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Abstract. We propose and demonstrate an alternating Fourier and
image domain filtering approach for feature extraction as an efficient
alternative to build a vision backbone without using the computation-
ally intensive attention. The performance among the lightweight mod-
els reaches the state-of-the-art level on ImageNet-1K classification, and
improves downstream tasks on object detection and segmentation con-
sistently as well. Our approach also serves as a new tool to compress
vision transformers (ViTs).

Keywords: Fourier domain filtering - Group shuflled large kernel
convolution * Dual domain feature extraction

1 Introduction

Two mainstream computer vision (CV) networks are convolutional neural net-
work (CNN, [15]) and vision transformer (ViT, [14]). ViTs have surpassed the
performance of CNNs in recent years however at the expense of large model size
and flops even though efficient attention is utilized [24]. To achieve high perfor-
mance lightweight (LW) backbone models with parameter size around 5 million,
attention free networks with low cost global mechanism to upgrade standard
convolution has been a successful line of inquiry. For example, Fourier transform
is a global convolution and can facilitate such a possibility as demonstrated in
AFF network [12] lately. On the other hand, large convolution kernel vision net-
works [9] approach this goal from the image domain, while hybrid LW models
combine mobile convolution and attention [44].
The main contributions of our paper include:

— Identify the lack of spatial mixing in AFFNet [12] and propose an alternating
Fourier and image domain adaptive filtering (AFIDAF) proxy to attention in
ViTs. The spatial filtering equips the large kernel convolution [9] with group
shuffling operations for added efficiency.
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— Show that AFIDAF improves AFF consistently on CV (ImageNet-1K classi-
fication and downstream) tasks while remaining in the LW category.

— Develop a hierarchical AFIDAF framework based on Swin [24] for ViT com-
pression while maintaining performance on CV tasks.

The rest of the paper contains sections on related work, method, experiments
and conclusions.

2 Related Work

2.1 CNNs

Convolution has been the basic operation of image feature extraction for over
two decades [15], due its flexibility in adopting various kernel sizes for various
receptive field of views to cover the image domain under translation invariance as
well as its natural interpretation as filtering. However, the convolution operation
uses static weights and so lacks adaptability across pixels in different parts of an
image. It is also spatially local due to limitation of the kernel size. As a result,
ViTs (|14] and its variants), based on global attention originally designed for
natural language processing (NLP) tasks [37], outperformed well-known CNNs
on computer vision (CV) tasks, see [24,42] among others.

To improve CNNs to and over the level of benchmark ViTs [14,24], addi-
tional functionalities have been introduced in recent years. One is large kernel
approximation (LKA, [9]) that leverages the strengths of both convolution and
self-attention by including local structure (contextual) information, long-range
dependence, and spatial-channel adaptability. Another line of inquiry is Con-
vNext where large kernel sizes and layer norm [23|, and global response nor-
malization layer (see [39] for inter-channel feature competition) are utilized for
enhancement. These developments are motivated by Swin transformers [24] yet
at similar or larger capacities.

2.2 ViTs

Due to quadratic complexity of attention in ViT [14], efficient token mixing
and global attention approximations have been actively studied with various
ideas stemming from shifted window of Swin [24]. In lieu of window shifting,
competitive performances have been reported on ImageNet-1K and downstream
tasks by techniques such as pooling (Poolformer [45]), shuffling (Shuffleformer
[13]), mixing across windows and dimensions (Mixformer [3|), high/low frequency
global attention decomposition (Hiloformer [31]), pale shaped window attention
(Paleformer, [41]), cross shaped windown attention (CSwinformer [4]) among
others. See also hybrid and unified CNN-ViT models [6,7,11,18,19,40,43|.
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2.3 Fourier Transform Based Vision Networks

Fourier transform has been proposed first for NLP tasks [16] and then found
effective in promoting token mixing in CV for frequency domain filtering and fea-
ture extractions [32,34]. FFT is also a form of convolution, though with a global
kernel size and circular padding. Injecting adaptivity in the Fourier domain has
been found useful for mimicing self-attention in ViTs, see [8,12].

2.4 Lightweight Vision Networks

Lightweight networks are desirable for mobile deployment and resource con-
strained applications. Separable (group) convolutions and shuffle operations
are effective techniques for designing CNNs in the lightweight category, see
MobileNets [33], ShuffieNets [25,26,47] and references therein among others.
Lightweight ViTs have been proposed combining MobileNet and efficient atten-
tion blocks in [20,29,44], see also [38] for a ViT motivated mobile CNN. A
lightweight Fourier transform based attention-free vision network is AFF [12]
which forms the baseline of our work here.

3 Method

We first review the adaptive Fourier filters for efficient token mixing proposed
in AFF [12], point out its limitation (or lack of action in the frequency/image
domain) and present our method as an alternating dual domain adaptive filter
to enhance performance on visual tasks while keeping the model size in the
lightweight range.

3.1 AFF Block and Limitation

Adaptive Frequency Filter Token Mixer Adaptive Frequency Filter Token Mixer

Channel Mask

Qroup —» ReLU—» G_roup
Linear Linear

LAd

LAAT
LAd
LAY

(a) General (theoretical) adaptive Fourier filter proposed in (b) Implemented AFFNet, applying the Fourier domain fil-
AFFNet [12] for mixing features in the Fourier domain. ter channel-wise as a mask, limiting its ability to represent
frequency features effectively.

Fig. 1. Comparative illustration of the AFFNet block’s theoretical framework (a) and
its practical application (b), highlighting the discrepancy between the conceptual design
and the actual implementation.
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Consider feature tensor X € RT*WXC which is mapped from an input image,

with spatial resolution H x W and channel number C. A token x € R'Xx¢
is a restriction of X at a fixed spatial location. Token mixing is a key oper-
ation in evolving X through a deep network. A general expression is: z} =
ZiEN(wq) wiq p(r;), where xj is the transformed token, N(z,) is a neighbor-
hood of z, of certain size, w; 4 the weight matrix, and ¢(-) is embedding func-
tion. This formula is an abstraction of both CNN and transformer with suitable
choices of N, ¢ and w. Towards a computationally efficient, semantically adap-
tive and globally reaching token mixer desirable for lightweight networks, AFF
[12]| proposed to 1) (global) fast Fourier transform X in (h,w) to F(X), 2) (local
and adaptive on Fourier domain) mask it nonlinearly in the point-wise sense, 3)
inverse Fourier back to the image domain (Fig. 1):

X" =FM(F(X)) o F(X)], (1)

where M (-) is implemented as subnetwork consisting of a group 1 x 1 convolution
(linear) layer, followed by a ReLU function and another group linear layer; ®
is elementwise multiplication (Hadamard product). The authors argued through
convolution theorem that the AFF block (1) is global, adaptive token mixing and
is mathematically equivalent to adopting a large-size dynamic convolution kernel
as the weights for token mixing. An advantage of (1) is that the resulting model
is attention free, CNN based, and lightweight with competitive performance on
ImageNet-1K, though less so on downstream or dense prediction tasks (object
detection and segmentation).

Through checking the authors’ Github codes, we found that the masking
function M actually only acts on the channel dimension while being an identity
map on the frequency plane, which limits its performance and spatial resolution.
More precisely, the actually implemented AFF block is:

ary = FHMo(F(X)) © F(X)], (2)

where M (+) is a subnet in the channel dimension leaving frequency dimensions
unchanged.

The main contribution of our paper is to realize that additional spatial filter-
ing on image (or an equivalent on frequency) domain on top of (2) can improve
AFF while keeping model size in the lightweight range. Instead of doing so in
the frequency domain alone (or directly on (2)), we propose an alternating adap-
tive filtering methodology between image domain and Fourier domain (AFIDAF).
Abstractly, the AFIDAF block is:

apiday = F~ Mo (F(M1(X)) © F(Mp(X))), (3)

where Mj(-) is a large kernel approximation (LKA, Fig. 4 of [9]) with additional
grouping and shuffling. The LKA [9] consists of depth-wise convolutions in the
H x W domain followed by a CNN type multiplicative attention. To be more
efficient, we further downsize M; with group convolutions and shuffle operations,
see the left subplot of Fig. 2(b). The alternating strategy (3) is a splitting method
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to handle token mixing in all H x W x C' dimensions. One potential difficulty to
find a selective mask M in Eq. (1) on the frequency domain is that it must be
properly localized to correspond to a large receptive field of view in the image
domain by the uncertainty principle of Fourier transform. On the other hand,
to resolve high frequency well, the mask must also cover the corresponding part
of the frequency plane. In the AFIDAF approach (3), local and high frequency
features of an image (edges/corners/textures etc.) are resolved by large kernel
convolutions inside M;(-) on the image domain; the low frequency and non-local
features outside of individual kernel’s reach are captured by channel mixing (2)
on the Fourier domain. So Eq. (3) is a local-global image feature extractor. It is
an interesting problem for a future study to localize (2) and decrease kernel size
of M;(-) (hence also localize in the image domain) to reduce AFIDAF model
parameter size. We present our model design next.

3.2 AFIDAF Architecture
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(a) AFIDAF block inside one of the three sequential stages of visual feature extraction in AFF architecture [12].
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(b) An alternating image domain filtering (efficient large kernel convolution) and Fourier domain channelwise filtering to
form a basic AFIDAF block (Fig. 2a). DW=depthwise, GS= group shuffle, DWD=depthwise-dilated.

Fig. 2. Illustration of AFIDAF in block and stage views.
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Image Domain Adaptive Filtering. To compensate for the lack of spatial
filtering in AFF implementation, we propose adding a full-size kernel convolution
as an adaptive filter in the image domain, prior to the Fourier domain AFF filter,
then repeat this block in each of the three stages of visual feature extractions
in the AFF architecture. However, employing large kernel convolution can be
computationally expensive.

To mitigate the high computational cost, we implement a decomposed large
kernel convolution [9] combined with a channel-wise group shuffle [25,47]. This
approach aims to reduce the computational overhead and large number of param-
eters typically associated with large kernel convolutions while still capturing
long-range dependencies.

We adopt a convolution decomposition which includes three components:
depth-wise spatial local convolution, depth-wise dilated convolution, and 1 x 1
channel convolution. The depth-wise spatial local convolution focuses on proxi-
mate features, maintaining spatial locality. The depth-wise dilated convolution
extends spatial coverage to capture a broader context. Finally, the 1 x 1 channel
convolution integrates channel-wise features, facilitating inter-channel interac-
tions. It is often referred to as “attention” in the convolutional setting (see [9]
and references therein). Thus, we arrive at:

Attention on, := Convy x1(GSchan (DWD-Conv(GSepan (DW-Conv(X))))),
(4)
where X denotes input features, GS.pqn is channel-wise group shuffle.

The channel-wise group shuffle further optimizes performance by reorder-
ing the channels in each group, ensuring effective feature mixing and reducing
redundancy. This step enhances the learning process by promoting diverse fea-
ture representations without significantly increasing computational costs.

By incorporating these techniques, we achieve a balanced approach that lever-
ages both spatial and Fourier domain filters, enhancing the AFF architecture’s
ability to efficiently and accurately extract meaningful visual features. This app-
roach allows us to maintain reasonable computational efficiency while achieving
the desired adaptive filtering effects, see Fig.2b for the block view and Fig. 2a
for the block in a stage which repeats three times from input to output.

Alternating Fourier-Image Domain Filtering. By integrating spatial and
Fourier filters, we enhance the AFF architecture via a local-global approxima-
tion structure, enabling it to effectively and accurately extract significant visual
features. This dual approach ensures that we maintain computational efficiency
while achieving the desired adaptive filtering outcomes. Figure 2b and 2a illus-
trate this concept, showing the block view and its repetitive three-stage process
from input to output, respectively.

3.3 Hierarchical AFIDAF

As another contribution of this paper, we improve the efficiency of existing ViTs
with the dual domain alternating architecture. The Swin transformer has demon-
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strated a good performance with relatively low complexity among ViTs. How-
ever, window attention computations are known to be less device-friendly than
convolutions. The subsequent MLPs also rapidly increase the model size. We
shall maintain the hierarchical framework of Swin (Fig.3a), while replacing its
transformer blocks with our design of hierarchical AFIDAF (HAFIDAF) blocks
(Fig. 3b).

H/4 x W/4 x 48 H/4xW/4xC H/8 x W/8 x 2C H/16 x W/16 x 4C H/32 x W/32 x 8C
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(a) Hierarchical architecture of Swin [24] with its vision attention blocks replaced by AFIDAF like blocks.
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(b) An alternating image filtering and Fourier channelwise mask to form a hierarchical AFIDAF block (Fig.
3a). F-Conv=frequency domain convolution, F-Conv(X)=iFFT(Conv(FFT(X))). F-Mask=Fourier Channel Mask, F-
Mask(X)=iFFT (Mask(FFT(X))), where Mask=M¢ as in Eq. 2. GSMLP is group shuffled multi-layer perception.

Fig. 3. Overview of HAFIDAF acting on Swin [24]| and the resulting compressed hier-
archical architecture.

HAFIDAF Blocks. Though in principle like AFIDAF, the hierarchical
AFIDAF (HAFIDAF) blocks differ in the following sense. First, HAFIDAF is
for the purpose of model compression. Second, the approximations on the spatial
domain and the channel domain are made in separate stages (Fig. 3a).

The first two stages are AFIDAF convolution blocks. Such a block consists
of an alternating-type spatial/frequency convolution, which resembles the large
kernel approximation M; in the setting of Fig. (2b). Here, convolution is per-
formed in place of window attention, as a more friendly alternative to mobile
devices. Moreover, Fourier convolution is performed every 2 blocks. It has two
main advantages over other simple architectures, e.g. the Hadamard product
on image domain. First, F-conv acts on small frequency kernels, allowing for



24 Y. Zheng et al.

entries of similar frequency modes to connect. In comparison, Hadamard prod-
uct acts only on single pixels. Second, compared to the Hadamard product,
F-Conv (Fig. (3b)) is smaller in size and thus more efficient. A group shuffle
MLP then follows to contribute to higher efficiency as well.

The latter two stages contain AFIDAF Fourier Mask blocks. Each block con-
sists of the channelwise Fourier mask, which resembles the channelwise operator
M in the setting of Sect.3.1. A group shuffle MLP follows afterward. In all
stages, Layer Normalizations are performed beforehand, and shortcut connec-
tions are present for ease of training the deep layers.

4 Experiments

4.1 Image Classification

Setting. The ImageNet-1K dataset [35], containing over 1.2 million images
across 1000 object categories, is utilized for training our models from scratch
to validate the effectiveness and efficiency of our proposed AFIDAF network
in image classification. We trained AFIDAF from scratch for 300 epochs using
256 x 256 pixel images on 8 NVIDIA RTX A6000 GPUs with a batch size of
1024. The learning rate schedule follows a cosine decay, starting at 2e—3 and
decreasing to a minimum of 2e—4, with the AdamW optimizer (weight decay of
0.05) and cross-entropy loss.

The input features from preprocessing have a size of 2562 with 1 block and 16
output channels, passing through the network composed of 1 Conv Stem Layer
and 3 Down Sample AFIDAF Blocks, concluding with the output. The Conv
Stem Layer yields an output size of 642, encompassing 4 blocks, and 32 output
channels. The first Down Sample AFIDAF Block produces an output of 322
with 2 blocks, and 96 channels for AFIDAF-T (128 for AFIDAF). The second
Down Sample AFIDAF Block outputs 162 with 4 blocks and 160 channels for
AFIDAF-T (256 for AFIDAF). The third Down Sample AFIDAF Block results
in an output size of 82 with 3 blocks, and 192 channels for AFIDAF-T (320 for
AFIDAF).

Results. We compare our proposed AFIDAF model with other state-of-the-art
lightweight models in Table 1. Our AFIDAF demonstrates superior performance,
achieving 80.9% Top-1 accuracy with 6.5M parameters and 1.5G FLOPs, out-
performing other lightweight networks of similar sizes. Additionally, AFIDAF-T
achieves 77.6% Top-1 accuracy with just 3.0M parameters and 0.8G FLOPs.

Ablation on Alternating Domain Filtering. To validate the effectiveness
of our alternating Fourier and image domain filtering approach, we compare
AFIDAF with AFFNet [12] and IDAF (replacing the AFF block with image
domain LKA [9]) on ImageNet-1K. The results, shown in the last 3 lines of
Table 1, demonstrate the superiority of our alternating domain approach over
single-domain methods.
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Table 1. Lightweight network classification comparison on ImageNet-1K dataset.
IDAF (image domain adaptive filtering only) replaces AFF block’s channel mixing
with image domain LKA [9].

Model Params (M)|Flops (G)|/Top-1 (%)
MViT-XS [29]  [2.3 1.0 74.8
EFormer-S0 [20] [3.5 0.4 75.7
VAN-BO [9] 4.1 0.9 75.4
EdgeNext-XS [27](2.3 0.5 75.0
AFFNet-T [12] [2.6 0.8 7.0
AFIDAF-T 3.0 0.8 77.6
MNetv2 [28] 6.9 0.6 4.7
ShuffleNetV2 [26] /5.5 0.6 74.5
MNetv3 [28] 5.4 0.2 75.2
T2T-ViT [46]  [6.9 1.8 76.5
DeiT-T [36] 5.7 1.3 72.2
CoaT-Lite-T [43] |5.7 1.6 77.5
LeViT-128 [7] 9.2 0.4 78.6
GFNet-Ti [34] 7.0 1.3 74.6
Mformer [17] 9.4 0.2 76.7
EfficientViT [1] [7.8 0.7 79.1
EdgeViT-XS [30] [6.7 1.1 7.5
MViT-S [29] 5.6 2.0 78.4
EdgeNext-S [27] 5.6 1.3 79.4
MViTv2-1.0 [19] 4.9 1.8 78.1
tiny-MOAT-1 [44][5.1 1.2 78.3
MixFormer-B1 [3] 8 0.7 78.9
RepViT-M1.0 [38]6.8 1.1 80.3
AFFNet [12] 5.5 1.5 79.8
IDAF 6.2 1.4 80.3
AFIDAF 6.5 1.5 80.9

4.2 Object Detection

Setting. Experiments on object detection are conducted using the MS-COCO
2017 [21] dataset, a widely-used benchmark for object detection, instance seg-
mentation, and keypoint detection tasks. The dataset includes 118K training
images, 5K validation images, and 20K test-dev images, covering 80 object cate-
gories annotated with bounding boxes, masks, and keypoints. The objects in this
dataset are diverse and challenging, ranging from people and animals to vehicles
and household items.
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Table 3. AFIDAF variants vs. other
LW backbones Semantic segmentation on

Table 2. Comparison of AFIDAF vari-
ants Object detection on MS-COCO 2017

dataset. PASCAL VOC 2012 dataset.

Model Param(M) [ mAP (%) Model Params (M) | mIOU(%)

AFFNet-T [12] 3.0 25.3 AFFNet-T [12] |3.5 77.8

AFIDAF-T 3.1 25.4 MViTv2-0.75 [19] 6.2 75.1

AFFNet [12] 5.6 28.4 AFIDAF-T 3.9 79.6

IDAF 5.9 28.2 AFFNet [12] 6.9 80.5

AFIDAF 6.2 30.2 EdgeNext [27] | 6.5 80.2
IDAF 7.5 81.1
AFIDAF 7.8 81.6

Following the common practice in [12,27,29], we compare lightweight back-
bones, AFIDAF and AFIDAF-T, using the SSD [22] framework. We initialize the
backbone with ImageNet-1K pre-trained weights and fine-tune the entire model
on MS-COCO for 200 epochs with a 320 x 320 input resolution. The training uses
a cosine learning rate scheduler with a base learning rate of 7e—4, a minimum
learning rate of 7e—5, and AdamW optimizer (weight decay 0.05) with the Ssd
Multibox loss function.

Results. Asshown in Table 2, the detection models equipped with AFIDAF out-
perform other lightweight transformer-based detectors in terms of mean Average
Precision (mAP). Specifically, AFIDAF surpasses the second-best AFFNet [12]
by 1.8% in mAP. Consistently, AFIDAF-T edges out AFFNet-T by 0.1% in mAP
with 0.1M more parameters.

4.3 Semantic Segmentation

Setting. We perform semantic segmentation experiments on the PASCAL VOC
2012 benchmark dataset [5]. This dataset, widely utilized for object recognition,
detection, and segmentation tasks, comprises of over 11,000 images with pixel-
level annotations across 20 object categories. It presents significant challenges
due to the high variability in object appearances, occlusions, and clutter. Fol-
lowing common practices [27], we augment the dataset using MS-COCO 2017
[21], incorporating additional annotations and data to enhance our experiments.

We use the DeepLabv3 [2] framework for semantic segmentation with
AFIDAF and AFIDAF-T backbones. Images are resized to 512 x 512, and models
are initialized with ImageNet-1K pretrained weights. Models are trained for 50
epochs on the VOC dataset, using a cosine learning rate scheduler with a base
rate of be—4, a minimum rate of le—6, and optimizer AdamW with a weight
decay of 0.05. The loss function employed is cross-entropy loss.

Results. In Table3, AFIDAF demonstrates superior performance compared
to other lightweight networks for semantic segmentation. Specifically, AFIDAF
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achieves a mean Intersection over Union (mlIoU) of 81.6%, surpassing the second-
best lightweight network, AFFNet, by 1.1%. Additionally, AFIDAF-T exceeds
AFFNet-T by 1.8% in mloU.

Table 4. Comparison of HAFIDAF with middleweight networks on ImageNet-1K clas-
sification. HAFIDAF achieves competitive performance with fewer parameters.

Model Params (M) Flops (G)[Top-1 (%)|Top-5 (%)
Swin-T [24] 28 45 81.2 95.5
SpectFormer-XS [32]20 4.0 80.2 94.7
PoolFormer-S12 [45] |12 1.8 77.2 -
PoolFormer-S24 [45] 21 34 80.3 -
GFNet-XS [34] 16 2.9 78.6 94.2
HAFIDAF 14.8 4.45 79.8 95.0

4.4 Experimental Evaluation of HAFIDAF

We conduct experiments to evaluate our proposed Hierarchical AFIDAF
(HAFIDAF) model, comparing it with state-of-the-art vision transformers mod-
els across image classification, semantic segmentation, and object detection tasks.

Image Classification. Table4 compares HAFIDAF with other middleweight
networks on ImageNet-1K. Based on the Swin-T architecture, HAFIDAF reduces
parameters by 47% (14.8M vs. 28M) while only decreasing Top-1 and Top-5 accu-
racy by 1.4% and 0.5%, respectively. This demonstrates HAFIDAF’s efficiency
in balancing model size and performance against recent Vision Transformers.

Object Detection. We evaluate HAFIDAF using the Cascade Mask R-CNN
framework (Table 5). With consistent training settings across models, HAFIDAF
achieves a 17% reduction in model size compared to Swin-T, with only a 1.6%
drop in APP°*. This showcases HAFIDAF’s ability to balance compression and
accuracy in detection tasks.

Semantic Segmentation. Using the UperNet framework, we compare
HAFIDAF and Swin-T on the Pascal VOC dataset (Table 6). HAFIDAF reduces
parameters by 24% while improving all three accuracy metrics (mloU, mAcc, and
aAcc), highlighting its effectiveness in dense prediction tasks.
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Table 5. Object detection performance Table 6. Semantic segmentation per-
on COCO dataset. HAFIDAF main- formance on Pascal VOC 2012 dataset.
tains competitive performance with sig- HAFIDAF outperforms Swin-T baseline
nificantly fewer parameters compared to across all metrics with 24% fewer param-

larger models. eters.
Model Param | APPOX | APPGX | APbEx Model Param mloU mAcc aAcc
M) | (%) (%) (%) M) (%) (%) (%)
R-50 [10] |82 46.3 |64.3 |50.5 Swin-T [24] 60  71.1 77.9 93.4
DeiT-S [36] |80 48.0 |[67.2 |51.7 HAFIDAF 46 72.4 80.3 93.8
Swin-T [24] |86 50.5 [69.3 |54.9
HAFIDAF |72 48.9 |67.6 |53.4

5 Conclusion

We found that the channel direction filtering in AFFNet limited its performance
and proposed to alternate an efficient image domain large kernel convolution
approximation with AFFNet block. The dual domain feature extraction app-
roach (AFIDAF) and its tiny version AFIDAT-T achieved consistent improve-
ments over AFFNet and other state of the art lightweight networks in classifica-
tion and downstream CV tasks. The hierarchical version HAFIDAT successfully
compressed ViT benchmark Swin-T [24], reducing parameter size while main-
taining performance in similar CV tasks.

Acknowledgments. The work was partially supported by NSF grants DMS-2151235,
DMS-2219904, and a Qualcomm Gift Award.
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