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Myobolica: A Stochastic Approach to Estimate
Physiological Muscle Control Variability

Alex Bersani , Mercy Amankwah, Daniela Calvetti , Erkki Somersalo ,
Marco Viceconti , and Giorgio Davico

Abstract— The inherent redundancy of the muscu-
loskeletal systems is traditionally solved by optimizing
a cost function. This approach may not be correct to
model non-adult or pathological populations likely to adopt
a “non-optimal” motor control strategy. Over the years,
various methods have been developed to address this
limitation, such as the stochastic approach. A well-known
implementation of this approach, Metabolica, samples a
wide number of plausible solutions instead of search-
ing for a single one, leveraging Bayesian statistics and
Markov Chain Monte Carlo algorithm, yet allowing muscles
to abruptly change their activation levels. To overcome
this and other limitations, we developed a new imple-
mentation of the stochastic approach (Myobolica), adding
constraints and parameters to ensure the identification
of physiological solutions. The aim of this study was to
evaluate Myobolica, and quantify the differences in terms
of width of the solution band (muscle control variability)
compared to Metabolica. To this end, both muscle forces
and knee joint force solutions bands estimated by the
two approaches were compared to one another, and
against (i) the solution identified by static optimization and
(ii) experimentally measured knee joint forces. The use
of Myobolica led to a marked narrowing of the solution
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band compared to Metabolica. Furthermore, the Myobolica
solutions well correlated with the experimental data (R2 =

0.92, RMSE = 0.3 BW), but not as much with the optimal
solution (R2 = 0.82, RMSE = 0.63 BW). Additional analyses
are required to confirm the findings and further improve
this implementation.

Index Terms— Suboptimal control, muscle recruitment,
stochastic approach, Markov chain Monte Carlo, OpenSim.

I. INTRODUCTION

REDUCTIONISM in biomechanics favors the separation
between biomechanics and neurology of human move-

ment. The number of muscles that the central nervous system
may choose to produce the same movement is considerably
higher than the number of degrees of freedom of a human body
(defined by the body’s allowed movement); this discrepancy
results in a redundancy situation for the muscular system [1],
where the muscle activation patterns that may be selected to
reach the same goal are essentially endless. Traditionally, the
biomechanics community tended to reduce the complexity of
neuromuscular control with the assumption that among all
possible control strategies that satisfy the physical and physio-
logical constraints, the central nervous system will choose one
minimizing some cost functions representative of a physiologi-
cal criterion (reductionist approach) [2]. With this assumption,
musculoskeletal dynamics models can predict the muscle
activation patterns given measured kinematics plus ground
reactions using inverse dynamics and static optimization [3].
Several studies have confirmed that this is an acceptable
approximation for healthy adults who perform sub-maximal
stereotypical tasks such as level walking [4], [5]. Unfortu-
nately, much biomechanics research focuses on pathological
subjects whose neuromuscular control deviates more or less
significantly from this assumption (sub-optimal control).

Several approaches have been proposed to overcome this
limitation [6] such as electromyography(EMG)-based [7], [8],
[9], [10] and feedback-based approaches [11]. A different
approach was proposed in [12], where the problem of con-
strained control was formulated in terms of Bayesian statistics,
and a Markov Chain Monte Carlo (MCMC) algorithm was
used to sample the solution space of all muscle activa-
tion patterns that satisfy the dynamic equilibrium and the
tetanic limits. Instead of searching for an optimal solution,
we sampled all possible solutions using a software implemen-
tation called Metabolica, originally developed for analyzing
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metabolic networks [13]. The advantage of this approach is
that it does not rely on the EMG information and makes
no assumption of synergies, thus considering also the least
optimal muscle activation patterns. The Metabolica approach
was successfully used in studies where the question was how
sub-optimal control could increase joint loading [14], [15],
[16], [17].

However, Metabolica assumes that each instant of the loco-
motion cycle is independent of the others; the solution space
is built assuming instantaneous equilibrium without concern
about whether a muscle was already activated or not in the
previous instant. However, this is not physiologically correct:
a muscle cannot abruptly change its activation level (and
therefore its force).

The aim of this study was to evaluate whether the neuromus-
cular control variability predicted assuming as constraints only
the equilibrium of forces and moments and the tetanic limit for
each muscle (i.e., Metabolica approach [13]) changed (and to
which extent) when the muscle force generation velocity was
accounted for. We named this new approach Myobolica and
hypothesized that it would narrow the solution band (com-
pared to Metabolica), including only the more physiologically
plausible estimates.

The reader is referred to [18] for a mathematical dissertation
on the Myobolica approach.

II. MATERIAL AND METHODS

A. Experimental Data
The experimental data used in this study, which include

motion capture, ground reaction forces, and in vivo knee
contact forces measured with an instrumented implant on
an 83-year-old male subject, are part of the sixth Grand
Challenge Competition dataset [19] In particular, the first
available overground gait trial (DM_ngait_og3) was selected
for our case study and processed to ensure that a full gait cycle
was included, i.e., that the first and last frames corresponded
to two consecutive right heel strikes on the force plate.

B. Musculoskeletal Model
A personalized single-leg musculoskeletal model was

employed to perform the simulations. The model, built off the
available post-operative medical imaging data of the subject
under study, was inherited from previous work [20] and
included 5 bodies (pelvis, femur, patella, tibia, and foot),
11 degrees of freedom (3 for the hip, 1 for the knee and the
ankle, 6 connecting the model to the ground) and 43 muscle-
tendon actuators.

C. OpenSim Workflow – Optimal Solution
The open-source software OpenSim (v4.1) [21] was used

to estimate joint kinematics and kinetics, as well as the
musculoskeletal parameters such as the muscle lever arms.
The OpenSim’s static optimization tool was then employed
to predict the ‘optimal’ and reference solution, i.e., set of
muscle forces and activation patterns, that minimized the sum
of squared muscle activations [22], henceforth referred to as
optimal solution, and the resulting total knee joint contact
forces (JCF).

D. Stochastic Approach
Stochastic simulations were performed with Metabolica and

Myobolica through MATLAB (v2021b), setting the number
of solutions to be identified to 8 × 105. This number was
deemed sufficient considering that in previous studies where
Metabolica was employed such value was set to 1 × 105 and
2 × 105, respectively [12], [17].

Once the solutions had been generated, the knee JCFs were
predicted by leveraging on the OpenSim API for MATLAB
(similarly to what was done to compute the JCFs correspond-
ing to the optimal solution).

Of note, in Metabolica no manifold was applied, i.e., the
solution space was not restricted, and the sampler could
explore the entire space of solutions.

The mathematical concepts behind Myobolica and the ratio-
nale and procedure to select the key parameters defining how it
works (Table I) are summarized in the following sections. For
a complete description of the mathematics behind Myobolica,
we refer the reader to [18].

E. Myobolica – Equilibrium Condition
The Myobolica tool considers muscle forces as random

variables based on observations on joint torques and muscle
moment arms (1) and a priori information to constrain muscle
forces (2):

M = B×Fmus + ε (1)
Fmin ≤ Fmus ≤ Ftetanic (2)

where B is the matrix of muscle lever arms, M is the joint
torques vector, Fmus is the unknown muscle forces vector
bounded between its minimum value (Fmin) and maximum
value (Ftetanic). The parameter ε models noise and uncertainties
as Gaussian white noise:

ε ∼ N(0,σ 2In) (3)

By adopting a Bayesian statistics methodology, Myobolica
describes the unknown muscle forces vector as a posterior
Probability Distribution Function (PDF):

π(Fmus|M) ∝ πpr(Fmus)π(M|Fmus) (4)

where π(Fmus|M) is the posterior PDF of the muscle forces,
πpr(Fmus) is the prior PDF and π(M|Fmus) is the likelihood.

Sigma (σ) is the parameter modeling noise and uncertainties
in the equilibrium condition equation, and it represents the
standard deviation of the Gaussian PDF in (3). To define
a plausible range for the σ parameter we estimated the
error ε (1) by propagating the experimental error of the instru-
mented knee prosthesis adopted in our example dataset [19].

F. Myobolica – Muscle Force Development Velocity
Control

The classical formulation for the Bayesian statistic (adopted
in Metabolica) would assume that PDFs at different time-
frames are mutually independent. This lacks physiological
accuracy – due to the natural limits of the muscle activation
velocity (and, as a result, of the muscle force development
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TABLE I
MYOBOLICA PARAMETERS DEFINED FOR THIS CASE STUDY

Fig. 1. Summary of the workflow done. Firstly, biomechanical
parameters are extracted from the musculoskeletal model. Then,
an implementation of the stochastic approach is executed (Myobolica or
Metabolica). In the end, both implementations provide as output a band
of plausible muscle forces, in turn used to compute a band of plausible
knee JCF profiles. In Myobolica, σ and γ are parameters related to
uncertainties modeling and the new “yank” constraint and the mutual
independency among frames is reached through the Feynman-Kac
model path sampling.

velocity); in other words, different timeframes cannot be mutu-
ally independent. To overcome this, in Myobolica, we modeled
the concept of “yank”, which is the time derivative of a muscle
force [23]. In particular, we defined the yank as a PDF:

Fmus,t − Fmus,t−1 = ηt (5)

ηt = N(0, γ 2) (6)

Modeling the yank binding through this prior PDF – discussed
in detail in [18] – allows us to compute a solution that keeps
track of each simulation timeframe information. Notably, the
sampling of longitudinal paths rather than single solutions
(required to obtain solutions which respect the new yank
constraint) is achieved through the Feynman-Kac model [24].
Briefly, the Feynman-Kac path formalism (developed for
diffusion-type parabolic equations) introduces a probability
distribution in the space of path over time and represents
solutions as expectation of integrals over paths similarly to
how in our modelling problem the muscle force posterior PDF
is defined by the yank prior PDF [18].

Gamma (γ ) represents the standard deviation of the
Gaussian PDF describing the yank variance (6). In particular,
γ (which controls the yank) relates to an experimental param-
eter frequently measured or estimated in experimental muscle
characterization studies: the rate of force development (RFD),
at times reported as the rate of moment/torques development
(RMD). The RFD describes the capacity of a muscle to
rapidly generate force [25] and is measured in Newton per
second [N/s] (or Nm/s, when derived from torques). The RFD
is calculated during maximal voluntary isometric contraction
tests (MVIC tests) of sports gestures for athlete’s performance
evaluation or constrained to an instrumented chair in the
clinical environment. Commonly, the parameter is estimated

Fig. 2. Muscle force solutions bands comparison between Myobolica
(blue) and Metabolica (grey). The optimal solution is plotted in green.

during the first 300-400 ms of the executed task [25] and
clustered into shorter intervals.

G. Myobolica – Consecutive Steps Analysis
To run, Myobolica requires a first tentative solution (i) to

compute an early value of the muscle force development
velocity control and (ii) to define the initial conditions at the
first timeframe of the simulation (the initial set of muscle
forces).

To limit the dependency of the Myobolica solutions on the
tentative solution, which corresponds to the optimal solution
from static optimization, we simulated two consecutive steps.
More specifically, assuming that the kinematics variability
between steps is little to negligible [26], the median muscle
force patterns among the Myobolica solutions estimated after
the first run were provided as tentative solutions for the
simulation of the second step. In addition, the pool of plausible
initial conditions to guide the initial sampling for the second
step was set to the values of the Myobolica solutions at the
last timeframe of the first step.
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Fig. 3. Comparison of muscle range of forces estimated by Myobolica (blue) and Metabolica (grey).

Henceforth, with the term Myobolica solutions we refer to
the solutions of the second step.

H. Data Analysis
A schematic summary of the work done in this paper

is reported in Fig. 1. For both Myobolica and Metabolica,
the resulting solution space (i.e., set of muscle forces) was
initially sorted in ascending order to facilitate the identification
of the minimum and maximum solutions, along with the
10th, 25th, 75th, and 90th percentiles as well as the median
solution. Similarly, the estimated knee JCF profiles were first
normalized to the subject’s body weight and then sorted in
ascending order.

The comparison between the results from Metabolica and
Myobolica is performed employing descriptive statistics and
similarity metrics (i.e., R2 and root mean square error - RMSE)
as well as through the quantification of the range of variation
(min to max solution), further complemented by a qualitative
analysis.

In addition, the Myobolica solution space was compared
to the optimal solution and to the experimental knee JCFs
(i) measuring the overlap (as percentage, throughout time),
(ii) computing the R2 and RMSE, and (iii) comparing the
ranges of variation.

III. RESULTS

For clarity and to keep the Results section concise,
we hereby only report the results for a subset of muscles, i.e.,
triceps surae, vastii, and hamstrings (see Fig. 2). Additional
comparisons and results may be found in the Appendix.

Overall, the inclusion of an additional constraint (yank
parameter) to control the force-generating capability of a
muscle when exploring the solution space through a stochastic
approach (i.e., Myobolica implementation) led to a sig-
nificantly narrower solution band compared to the output
from Metabolica (previous implementation of the stochastic
approach where no manifold was applied and the solutions
at consecutive frames were independent of one another, thus
allowing for abrupt changes in muscle force).

On average, the bandwidth (spectrum of solutions) across all
modeled muscles was 659.4 N for Metabolica and 205.5 N for
Myobolica (see Fig. 3). More specifically, for the soleus mus-
cle, the force range estimated by Metabolica was 2385.7 N,

Fig. 4. Comparison of knee JCF solution bands estimated by Myobolica
(blue) and Metabolica (grey).

compared to 415.3 N from Myobolica; for the vastus medialis
1207.7 N compared to 180.2 N; for the medial gastrocnemius,
1454.1 N compared to 371.7 N.

Similarly, the spectrum of the knee JCFs – computed from
the identified set of muscle forces – ranged from 0.45 BW
to 2.9 BW in Myobolica (see Fig. 4) and from 0.14 BW to
13.2 BW in Metabolica, with an average solution variability
of 0.6 BW for Myobolica and 9.7 BW for Metabolica.

From a qualitative assessment, for both approaches, the
peak force was observed at around 55% of the gait cycle (in
correspondence of the typical second characteristic peak of
knee JCF force in a walking trial). The profiles of the solution
spaces between Myobolica and Metabolica were similar in
shape (R2

= 0.87, RMSE = 4.5 BW, between the medians
of the two solution bands). In S.Fig.1 a comparison between
muscle activation solution bands estimated by Myobolica and
the experimental EMG signals is provided.

Compared to the true value, i.e., data from the instru-
mented knee implant, the Myobolica solution band showed
a high correlation level (R2

= 0.92 and RMSE = 0.3 BW,
between Myobolica median solution and experimental JCF
profile). Furthermore, the implant data were almost completely
enclosed in the solution space identified by Myobolica (for
approximately 72.8% of the gait cycle; see Fig. 5).

By contrast, the knee JCF resulting from the optimal solu-
tion identified via the classical static optimization approach
(Fig. 5, green line), thus hypothesizing optimal muscle control,
was characterized by a first characteristic peak larger than the
second characteristic peak (i.e., overall maximum identified
around initial heel contact, at ∼8% of the gait cycle, compared
to ∼55% in both the experimental data and the Myobolica
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Fig. 5. Comparison of knee JCF estimated by Myobolica (blue shade bands), optimal solution (green) and experimentally measured data (black).
Right: min-to-max range of the solutions estimated by the two methods and the experimentally measured value.

solutions). Shape-wise, the optimal solution was not as similar
to the Myobolica band of solutions as the implant data (i.e.,
R2

= 0.82, RMSE = 0.63 BW, between the medians of
Myobolica solutions band and the optimal solution), and fell
mostly outside of it (i.e., 15.9% overlap across the gait cycle).

IV. DISCUSSION

The aim of this paper was twofold: to present the results
of Myobolica, a tool to implement a stochastic approach to
predict physiologically plausible muscle forces and activation
patterns accounting for neuromuscular control variability while
constraining the ability of muscles to rapidly generate force,
and to compare the obtained variability to the variability
predicted assuming as constraints only the equilibrium of
forces and moments and the tetanic limit for each muscle (i.e.,
Metabolica).

As hypothesized, introducing a term to discourage abrupt
changes in muscle force led to a marked narrowing in
the solution band (in terms of knee joint contact forces,
from 13 BW to 2.4 BW, Fig. 3 and Fig. 4), compared to results
from Metabolica [12], [13]. While part of the solution space
obtained with Metabolica may be considered physically plau-
sible as the identified solutions satisfy both the dynamics of the
system (equilibrium) and the tetanic limits of the muscles (i.e.,
maximal isometric force values), those same solutions may not
be physiologically plausible. In fact, when the γ parameter
(to control the yank) was introduced, a large portion of the
Metabolica solution space was no longer explored (Fig. 4).
This may suggest that even in a subject adopting a suboptimal
control (such as the subject under study), some variability in
neuromuscular control is physiological, but it may be less than
previously hypothesized.

In addition, the knee joint contact force profiles calculated
from the solution space identified by Myobolica more closely
approximated the experimental data from the instrumented
implant. This may be reconducted to the higher muscle-co-
contraction resulted by Myobolica. The introduction of the
γ and σ parameters to control the yank and the uncertainties
in the equilibrium condition, respectively, had thus a twofold
(positive) effect: to reduce the band of solutions and to enable
more accurate predictions. Interestingly, the optimal solution
(generated hypothesizing optimal muscle control – i.e.,

Fig. 6. Muscle force solutions bands estimated by Myobolica. Compar-
ison of the first (red) and the second (blue) simulated step.

minimization of sum squared muscle activations) is close to
but not comprised within the range of Myobolica solutions.
This circumstance calls for further investigation.

The authors are aware of the limitations of this work.
For instance, the computational cost is non-negligible. While
a single Myobolica solution (i.e., set of muscle forces and
activations plus the resulting knee joint contact force) can be
generated in as little as 0.3 seconds, the overall time required
to compute the whole band of solutions (e.g., 8×105 solutions)
is in the order of hours due to a lack of parallelization in
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Fig. 7. Comparison of muscle range of forces estimated by Myobolica. In (a), comparison between the first (red) and second (blue) simulated step;
in (b), comparison between the second (blue) and third (orange) simulated step.

the current implementation. Moreover, the γ parameter –
related to the yank control – may vary between populations,
with significant differences between trained and untrained
subjects. Additional tests should be performed to study the
effect of such parameters on different subjects. The authors
point out that this paper was conducted on one subject with an
explorative purpose, and the set γ parameter was comparable
to values found in the literature.

The analysis of more subjects is planned in the near future
to confirm the conclusions the authors drew in this document,
along with a sensitivity analysis to quantify the effect of the
values assigned to γ and σ (hereby carefully selected, but
likely different depending on the characteristics of the popu-
lation) and a convergence analysis to identify the minimum
number of solutions to be sampled and consecutive steps to
be performed to minimize the computational cost.

If future analysis will confirm results emerged in this study,
new application scenarios may be hypothesized where the
stochastic approach could be used to enhance “what if” kind
of study and provide an extended band of what the subject is
able to do (in terms of muscle forces) given the kinematics
and the subject specific muscle condition.

APPENDIX A
TOOLBOX PARAMETERS

The study for the definition of physiological ranges for
Myobolica governing parameters was accomplished for two
we defined “gamma” (γ ) and “sigma” (σ).

To define a physiological range for the γ parameter we
estimated the rate of moment development (RMD) from data
collected in our laboratory on 31 people (both young and old

individuals. ClinicalTrials ID: NCT05795348, NCT05854316
[27]) who performed maximal voluntary isometric contraction
(MVIC) tests of the lower limbs on a Biodex System 4 Pro
isokinetic dynanometer (Biodex Medical System, New York,
NY, USA).

The experimental results (i.e., computed RMDs) were clus-
tered into 3 intervals based on the selected analysis window:
0-50 ms, 0-100 ms, 0-200 ms. No specific cluster was chosen,
and the results were pooled together, as the peak performance
reached in a MVIC test (experimental task) is unlikely to
be reached during an overground walk (simulated task). The
values thus extracted were in line with the literature [25], [28],
[29], [30], [31], [32].

The computed RMDs were later scaled to the timescale of
the employed simulation data (in our case, 0.008334 seconds):

RMDscaled = RMD × 1tspecific (A1)

As in Myobolica the yank is described as a Gaussian
PDF with average value and standard deviation respectively
equal to 0 and γ , to ensure all yank values are described by
the Gaussian distribution (the authors remind the reader that
99.7% of the values lie within 3 times the standard deviation)
we modelled the γ parameter starting from the average RMD
value typical of elderly subjects, as in (A2):

3 × γ >RMDexperimental (A2)

where RMDexperimental was the RMD normalized to the mea-
sured peak torques and scaled to the simulation timescale.
The overall largest value (across clusters) was selected.
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Fig. 8. Comparison of the knee JCFs estimated by Myobolica in the
first (red) and in the second (blue) simulated step.

The purpose of normalization is to enable comparison of
results across studies where different motor tasks are studied.

To define a plausible range for the σ parameter we estimated
the error ε (1) by propagating the experimental error of the
instrumented implant worn by the subject under study [19]:

εForce,knee =
∑Nmuscles

i=1
ki (t) · εForce,i (t) (A3)

ki (t) =
Fmus,i(t)

Fknee,resultant(t)
(A4)

where εForce,knee is the maximum absolute error measured
during the calibration of the instrumented prosthesis [33] –
i.e., about 1% of the maximum value measured during trial
acquisition.

Assuming that the contribution of each muscle to the knee
joint force (and so to the error of that measure) is propor-
tional to the force generated by the same muscle, we defined
εForce,knee as a linear combination of muscle force errors
(εForce,i) weighted by their contribution to the knee resultant
force (A3). The contribution ki was set to 0 for muscles not
insisting on the knee joint.

The joint torque error ε was estimated propagating the
muscle force error εForce,i in (1):

M + ε = B × [Fmus + εForce,mus] (A5)

This way, an ε value for each simulation time frame was
estimated, and the biggest one, around the second peak of
the gait cycle ε reached the value of 0.36 Nm, was chosen as
reference value.

To ensure noise and uncertainties in (1) to be described
by a Gaussian distribution with average value 0 and standard
deviation σ , we modelled the σ parameter starting from the
previously described ε:

3 × σ > ε (A6)

APPENDIX B
STEP SELECTION

The analysis of a second consecutive step is mainly moti-
vated by the need to obtain a solution independent from
the initial optimal solution, but it led to the estimation of
a significantly different solution space. To explore how the
periodization of the gait cycle could affect the outcome, a third
consecutive step was simulated searching for differences in
the resulting solution spaces between the second and the third
steps. The median muscle activation pattern estimated in the
second cycle is assigned as required tentative solution in the
third one and the last timeframe’s solution of the second gait

Fig. 9. Muscle force solutions bands estimated by Myobolica. Compar-
ison of the second (blue) and the third (orange) simulated step.

Fig. 10. Comparison of the knee JCFs estimated by Myobolica in the
second (blue) and in the third (orange) simulated step.

cycle is carried out as the pool of plausible initial conditions
for the third gait cycle.

The comparison between the Myobolica solution for the first
and second steps is shown in A.Fig. 6. The average muscle
force range across muscles is 226.7 N in the first step and
205.5 N in the second step. The largest difference was found
for the soleus muscle (from 855.5 N in the first to 415.3 N in
the second step. A.Fig. 7(a)).

While the knee joint force solution spaces resemble
(R2

= 0.97 and RMSE = 0.28 BW between medians of
the two solution bands) with force estimated in the first step
generally lower than the one estimated in the second one
(A.Fig. 8); in the first step, the estimated spectrum ranged
from 0.14 BW to 2.4 BW while in the second step from
0.45 BW to 2.9 BW.

Further tests have been performed to determine whether
simulating a third step would lead to much different estimates
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(A.Fig. 9). No significant differences emerged when compar-
ing individual muscle bands (the largest difference emerged for
the tibialis posterior bandwidth: from 429.9 N in the second to
434.8 N in the third step. A.Fig. 7(b)). Similarly, the knee joint
force solution spaces were very much alike (R2

= 0.99 and
RMSE = 0.04 BW between medians of the two solution bands.
A.Fig. 10).

Considering the computational time to complete a simu-
lation, the authors deemed the difference between the results
from the second and the third step not to be significant enough
to require a third step to be performed.
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