applications, the experimental
measurements for specific coagulation factors may not be available. In
this case, PINNs also allow utilization of the synthetic data or mixed
experimental and synthetic data. Loss of ODE is the sum of the loss of
initial conditions of the state variables (0) and the residual loss of the
ODEs of coagulation cascade models (𝑟) as expressed by

𝑂𝐷𝐸 = 𝑤00 +𝑤𝑟𝑟 (4)

0 =
1

𝑁0
∑

|𝑢𝑖(𝑡0) − 𝑢𝑖(𝑡0)|
2 (5)
𝑁0 𝑖=1
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Fig. 2. The loss convergence process of Coagulo-Net. The total loss of Coagulo-Net
equals to the sum of data loss and ODE loss. Coagulo-net is trained with 500,000
epochs.

𝑟 =
1

𝑁𝑂𝐷𝐸

𝑁𝑂𝐷𝐸
∑

𝑖=1
|𝑓 (𝑡𝑖)|

2 (6)

where 𝑁0 represents the number of coagulation factors whose initial
conditions are available. 𝑁𝑂𝐷𝐸 denotes the number of equations in-
volving the parameters needed to be estimated. 𝑓 (𝑡) is defined to be
given by the difference between the left-hand-side and right-hand-side
of ODE; i.e., for the Eq. (1) in the ODE system,

𝑓 ∶=
𝑑𝑢(𝑡)
𝑑𝑡

− 𝑔(𝑢(𝑡), 𝑡). (7)

To infer the unknown model parameters, we will treat these pa-
rameters as trainable variables of the neural network such that these
parameters can be inferred by fitting the predictions of Coagulo-Net
with the targeted data during the training process of Coagulo-Net. We
use the hyperbolic tangent function as the activation function, which is
widely employed in many PINNs applications due to its smoothness. It
is an essential feature for capturing the continuous nature of physical
phenomena. To balance the contributions of loss of data and loss of
ODE to the network training, we set the weights for data and ODE as 1.0
and 1e−5, respectively. We train the networks by 500,000 epochs with
a learning rate of 0.001. As shown in Fig. 2, 500,000 training epochs are
long enough for Coagulo-Net to converge. We use the Coagulo-net with
the minimum total loss during 500,000 training epochs as the model
for making predictions. We build Coagulo-Net using TensorFlow, an
open-source software library for machine earning. Zarnitsina’s model,
involving 8 ODEs, requires 2212 s to complete training, while Susree’s
model, involving 34 ODEs, requires 4597 s.

3. Results

3.1. Baseline tests of Coagulo-Net

First, we perform a baseline test of the Coagulo-Net by providing all
the data of coagulation concentration to the Coagulo-Net incorporated
with Zarnitsina’s model. All the kinetic parameters in the ODE system
are adopted from the original work of Zarnitsina et al. (1996). The
data of each species concentration contains 2000 points generated from
the model, covering the temporal range from 0 to 100 min. Fig. 3
compares the dynamics of each species predicted by Coagulo-Net with
the data generated by MATLAB, which is considered a reference. It is
noted that for all the species, the curves generated by the Coagulo-Net
and reference overlap, demonstrating the capability of the Coagulo-
Net to accurately model the dynamics of each species by using the

combination of data and ODEs. o

4 
Table 1
Identifiability analysis of Zarnitsina’s model. The identifiability of the model parameters
(lower panel) depends on the availability of the coagulation factors (upper panel). 9
cases (9 columns in the Table) with increased number of available state variables are
examined. ✗ in the top panel represents unavailable while ✓ represents available. ✗ in
the bottom panel represents unidentifiable while ✓ represents identifiable.

Test cases Case 1 2 3 4 5 6 7 8 9

Data given

𝐼𝑋𝑎 ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑋𝑎 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝐼𝐼𝑎 ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

𝐼𝐼 ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

𝑉 𝐼𝐼𝐼𝑎 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

𝑉𝑎 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

𝐴𝑃𝐶 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

𝐼𝑎 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Parameter
identifiability

𝑘9 ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ℎ9 ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘10 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘̄10 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

ℎ10 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘2 ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

𝑘̄2 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

𝑘2𝑚 ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

𝑘̄2𝑚 ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

ℎ2 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘8 ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓

ℎ8 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘𝑎 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

𝑘5 ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓

ℎ5 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘𝐴𝑃𝐶 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

ℎ𝐴𝑃𝐶 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘1 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

𝑘5,10 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

𝑘8,9 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ℎ5,10 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

ℎ8,9 ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.2. Solving inverse problems using Coagulo-Net

In this section, we will explore the capacity of the Coagulo-Net
to infer model parameters based on the dynamics of the coagulation
factors. This process is essential for developing new coagulation models
where model parameters need to be identified based on available
measurements of the coagulation factors. Before inferring the model
parameters, we perform a structural identifiability analysis of Zar-
nitsina’s model. Structural identifiability is a theoretical property of
ODE systems that indicates whether the parameters of the examined
system can be uniquely determined based on observational data. This
analysis is an essential step before parameter estimation, ensuring that
the parameters that need to be discovered in the ODEs through fitting
the observational data are identifiable. As listed in Table 1, we will
ary the availability of the eight state variables of Zarnitsina’s model
top panel) and investigate the resultant identifiability of the twenty-
wo parameters involved in the ODEs (bottom panel). Specifically, we
est 9 cases (9 columns in the Table 1) with an increased number
f available state variables and report the resultant identifiability of
he model parameters. The identifiability analysis is conducted using

Julia package named Structural Identifiability (Dong, Goodbrake,
arrington, & Pogudin, 2023). The result of this analysis is listed in
able 1, which shows that as more state variables become available,
he number of identifiable model parameters will be increased. When
ll the data of state variables are available, all the parameters of
arnitsina’s model are identifiable.

After we acquire the knowledge of the identifiability of the model
arameters, we assume that four parameters of the model parameters,
amely 𝑘𝑎, 𝑘8, 𝑘5, ℎ5 are unknown as these four parameters were

btained by fitting the models with the measurement data in the
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Fig. 3. Baseline test of Coagulo-Net’ performance. Given data and ODE model with all model parameters, Coagulo-Net could output the dynamics of 8 coagulation factors that
are consistent with the results of the original mathematical model.
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Table 2
Inference of model parameters in Zarnitsina’s model based on synthetic data.

Parameter Inference Reference Relative error

ka 1.20130 1.2 0.00108
k8 9.44988e−06 1e−5 0.05501
k5 0.16998 0.17 0.00012
h5 0.30617 0.31 0.01235

original work of Zarnitsina et al. (1996). Given the data of the dynamics
f eight species plus other model parameters adopted from prior work,
e will infer these four unknown parameters and make predictions

or concentrations over the temporal range as well. The predictions of
he four unknown parameters and their reference values are listed in
able 2. Compared with the parameter values adopted from Zarnitsina’s
odel, the relative errors of the model predictions range from 0.00012

o 0.05501. This extent of error will not affect the predictions of
he dynamics for the coagulation factors, confirming the capability of
oagulo-Net to infer unknown model parameters in inverse problems.
he predictions of the Coagulo-Net for the eight species are plotted

n Fig. 4, which shows that the Coagulo-Net also could accurately
imulate the dynamics of the eight species even with partially known
arameters.

.3. Predictions of Coagulo-Net based on sparse data

Researchers often encounter challenges in acquiring a large dataset
f consistent and reliable measurements in biochemical experiments.
otably, the intricate process involved in coagulation cascade reactions

imits the data generated within a reasonable timeframe. In this section,
e aim to investigate the performance of the Coagulo-Net in solving

he inverse problems with sparse data and explore to what extent
ata sparsity would affect the model’s performance. The data points of
parse dataset are still distributed uniformly along the time-axis. Here,
he sparsity is defined as the number of data points we omit divided
y the number of data points we used in Sections 3.1 and 3.2. For
5 
xample, compared with the dataset of 2000 points for describing the
ynamics of each coagulation factor, a dataset with 1500 points has a
parsity of 25%. Following this definition, we examine the performance
f Coagulo-Net using datasets with different sparsity of 0%, 25%, 50%,
nd 75%. The relative errors of the model predictions concerning the
arious extents of sparsity are summarized in Fig. 5, which shows

that as data sparsity is elevated, the prediction error gradually in-
creases. It is noted that Coagulo-Net could provide predictions with
relatively low errors with 50% data sparsity, showcasing the robustness
of Coagulo-Net towards data sparsity.

3.4. Predictions of Coagulo-Net based on noisy data

Measurement noise in biochemical experiments of blood coagula-
tion is a critical concern due to the delicate and dynamic nature of
the coagulation process. In such experiments, noise can originate from
various sources, including biological variability among blood samples,
instrumental inaccuracies, and environmental factors like temperature
fluctuations. In this section, we aim to assess the performance of the
Coagulo-Net in solving inverse problems using noisy data. To mimic
data with different extents of noise, we generate Gaussian noise with
varying scales of 1%, 5%, 10%, and 20% of the original dataset, add
noise to original data, and then use these noisy data to infer the four
unknown model parameters. The relative errors of the model predic-
tions with respect to the different extents of noise are summarized
in Fig. 6. It is noted that although the performance of the Coagulo-
Net gradually deteriorates as the level of data noise increases, the
prediction error is relatively low till the noise level reaches 20%. These
results demonstrate the robustness of the Coagulo-Net in processing
noisy data.

3.5. Performance of Coagulo-Net on a more sophisticated coagulation
model

In the previous section, we systematically investigated the per-
formance of Coagulo-Net on a relatively simple mathematical model
of blood coagulation. In this section, we aim to assess Coagulo-Net’s
performance in solving a more complex model. Herein, we will incor-

porate Susree’s model (Susree & Anand, 2017), which consists of 34
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Fig. 4. Performance of solving an inverse problem using Coagulo-Net. Given data and ODE model with partial model parameters, Coagulo-Net could infer the unknown model
parameters and output the dynamics of 8 coagulation factors that are consistent with the results of the original mathematical model.
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Table 3
Inference of model parameters in Susree’s model based on synthetic data.

Parameter Inference Reference Relative error Absolute error

(ℎ𝑇𝑃+
10 ) 4.36377 4.381 0.00393 0.01723

(ℎ𝑇𝑃−
10 ) 4.54392e−6 5.293e−8 84.84772 4.49099e−6

(ℎ2) 1.78848e−4 1.79e−4 0.00085 1.52e−6

ODEs (Susree & Anand, 2017). The detailed model formulation of Sus-
ee’s model can be found in Appendix B. In the original work of Susree’s
odel, three parameters, namely ℎ𝑇𝑃+10 , ℎ𝑇𝑃−10 , and ℎ2, were estimated

y fitting the experimental data while the rest model parameters are
nherited from prior models. Herein, we assume these parameters are
nknown and attempt to infer these three parameters using Coagulo-net
nformed by coagulation factor dynamics over temporal range.

The results of parameter inference are summarized in Table 3.
ompared with the parameter values reported from the original Sus-
ee’s model, ℎ𝑇𝑃+10 and ℎ2’s relative errors are very low, 0.00393 and
.00085, respectively. As for ℎ𝑇𝑃−10 , its reference value is 5.293e−8,
hich is a very small value. Thus, we calculate its absolute error

nstead, and the absolute error of ℎ𝑇𝑃−10 ’s inference is computed to
e 4.49099e−6. Next, we put the parameters inferred by Coagulo-
et back into the ODEs MATLAB solver to solve the ODE system and
lot the results in Fig. 7. These results show that the Coagulo-Net
an successfully recover the parameters that result in the dynamics of
oagulation factors that are consistent with the data generated from
he original Susree’s model. These results demonstrate that Coagulo-Net
an accurately infer unknown parameters in more complex coagulation
odels.

We note that in the original work of Susree and Anand (2017), the
hree unknown model parameters are derived based on experimental
easurements of the dynamics of the sum of 𝐼𝐼𝑎 and 𝐼𝐼𝑎𝑚. As illus-

rated in Fig. 7, While the overall dynamic trend of the combined levels
f 𝐼𝐼𝑎 and 𝐼𝐼𝑎𝑚 aligns with the experimental observations, there are
ignificant differences observed between the model’s predictions and
he actual experimental results. Herein, we will use the experimental
ata to train the Coagulo-Net instead of the values generated from
6 
able 4
nference of model parameters in Susree’s model based on experiment data.
Parameter Inference Reference Relative error Absolute error

(ℎ𝑇𝑃+
10 ) 4.36145 4.381 0.00446 0.01955

(ℎ𝑇𝑃−
10 ) 1.96431e−4 5.293e−8 3710.14680 1.96378e−4

(ℎ2) 1.77839e−4 1.79e−4 0.00649 0.01161

Susree’s model. However, since only the experimental data of 𝐼𝐼𝑎 and
𝐼𝐼𝑎𝑚 are available, which is not sufficient to train the model and
inform the dynamics of the rest 32 factors, we use Susree’s model
to generate synthetic data to supplement the training of Coagulo-Net.
Specifically, the synthetic and real data will be treated differently
during the training of the PINNs. First, we will compute two data
loss terms for synthetic and real data, respectively, using different sets
of time points because the real data is often more sparse than the
synthetic data. Second, since experimental data is considered as high
fidelity, we will give a higher weight factor for its loss term than
those of synthetic data for training the Coagulo-Net. In the current
study, we selected the weight factor for the loss attributed to experi-
mental data as two times greater than that of synthetic data, but this
could vary for different applications. The results of parameter inference
utilizing the mixture of experimental and synthetic data are listed in
Table 4. Compared with the original model parameter values reported
n Susree’s model, the inferred model parameters using mixed data
re very close to the original Susree’s models as the predictions of
he original model are close to the experimental measurements. The
esulting dynamics of 𝐼𝐼𝑎 and 𝐼𝐼𝑎𝑚 predicted by Coagulo-Net is shown
n Fig. 8 where we observe that the predictions of Coagulo-Nets match
ery well with the experimental points in contrast to that of the Susree’s
odel. These results demonstrate the critical feature of Coagulo-Net in

using the mechanistic model with measurement data, which refines the
redictions of mechanistic models.

. Discussion and summary

Computational models of blood coagulation and clot formation
lay a pivotal role in advancing our understanding of the complex



Y. Qian et al.

E

b
2
e
2
c
a
p
o

Neural Networks 180 (2024) 106732 
Fig. 5. Performance of Coagulo-Net based on sparse data. Prediction errors of Coagulo-Net for inferring four unknown parameters using data with different extents of sparsity.
ach prediction is repeated ten times, and the mean and standard deviation of the prediction errors are plotted.
Z
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iological process involving hemostasis and thrombosis (Anand et al.,
022; Belyaev et al., 2018; Leiderman & Fogelson, 2014; Leiderman
t al., 2021; Link et al., 2021; Neeves & Leiderman, 2016; Zhu et al.,
023). These models can simulate the complicated network of bio-
hemical reactions involved in the enzymatic reactions in the intrinsic
nd extrinsic pathways leading to thrombin generation, simulation of
latelet activation and aggregation, and clot formation and conversion
f fibrinogen to fibrin that stabilizes the clot (Filla et al., 2024; Filla,

Hou, Li, & Wang, 2023; Leiderman & Fogelson, 2011, 2013; Yazdani
et al., 2021). The simulation results of the coagulation models have
been used to decipher the pathophysiology of coagulation disorders
like hemophilia and thrombosis, guide the design and testing of new
anticoagulants or other therapeutic agents, facilitate the customized
anticoagulant therapy based on the individual patient as well as en-
ables prediction of clotting under various physiological conditions or
in response to intervention. One of the critical challenges for devel-
oping computational models for simulating blood coagulation is to
estimate the model parameters due to variability in biological data
and limited experimental measurements. In this work, we introduce
the Coagulo-Net, which is constructed based on PINN, one of the most
7 
popular models in the scientific machine learning area, to facilitate the
estimation of the model parameters.

Since proposed in 2018, PINNs have been widely employed to solve
PDEs and ODEs in science and engineering due to their capability
to encode the underlying physical laws governed by either ODEs or
PDEs into NNs (Cai et al., 2021; Chen, Li, & Zheng, 2024; Chen, Ye,
hang, Li, & Zheng, 2023; Karniadakis et al., 2021; Linka et al., 2022;
ou, Meng, & Karniadakis, 2021; Lu et al., 2020; Lu, Meng, Mao,

& Karniadakis, 2021; Meng, Li, Zhang, & Karniadakis, 2020; Raissi,
Yazdani, & Karniadakis, 2020; Yang et al., 2021; Yu, Lu, Meng, &
Karniadakis, 2022; Zhang, Zou, Kuhl, & Karniadakis, 2023; Zou &
Karniadakis, 2023; Zou, Meng, & Karniadakis, 2023a, 2023b; Zou,
Meng, Psaros, & Karniadakis, 2022). Combining NNs with physics-
based models can help to infer unknown model parameters as constants
or functions using limited data. This enables learning from ‘‘small data’’
as we explicitly utilize the constraints from the physical or biological
laws, thereby rationalizing its application in developing the coagulation
models. Our simulation results have shown that Coagulo-Nets could ef-
ficiently infer the unknown parameters in the coagulation models with
different levels of complexity based on sparse data, data with noise,
and experimental data, respectively, demonstrating the feasibility of



Y. Qian et al. Neural Networks 180 (2024) 106732 
Fig. 6. Performance of Coagulo-Net based on noisy data. Prediction errors of Coagulo-Net for inferring four unknown parameters using data with different extents of noise. Each
prediction is repeated ten times, and the mean and standard deviation of the prediction errors are plotted.
utilizing Coagulo-Net to refine the parameters in existing models and
estimating parameters for new models.

In this study, we also employ the identifiability analysis to the
coagulation model before inferring the unknown parameters using
Coagulo-Net. While the motivation of the parameter identifiability
analysis in the current study is to ensure that targeted unknown model
parameters are identifiable before we perform inference for those pa-
rameters, it could have a larger impact on building a new coagulation
model. In this context, identifiability analysis can be performed when
the formulation of the new model is established to determine whether
the model parameters involved are identifiable, which is essential for
the model parameter fitting process. If some of the model parameters
are analyzed to be unidentifiable, the formulation of the coagulation
model needs to be revised to assure their identifiability.

We also note several limitations of Coagulo-Net: First, while we
have successfully demonstrated the effectiveness of Coagulo-Net in
established models, their accuracy and efficiency for developing new
coagulation models remain to be explored. In particular, using more
8 
experimental data can introduce complexities and variations that may
impact the model performances compared to the synthetic data. In ad-
dition, the suitability and practicality of Coagulo-Net are demonstrated
by utilizing two ODE models in current research. Nevertheless, this does
not preclude the potential application of Coagulo-Net to PDE models
of blood coagulation (Bouchnita, 2017; Leiderman & Fogelson, 2011,
2013; Li, Deng, Li et al., 2022; Li, Deng, Sampani et al., 2022; Li et al.,
2020; Panteleev et al., 2006; Yazdani et al., 2021, 2018; Yazdani, Li,
Humphrey, & Karniadakis, 2017; Zarnitsina et al., 1996; Zheng, Yaz-
dani, Li, Humphrey, & Karniadakis, 2020). As long as the development
of a clot can be elucidated through mathematical models, it can be
seamlessly integrated into the Coagulo-Net framework for parameter
estimation. In addition, it is noted that the initial concentration of the
coagulation factors is considered to be constant in the current study.
However, they could vary for individual patients for a population study.
In addition, the measurement data for calibrating the model param-
eters could be collected from different experimental settings and lab
environments. These factors could result in uncertainty in estimating
the model parameters (Psaros, Meng, Zou, Guo, & Karniadakis, 2023).
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Fig. 7. The dynamics of the sum of 𝐼𝐼𝑎 and 𝐼𝐼𝑎𝑚 of the Susree model. Comparison
f the dynamics of the sum of 𝐼𝐼𝑎 and 𝐼𝐼𝑎𝑚 among the experimental measurements,
ata generated using the original Susree model, and data generated using the Susree
odel with newly inferred parameters by Coagulo-Net.

Fig. 8. The dynamics of the sum of 𝐼𝐼𝑎 and 𝐼𝐼𝑎𝑚 of the Susree model. Comparison
f the dynamics of the sum of 𝐼𝐼𝑎 and 𝐼𝐼𝑎𝑚 among the experimental measurements,
ata generated using the original Susree model and predictions of Coagulo-Net.

o account for this uncertainty in the model prediction, we could
dopt the framework of Bayesian physics-informed neural networks (B-
INNs) (Yang et al., 2021; Zou et al., 2022), which takes advantage of
he function of PINNs in solving inverse problems and the capability
f the Bayesian framework in quantification of the uncertainty for the
odel predictions.

In summary, this study introduces an innovative deep learning
odel into the computational modeling of blood coagulation by propos-

ng Coagulo-Net, which could combine mathematical coagulation mod-
ls with neural networks to infer the unknown model parameters
ore efficiently. Our simulation results demonstrate that Coagulo-
et may open a new avenue for refining existing coagulation models
nd facilitating the development of new models for physiological and

athological studies.

9 
omenclature/notation
I: Fibrinogen
Ia: Fibrin
II: Prothrombin
IIa: Thrombin
TF: Tissue factor
IV: Calcium ions
V: Labile factor
VII: Proconvertin
VIII: Antihemophilic factor
IX: Christmas factor
X: Stuart-power factor
XII: Hageman factor
XIII: Fibrin stabilizing factor
(A:B): Coagulation factor complex
Aa: Activated form of coagulation factor ‘A’
Am: Membrane-bound coagulation factor ‘A’.
PC: Protein C.
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ppendix A. Zarnitsina’s model

Zarnitsina’s model (Zarnitsina et al., 1996), which includes 8 ODEs,
is listed below (8 ODE Model). 𝑐1 to 𝑐8 denotes IXa, Xa, IIa, II, VIIa, Va,
APC and Ia respectively.
𝑑𝑐1
𝑑𝑡

= 𝑘9𝑋𝐼𝑎 − ℎ9𝑐1, (A.1)
𝑑𝑐2
𝑑𝑡

= 𝑘10𝑐1 + 𝑘̄10𝑍 − ℎ10𝑐2, (A.2)
𝑑𝑐3
𝑑𝑡

= 𝑘2
𝑐2𝑐4

𝑐4 + 𝑘2𝑚
+ 𝑘̄2𝑊

𝑐4
𝑐4 + 𝑘̄2𝑚

− ℎ2𝑐3, (A.3)

𝑑𝑐4 = −𝑘2
𝑐2𝑐4 − 𝑘̄2𝑊

𝑐4 , (A.4)

𝑑𝑡 𝑐4 + 𝑘2𝑚 𝑐4 + 𝑘̄2𝑚

https://github.com/dpdclub/Coagulo-net.git
https://github.com/dpdclub/Coagulo-net.git
https://github.com/dpdclub/Coagulo-net.git


Y. Qian et al.

f
Z
s

k

h

k

h

k

k

h

k

𝑘

h

k

h

k

h

k

h

k

h

A

a

𝐺

𝐺

Neural Networks 180 (2024) 106732 
𝑑𝑐5
𝑑𝑡

= 𝑘8𝑐3 − ℎ8𝑐5 − 𝑘𝑎𝑐7(𝑐5 +𝑍), (A.5)
𝑑𝑐6
𝑑𝑡

= 𝑘5𝑐3 − ℎ5𝑐6 − 𝑘𝑎𝑐7(𝑐6 +𝑊 ), (A.6)
𝑑𝑐7
𝑑𝑡

= 𝑘𝐴𝑃𝐶𝑐3 − ℎ𝐴𝑃𝐶𝑐7, (A.7)
𝑑𝑐8
𝑑𝑡

= 𝑘1𝑐3. (A.8)

where, 𝑍 = 𝑘8,9
𝑐5𝑐1

ℎ8,9+𝑘𝑎𝑐7
, 𝑊 = 𝑘5,10

𝑐6𝑐2
ℎ5,10+𝑘𝑎𝑐7

.
The values for the kinetic parameters in the ODE system are adopted

rom Zarnitsina et al. (1996) and listed below. Besides, according to
arnitsina’s model, the initial concentrations of all active factors were
et to zero. The initial concentration of XIa is 0.3 nM.

9 = 20 min−1

9 = 0.2 min−1

8 = 0.00001 min−1

8 = 0.31 min−1

a = 1.2 nM−1 min−1

5 = 0.17 min−1

5 = 0.31 min−1

a = 1.2 nM−1 min−1

10 = 0.003 min−1

k10 = 500 min−1

h10 = 1 min−1

k2 = 2.3 min−1, k2𝑚 = 58 nM

𝑘2 = 2000 min−1, 𝑘2𝑚 = 210 nM

2 = 1.3 min−1

apc = 0.0014 min−1

apc = 0.1 min−1

1 = 2.82 min−1

11 = 0.2 min−1

8,9 = 100 nM−1 min−1

8,9 = 100 nM−1 min−1

5,10 = 100 nM−1 min−1

5,10 = 100 nM−1 min−1

ppendix B. Susree’s model

Susree’s model (Susree & Anand, 2017), which includes 34 ODEs,
re listed below.

TF = −𝑘+𝑇 7[TF][VII] + 𝑘−𝑇 7[TF ∶ VII] − 𝑘+𝑇 7𝑎[TF][VIIa] + 𝑘−𝑇 7𝑎[TF ∶ VIIa].

(B.1)

𝐺VII = −𝑘+𝑇 7[TF][VII] + 𝑘−𝑇 7[TF ∶ VII] − 𝑘𝑇𝐹7[TF ∶ VIIa][VII]

−𝑘10,7[Xa][VII]

−𝑘2,7[IIa][VII].
(B.2)

𝐺TF∶VII = 𝑘+𝑇 7[TF][VII] − 𝑘−𝑇 7
[

VII𝑚
]

. (B.3)

𝐺VIIa = −𝑘+𝑇 7𝑎[TF][VIIa] + 𝑘−𝑇 7𝑎[TF ∶ VIIa] + 𝑘𝑇𝐹7[TF ∶ VIIa][VII]

+𝑘10,7[Xa][VII]

+𝑘2,7[IIa][VII].
(B.4)

𝐺TF∶VIIa = 𝑘+𝑇 7𝑎[TF][VIIa] − 𝑘−𝑇 7𝑎[TF ∶ VIIa] − ℎ𝑇𝑃7 [TFPI ∶ Xa][TF ∶ VIIa]

−ℎ𝐴𝑇7 [ATIII][TF ∶ VIIa].

(B.5)
10 
𝐺IX = −
𝑘9[TF ∶ VIIa][IX]

𝐾9𝑀 + [IX]
− 𝑘+9𝑁9[AP][IX] + 𝑘−9

[

IX𝑚] . (B.6)

𝐺IXa =
𝑘9[TF ∶ VIIa][IX]

𝐾9𝑀 + [IX]
− 𝑘+9𝑁9[AP][IXa] + 𝑘−9

[

IXa𝑚
]

− ℎ9[IXa][ATIII].

(B.7)

𝐺IXm = 𝑘+9𝑁9[AP][IX] − 𝑘−9
[

IX𝑚] . (B.8)

𝐺IXam = −𝑘+𝑇𝐸𝑁
[

VIIIa𝑚
] [

IXa𝑚
]

+ 𝑘−𝑇𝐸𝑁
[

VIIIa𝑚 ∶ IXa𝑚
]

+ 𝑘+9𝑁9[AP][IXa] − 𝑘−9
[

IXa𝑚
]

. (B.9)

𝐺X = −
𝑘7,10[TF ∶ VIIa][X]

𝐾7,10𝑀 + [X]
− 𝑘+10𝑁10[AP][X] + 𝑘−10

[

X𝑚] . (B.10)

𝐺Xa =
𝑘7,10[TF ∶ VIIa][X]

𝐾7,10𝑀 + [X]
− ℎ𝑇𝑃+10 [TFPI][Xa]

+ℎ𝑇𝑃−10 [Xa ∶ TFPI] − ℎ𝐴𝑇10 [ATIII][Xa]

−𝑘+10𝑁10[AP][Xa] + 𝑘−10
[

Xam
]

.

(B.11)

𝐺X𝑚 = −
𝑘10

[

VIIIa𝑚 ∶ IXa𝑚
]

[X𝑚]
𝐾10𝑀 + [X𝑚]

+ 𝑘+10𝑁10[AP][X] − 𝑘−10
[

X𝑚] . (B.12)

Xa𝑚 =
𝑘10

[

VIIIa𝑚 ∶ IXa𝑚
]

[X𝑚]
𝐾10𝑀 + [X𝑚]

− 𝑘+PRO
[

Va𝑚
] [

Xa𝑚
]

+ 𝑘−PRO
[

Va𝑚 ∶ Xa𝑚
]

+𝑘+10𝑁10[AP][Xa] − 𝑘−10
[

Xam
]

.

(B.13)

𝐺II = −𝑘2𝑡[Xa][II] − 𝑘+2𝑁2[AP][II] + 𝑘−2
[

II𝑚
]

. (B.14)

𝐺IIa = 𝑘2𝑡[Xa][II] − 𝑘+2𝑁2[AP][IIa] + 𝑘−2
[

IIa𝑚
]

− ℎ2 [ATIII][IIa]. (B.15)

𝐺II𝑚 = −
𝑘2

[

Va𝑚 ∶ Xa𝑚
] [

II𝑚
]

𝐾2𝑀 +
[

II𝑚
] + 𝑘+2𝑁2[AP][II] − 𝑘−2

[

II𝑚
]

. (B.16)

𝐺IIa𝑚 =
𝑘2

[

Va𝑚 ∶ Xa𝑚
] [

II𝑚
]

𝐾2𝑀 +
[

II𝑚
] + 𝑘+2𝑁2[AP][IIa] − 𝑘−2

[

IIa𝑚
]

. (B.17)

𝐺PL = −𝑘𝑝𝑝[PL][AP] −
𝑘𝑝2[PL][IIa]
1 + [IIa]

. (B.18)

𝐺AP = 𝑘𝑝𝑝[PL][AP] +
𝑘𝑝2[𝑃𝐿][IIa]

1 + [IIa]
. (B.19)

𝐺VIII = −
𝑘8[IIa][VIII]
𝐾8𝑀 + [VIII]

− 𝑘+8𝑁8[AP][VIII] + 𝑘−8
[

VIII𝑚
]

. (B.20)

𝐺VIIIa =
𝑘8[IIa][VIII]
𝐾8𝑀 + [VIII]

−𝑘+8𝑁8[AP][VIIIa]+𝑘−8
[

VIIIa𝑚
]

−ℎ8[VIIIa]. (B.21)

𝐺VIII𝑚 = −
𝑘𝑚8

[

IIa𝑚
] [

VIII𝑚
]

𝐾𝑚
8𝑀 +

[

VIII𝑚
] −

𝑘𝑚8𝑡
[

Xa𝑚
] [

VIII𝑚
]

𝐾𝑚
8𝑡𝑀 +

[

VIII𝑚
]

+ 𝑘+8𝑁8[AP][VIII] − 𝑘−8
[

VIII𝑚
]

. (B.22)

𝐺VIIIa𝑚 =
𝑘𝑚8

[

IIa𝑚
] [

VIII𝑚
]

𝐾𝑚
8𝑀 +

[

VIII𝑚
] +

𝑘𝑚8𝑡
[

Xa𝑚
] [

VIII𝑚
]

𝐾𝑚
8𝑡𝑀 +

[

VIII𝑚
]

+𝑘+8𝑁8[AP][VIIIa] − 𝑘−8
[

VIIIa𝑚
]

−𝑘+𝑇𝐸𝑁
[

VIIIa𝑚
] [

IXa𝑚
]

+ 𝑘−TEN
[

VIIIa𝑚 ∶ IXa𝑚
]

.

(B.23)

𝐺VIIIa𝑚∶IXa𝑚 = 𝑘+TEN
[

VIIIa𝑚
] [

IXa𝑚
]

− 𝑘−TEN
[

VIIIa𝑚 ∶ IXa𝑚
]

. (B.24)

𝐺V = −
𝑘5[IIa][V] − 𝑘+𝑁5[AP][V] + 𝑘−

[

V𝑚] . (B.25)

𝐾5𝑀 + [V] 5 5
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Table 5
Initial concentrations of proteins and platelets in Susree’s model as reported in Susree
and Anand (2017).

Component Normal conc. (nM)

TF 0.025
VII 10.0
VII𝑚 0.0
VIIa 0.1
VIII𝑚 0.0
IXa𝑚 0.0
IX𝑚 0.0
IXa 0.009
IX 90.0
Xa𝑚 0.0
X𝑚 0.0
Xa 0.017
X 170.0
IIa𝑚 0.0
II𝑚 0.0
IIa 0.140
II 1400.0
PL 10.0
AP 0.001
VIIIa𝑚 0.0
VIII𝑚 0.0
VIIIa 0.00007
VIII 0.7
IXa𝑚 ∶ VIIIa𝑚 0.0
Va𝑚 0.0
V𝑚 0.0
Va 0.002
V 20.0
Xa𝑚 ∶ Va𝑚 0.0
I 7000.0
Ia 0.70
TFPI 2.5
Xa:TFPI 0.0
ATIII 3400.0

𝐺Va =
𝑘5[IIa][V]
𝐾5𝑀 + [V]

− 𝑘+5𝑁5[AP][Va] + 𝑘−5
[

Va𝑚
]

− ℎ5[Va]. (B.26)

𝐺V𝑚 = −
𝑘𝑚5 [IIa] [V

𝑚]
𝐾𝑚

5𝑀 + [V𝑚]
−

𝑘𝑚5𝑡
[

Xa𝑚
]

[V𝑚]
𝐾𝑚

5𝑡𝑀 + [V𝑚]
+ 𝑘+5𝑁5[AP][V] − 𝑘−5

[

V𝑚] . (B.27)

𝐺Va𝑚 =
𝑘𝑚5 [IIa𝑚] [V𝑚]
𝐾𝑚

5𝑀 + [V𝑚]
+

𝑘𝑚5𝑡
[

Xa𝑚
]

[V𝑚]
𝐾𝑚

5𝑡𝑀 + [V𝑚]
− 𝑘+PRO

[

Xa𝑚
] [

Va𝑚
]

+𝑘−PRO
[

Xa𝑚 ∶ Va𝑚
]

+𝑘+5𝑁5[AP][Va] − 𝑘−5
[

Va𝑚
]

.

(B.28)

𝐺Xa𝑚∶Va𝑚 = 𝑘+PRO
[

Xa𝑚
] [

Va𝑚
]

− 𝑘−PRO
[

Xa𝑚 ∶ Va𝑚
]

. (B.29)

𝐺𝐼 = −
𝑘𝑓 ([IIa])[I]
𝐾𝑓𝑀 + [I]

. (B.30)

𝐺𝐼𝑎 =
𝑘𝑓 ([IIa])[I]
𝐾𝑓𝑀 + [I]

. (B.31)

𝐺TFPI = −ℎ𝑇𝑃+10 [Xa][TFPI] + ℎ𝑇𝑃−10 [Xa ∶ TFPI]. (B.32)

Xa∶TFPI = ℎ𝑇𝑃+10 [Xa][TFPI] − ℎ𝑇𝑃−10 [Xa ∶ TFPI]

− ℎ𝑇𝑃7 [TF ∶ VIIa][Xa ∶ TFPI]. (B.33)

ATIII = −[ATIII]
(

ℎAT10 [Xa] + ℎ9[IXa] + ℎ2[IIa] +ℎ𝑇 7[TF ∶ VIIa]
)

. (B.34)

There are dozens of kinetic parameters in Susree’s model and their
alues are listed below.

𝑝𝑝 = 0.3 nM−1 s−1

𝑝2 = 0.37 s−1
11 
+
𝑇 7 = 3.2 × 10−03 nM−1 s−1

−
𝑇 7 = 3.1 × 10−03 s−1

+
𝑇 7𝑎 = 0.023 nM−1 s−1

𝑘−𝑇 7𝑎 = 3.1 × 10−03 s−1

𝑘𝑇𝐹7 = 4.4 × 10−04 nM−1 s−1

𝑘10,7 = 0.013 nM−1 s−1

𝑘2,7 = 2.3 × 10−05 nM−1 s−1

ℎ𝐴𝑇7 = 4.5 × 10−07 nM−1 s−1

ℎ𝑇𝑃7 = 0.05 nM−1 s−1

𝑘9 = 0.26 s−1

𝐾9𝑀 = 243.0 nM

ℎ9 = 2.223 × 10−04 nM−1 s−1

𝑘7,10 = 1.15 s−1

𝐾7,10 M = 450.0 nM

ℎ𝐴𝑇10 = 3.05 × 10−06 nM−1 s−1

ℎ𝑇𝑃+10 = 4.381 nM−1 s−1

ℎ𝑇𝑃−10 = 5.293 × 10−08 nM−1 s−1

𝑘2𝑡 = 7.5 × 10−06 nM−1 s−1

ℎ2 = 1.79 × 10−04 nM−1 s−1

𝑘8 = 0.9 s−1

𝐾8𝑀 = 147.0 nM

ℎ8 = 0.0037 s−1

𝑘5 = 0.233 s−1

𝐾5𝑀 = 71.7 nM

ℎ5 = 0.0028 s−1

𝑘𝑓 = 59.0 s−1

𝐾𝑓𝑀 = 3160.0 nM

𝑘+9 = 0.01 nM−1 s−1

𝑘−9 = 0.0257 s−1

𝑘+TEN = 0.01 nM−1 s−1

𝑘−𝑇𝐸𝑁 = 5.0 × 10−03 s−1

𝑘+10 = 0.029 nM−1 s−1

𝑘−10 = 3.3 s−1

𝑘10 = 8.33 s−1

𝐾10𝑀 = 63.0 nM

𝑘+PRO = 0.4 nM−1 s−1

𝑘−PRO = 0.2 s−1

𝑘+2 = 0.01 nM−1 s−1

𝑘−2 = 5.9 s−1

𝑘2 = 22.4 s−1

𝐾2𝑀 = 1060.0 nM

𝑘+8 = 4.3 × 10−03 nM−1 s−1

𝑘−8 = 2.46 × 10−03 s−1

𝑘𝑚8 = 0.9 s−1

𝐾𝑚
8𝑀 = 200 nM

𝑘𝑚8𝑡 = 0.023 s−1

𝐾𝑚
8𝑡𝑀 = 20.0 nM

𝑘+5 = 0.057 nM−1 s−1

𝑘−5 = 0.17 s−1

𝑘𝑚5 = 0.23 s−1

𝑚
𝐾5𝑀 = 71.7 nM
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𝑘𝑚5𝑡 = 0.046 s−1

𝐾𝑚
5𝑡𝑀 = 10.4 nM

The initial concentrations of proteins and platelets are listed in
able 5.
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