

2
Intrinsic and Environmental Effects on the Distribution of Star Formation in TNG100 Galaxies3
BRYANNE McDONOUGH ,^{1,2} OLIVIA CURTIS ,^{3,2} AND TEREASA G. BRAINERD ²4
¹ *Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA*5
² *Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave, Boston, MA*6
³ *Department of Astronomy & Astrophysics, The Pennsylvania State University, 251 Pollock Road, University Park, PA*7
Submitted to ApJ8
ABSTRACT9
We present radial profiles of luminosity-weighted age (age_L) and $\Delta\Sigma_{\text{SFR}}$ for various populations of
10 high- and low- mass central and satellite galaxies in the TNG100 cosmological simulation. Using these
11 profiles, we investigate the impact of intrinsic and environmental factors on the radial distribution of
12 star formation. For both central galaxies and satellites, we investigate the effects of black hole mass,
13 cumulative AGN feedback energy, morphology, halo mass, and local galaxy overdensity on the profiles.
14 In addition, we investigate the dependence of radial profiles of the satellite galaxies as a function of
15 the redshifts at which they joined their hosts, as well as the net change in star-forming gas mass
16 since the satellites joined their host. We find that high-mass ($M_* > 10^{10.5} M_\odot$) central and satellite
17 galaxies show evidence of inside-out quenching driven by AGN feedback. Effects from environmental
18 processes only become apparent in averaged profiles at extreme halo masses and local overdensities.
19 We find that the dominant quenching process for low-mass galaxies ($M_* < 10^{10} M_\odot$) is environmental,
20 generally occurring at low halo mass and high local galaxy overdensity for low-mass central galaxies
21 and at high host halo masses for low-mass satellite galaxies. Overall, we find that environmental
22 processes generally drive quenching from the outside-in.23
1. INTRODUCTION24
The advent of integral field spectroscopy (IFS) surveys has revolutionized the study of star formation on resolved
scales outside of the Milky Way, leading to new insights into how galaxies grow and evolve. Here, we briefly describe

25 these insights as they relate to the radial distribution of properties related to star formation; we direct readers to
 26 Sánchez (2020) and Sánchez et al. (2021) for a comprehensive review. At the onset of star formation, the gas reservoir
 27 of galaxies is centrally concentrated. Over time, stars form out of molecular gas at larger and larger radii. This results
 28 in the negative gradient in the stellar mass surface density that is seen at present-day (e.g., González Delgado et al.
 29 2014; Sánchez 2020; Pan et al. 2024). This gradient, sometimes referred to as “inside-out growth” is more extreme in
 30 more massive/early-type galaxies.

31 The cessation of star formation also appears to occur from the inside-out, at least for massive galaxies. This is
 32 reflected by negative gradients in the luminosity-weighted age of massive galaxies over large scales ($R/R_e \approx 0 - 3$),
 33 e.g., González Delgado et al. (2014); Zheng et al. (2017); Sánchez (2020). The central suppression of specific star
 34 formation rates (sSFR), or similar parameters, in massive galaxies ($M_*/M_\odot \gtrsim 10^{10}$) in the observed universe has been
 35 well documented in the literature (e.g., González Delgado et al. 2014; Ellison et al. 2018; Spindler et al. 2018; Bluck
 36 et al. 2020b; Sánchez 2020; Sánchez et al. 2021; Pan et al. 2024). The tight correlation between the mass of the central
 37 supermassive black hole (SMBH) and other galaxy properties, including stellar mass and star formation rate (SFR),
 38 indicates that SMBHs play a significant role in quenching massive galaxies. In the parlance of Peng et al. (2010), ‘mass
 39 quenching’ refers to processes inherently linked to the mass of a galaxy that act to quench star formation, leading
 40 to larger fractions of quenched galaxies with increasing stellar mass and SMBH mass (e.g., Peng et al. 2010; Bluck
 41 et al. 2020a). Bluck et al. (2020b) used a random forest machine learning algorithm to determine the importance
 42 of various parameters for predicting quenching in central galaxies observed by MaNGA (Bundy et al. 2015). They
 43 found that central velocity dispersion, which is tightly correlated with SMBH mass (e.g., Saglia et al. 2016), was the
 44 most predictive variable. A SMBH can regulate star formation via AGN energy imparted onto cool gas. The exact
 45 mechanisms by which AGN feedback results in a cessation of star formation is still an active area of research. However,
 46 it may be the result of heating or removal of gas reservoirs, or the introduction of turbulence, resulting in a decrease in
 47 the star formation efficiency (SFE). SFE has been found to decrease during the ‘green valley’ stage of galaxy evolution,
 48 the transition from actively star-forming to retired/quenched (e.g., Colombo et al. 2020; Villanueva et al. 2024). The
 49 cause of decreasing SFE and its role in shutting down star formation is still being explored.

50 Determining which parameters drive quenching in galaxies is complicated by the inter-correlation of variables, par-
 51 ticularly those that are intrinsic to a galaxy. This may be especially true for parameters that characterize galaxy
 52 morphology. For example, Bluck et al. (2020b) found that bulge-to-total stellar mass ratio (B/T) was the fourth most
 53 important parameter for quenching in central galaxies, but they note that its importance may be overestimated due
 54 to the correlation of B/T with central velocity dispersion. In addition, Bluck et al. (2014) identified bulge mass as
 55 being tightly correlated with the quenched fraction of galaxies.

56 The role of morphology in shaping the radial distribution of stellar ages and local sSFR has also been investigated
 57 by González Delgado et al. (2014, 2016) in the CALIFA survey (García-Benito et al. 2015). González Delgado et al.
 58 (2014) found that the shape of the average luminosity-weighted age (age_L) profile varied as a function of stellar mass
 59 and concentration index. Martig et al. (2009) proposed that the presence of a bulge can stabilize gas against the
 60 gravitational collapse and fragmentation necessary for star formation. It is also possible that the presence of a bulge
 61 and quiescence can be the result of similar evolutionary processes; e.g., mergers. Due to the correlation of morphology
 62 with stellar mass, the role of morphology in galaxy quenching remains unclear.

63 The halo environment in which a galaxy resides can also affect star formation properties via processes that remove,
 64 heat, or compress gas, such as galaxy-galaxy harassment, ram pressure stripping, and dynamical stripping (see, e.g.,
 65 Peng et al. 2012). Corcho-Caballero et al. (2023) found that most galaxies that quenched relatively rapidly (over
 66 ~ 1 Gyr timescales) were low-mass satellite galaxies. The random forest analysis performed by Bluck et al. (2020b)
 67 indicated that, unlike central galaxies, both intrinsic and environmental parameters are predictive of quenching in
 68 satellite galaxies. In their work, Bluck et al. (2020b) found that environmental parameters, namely local galaxy
 69 overdensity and host halo mass, were most important for predicting quenching in low-mass ($M_*/M_\odot < 10^{10}$) satellite
 70 galaxies. This boundary, $M_*/M_\odot \approx 10^{10}$, has been indicated as the threshold above which quenching can be driven
 71 by a central AGN, also known as mass quenching (Peng et al. 2010, 2012). McDonough et al. (2023) found a similar
 72 threshold at $10^{10} < M_*/M_\odot < 10^{10.5}$ for galaxies in the TNG100 simulation, with more massive galaxies showing clear
 73 evidence of inside-out mass quenching in radial profiles of age_L .

74 Complimentary to the progress in spatially resolving galaxies in observations, cosmological hydrodynamic simulations
 75 have improved in both scale and resolution, as well as the degree of agreement between observations and the
 76 predictions of the simulations. Key to the improvement in agreement between observations and simulations has been
 77 the implementation and improvement of feedback models in the simulations. These feedback models approximate the
 78 impact of active galactic nuclei (AGN) and supernovae, decreasing the efficiency of star formation and preventing early
 79 depletion of gas reservoirs (see, e.g., Naab & Ostriker 2017; Donnari et al. 2019). However, since the actual processes
 80 that drive AGN and supernovae feedback occur on scales that are not resolved in most simulations, these effects must
 81 be approximated, requiring assumptions regarding how and where feedback energy is imparted in simulated galaxies.

82 In McDonough et al. (2023), we demonstrated that TNG100, part of the IllustrisTNG cosmological magnetohydro-
 83 dynamic simulation suite (Nelson et al. 2018; Pillepich et al. 2018; Springel et al. 2018; Naiman et al. 2018; Marinacci
 84 et al. 2018; Nelson et al. 2019), reproduced both the observed resolved star formation main sequence (rSFMS) and the
 85 radial distribution of star formation in main sequence, green valley, and quenched galaxies. The rSFMS, or $\Sigma_* - \Sigma_{\text{SFR}}$
 86 relation, was first presented by Sánchez et al. (2013) and Wuyts et al. (2013) and was later characterized by Cano-Díaz

87 et al. (2016). As demonstrated by Nelson et al. (2021), the location within galaxies at which feedback energy is injected
 88 is critical for accurately reproducing the observed radial distribution of star formation. Both TNG100 and its prede-
 89 cessor, Illustris-1, adopted AGN feedback models with prescriptions for high- and low- accretion rate modes. Illustris-1
 90 (Vogelsberger et al. 2014; Nelson et al. 2015) adopted an AGN feedback model that, at low accretion rates, injected
 91 feedback energy as thermal energy in large bubbles displaced from central galaxies. In contrast, the low-accretion state
 92 of the AGN feedback model in the IllustrisTNG simulations (Weinberger et al. 2017) injects kinetic energy into gas
 93 immediately surrounding the supermassive black hole at the galaxy center.

94 Nelson et al. (2021) computed the radial profiles of sSFR for galaxies in the 50 Mpc simulation box of IllustrisTNG
 95 (TNG50), Illustris-1, and 3D-HST observations. From this, they found that the observed central suppression of star
 96 formation in massive galaxies was reproduced in TNG50 galaxies, but not in Illustris-1 galaxies. Nelson et al. (2021)
 97 attribute this improvement to the difference in feedback models, since the TNG and Illustris-1 simulations are similar
 98 in other respects, including the same initial conditions and star formation prescriptions.

99 In this article, we adopt a broad but commonly used definition of ‘quenching,’ which we use to describe the reduction
 100 and eventual cessation of star formation in galaxies. In this parlance, ‘quenched’ galaxies are those that have ceased
 101 forming stars at significant levels, often defined by their position on a color-magnitude or M_* – SFR diagrams. We
 102 note that there is some discussion in the literature (e.g., Corcho-Caballero et al. 2023) that ‘quenching’ be reserved to
 103 describe rapid cessation of star formation. Corcho-Caballero et al. (2023) argues for a distinction between galaxies that
 104 quench rapidly and those that ‘retire’ their star formation over longer timescales. While we adopt a broad definition
 105 of quenching in this article, we acknowledge that such a distinction may be relevant to future analyses.

106 In this paper, we investigate the dependence of radial profiles of luminosity-weighted age and $\Delta\Sigma_{\text{SFR}}$, the offset from
 107 the resolved star formation main sequence (rSFMS, or the Σ_* – Σ_{SFR} relation), on various intrinsic and environmental
 108 parameters. The paper is organized as follows. In § 2, we provide a brief overview of TNG100, along with a discussion
 109 of the ways in which we derive parameters from the simulation data. In § 3, we present results for radial profiles
 110 of age_L and $\Delta\Sigma_{\text{SFR}}$ for galaxies as a function of various intrinsic parameters. In § 4, we explore the dependence of
 111 radial profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ on environmental parameters. A discussion of the implications of our results, in the
 112 context of the existing literature, is presented in § 5, and a summary of our main results and conclusions is given in
 113 § 6. In Appendix A, we present correlations that exist between the various parameters that we explored in the main
 114 body of the paper. In Appendix B, we summarize the normalization and gradients for the radial profiles presented in
 115 § 3 and § 4. In Appendix C, we explore the mass-dependence of the profile normalizations.

116 2. METHODOLOGY

117 The methodology by which we select our galaxy sample is identical to the methodology we used in McDonough et al.
 118 (2023). That is, a sample of $\sim 60,000$ luminous ($M_r < -14.5$) simulated galaxies at $z = 0$ was obtained from the
 119 $75^3 h^{-3} \text{Mpc}^3$ volume TNG100-1 simulation (hereafter, TNG100). The TNG100 simulation is part of the IllustrisTNG
 120 project, a suite of publicly available Λ CDM magnetohydrodynamical simulations that adopted a Planck Collaboration
 121 (2016) cosmology with the following parameter values: $\Omega_{\Lambda,0} = 0.6911$, $\Omega_{m,0} = 0.3089$, $\Omega_{b,0} = 0.0486$, $\sigma_8 = 0.8159$,
 122 $n_s = 0.9667$, and $h = 0.6774$. We take the galaxy stellar mass to be the total mass of all stellar particles that are bound
 123 to each galaxy according to the SubFind catalog. From the Stellar Projected Sizes supplementary catalog (Genel et al.
 124 2018), we obtain r -band half-light radii, which we will refer to as effective radii, R_e . We obtain magnitudes from the
 125 SDSS Photometry, Colors, and Mock Fiber Spectra catalog (Nelson et al. 2018). It is also important to note that,
 126 unlike R_e and galaxy magnitudes (which are directly comparable to observed galaxy properties), the stellar masses we
 127 adopt for TNG100 galaxies are not directly comparable to the stellar masses of observed galaxies (which are typically
 128 obtained by modelling of the spectral energy distribution).

129 Here, galaxy sample and data products are identical to those that we used in McDonough et al. (2023). We provide
 130 only a brief description here, and the reader is referred to Section 2 of McDonough et al. (2023) for a full description of
 131 the catalogs and galaxy sample selection criteria. We ensure sufficient resolution of the galaxies by limiting the sample
 132 to galaxies that contain at least 1,000 stellar particles within $2R_e$ and have a physical size of $R_e > 4$ kpc. The most
 133 massive galaxy in a given friends-of-friends group is defined to be the central galaxy, and all other group members are
 134 considered to be satellites. Our full sample consists of 4,605 central galaxies and 1,592 satellites. From McDonough
 135 et al. (2023), we know that the shapes of the radial profiles differ significantly for high-mass and low-mass galaxies,
 136 and we define these to be $M_* > 10^{10.5} M_\odot$ and $M_* < 10^{10} M_\odot$, respectively. The division of our sample into low- and
 137 high-mass galaxies is based on Figure 5 of McDonough et al. (2023) and, under this definition, our sample contains
 138 2,167 high-mass galaxies and 2,709 low-mass galaxies.

139 In Sections 3 and 4, we explore the role of various parameters on the radial distribution of age_L and $\Delta\Sigma_{\text{SFR}}$ within
 140 galaxies. We do this by constructing radial profiles in the same manner as McDonough et al. (2023), and the reader is
 141 referred to Section 3.4 of McDonough et al. (2023) for full details of our methods. In brief, age_L profiles are constructed
 142 by directly projecting the stellar particles of each galaxy into a 2D, face-on orientation, and radial bins are normalized
 143 by the effective radius of the galaxy. A luminosity-weighted age is computed using all particles in a given radial bin
 144 for a given galaxy population. In the case of $\Delta\Sigma_{\text{SFR}}$ profiles, we construct face-on maps of stellar-mass density, Σ_* ,
 145 and the density of SFR, Σ_{SFR} , by smoothing stellar particles onto a 2D grid using a cubic spline kernel. Maps of Σ_{SFR}
 146 are constructed using a combination of stellar particles formed in the last 20 and 100 Myr, timescales that are roughly
 147 comparable to the H α and D4000 observational tracers of star formation. Additionally, a fixed sSFR of 10^{-12}yr^{-1}

148 is assumed for spatial bins where star formation was not resolved in the simulation. Finally, a map of $\Delta\Sigma_{\text{SFR}}$ is
 149 constructed by determining the logarithmic offset of a given spatial bin from the resolved star-forming main sequence
 150 presented in McDonough et al. (2023). Our $\Delta\Sigma_{\text{SFR}}$ profiles were constructed to be comparable to the $\Delta\Sigma_{\text{SFR}}$ profiles
 151 of MaNGA galaxies presented in Bluck et al. (2020b).

152 In addition, we compute gradients, ∇_{1R_e} , for the profiles (which are taken to be the slope of a line fit to the profiles
 153 in the radius range $0 \leq r \leq 1R_e$), and we only present profiles for galaxy populations when there are at least 10
 154 representative objects in our sample. We note that the aging of stellar populations that formed during the inside-out
 155 growth of galaxies can naturally result in negative gradients in age_L . However, the luminosity-weighting will bias the
 156 measured age_L toward more recent star formation. While other works (e.g., González Delgado et al. 2016; Sánchez
 157 et al. 2021) measure gradients over different regimes and measure the profiles out to larger radii, we have here tailored
 158 our derivation of $\Delta\Sigma_{\text{SFR}}$ for comparison to Bluck et al. (2020b), who used a single gradient and were limited in radial
 159 range by the coverage of the primary MaNGA sample.

160 While $\Delta\Sigma_{\text{SFR}}$ traces star formation activity over the last 100 Myr, age_L reflects both recent star formation activity
 161 (emphasized via the luminosity-weighting) and the natural aging of stellar populations. Thus, age_L profiles will be
 162 useful for understanding quenching processes that operate over longer timescales, while $\Delta\Sigma_{\text{SFR}}$ will be more useful for
 163 identifying parameters that contribute to rapid quenching. As reported in McDonough et al. (2023), profiles of $\Delta\Sigma_{\text{SFR}}$
 164 in galaxies undergoing active quenching are biased toward low $\Delta\Sigma_{\text{SFR}}$ at intermediate radii, likely due to resolution
 165 limits imposed by the simulation.

166 In Appendix A, we explore the interdependence of the parameters that we discuss in this paper, and we do this
 167 separately for central and satellite galaxies. In Appendices B and C, the normalization of age_L profiles are taken to be
 168 the total age_L of a galaxy using all stellar particles within $1.5R_e$ and the normalization of $\Delta\Sigma_{\text{SFR}}$ profiles are taken
 169 to be the logarithmic offset of a galaxy’s SFR from the star-forming main sequence identified for TNG100 galaxies in
 170 McDonough et al. (2023).

171 2.1. *Intrinsic Parameters*

172 In Section 3, we present the ways in which intrinsic factors affect the radial distribution of luminosity-weighted
 173 stellar age. There we show population-averaged profiles for our sample, subdivided by supermassive black (SMBH)
 174 mass, cumulative feedback energy injected by the SMBH in the high-accretion rate (‘quasar’) mode, as well as the
 175 morphological Gini- M_{20} ‘bulge statistic’ (Snyder et al. 2015), which separates early- and late- type galaxies by quanti-
 176 fying the relative dominance of galaxy bulges. In addition to the results from these three parameters, we also briefly
 177 summarize results we obtain for other parameters that are related to the SMBH and morphology.

178 From the TNG100 `SubFind` catalog, which identifies parameters for individual subhalos (i.e., galaxies), we obtained
 179 the $z = 0$ SMBH masses, M_{BH} , and instantaneous SMBH accretion rates for our sample. Since the instantaneous
 180 accretion rate is not indicative of processes that affected the $z = 0$ radial profiles, we also obtained the SMBH
 181 accretion rate from the penultimate simulation snapshot using the `Sublink` merger trees, which corresponds to the
 182 SMBH accretion rate at redshift $z \approx 0.01$. We note that, in TNG100, black hole particles are seeded into galaxies
 183 when the halo mass exceeds $5 \times 10^{10} h^{-1} M_{\odot}$, and the galaxy does not already contain a SMBH. This black hole seeding
 184 prescription results in the majority of galaxies in our sample having SMBHs. However, a small number (107), most of
 185 which are low-mass satellite galaxies, lack SMBHs.

186 We obtained the cumulative feedback energy imparted by a black hole on its host galaxy, ΣE_{AGN} , directly from
 187 the particle data. To do this, we identified the most massive black hole particle present within the effective radius
 188 of each galaxy in the $z = 0$ snapshot. These particles lie at the centers of the galaxies, since the TNG algorithm
 189 employs a centering prescription that ensures the SMBHs remain at the gravitational potential minima of their hosts'
 190 halos. Each black hole particle contains several tracked fields, including cumulative feedback energy injected in both
 191 the quasar mode and radio mode. The quasar (or 'thermal') mode operates when the black hole particle is in the high
 192 accretion state, and thermal energy is injected into the surrounding gas. The radio (or 'kinetic') mode operates
 193 when the particle is in the low accretion state, in which case pure kinetic energy is injected into the surrounding gas.
 194 In our sample, 3,598 galaxies experienced energy being injected via the quasar mode (ΣE_{QM}) during their lifetimes.
 195 Only 337 galaxies in our sample experienced injection of kinetic energy (ΣE_{RM}) during their lifetimes. Such a low
 196 number of galaxies with non-zero values of ΣE_{RM} is not necessarily surprising since the radio mode generally takes
 197 over at low redshift in galaxies with $M_* > 10^{10.5} M_{\odot}$ (Weinberger et al. 2018). In Section 3.1, we show profiles of
 198 galaxy populations subdivided by cumulative energy imparted in the quasar mode, as that is the dominant, more
 199 energetic process. However, we also briefly discuss profiles of galaxy populations that are subdivided by cumulative
 200 energy imparted in the radio mode and the total overall energy imparted, ΣE_{AGN} , where $\Sigma E_{\text{AGN}} = \Sigma E_{\text{QM}} + \Sigma E_{\text{RM}}$.

201 Below, we also explore the dependence of radial profiles on morphology using the Gini- M_{20} bulge statistic. The
 202 SKIRT Synthetic Images and Optical Morphologies supplementary catalog from Rodriguez-Gomez et al. (2019) con-
 203 tains morphological parameters for 4999 galaxies in our sample at $z = 0$, including the bulge statistic. We also briefly
 204 discuss results using the Sérsic index (Sérsic 1963), n , which was obtained from 2D Sérsic fits to synthetic i -band
 205 images and is provided in the Rodriguez-Gomez et al. (2019) supplementary catalog.

206 The Gini- M_{20} bulge statistic, hereafter $F(G, M_{20})$, is defined in Snyder et al. (2015) and describes the location of a
 207 galaxy on a diagram plotting the Gini coefficient (G) against the M_{20} statistic. The Gini coefficient, traditionally used
 208 as a statistic in economics to study the distribution of wealth, was proposed as a method to measure the distribution of

209 flux in pixels by Abraham et al. (2003) and Lotz et al. (2004). At $G = 1$, all of the flux from a galaxy is concentrated
 210 in a single pixel, while at $G = 0$, the flux is spread evenly among every pixel. M_{20} measures the second-order moment
 211 of the brightest 20% of the flux in a galaxy.

212 The combination of G and M_{20} into the $F(G, M_{20})$ statistic separates galaxies into early- and late- types, and
 213 indicates the relative dominance of the bulge. The greater the dominance of the bulge, the higher the value of
 214 $F(G, M_{20})$ is above zero. The more disk-dominated a galaxy is, the lower the value of $F(G, M_{20})$ is below zero. The
 215 bulge statistic is strongly correlated with other statistics that measure galactic bulge strength, including the Sérsic
 216 index and concentration. However, $F(G, M_{20})$ is less sensitive to mergers and other disturbances, making it a better
 217 indicator of bulge strength in our satellite sample.

218 2.2. Environmental Parameters

219 For both central and satellite galaxies, we explore the dependence of radial age_L profiles on halo mass and local
 220 galaxy overdensity. We take the halo mass to be the total mass of all particles belonging to the friends-of-friends group
 221 to which a galaxy belongs. To best compare our results for simulated galaxies to the observational results obtained
 222 Bluck et al. (2020b) for observed galaxies, we evaluate the local galaxy overdensity at the fifth nearest neighbor with
 223 an absolute r -band magnitude of $M_r < -20$. The local galaxy overdensity is then computed according to:

$$224 \quad \delta_5 \equiv \frac{n_5}{\bar{n}} - 1 = \frac{5}{\frac{4}{3}\pi d_5^3} \frac{L_{\text{box}}^3}{N_{\text{total}}} - 1, \quad (1)$$

225 where d_5 is the distance to the fifth nearest neighbor, N_{total} is the total number of TNG100 galaxies with $M_r < -20$,
 226 and L_{box} is the box length of the simulation.

227 2.2.1. Satellite Parameters

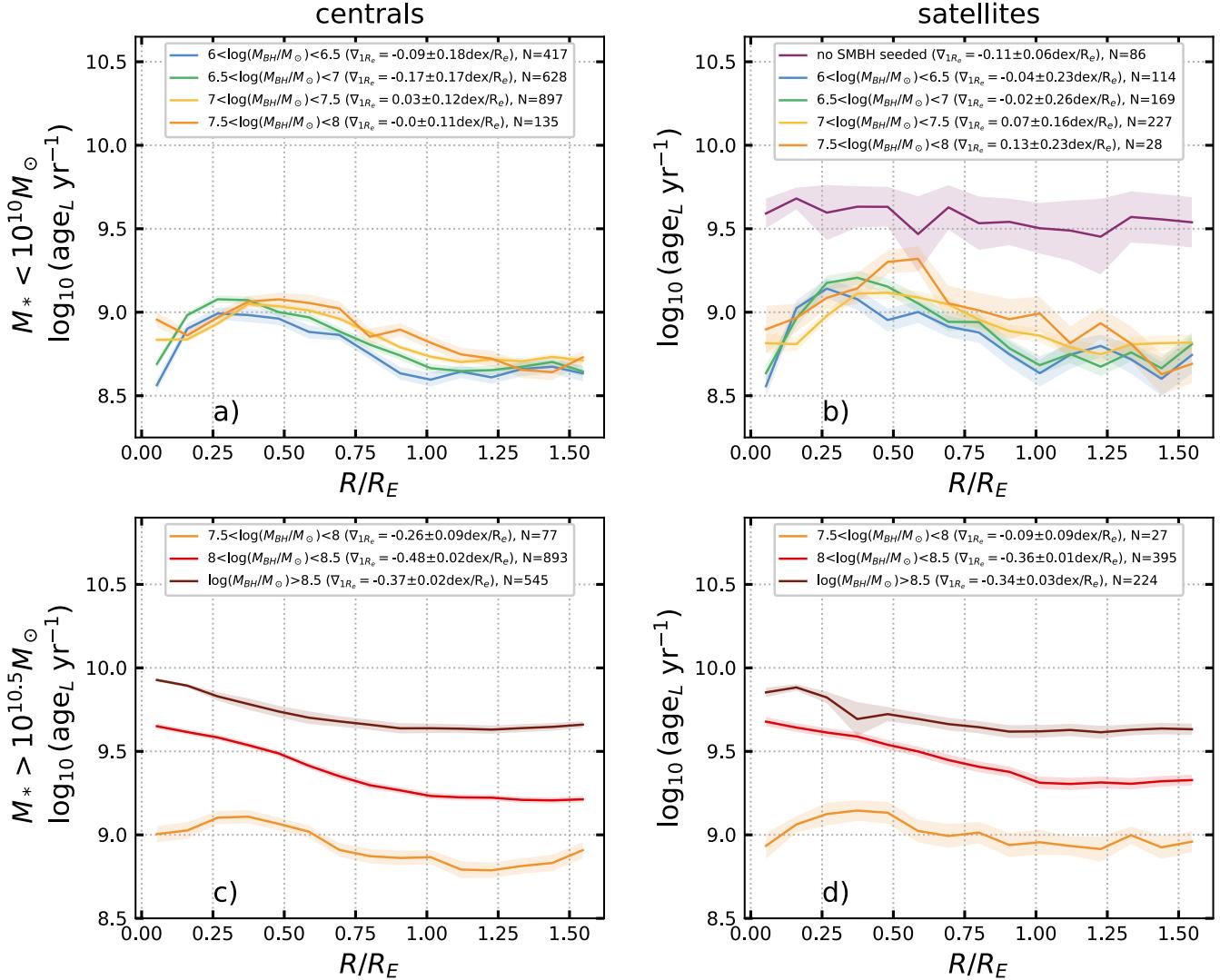
228 In satellite galaxies, interactions with other galaxies and with the hot gas in their hosts' halos can affect the
 229 availability of gas for star formation. It is not trivial to parameterize these interactions; e.g., the degree to which
 230 a satellite has been affected by ram pressure stripping or galaxy-galaxy harassment. However, we can quantify how
 231 properties of each satellite have changed since it joined its host's halo.

232 We define the satellite joining time to be the redshift at which the satellite first entered within $3R_{200}(z)$ of the center
 233 of its $z = 0$ host halo. Here, $R_{200}(z)$ is the virial radius of the host galaxy at a given redshift. To obtain the positions
 234 and properties of galaxies and their $z = 0$ groups, we used the **SubLink** merger trees of the galaxies. For the halo
 235 properties, we used the merger tree of the primary (most massive) group member at $z = 0$.

236 From the merger trees, we obtain the redshift at which the satellite joined (z_j), the redshift of the snapshot at
 237 which the satellite most recently approached perigalacticon (z_p), and the separation between the satellite and its host

238 at perigalacticon (d_{h-s}). Additionally, we identify the total change in the mass of bound, star forming gas since
 239 the satellite joined (ΔM_{SFG}). The gas particle data was obtained from the satellite subhalo cutouts, from which we
 240 computed the total mass of gas particles with non-zero instantaneous star formation rates. The difference in mass
 241 from the $z = 0$ snapshot cutouts and the cutout at the snapshot corresponding to z_j then yields the values ΔM_{SFG}
 242 for a given galaxy.

243 In Section 4, we present radial profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ for galaxy populations subdivided by z_j and ΔM_{SFG} ,
 244 and we briefly discuss results for z_p and d_{h-s} .


245 3. DEPENDENCE ON INTRINSIC PARAMETERS

246 3.1. *Supermassive Black Hole*

247 In Figures 1 and 2, we present profiles of luminosity-weighted age and $\Delta\Sigma_{\text{SFR}}$, respectively, for populations of
 248 galaxies in our sample, subdivided by SMBH mass. The left panels show profiles for central galaxies, while the right
 249 panels show profiles for satellite galaxies. The top panels show profiles for galaxies with $M_* < 10^{10} M_\odot$, while the
 250 bottom panels show profiles of high-mass galaxies ($M_* > 10^{10.5} M_\odot$). The boundaries for the SMBH mass bins, the
 251 profile gradients, and the number of galaxies in a given bin are included in the legends. Error bounds (computed
 252 via 2,000 bootstrap resamplings) are indicated by shaded regions when they are larger than the line widths, and are
 253 omitted when they are comparable to or smaller than the line widths. In Figure 2, the black dashed line indicates the
 254 threshold below which Σ_{SFR} is unresolved and is therefore artificially imposed.

255 Purple lines in Figures 1 and 2 give the profiles for galaxies that lack SMBHs (i.e., no SMBH was seeded in these
 256 galaxies; see Section 2.1). For low-mass satellites that lack SMBHs, the age_L profiles are ~ 0.5 dex (~ 500 Myr) older
 257 than the profiles of low-mass galaxies that do contain SMBHs. While there is a high degree of variability, $\Delta\Sigma_{\text{SFR}}$
 258 profiles of low-mass satellites without SMBHs appear almost completely quenched, on average. There is some evidence
 259 that ongoing star formation occurs in the centers of these galaxies, although this is not reflected in the complimentary
 260 age_L profiles. The older age_L and quenched $\Delta\Sigma_{\text{SFR}}$ profiles of satellites without SMBHs is consistent with previous
 261 results that find that the presence of a SMBH prevents overcooling and leads to overly-efficient early star formation
 262 (e.g., Silk & Mamon 2012).

263 In the case of galaxies for which SMBHs were seeded, we find remarkable similarity in both shape and normalization
 264 of the age_L and $\Delta\Sigma_{\text{SFR}}$ profiles of low-mass galaxies with varying M_{BH} . However, there is a clear difference in
 265 shape and normalization of profiles for high-mass galaxies with different values of M_{BH} . That is, the more massive a
 266 SMBH, the older the age_L profile and the lower the $\Delta\Sigma_{\text{SFR}}$ profile. Feedback from SMBHs drives inside-out quenching
 267 (Nelson et al. 2021), which is indicated by a negative (positive) age_L ($\Delta\Sigma_{\text{SFR}}$) profile gradient. Of the three seeded

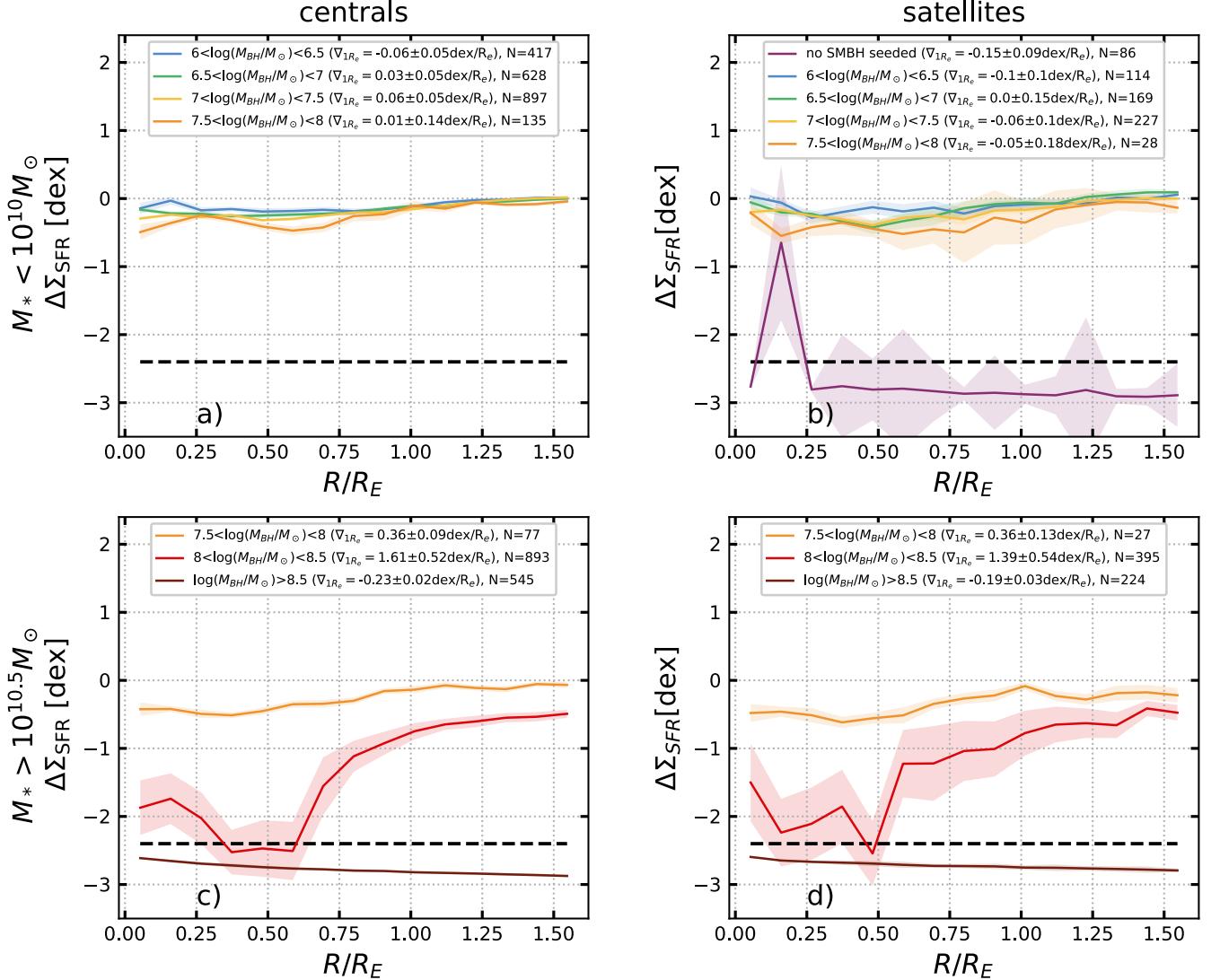
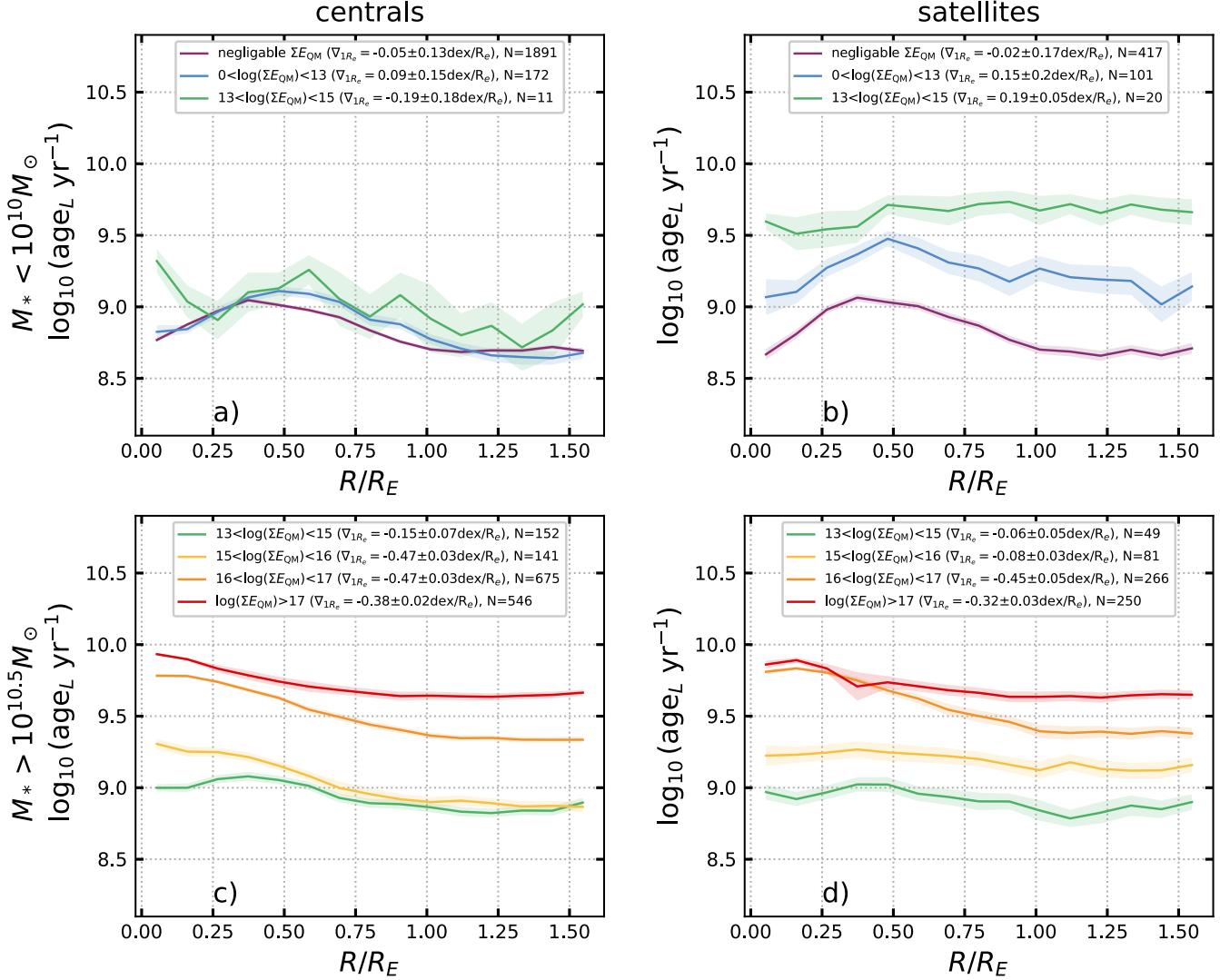


Figure 1. Radial profiles of age_L , subdivided by SMBH mass. The legends indicate the profile gradients (∇_{1R_e}) and the number of galaxies that contributed to the profile (N). Profiles were computed separately for populations of high-mass (top row) and low-mass (bottom row) central (left column) and satellite (right column) galaxies. Errors were computed using 2,000 bootstrap resamplings of the data. Error bounds that are wider than the line width are indicated by shaded regions and are omitted from the figure when they are comparable to or smaller than the line width.

268 populations of high-mass central galaxies, the middle population, $10^8 < M_{\text{BH}}/M_{\odot} < 10^{8.5}$, has the steepest slopes
 269 ($\nabla_{1R_e} \text{age}_L = -0.48 \pm 0.02 \text{ dex}/R_e$, $\nabla_{1R_e} \Delta \Sigma_{\text{SFR}} = 1.61 \pm 0.52 \text{ dex}/R_e$).


270 For both high-mass centrals and satellites, the $10^{7.5} < M_{\text{BH}}/M_{\odot} < 10^8$ (orange) population has the age_L profiles
 271 with the shallowest gradient. In the $\Delta \Sigma_{\text{SFR}}$ profiles (Figure 2), the profiles of high-mass galaxies with $M_{\text{BH}}/M_{\odot} > 10^{8.5}$
 272 (purple) are completely quenched. By construction, such low values of $\Delta \Sigma_{\text{SFR}}$ are artificially imposed, so no further
 273 conclusions can be drawn from these profiles.

274 While not shown here, we have also explored radial profiles of galaxies subdivided by the accretion rates of their
 275 SMBHs in both the $z = 0$ snapshot and the previous snapshot, $z \approx 0.0095$. From this, we find that there is little

Figure 2. Radial profiles of $\Delta\Sigma_{\text{SFR}}$, subdivided by SMBH mass. Here, the formatting is identical to that of Figure 1, but with the addition of a black dashed line that indicates the threshold below which a spatially resolved bin is fully quenched.

difference between profiles based on accretion rates taken at different snapshots. Similar to M_{BH} above, the SMBH accretion rates have little effect on the shape or normalization of radial profiles of low-mass galaxies. There is a slight exception in the $\Delta\Sigma_{\text{SFR}}$ profiles of low-mass satellite galaxies with $\dot{M}_{\text{BH}}^{\approx 0.01} < 10^{-5} M_{\odot} \text{yr}^{-1}$. This population is highly variable, but on average, have lower values of $\Delta\Sigma_{\text{SFR}}$ than satellites with higher accretion rates. The normalization of age_L profiles of high-mass galaxies is correlated with accretion rate, but not to the same degree as profiles subdivided by M_{BH} . These results are not surprising, as the feedback energy imparted by the accretion at $z = 0$ will not have had time to affect the galaxy, and age_L will be affected by feedback that is imparted over timescales longer than the time between $z = 0$ and $z \lesssim 0.0095$. This is consistent with the results of Bluck et al. (2023), who found that quenching

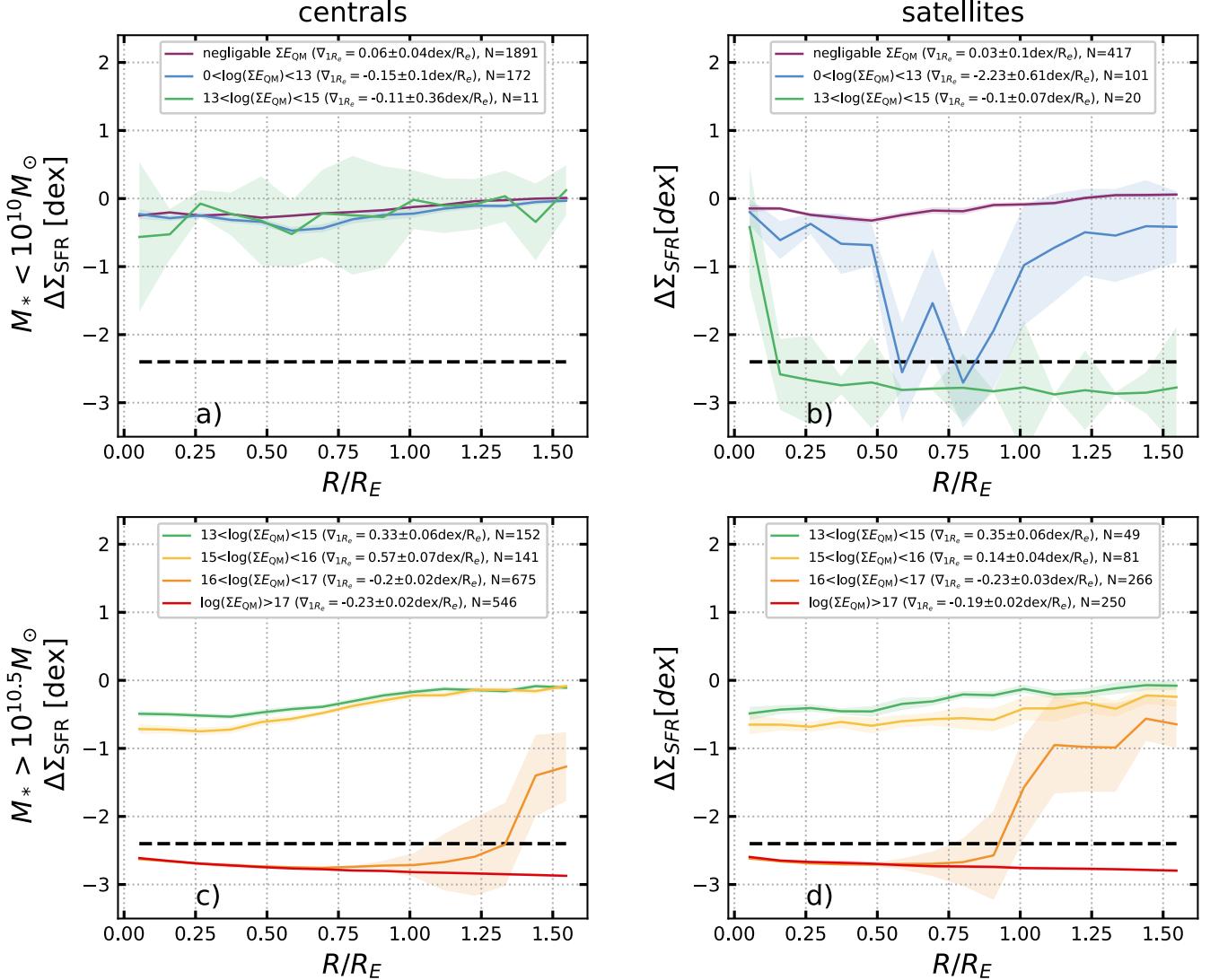


Figure 3. Radial profiles of age_L , subdivided by cumulative AGN feedback energy imparted in the quasar mode, $\Sigma E_{\text{QM}} = \Sigma(E_{\text{QM}}/(M_{\odot} \text{kpc}^2 \text{Gyr}^{-2}))$, where E_{QM} has units of $M_{\odot} \text{kpc}^2 \text{Gyr}^{-2}$. Formatting is identical to Figure 1.

of star formation showed little dependence on instantaneous SMBH accretion rate, but strong dependence on total SMBH mass.

The amount of AGN feedback energy imparted onto a galaxy at a given snapshot is proportional to the instantaneous accretion rate of the black hole. Thus, the cumulative energy imparted will be proportional to the total accretion onto the black hole over its lifetime. Since the $z = 0$ black hole mass is a summation of the matter accreted over its lifetime, M_{BH} and ΣE_{QM} will be well-correlated, and this is shown in Appendix A.

In Figures 3 and 4, the formatting is identical to Figure 1 and 2, except profiles are subdivided by the cumulative energy imparted by the SMBH in the quasar mode, ΣE_{QM} . The units of ΣE_{QM} that we use are the reduced “code units” of $M_{\odot} \text{kpc}^2 \text{Gyr}^{-2}$. For sake of brevity within the text, we do not explicitly include the units of ΣE_{QM} below.

Figure 4. Radial profiles of $\Delta \Sigma_{\text{SFR}}$, subdivided by cumulative AGN feedback energy imparted in the quasar mode, and corresponding to Figure 3. Here, the formatting is identical to that of Figure 2.

Figures 3 and 4 show only profiles for galaxies with seeded SMBHs, although some of these black holes have imparted negligible feedback energy. For the high-mass galaxy populations in panels c) and d), both the shape and normalization of the profiles vary with different values of ΣE_{QM} . For both high-mass central and satellite galaxies, the normalization of the age_L profiles increases with increasing ΣE_{QM} . Notably, the steepest age_L profiles for high-mass galaxies are not found in the bin with the highest ΣE_{QM} , rather they are found in the intermediate bins.

In Figure 4, high-mass galaxies with the greatest ΣE_{QM} have profiles that lie entirely below the quenching threshold. While the centers of galaxies with $10^{16} < \Sigma E_{\text{QM}} < 10^{17}$ (orange) are completely quenched, there is still ongoing star formation in the outskirts (at $\gtrsim 1.25 R_e$ for centrals and $\gtrsim 0.9 R_e$ for satellites).

Moving to the low-mass population, we find that ΣE_{QM} has little effect on the profiles of central galaxies. This, however, is not the case for satellite galaxies, where we find that the normalization of age_L profiles for low-mass satellite galaxies increases with increasing ΣE_{QM} . The population of low-mass satellite galaxies with $10^{13} < \Sigma E_{QM} < 10^{15}$ (green) have averaged $\Delta \Sigma_{SFR}$ profiles that are almost entirely quenched, except at the very center. These results are somewhat surprising, since ΣE_{QM} is correlated with M_{BH} , and the results shown in Figures 1 and 2 indicate no difference in profile normalization as a function M_{BH} for the low-mass satellite population.

There are only 337 galaxies in our sample with non-negligible AGN feedback energy imparted in the radio mode, ΣE_{RM} . This feedback mode only turns on at low accretion rates, typically in massive, quenched galaxies (Weinberger et al. 2018). The low number of galaxies with any ΣE_{RM} makes it impossible to draw firm conclusions about sub-populations.

Profiles of populations subdivided by total AGN feedback energy imparted in both states (not shown) appear very similar to Figures 3 and 4, although there is no longer a separation in the normalization of low-mass satellite populations. Instead, the two bins with non-negligible feedback energy both appear similar in shape and normalization to the profile for low-mass satellites with $10^0 < \Sigma E_{QM} < 10^{13}$ (blue). When looking at total feedback energy for low-mass satellites, the bin with $10^{13} < \Sigma E_{AGN} < 10^{15}$ (green) contains two distinct populations: those that injected energy primarily in the radio (kinetic) mode and those that have operated primarily in the quasar (thermal) mode. Combining these populations results in a lower overall normalization than seen in the $10^{13} < \Sigma E_{QM} < 10^{15}$ (green) low-mass satellite population.

3.2. Morphology

Some studies (e.g., Martig et al. 2009), have indicated that the presence of a galactic bulge can decrease star formation efficiency by stabilizing gas and thereby regulating star formation. In Figures 5 and 6, we present radial profiles of age_L and $\Delta \Sigma_{SFR}$ for populations of galaxies binned by the Gini-M20 bulge statistic, $F(G, M_{20})$. A positive $F(G, M_{20})$ value indicates the presence of a bulge, with higher values corresponding to stronger bulges. For different populations of galaxies in Figure 5, there is a difference in age_L profile shape and normalization between galaxies with bulge-like morphologies (green and yellow) and those without (purple and blue). Galaxies with bulges have older ages throughout, with the exception of low-mass central galaxies at small radii.

For high-mass galaxies (bottom row, Figure 5), the age_L profiles increase in normalization with increasing $F(G, M_{20})$, but the slopes for all populations except the most bulge-like agree within 1σ for centrals and 2σ for satellites. Galaxies with $F(G, M_{20}) > 0.5$ (yellow) have shallower age_L profile gradient than galaxies with weaker bulges. In the corresponding $\Delta \Sigma_{SFR}$ profiles, Figure 6 shows that the $F(G, M_{20}) > 0.5$ (yellow) population is completely quenched, while

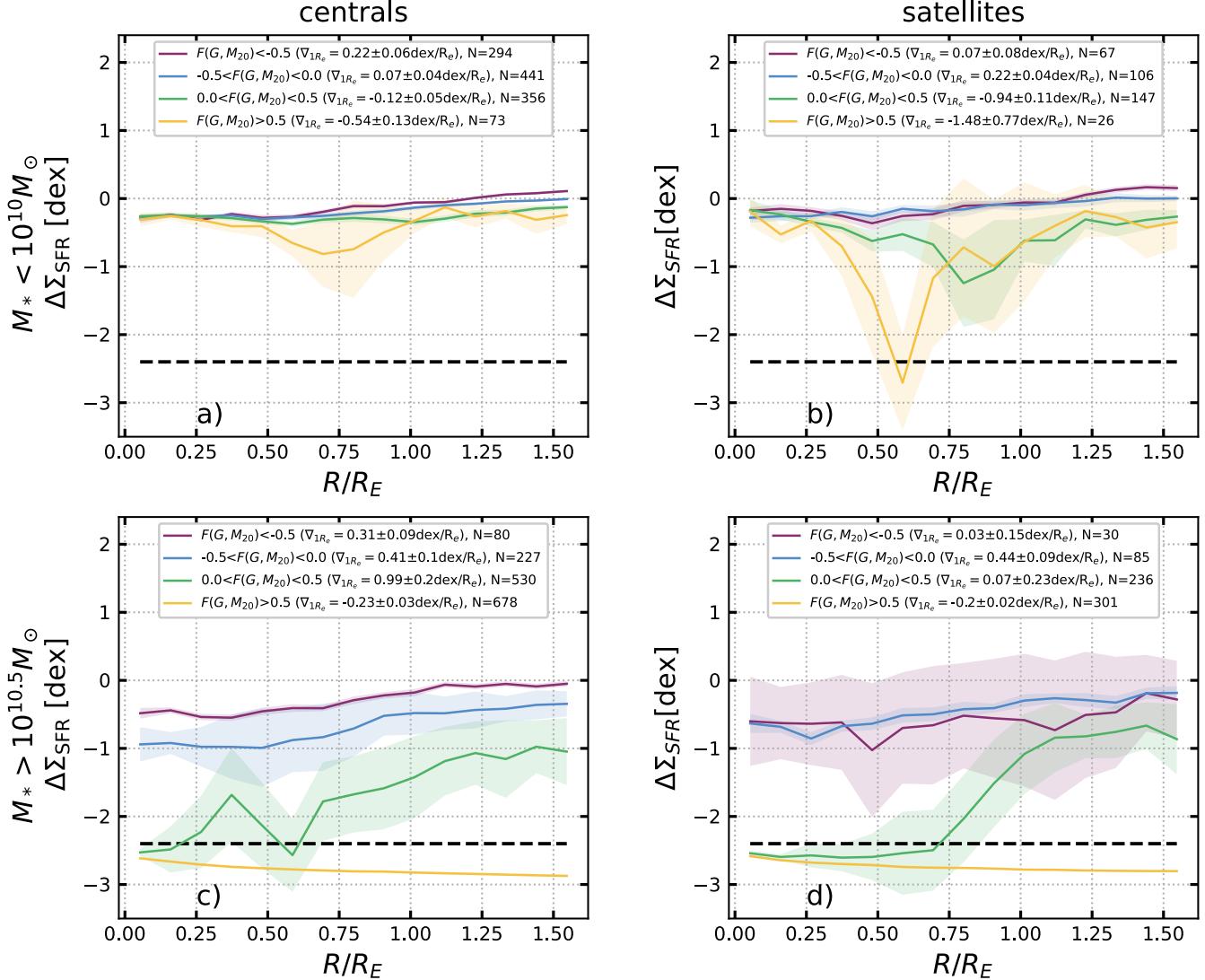


Figure 5. Radial profiles of age_L subdivided by the strength of their bulge as measured by the Gini-M20 bulge statistic, $F(G, M_{20})$. Positive values of $F(G, M_{20})$ correspond to bulge-like morphology, with higher values indicating stronger bulges. Formatting is identical to Figure 1.

the $0 < F(G, M_{20}) < 0.5$ (green) population has a $\Delta\Sigma_{\text{SFR}}$ profile characteristic of green valley galaxies. We note that, as shown in Appendix A, the bulge parameter is well-correlated with M_{BH} and ΣE_{QM} .

For the low-mass galaxies (top row, Figure 5), there is a difference in the normalization of the age_L profiles and, to a lesser degree, the shapes of the profiles. Bulges tend to contain older stellar populations (Sarzi et al. 2005), so the effect on the age_L profiles may not reflect changes to star formation rates. Indeed, the $\Delta\Sigma_{\text{SFR}}$ profiles in Figure 6 show little dependence on $F(G, M_{20})$.

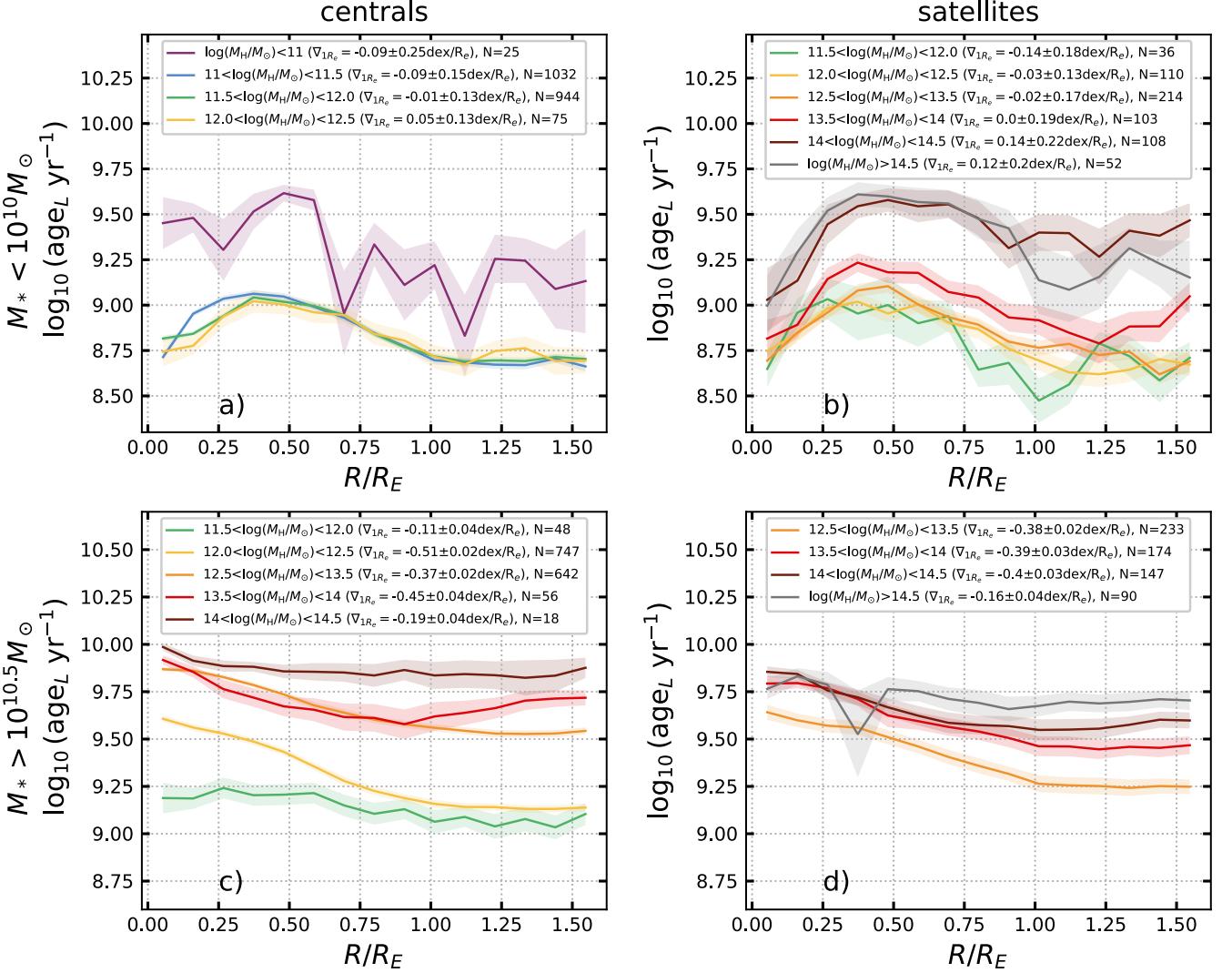

At intermediate radii, $\Delta\Sigma_{\text{SFR}}$ profiles of satellites with bulges ($F(G, M_{20}) > 0$) are being overwhelmed by spaxels that lack star formation, which is a known limitation in our analysis (see McDonough et al. 2023). In essence, there is a minimum resolvable star formation rate in TNG100. Resolution also limits detectable star formation levels in

Figure 6. Radial profiles of $\Delta\Sigma_{\text{SFR}}$, subdivided by the Gini-M20 bulge statistic, $F(G, M_{20})$, and corresponding to Figure 5. Here the formatting is identical to that of Figure 2.

340 observations. To address this, Bluck et al. (2020b) used a binning procedure that boosted the signal-to-noise, resulting
 341 in more low-SFR than high-SFR spaxels being binned together. In our analysis, we do not perform a similar binning
 342 procedure. The presence of low- $\Delta\Sigma_{\text{SFR}}$ features in the top panels of Figure 6 do indicate that there is a greater
 343 percentage of quenched spaxels in those regions of bulge-like TNG100 galaxies, but we cannot draw firm conclusions
 344 about the shapes of the profiles.

345 We find that the age_L profiles for galaxies subdivided by Sérsic indices are remarkably similar to those for the bulge
 346 statistic and we opt not to present them here. Instead, we focus on results as a function of $F(G, M_{20})$ since this
 347 parameter is better at identifying bulges in satellites that may have been disturbed by interactions (Snyder et al.
 348 2015).

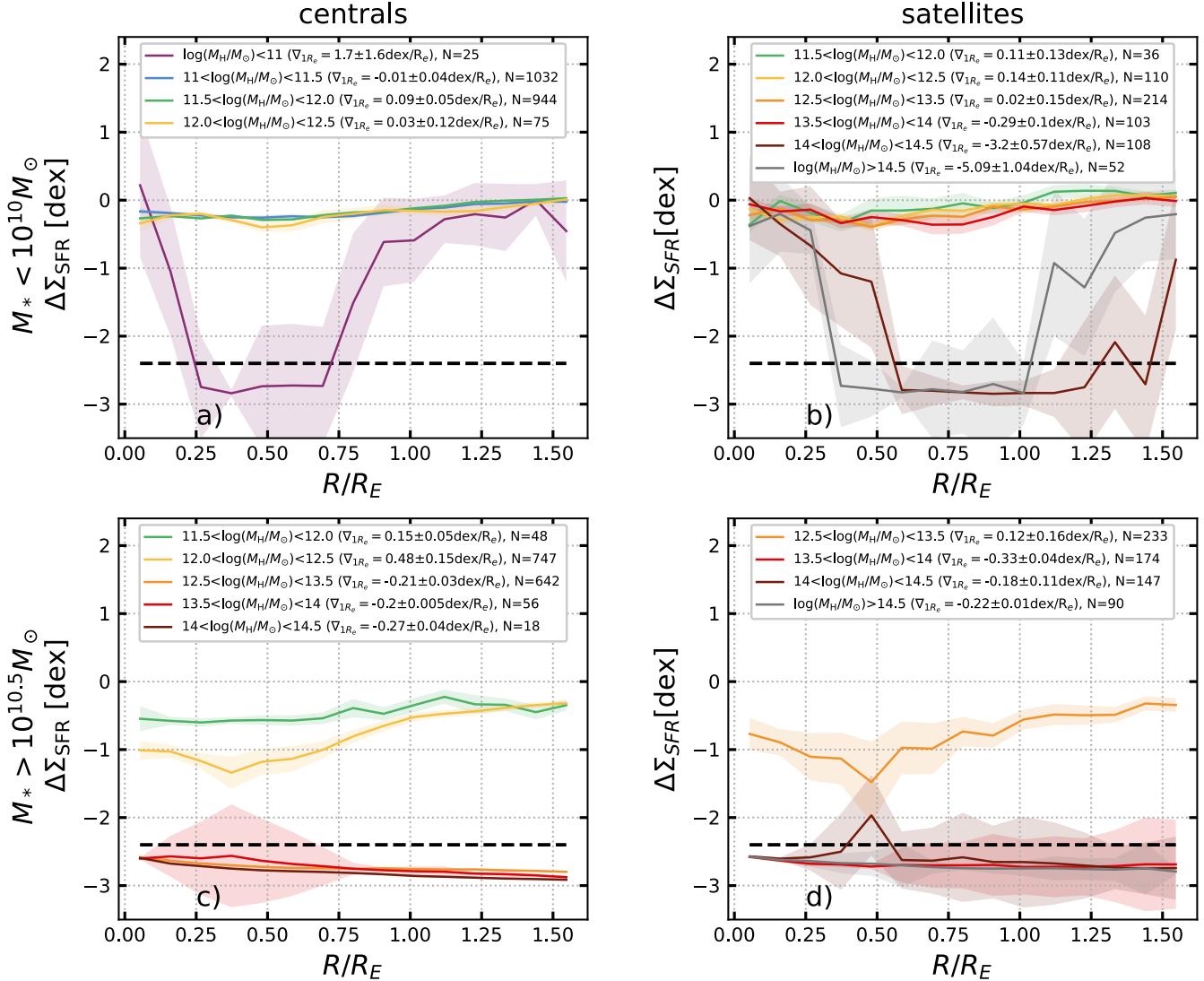


Figure 7. Radial profiles of age_L subdivided by halo mass, M_H . Formatting is identical to Figure 1.

4. DEPENDENCE ON ENVIRONMENTAL PARAMETERS

4.1. Halo mass

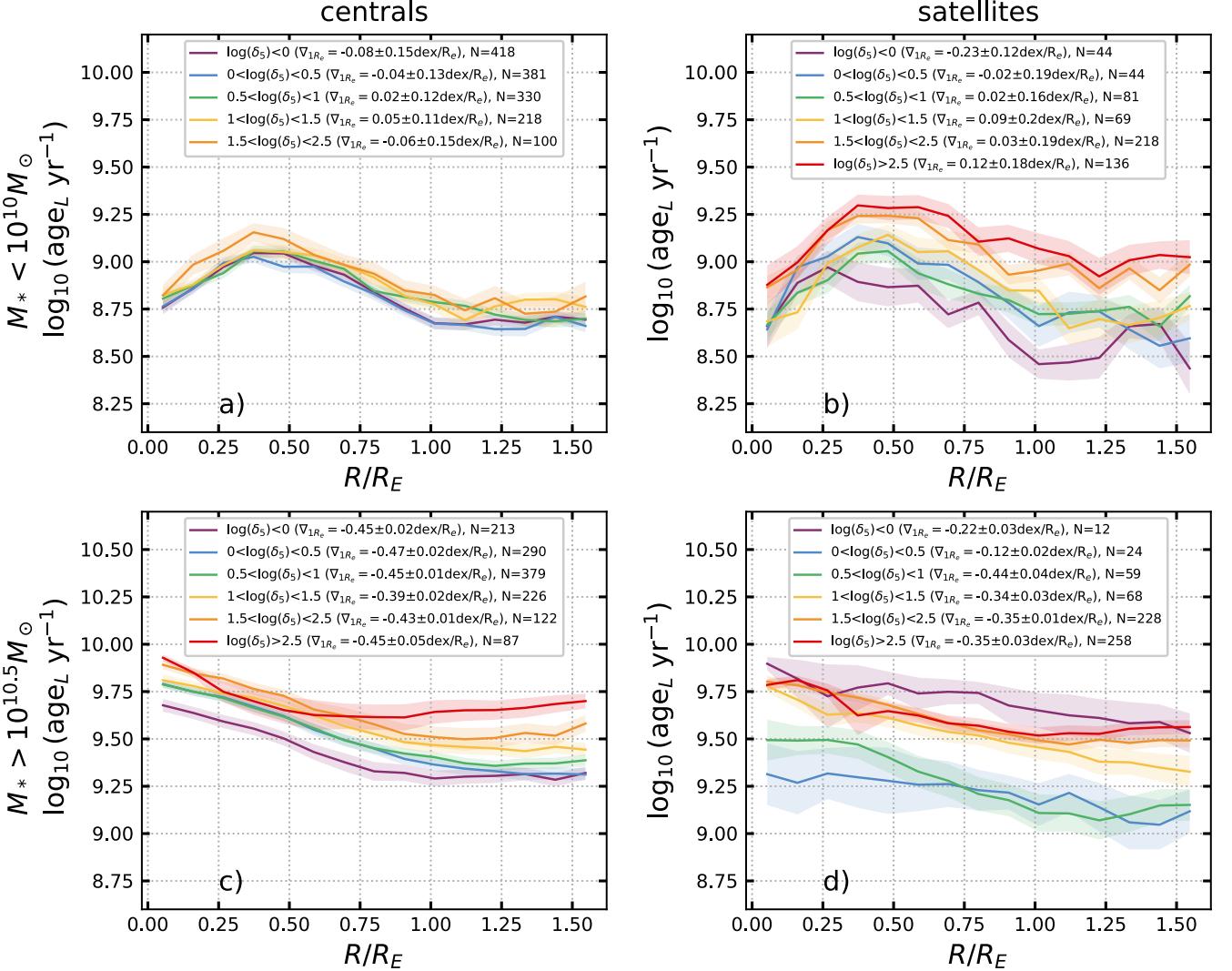

In Figures 7 and 8 we present the dependence of the distribution of age_L and $\Delta\Sigma_{\text{SFR}}$ on halo mass. For the central galaxy population, halo mass scales with SMBH mass and, thus, ΣE_{QM} (see Appendix A). As in §3.1, there is little difference in normalization or shape in the profiles of the low-mass central population when subdivided by halo mass, except at the very lowest masses ($M_H/M_\odot < 10^{11}$, purple). For high-mass centrals, all populations have negative age_L gradients that are indicative of inside-out quenching, although the gradient is significantly shallower for galaxies in halos with $M_H/M_\odot < 10^{12}$ and $M_H/M_\odot > 10^{14}$. The slope of the age_L profile of central galaxies in halos with $10^{13.5} < M_H < 10^{14}$ (red) becomes positive at large radii ($\gtrsim 1R_e$), deviating from the flat outskirts seen in the other

Figure 8. Radial profiles of $\Delta\Sigma_{\text{SFR}}$, subdivided by host halo mass, and corresponding to Figure 7. Here the formatting is identical to Figure 2.

high-mass central populations. In Figure 8, the high-mass central population with $M_H/M_\odot > 10^{12.5}$ have average $\Delta\Sigma_{\text{SFR}}$ profiles that lie entirely below the quenching threshold.

In Figure 7, both high- and low-mass satellite galaxies that reside in high-mass halos ($M_H > 10^{13.5}$) have older overall age_L profile normalizations than do satellites residing in halos with $M_H < 10^{13.5}$. The difference is much larger for low-mass satellites than it is for high-mass satellites, especially at $M_H/M_\odot > 10^{14}$. At radii $> 1.25R_e$, the slopes of the profiles for low-mass satellites with $10^{13.5} < M_H/M_\odot < 10^{14}$ (red) and $10^{14} < M_H/M_\odot < 10^{14.5}$ (brown) become positive. Similar to the high-mass centrals, the age_L profiles for high-mass satellites become flatter at high halo masses, although this occurs at higher halo masses for the satellites.

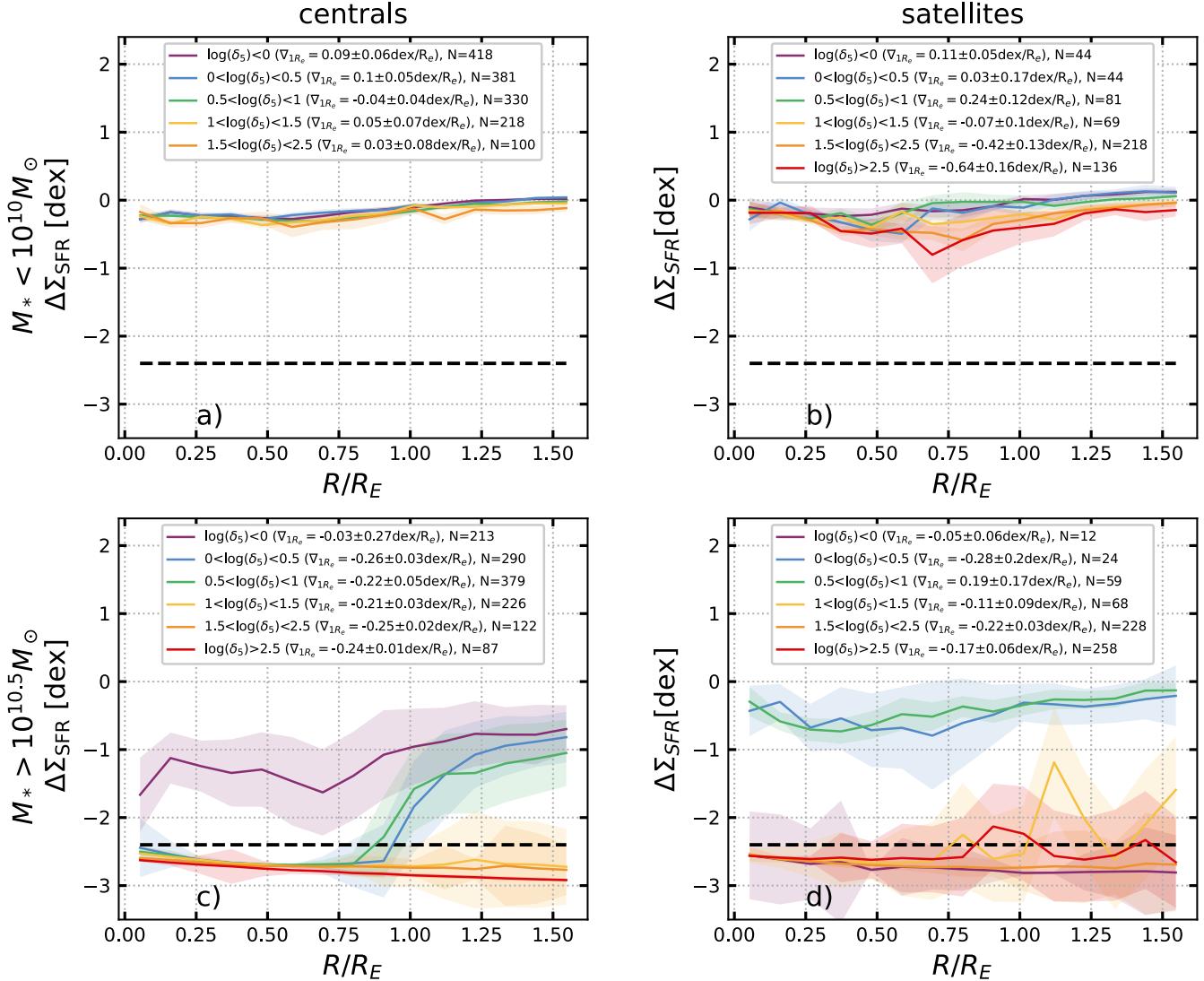


Figure 9. Radial profiles of age_L subdivided by local galaxy overdensity (see text). Formatting is identical to Figure 1.

366 The low-mass satellite galaxy populations with high halo masses ($M_H/M_\odot > 10^{14}$ in Figure 8b) are highly variable
 367 and suffer from the issues with low- $\Delta\Sigma_{\text{SFR}}$ profiles discussed above and in McDonough et al. (2023). We caution against
 368 over-interpreting these profiles, however we can conclude that this population has a higher percentage of quenched
 369 spaxels than populations at lower halo masses. The high-mass satellites in Figure 8d) are also highly variable, resulting
 370 in large error bars. On average, high-mass satellites in halos with $M_H/M_\odot > 10^{13.5}$ are almost entirely quenched.

4.2. Local Galaxy Overdensity

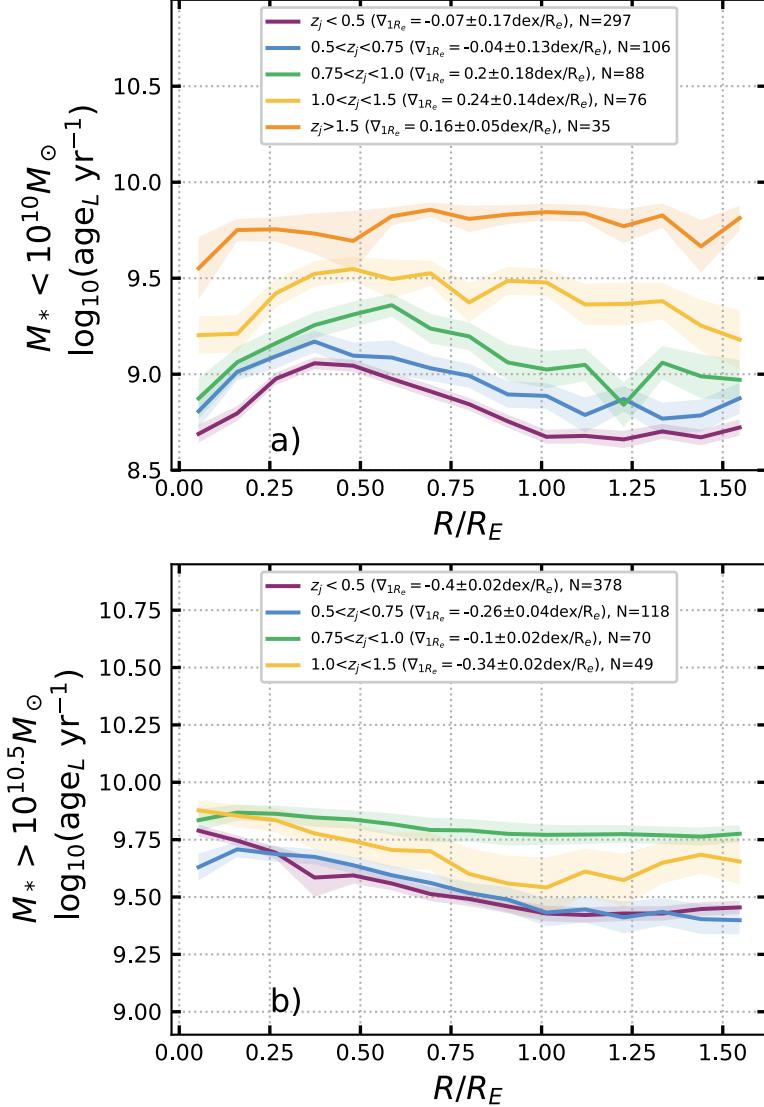
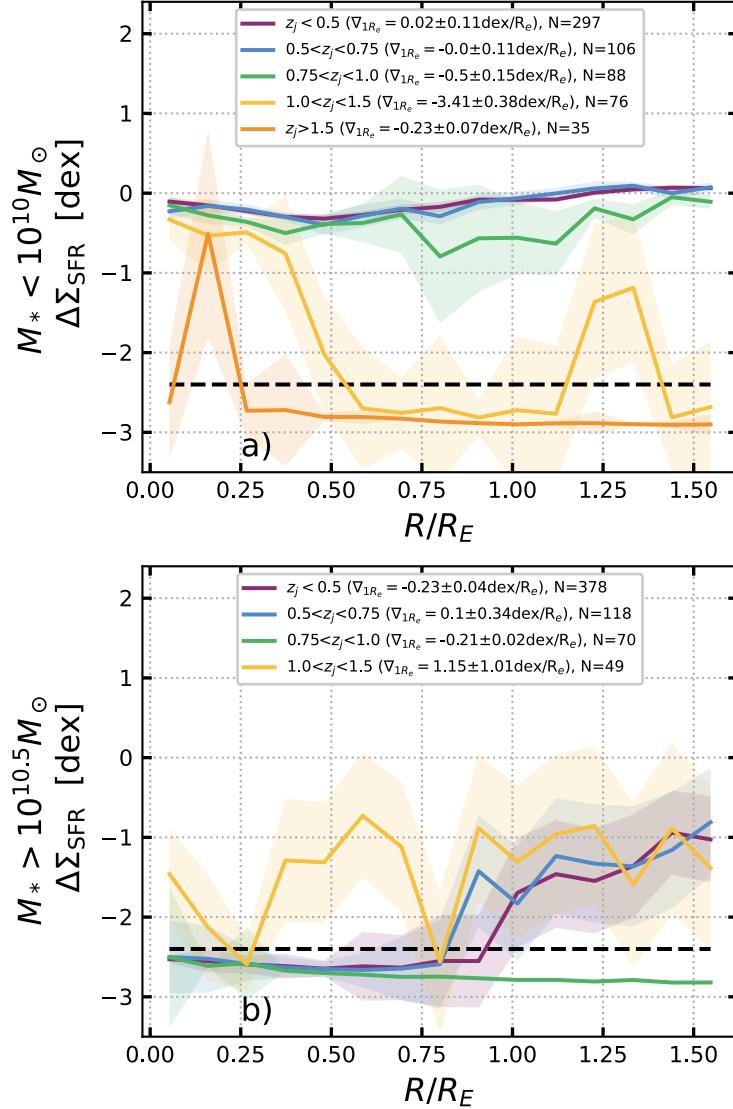

372 Figures 9 and 10 present age_L and $\Delta\Sigma_{\text{SFR}}$ profiles of TNG100 galaxies subdivided into populations based on local
 373 galaxy overdensity measured at the 5th nearest neighbor. For low-mass central galaxy populations, there is very little
 374 deviation in the profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ over a large range of δ_5 . In the case of high-mass central galaxies, the
 375 age_L profiles show slight differentiation in the normalization as a function of δ_5 , although not to the same degree as

Figure 10. Radial profiles of $\Delta\Sigma_{\text{SFR}}$, subdivided by local galaxy overdensity measured at the fifth nearest neighbor, that correspond to Figure 7. Here the formatting is identical to that of Figure 2.

we found above for halo mass. However, the shapes of age_L profiles for high-mass galaxies with $10^{1.5} < \delta_5 < 10^{2.5}$ (orange) have a slightly positive slope in the average profile at large radii. The slope becomes more positive in the outskirts of the high-mass central population in even denser regions ($\delta_5 > 10^{2.5}$, red). Compared to other populations, high-mass central galaxies in very underdense regions ($\delta_5 < 10^0$, purple) have younger ages at $R_e < 1.0$ and they are the only high-mass central population that is still star forming throughout in Figure 10c).

In contrast, the few satellite galaxies that are found in the most underdense regions have the oldest ages and are quenched throughout, comparable to satellites in the most overdense regions. Aside from high-mass satellites in very underdense regions, there is a weak trend of increasing normalization of age_L with increasing δ_5 for satellites. This trend is weaker in the $\Delta\Sigma_{\text{SFR}}$ profiles, although low-mass satellites in especially overdense regions have somewhat


Figure 11. Radial profiles of age_L subdivided by the redshift at which the satellite entered within $3R_{200}$ of its $z=0$ host, z_j . Formatting is identical to the right column of Figure 1.

385 lower SFRs at some radii. The widths of the error bars on profiles of populations subdivided by δ_5 are generally larger
 386 than those of populations subdivided by M_H , indicating greater variability in the profiles of individual satellites in the
 387 δ_5 populations.

388 4.3. Satellite Parameters

389 4.3.1. Joining time

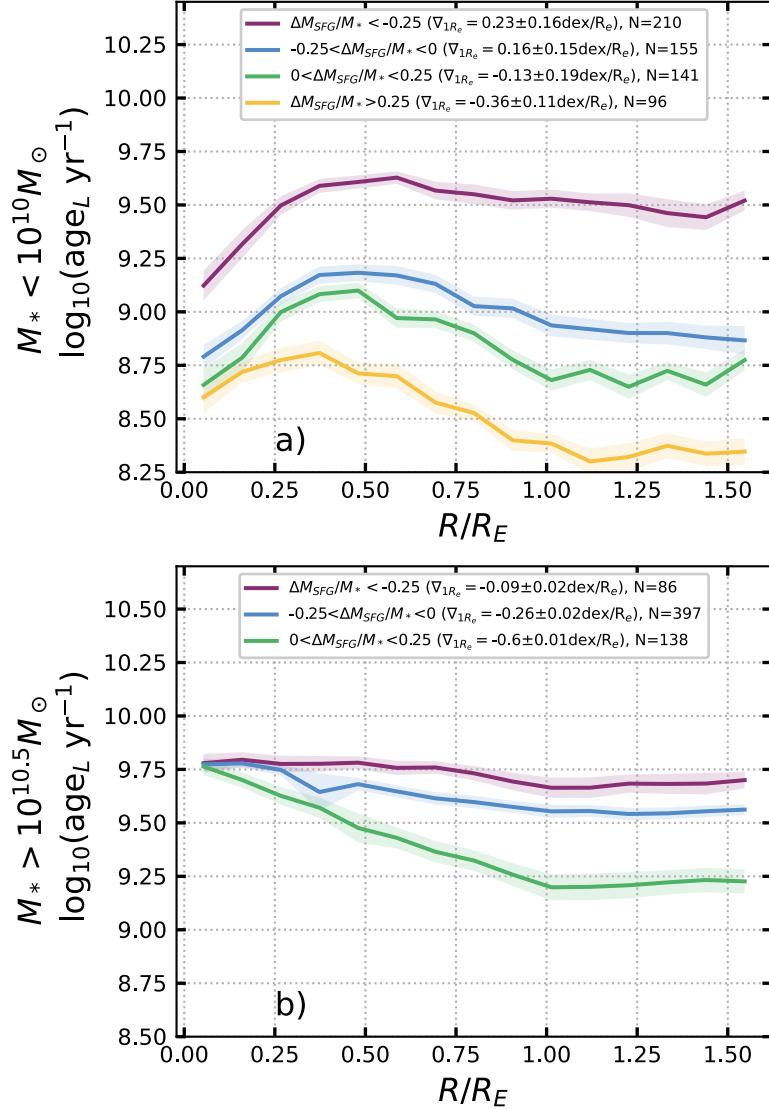

390 The environmental processes that affect star formation in satellite galaxies are expected to scale with time spent in
 391 the host halo. More time spent in the halo will lead to a higher probability of interactions and more time for gas to
 392 be stripped from the satellite.

Figure 12. Radial profiles of $\Delta\Sigma_{\text{SFR}}$, subdivided by the redshift at which the satellite approached within $3R_{200}$ of its $z=0$ host, z_j , and corresponding to Figure 11. Here the formatting is identical to the right column of Figure 2.

393 In Figures 11 and 12, we present radial profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ for satellites, with the sample subdivided based
 394 on the redshift at which the satellites joined their hosts, z_j . The low-mass population shows that the overall age_L
 395 increases for satellite populations with greater z_j . Low-mass satellites with $z_j > 1.0$ have lower $\Delta\Sigma_{\text{SFR}}$ profiles than
 396 satellites that joined later. On average, low-mass satellites with $z_j > 1.5$ only maintain some star formation in their
 397 centers.

398 For the high-mass galaxies, there is a curious reversal in overall age between satellites in the $0.75 < z_j < 1.0$ (green)
 399 and $1.0 < z_j < 1.5$ (yellow) populations, with the population that joined earlier having a younger overall age_L . This
 400 is also reflected in the $\Delta\Sigma_{\text{SFR}}$ profiles, with the $1.0 < z_j < 1.5$ population maintaining some degree of star formation

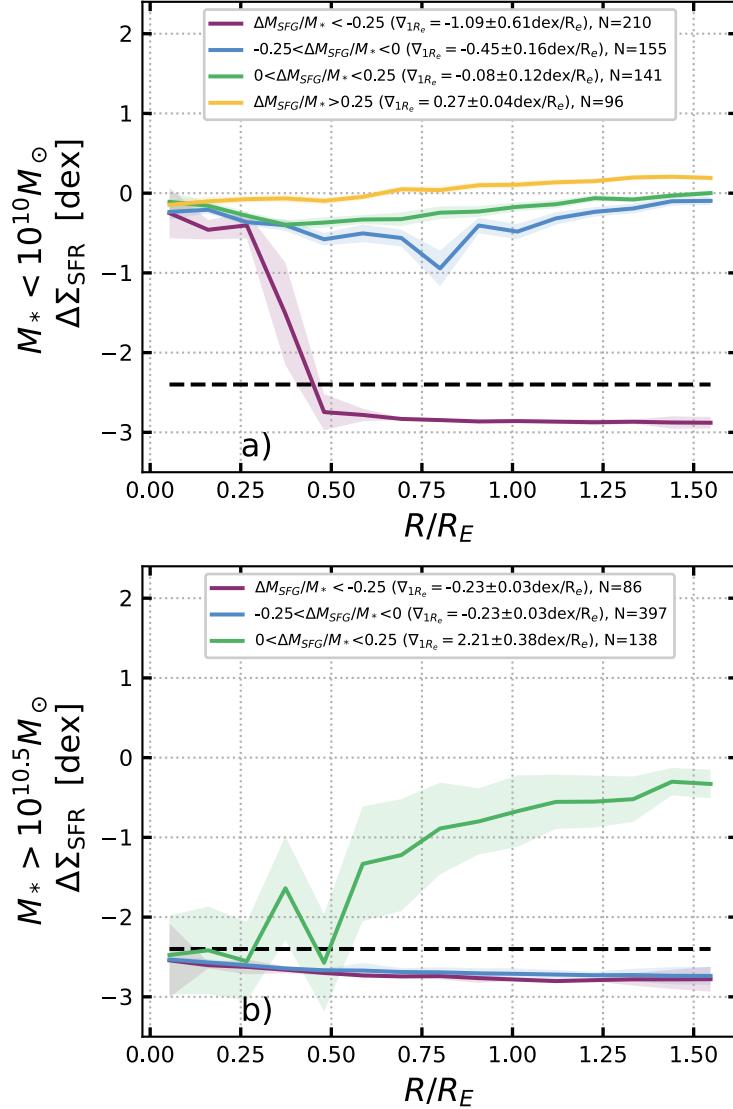


Figure 13. Radial profiles of age_L subdivided by the change in star-forming gas since the satellite entered within $3R_{200}$ of its $z=0$ host, ΔM_{SFG} . Formatting is identical to Figure 11. Note that the ordinates of each panel have slightly different numerical ranges.

401 while the $0.75 < z_j < 1.0$ population appears entirely quenched. High-mass satellites with relatively late joining times
 402 ($z_j < 0.75$) have the characteristic inside-out age_L and $\Delta\Sigma_{\text{SFR}}$ profile shapes.

403 Compared to more recently accreted low-mass satellites, low-mass satellites with $z_j > 1.0$ have age_L profiles that are
 404 flatter beyond $R > 0.75R_e$. High-mass satellites with $z_j > 0.75$ have flat age_L profiles. The shapes and normalizations
 405 of these profiles indicate that more outside-in quenching has operated on satellite populations that have spent longer
 406 in their hosts' environment, as expected. However, there is a high degree of variation within a given population, as
 407 indicated by the shaded error bars.

408 4.3.2. *Change in mass of star forming gas*

Figure 14. Radial profiles of $\Delta\Sigma_{\text{SFR}}$, subdivided by the change in star-forming gas since the satellite approached within $3R_{200}$ of its $z=0$ host, and corresponding to Figure 11. Here the formatting is identical to the right column of Figure 2.

Any process that affects star formation in galaxies affects the availability of star-forming gas (SFG). In the simulation, it is possible to determine the change in star-forming gas since a satellite joined the host halo, ΔM_{SFG} . In Figures 13 and 14, we present radial profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ subdivided by ΔM_{SFG} , and normalized by the stellar mass of each satellite. For low- and high-mass satellites, there is a clear offset in overall age and $\Delta\Sigma_{\text{SFR}}$ for different bins of ΔM_{SFG} . Satellites that, proportionately, have lost more star-forming gas are systematically older and have lower $\Delta\Sigma_{\text{SFR}}$, while those that have gained star-forming gas are systematically younger and have higher $\Delta\Sigma_{\text{SFR}}$. For low-mass galaxies, the difference in age_L for satellites with $\Delta M_{\text{SFG}}/M_* < -0.25$ and satellites with $\Delta M_{\text{SFG}}/M_* > 0.25$ is nearly 3 Gyr (~ 1 dex). While low-mass satellites with significant SFG loss maintain typical levels of star formation at their centers ($R < 0.25R_e$), at radii $> 0.5R_e$ they are completely quenched.

418 There are no high-mass satellite galaxies that have gained more than 25% of their stellar mass in star-forming gas.
 419 The age difference between high-mass satellites with $\Delta M_{\text{SFG}}/M_* < -0.25$ (purple) and high-mass satellites that have
 420 gained any star-forming gas is about 3.5 Gyr (~ 0.5 dex) in the outskirts. The high-mass satellites with positive
 421 ΔM_{SFG} (green) are the only population of high-mass satellites that show significant levels of star formation, which is
 422 occurring at radii $> 0.5R_e$.

423 There is a clear difference in age_L profile shape for satellites that have gained star-forming gas and those that have
 424 lost star-forming gas. Satellites with negative ΔM_{SFG} are older than satellites with positive ΔM_{SFG} , particularly
 425 in the outskirts ($R \gtrsim 0.5R_e$). These results demonstrate that the change in the availability of star-forming gas is
 426 occurring in the outskirts of these simulated galaxies, consistent with outside-in quenching or enhancement.

427 4.3.3. *Perigalacticon*

428 For each satellite in our sample, we obtained the redshift at which it last made its closest approach, z_p , as well as
 429 the closest approach the satellite made to its host, d_{h-s} . Here, we briefly summarize the age_L and $\Delta\Sigma_{\text{SFR}}$ profiles of
 430 galaxy populations subdivided by these parameters, although we refrain from showing them since, for the most part,
 431 the differences are relatively minor.

432 There is no significant dependence of age_L profile on d_{h-s} for high-mass satellite galaxies. For low-mass satellites,
 433 significant differences only appear for satellites with $d_{h-s} < 0.5R_{200}$. The outskirts of low-mass satellites with $d_{h-s} <$
 434 $0.5R_{200}$ are ~ 0.4 dex (~ 550 Myr) older than satellites with $d_{h-s} > 2R_{200}$. There is no significant trend in outskirt
 435 ages when finer bin sizes are used to define populations at smaller host-satellite separations. The corresponding
 436 $\Delta\Sigma_{\text{SFR}}$ profiles are very noisy, indicating a high degree of variability among the individual galaxy profiles. Profiles
 437 of low-mass satellites are nearly identical. There is no significant trend with d_{h-s} for high-mass galaxies, with most
 438 profiles appearing entirely quenched or indicative of typical inside-out quenching. The only exception is the profile of
 439 satellite galaxies with the smallest perigalacticon separation, $d_{h-s} < 0.1R_{200}$. This profile is quenched in the center
 440 and outskirts, but maintains active star formation at $0.5 \lesssim R/R_e \lesssim 1.2$. However, this is one of the noisiest profiles,
 441 with errors in the range of $\sigma_{\Delta\Sigma_{\text{SFR}}} \approx 0.75 - 0.95$ at $R/R_e > 0.5$.

442 For z_p , the age_L profiles of low-mass satellites have a normalization trend that is similar to that of populations
 443 subdivided by z_j (Figure 11), with satellites with larger values of z_p having older ages. Satellites with $z_p > 0.5$ have
 444 the oldest ages and flatter age_L profiles. The trend in increasing age_L normalization with increasing z_p is weaker for
 445 high-mass satellites than it is for low-mass satellites. Satellites with $z_p > 0.1$ have ages that are ~ 0.2 dex (~ 1.8 Gyr)
 446 older than satellites with the latest perigalacticon approaches. This is a significantly smaller difference than satellites
 447 with the earliest and latest z_j , which is ~ 0.5 dex (~ 5 Gyr).

448 The $\Delta\Sigma_{\text{SFR}}$ profiles subdivided by z_p are very noisy. The profiles correspond well with insights gleaned from the
 449 complimentary age_L profiles. Low-mass satellites with $z_p > 0.5$ are the only low-mass satellite population with a profile
 450 that lies below the quenching threshold at any radius ($R/R_e > 0.3$). The high-mass satellite profiles are indicative of
 451 active inside-out quenching, with the exception of the population with $z_p > 0.1$, which is entirely quenched.

452 It is not surprising that satellite populations with the earliest perigalacticon approaches are quenched, as these
 453 populations also have the earliest joining times. However, the reverse is not necessarily true, as satellites with early
 454 joining times may have relatively recent perigalacticon approaches. The noisiness of the age_L and $\Delta\Sigma_{\text{SFR}}$ profiles,
 455 along with the relatively weak trends with d_{h-s} and z_p , lead us to believe that these parameters play a relatively
 456 minor, if any, role in quenching satellites.

457 5. DISCUSSION

458 In this paper, we have considered various parameters that are related to the two main quenching processes identified
 459 in the literature: mass quenching and environmental quenching.

460 In the mass quenching scenario (see, e.g., Peng et al. 2010; Ma et al. 2022; Bluck et al. 2020b), energy from the
 461 central supermassive black hole acts on gas from the interstellar and circumgalactic media, preventing further accretion
 462 and star formation. The exact mechanism by which the SMBH affects star formation is still unclear, but it may be a
 463 combination of heating, removal, or the introduction of turbulence that decreases star formation efficiency. The degree
 464 to which AGN feedback negatively affects star formation in a galaxy increases with increasing amounts of energy
 465 imparted by the black hole. This process is known as mass quenching because the energy scales with black hole mass
 466 and, thus, stellar mass. Mass quenching operates at stellar masses greater than $\sim 10^{10} M_\odot$ (e.g., Bluck et al. 2020b;
 467 McDonough et al. 2023).

468 Intrinsic feedback processes in low-mass galaxies are not powerful enough to quench these systems, but do act to
 469 slow the natural exhaustion of their gas reservoirs, which generally allows these systems to maintain star formation
 470 at present-day. Other processes must be necessary to quench galaxies at low masses, since quenched galaxies at
 471 $M_* \lesssim 10^{10} M_\odot$ do exist. These low-mass, quenched galaxies consist primarily of satellite galaxies that reside in group
 472 and cluster environments, where environmental processes are common. Environmental quenching is any external
 473 process that negatively affects the availability of star forming gas in a galaxy, and is particularly important for
 474 satellites (see, e.g., Peng et al. 2012; Bluck et al. 2020a; Bluck et al. 2020b; Corcho-Caballero et al. 2023).

475 As mass quenching is the dominant process in high-mass galaxies, defined as $M_* > 10^{10.5} M_\odot$ in this paper, we will
 476 discuss our results for high-mass and low-mass ($M_* < 10^{10} M_\odot$) galaxies separately.

477 5.1. High-mass galaxies

478 In Figures 1 and 3 (bottom panels), mass quenching is clearly operating in both high-mass central and satellite
 479 galaxies. More massive black holes and higher values of ΣE_{QM} correlate with older ages, as expected. This correlation
 480 is the result of star-formation quenching and natural aging processes (since progenitors of the most massive galaxies
 481 would have formed early according to hierarchical structure formation). The slopes of the age_L profiles are negative.

482 Negative age_L gradients are to be expected to some degree, as galaxies grow from the inside-out (e.g., Sánchez et al.
 483 2021), with stellar populations forming first near the center before star formation progresses to the outskirts. However,
 484 the gradients of the age_L and $\Delta\Sigma_{SFR}$ profiles in Figures 1-4 become steeper as M_{BH} and ΣE_{QM} increase, except at
 485 the highest bin. Galaxies with the most massive black holes and highest imparted energies have older, flatter age_L
 486 profiles and are completely quenched in the $\Delta\Sigma_{SFR}$ profiles. Since the brightest stars in a stellar population age and
 487 die quicker than dimmer populations, age_L will increase faster in regions where star formation has been quenched
 488 more recently as compared to the age_L of stellar populations that have been quenched for some time. This results in
 489 a flattening of the age_L profiles once star formation in the outskirts quenches. Our results indicate that the degree
 490 of inside-out quenching increases as M_{BH} and ΣE_{QM} increase, up to $M_{BH}/M_\odot \approx 10^{8.5}$ and $\Sigma E_{QM} \approx 10^{17}$, at which
 491 point the galaxy is completely quenched.

492 This interpretation is supported by the distributions of main sequence, green valley, and quenched galaxies in these
 493 parameters, which are shown in Appendix A. Figures 17 and 18 show that very few main sequence galaxies have values
 494 of M_{BH} and ΣE_{QM} greater than the stated thresholds.

495 We note that there is some disagreement between our $\Delta\Sigma_{SFR}$ profiles in Figure 2 and those obtained from MaNGA
 496 observations by Bluck et al. (2020b). They found that central galaxies with $M_{BH}/M_\odot > 10^{6.5}$ were, on average,
 497 quenched at small radii. In contrast, we only see significantly quenched centers for TNG100 galaxies with central black
 498 hole masses $M_{BH}/M_\odot < 10^8$. This disagreement of 1.5 orders of magnitude in SMBH mass for central quenching could
 499 be the result of a number of factors, including sample properties, comparability of M_{BH} measurements in simulations
 500 and observations, or limitations with how black holes and feedback are modeled in the simulation. Despite quantitative
 501 disagreement, we find the same general trend as Bluck et al. (2020b) in the TNG100 high-mass central galaxies, with
 502 evidence for more inside-out quenching as black hole mass increases.

503 In the case of intrinsic parameters, it is challenging to disentangle the relative effects of mass and morphology on the
 504 distribution of star formation. The presence of a bulge correlates with the mass of a galaxy, which correlates with the
 505 star formation properties of a galaxy. Thus, the fact that galaxies in Figure 5c,d) with $F(G, M_{20}) > 0.5$ (yellow) have
 506 older age_L profiles may just be an indication that this population is, on average, more massive. There is generally
 507 more variability in the age_L and $\Delta\Sigma_{SFR}$ profiles when galaxies are binned by $F(G, M_{20})$ than by M_{BH} or ΣE_{QM} . This
 508 indicating that mass rather than morphology likely drives quenching in high-mass TNG100 galaxies.

Environmental quenching is not the dominant quenching process for high-mass galaxies, especially central galaxies. However, there are clear effects on the luminosity-weighted age in the outskirts of high-mass galaxies that reside in extreme environments. In Figure 7(c), central galaxies with $M_H/M_\odot < 10^{13.5}$ have flat age_L profiles in the outskirts. At slightly higher halo masses, $10^{13.5} < M_H/M_\odot < 10^{14}$ (red), the age_L profile slope for central galaxies becomes positive in the outskirts ($R > 1R_e$). The slope in the inner regions is still negative, indicating that this population is being quenched inside-out and outside-in. In the next highest halo mass bin, $10^{14} < M_H < 10^{14.5}$ (brown), the profile for central galaxies is significantly flatter and older throughout than central galaxies with $10^{13.5} < M_H/M_\odot < 10^{14.5}$ (red). In Figure 8, the $\Delta\Sigma_{\text{SFR}}$ profiles of high-mass, central galaxy populations with $M_H/M_\odot > 10^{12.5}$ are completely quenched, the same threshold identified by Bluck et al. (2020b) for all central galaxies. For high-mass satellites, the halo mass threshold for quenching in Figure 8d is $M_H/M_\odot > 10^{13.5}$. This is slightly lower than the threshold identified by Bluck et al. (2020b) ($M_H/M_\odot > 10^{14}$), although this threshold was determined with profiles constructed by satellite galaxies of all masses in their sample.

Since halo mass is correlated with black hole mass for central galaxies, it is instructive to compare age_L profiles at high M_H with profiles at high M_{BH} . The typical galaxy with $M_{BH}/M_\odot > 10^{8.5}$ is completely quenched, and the age_L profile (Figure 1c) shows that this occurred through inside-out quenching. The population of galaxies with $10^{14} < M_H/M_\odot < 10^{14.5}$ (brown) is also completely quenched, but the inner gradient of the average age_L profile ($\nabla_{1R_e} = -0.19 \pm 0.04 \text{ dex}/R_e$) is much less negative than the same gradient for the $M_{BH}/M_\odot > 10^{8.5}$ (Figure 1c, brown) population ($\nabla_{1R_e} = -0.37 \pm 0.02 \text{ dex}/R_e$).

High halo masses (at $M_H/M_\odot \gtrsim 10^{13.5}$) are also correlated with high local galaxy overdensity. In the highest bin of δ_5 that we include (Figure 9c, red), the slope of the age_L profile for high-mass central galaxies becomes positive at $R \gtrsim 0.6R_e$. This population is entirely quenched in profiles of $\Delta\Sigma_{\text{SFR}}$ (Figure 10). The correlation between M_H and δ_5 makes it difficult to ascertain which mechanisms – interactions with the hot gas halo or interactions with other galaxies – are acting to quench the outskirts of these systems.

Similar trends are present, but less pronounced, for high-mass satellite galaxies that reside in similar environments (Figures 7d and 9d). This may be due to the fact that some satellites in the most massive halos, or with the largest values of δ_5 , may have joined the system only recently. For high-mass satellites with $M_H/M_\odot > 10^{13.5}$, the age_L profiles are similar at $R \lesssim 0.5R_e$, but the outskirts become older with increasing halo mass. The slopes of the age_L profiles of high-mass satellites with $\delta_5 > 10^{1.5}$ become slightly positive at $R \gtrsim 1.1R_e$. The $\Delta\Sigma_{\text{SFR}}$ profiles of high-mass satellites subdivided by δ_5 are very noisy (Figure 10d), but appear mostly quenched at $\delta_5 > 10^{1.5}$. In Bluck et al. (2020b), $\Delta\Sigma_{\text{SFR}}$ profiles of high-mass satellite galaxies are completely quenched at $\delta_5 > 10^1$. Additionally, we find that high-mass TNG100 satellites in the most underdense regions ($\delta_5 < 10^0$, purple) are completely quenched, while

540 MaNGA satellites in similar regions maintain star formation throughout. We note that our threshold for high-mass
 541 galaxies is higher than that of [Bluck et al. \(2020b\)](#), which defined high-mass satellites to have $M_*/M_\odot > 10^{10}$. We
 542 further discuss the tension between our results and that of [Bluck et al. \(2020b\)](#) for satellites subdivided by δ_5 in the
 543 following subsection.

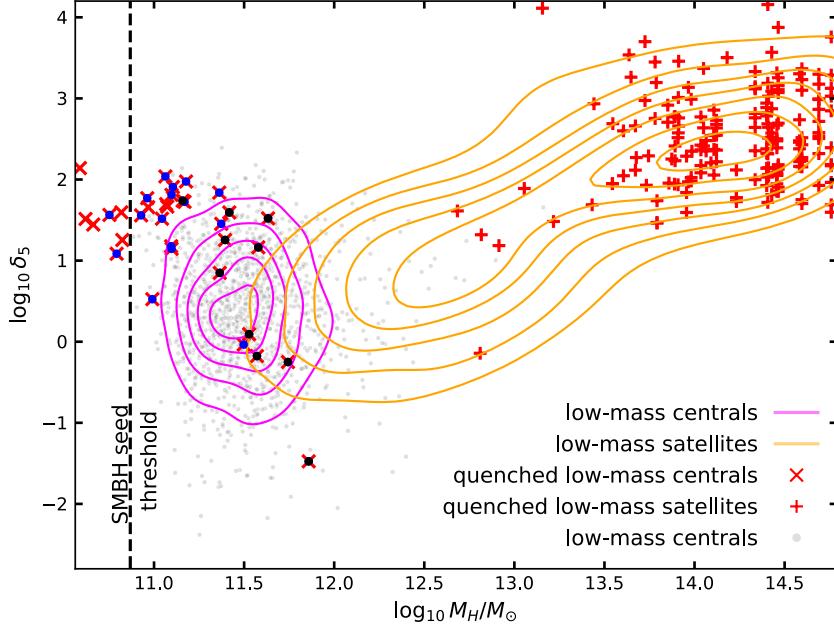
544 The radial profiles of age_L for high-mass galaxies, subdivided by M_H and δ_5 , indicate that environmental quenching
 545 can operate on these systems, suppressing star formation from the outside-in. At the masses and densities where
 546 environmental quenching affects the age_L profiles, galaxies are already completely quenched in the $\Delta\Sigma_{\text{SFR}}$ profiles.
 547 While extreme environments can contribute to the quenching of high-mass galaxies, the dominant quenching pathway
 548 for high-mass galaxies is via AGN feedback energy, as we conclude above.

549 In Appendix A, we provide further evidence that environmental processes are not the dominant quenching process
 550 for high-mass satellite galaxies. However, environment can still impact the evolution of these systems. High-mass
 551 satellites that joined their central galaxies at earlier times have age_L profiles that are generally older and flatter than
 552 those for satellites that joined later times, although the population with $1.0 < z_j < 1.5$ (yellow) is a curious exception
 553 in both age_L and $\Delta\Sigma_{\text{SFR}}$ profiles. High-mass satellites that have lost any amount of star-forming gas since joining
 554 are, on average, completely quenched. The age_L profiles of these systems have negative gradients, indicating that the
 555 quenching was driven by the central SMBHs. Profiles of age_L for the population of high-mass satellite galaxies that
 556 have gained star-forming gas also show evidence of inside-out quenching (Figure 13b, green), but the outskirts are
 557 significantly younger than populations with negative ΔM_{SFG} . It is clear, especially when considering the corresponding
 558 profiles of $\Delta\Sigma_{\text{SFR}}$ in Figure 14, that the enhancement of star-forming gas has operated from the outside-in.

559 To summarize this section, the radial profiles of high-mass galaxies are primarily shaped by mass-quenching operating
 560 inside-out. However, environmental processes can affect the shape of age_L profiles and contribute to quenching at large
 561 radii in extreme environments.

562 5.2. Low-mass galaxies

563 The typical age_L profile for low-mass TNG100 galaxies appears similar to the age_L profile for disk-dominated galaxies
 564 with $10^{9.2} < M_*/M_\odot < 10^{10.2}$ observed by CALIFA by [González Delgado et al. \(2014\)](#), including the dip in age_L at
 565 the center. From visual inspection of maps of Σ_{SFR} in low-mass galaxies, active star formation in the center of these
 566 galaxies is common. This is generally not reflected in profiles of $\Delta\Sigma_{\text{SFR}}$ and sSFR in this work and observational
 567 analysis, likely due to the relatively high stellar mass density at the centers of galaxies. Further exploration of star
 568 formation in the centers of low-mass galaxies is desirable, especially since AGN feedback in the TNG simulations is
 569 imparted at the centers of galaxies. However, such explorations are limited by resolution in both simulations and
 570 observations.


571 Both simulated and observed low-mass galaxies have shallower profiles than corresponding high-mass galaxies, in-
 572 dicating less influence by the SMBH. The age_L and $\Delta\Sigma_{\text{SFR}}$ gradients that are present reflect the natural growth
 573 of the galaxies and the aging of their stellar populations. There is no significant difference in age_L or $\Delta\Sigma_{\text{SFR}}$ pro-
 574 file shape or normalization between simulated low-mass galaxy populations over two magnitudes of black hole mass
 575 ($10^6 < M_{\text{BH}}/M_{\odot} < 10^8$).

576 There is no age_L or $\Delta\Sigma_{\text{SFR}}$ profile dependence on ΣE_{QM} for simulated low-mass central galaxies, with a slight
 577 exception for galaxies with $10^{13} < \Sigma E_{\text{QM}} < 10^{15}$ at small radii. For low-mass satellite galaxies, however, there is
 578 a clear difference in normalization. In Figure 4, satellite galaxies with $10^{13} < \Sigma E_{\text{QM}} < 10^{15}$ (green) are entirely
 579 quenched except at the smallest radii. Central galaxies with comparable ΣE_{QM} are still forming stars at the same
 580 $\Delta\Sigma_{\text{SFR}}$ as central galaxies with negligible ΣE_{QM} , albeit with greater variation. There is no compelling reason to expect
 581 that the same amount of AGN energy imparted into a satellite galaxy would quench the satellite but not a central of
 582 similar mass. It may be that this is a matter of correlation, rather than causation.

583 It is unclear what role a bulge-like morphology plays in quenching or regulating star formation in low-mass TNG100
 584 galaxies. As discussed above, the strong correlation of $F(G, M_{20})$ with other galaxy parameters complicates this
 585 investigation. There is certainly a dependence on $F(G, M_{20})$ for age_L profiles of TNG100 galaxies, but this is not
 586 fully reflected in the $\Delta\Sigma_{\text{SFR}}$ profiles in Figure 6. The flatter shapes of the age_L profiles of low-mass galaxies with
 587 $F(G, M_{20}) > 0$ are likely driven by the aging of stellar populations in the bulge, especially since there are not significant
 588 differences in the $\Delta\Sigma_{\text{SFR}}$ profiles of low-mass galaxies separated by $F(G, M_{20})$. There is evidence from observations
 589 that environmental effects, particularly ram pressure stripping, can drive morphological transformation as well as
 590 the availability of star-forming gas in satellite galaxies (e.g., Steyrlleithner et al. 2020; Marasco et al. 2023). Thus,
 591 morphology may not drive star formation properties, but could be affected by the same evolutionary processes.

592 As quenching in low-mass TNG100 galaxies is not being driven by intrinsic factors, we therefore turn to environmental
 593 processes to explain the quenched low-mass galaxies in our sample. Here, we categorize galaxies into star-forming type
 594 in the same way as in McDonough et al. (2023). Quenched galaxies are those that are ≥ 1.1 dex below the star-
 595 formation main sequence on a M_{*} – SFR diagram. We can expect differences in central and satellite galaxy quenching
 596 due to the different environmental effects these systems will experience. The likelihood of galaxy-galaxy interactions
 597 for both central and satellite galaxies will increase with increasing local galaxy density. However, only satellite galaxies
 598 will experience significant galaxy-halo interactions along their orbits within the gas halos.

599 The age_L profiles of low-mass central galaxies, subdivided by M_H and δ_5 , deviate only slightly from each other
 600 at high halo masses and local galaxy overdensities (Figures 7a and 9a). The only exception is for central galaxies
 601 with $M_H/M_{\odot} < 10^{11}$ (purple), which are significantly older than central galaxies in higher mass halos. In total,

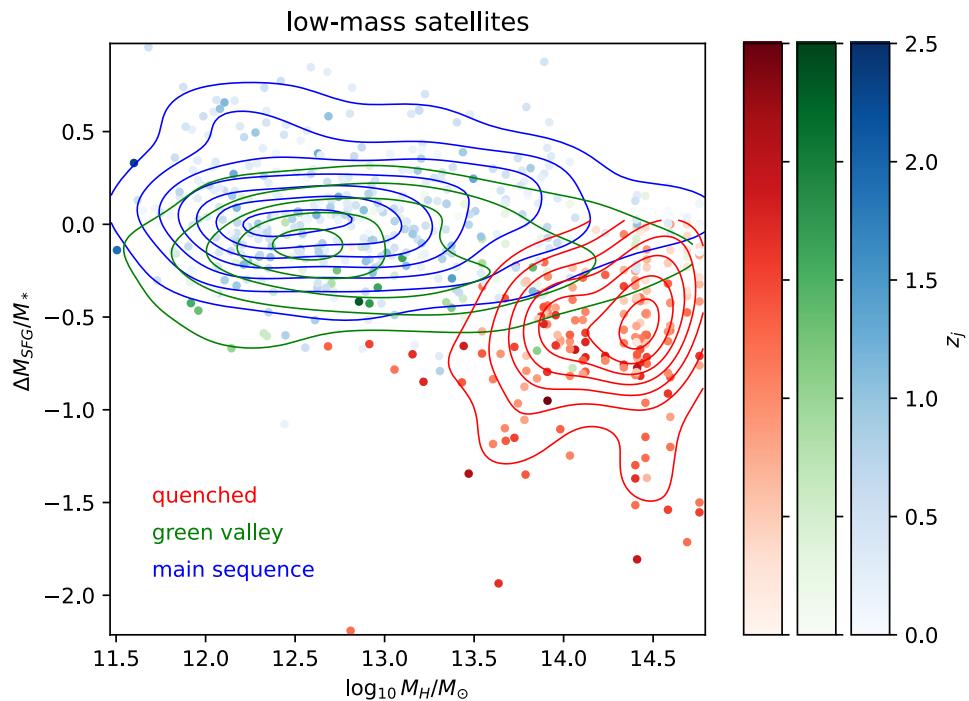
Figure 15. Comparison of the distribution of quenched low-mass central and satellite galaxies to the entire population of low-mass central and satellite galaxies. Magenta and orange contours indicate the density of the entire low-mass central and satellite population, respectively. All individual low-mass central galaxies are plotted as grey points. Quenched low-mass central galaxies are indicated as red crosses and quenched low-mass satellite galaxies are indicated as red plus signs. Low-mass, quenched centrals are overplotted with a blue dot if they contain any SMBH and a black dot if they contain an SMBH with ten times the SMBH seed mass. The black dashed line indicates the halo mass threshold for SMBH seeding.

there are 40 low-mass, quenched, central galaxies in our sample. The median values of M_H and δ_5 for the population of low-mass, quenched centrals ($\log_{10} M_H/M_\odot = 11.14$, $\log_{10} \delta_5 = 1.52$) differ from those of all low-mass centrals ($\log_{10} M_H/M_\odot = 11.49$, $\log_{10} \delta_5 = 0.405$).

In Figure 15, we draw contours around the density of low-mass central (magenta) and satellite (orange) galaxies in the $M_H - \delta_5$ parameter space. Quenched central (crosses) and satellite (plus signs) galaxies are individually plotted in red. The halo mass threshold for SMBH seeding in TNG100 is shown as a black dashed line. A blue point is overplotted on points representing quenched, low-mass centrals that contain any SMBH, and black points are plotted for quenched, low-mass centrals with SMBHs that are more than ten times the SMBH seed mass. The majority of quenched low-mass centrals lie outside the density contours for the population of all low-mass centrals and are biased toward low halo masses. However, their quiescence in TNG100 is likely due to lacking an SMBH, at least until recent times. Without an SMBH to regulate star formation through AGN feedback, these systems over-efficiently convert gas to stars throughout their early lives and are quiescent at late times.

There are a small number of low-mass, quenched centrals with more typical halo masses that have an SMBH that is more than ten times the TNG100 SMBH seed mass, meaning that the SMBHs have been accreting for some time. With

such a small sample and without further analysis of these systems, it is impossible to determine how these systems became quiescent. One possibility is galaxy-galaxy interactions that can either efficiently strip gas from a system or trigger a starburst phase, during which a galaxy consumes most of its available gas over a short period of time, leading to a post-starburst quiescence (e.g., Wilkinson et al. 2021). The likelihood of such interactions is expected to scale with local galaxy overdensity, and thus the fraction of low-mass centrals that are quenched should increase with increasing δ_5 . However, our sample is too small to perform such an analysis.


Unlike central galaxies, there is no correlation between M_H and stellar mass for satellite galaxies (i.e., here M_H is the mass of the halo within which the satellite is orbiting). However, interactions with the hosts' hot gas halo and host halo potential, such as ram pressure stripping and dynamical friction, should scale with halo mass (e.g., Woo et al. 2015; Bluck et al. 2016). The age_L profiles of simulated, low-mass satellite galaxies in the most massive halos ($M_H > 10^{13.5} M_\odot$) and the most overdense regions ($\delta_5 > 10^{1.5}$) have higher normalizations than the age_L profiles of low-mass satellites in less massive halos and less overdense regions. This is especially prominent in the profiles of populations subdivided by halo mass (Figure 7b), where satellites in halos with $M_H/M_\odot > 10^{14}$ are ~ 0.5 dex older at $R \gtrsim 0.25R_e$ than satellites in $M_H/M_\odot < 10^{13.5}$ halos. In Figure 8b), the only low-mass satellite galaxies that are quenched at any radii are those with $M_H/M_\odot > 10^{14}$. This threshold is the same as that identified by Bluck et al. (2020b) for MaNGA satellites, although they found that low-mass satellites at halo masses greater than this threshold had $\Delta\Sigma_{\text{SFR}}$ profiles that were entirely quenched. Bluck et al. (2020b) also found that the $\Delta\Sigma_{\text{SFR}}$ profiles of satellites are systematically higher than those for central galaxies at all halo masses. We do not find this to be the case for TNG100 satellites once the satellites are subdivided by stellar mass.

It has been shown previously in observations that the quenched fraction of satellite galaxies increases with local galaxy overdensity and halo mass (e.g., Bluck et al. 2016, 2020a). In Figure 15, we show that quenched, low-mass satellites generally reside well within the distribution of all low-mass satellites, although they are clustered at the high M_H end of the distribution. When subdivided by δ_5 , we find that there are no populations of low-mass satellite galaxies where the average $\Delta\Sigma_{\text{SFR}}$ profiles have any quenched regions. This is in tension with Bluck et al. (2020b), which found that low-mass satellites at $\delta_5 > 10^{1.5}$ have $\Delta\Sigma_{\text{SFR}}$ profiles that lie completely below the quenching threshold, but there are several caveats to this comparison. There are resolution limitations in how galaxy-galaxy interactions are modeled in the simulation (see, e.g., Sparre & Springel 2016). Additionally, there are also differences in how local galaxy overdensity is measured: in this work, δ_5 is measured with 3D positions, while observations are limited by the 2D view of the sky.

The longer a satellite spends in a halo, the more time there is for environmental interactions to take place, which motivates our investigation of the dependence of radial profiles on z_j . In Figure 11 (top), low-mass satellites that

joined their hosts' halos earlier have, on average, older age_L than systems that joined their hosts' halos only recently. In Figure 12, we see that only the populations of low-mass satellite galaxies that joined earlier than $z = 1$ are, on average, almost completely quenched. Additionally, beyond $R \approx 0.5R_e$, the age_L profiles of these early joiners are flatter than they are for low-mass satellites that joined later. While this points to outside-in quenching operating in these systems, the $\Delta\Sigma_{\text{SFR}}$ profile of the population with $1.0 < z_j < 1.5$ (Figure 12) shows evidence of active star formation occurring at $\approx 1.25R_e$, although this population is highly variable.

The redshift at which a satellite joined its host serves as a statistical proxy for cumulative environmental interactions the satellite has experienced. In contrast, ΔM_{SFG} is a direct measurement of the net effect of these interactions on the total mass of available star forming gas. It is no surprise, then, that age_L profiles subdivided by $\Delta M_{\text{SFG}}/M_*$ are clearly separated in age. Low-mass satellites with $\Delta M_{\text{SFG}}/M_* > 0.25$ have a total median luminosity-weighted age of ≈ 370 Myr, while low-mass satellites with $\Delta M_{\text{SFG}}/M_* < -0.25$ have a total median age_L of ≈ 6.7 Gyr and are completely quenched in the outskirts (Figure 14a)).

Figure 16. The relationship between halo mass and change in mass of star forming gas since joining, for main sequence (blue), green valley (green), and quenched (red) low-mass satellites. Density contours are drawn for the separate populations, and individual galaxies are plotted as points that are colored according to their star-formation type and joining redshift, z_j .

What drives the change in star-forming gas mass for low-mass TNG100 satellite galaxies? Of all the parameters explored in Appendix A, $\Delta M_{\text{SFG}}/M_*$ is best correlated with z_j , although it is not a tight correlation. However, the redshift at which a satellite joined its host's halo is not indicative of the actual physical processes that are occurring.

In Appendix A, we show correlations with $\Delta M_{\text{SFG}}/M_*$ for z_j , M_H , and δ_5 , with satellites separated by mass and star formation type (Figure 19). In Figure 16, we show the most significant correlation for low-mass satellites: $\Delta M_{\text{SFG}}/M_*$ and M_H . Most quenched, low-mass satellites joined high-mass halos relatively early and have lost significant amounts of gas by the present day. The quenched population has greater overlap with main-sequence and green valley galaxies in the $\Delta M_{\text{SFG}}/M_* - \delta_5$ parameter space (see Figure 19 in Appendix A). Thus, we can infer that quenching of low-mass TNG100 satellite galaxies is driven more typically by environmental processes related to their hosts' halos, rather than galaxy-galaxy interactions that scale with δ_5 . Host halos have a greater chance of removing gas from the satellites over longer timescales, driving the correlation of quenching with early z_j . In a study of SDSS-MaNGA satellites, Oyarzún et al. (2023) reached similar conclusions regarding the environmental quenching of observed low-mass satellites in high-mass halos over time.

It is important to note that this is a very general picture, and there are many exceptions, as can be seen in Figure 16. In some cases, TNG100 satellites that joined their hosts only recently can still lose large amounts of star-forming gas. In addition, there are satellites that joined their hosts in the distant past, but remain actively star forming at the present day, with some having even gained star-forming gas. We conclude that gas removal and quenching in low-mass satellites tends to be dominated by interactions with their hosts' halos and is dependent on the exact nature of the interactions that individual satellites experience. This interpretation is consistent with results from the FOGGIE simulations, which have shown that ram pressure stripping of satellites at $z = 2$ is stochastic and highly dependent on the paths of individual satellites through the circumgalactic medium (Simons et al. 2020). Additionally, using the cosmological hydrodynamic code Enzo (Tonnesen et al. 2007) to simulate a massive cluster, Tonnesen & Bryan (2008) found that the ram pressure force exerted on satellites at the same cluster-centric distance could vary by over an order of magnitude due to differences in local density and relative speed. Finding relatively high metallicities in rapidly quenched, low-mass satellite galaxies, the results of Corcho-Caballero et al. (2023) indicate that these systems are quenched following a starbursting period triggered by environmental interactions. Regardless of how it occurs, radial profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ show that environmental quenching occurs from the outside-in in TNG100 galaxies, in agreement with observations, e.g., Finn et al. (2018), Lin et al. (2019), Bluck et al. (2020b), and Matharu et al. (2021).

Our conclusion that low-mass satellite quenching is more dependent on halo mass than it is on local galaxy density is in tension with the results of Bluck et al. (2020b). Using a random forest classification analysis, Bluck et al. (2020b) found that local galaxy overdensity was most predictive of quenched spaxels in low-mass satellite galaxies observed by MaNGA. Halo mass was the second most important environmental parameter, and distance to the host galaxy was found to be of little importance. We note, however, that measurements of M_H and δ_5 are much more challenging in observations than they are in simulations. In the case of Bluck et al. (2020b), the halo masses were derived from

abundance matching techniques, which could result in a stronger correlation of M_H with δ_5 than is physical. However, this tension could also result from limitations in the simulation, for example the spatial resolution at which the gas physics is captured, particularly during mergers or other interactions (Sparre & Springel 2016). Further work in both observations and simulations would be necessary in order to determine whether the primary driver of low-mass satellite quenching is galaxy-galaxy interactions (correlated with δ_5) or galaxy-halo interactions (correlated with M_H).

We remind readers that simulations are based on theoretical models, and may not represent reality.

6. SUMMARY

In this paper, we constructed radial profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ for various populations of galaxies in the TNG100 simulation in order to investigate the degree to which the profiles are affected by intrinsic and environmental factors. We constructed these profiles separately for central and satellite galaxies with low- and high- masses ($M_* < 10^{10} M_\odot$ and $M_* > 10^{10.5} M_\odot$, respectively). Our main results for galaxies in the TNG100 simulation are as follows:

- The shapes and normalizations of averaged radial profiles of high-mass ($M_* > 10^{10.5} M_\odot$) galaxies (whether central or satellite) are strongly dependent on black hole mass (M_{BH} , Figures 1 and 2) and cumulative AGN feedback imparted on the galaxies (ΣE_{QM} , Figures 3 and 4). The shapes of these profiles are consistent with inside-out quenching.
- High-mass galaxies in extreme environments (Figure 7: $M_H/M_\odot > 10^{13.5}$ for central galaxies and $M_H/M_\odot > 10^{14}$ for satellite galaxies and/or Figure 9: $\delta_5 > 10^{1.5}$) have age_L profiles that become slightly positive at large radii. This indicates that galaxies in extreme environments can be quenched from both inside-out and outside-in.
- Population-averaged age_L and $\Delta\Sigma_{\text{SFR}}$ profiles of low-mass galaxies are similar across several magnitudes of black hole mass. This is also the case for low-mass central galaxies when binned by ΣE_{QM} (Figures 3 and 4). When low-mass satellites are binned by ΣE_{QM} , age_L normalization increases with increasing ΣE_{QM} and $\Delta\Sigma_{\text{SFR}}$ decreases. The averaged age_L profile for low-mass satellites with $10^{13} < \Sigma E_{\text{QM}} < 10^{15}$ is flatter in the outskirts compared to the other low-mass satellite ΣE_{QM} populations, and the $\Delta\Sigma_{\text{SFR}}$ profile of this population is consistent with outside-in quenching.
- The age_L and $\Delta\Sigma_{\text{SFR}}$ profiles of low-mass central galaxies are not strongly dependent on δ_5 or M_H (Figures 7-10). The only exceptions are central galaxies in very low-mass halos ($M_H/M_\odot < 10^{11}$), which are much older than low-mass centrals in higher mass halos. This is likely the result of overcooling because the TNG100 model only seeds a SMBH in a galaxy once the halo mass reaches a threshold of $M_H/M_\odot \approx 10^{10.87}$. Only low-mass satellites in extreme environments ($M_H/M_\odot > 10^{13.5}$ and/or $\delta_5 > 10^{1.5}$) have age_L and $\Delta\Sigma_{\text{SFR}}$ profiles that differ significantly from the other low-mass satellite populations.

723 • The time a satellite has spent within its host's halo, z_j , has a greater effect on age_L and $\Delta\Sigma_{\text{SFR}}$ profiles of
 724 low-mass satellites than it does for high-mass satellites (Figures 11 and 12). The normalization of age_L for
 725 low-mass satellites increases with increasing time in the halo and quenched regions appear in the $\Delta\Sigma_{\text{SFR}}$ profiles
 726 at $z_j > 1.0$.

727 • While z_j serves as an imperfect proxy for environmental effects a satellite encounters in a host's halo, ΔM_{SFG}
 728 directly measures the change in star-forming gas that a satellite has experienced since joining. The change in
 729 star-forming gas preferentially affects the outskirts of both high- and low-mass galaxies. For low-mass satellite
 730 galaxies, the shapes and normalizations of age_L and $\Delta\Sigma_{\text{SFR}}$ profiles are highly dependent on ΔM_{SFG} .

731 • Quenched low-mass satellites are found almost entirely within high-mass halos ($M_H/M_\odot > 10^{13.5}$, Figure 15).
 732 Quenched low-mass satellites are most distinct as a population in M_H - ΔM_{SFG} parameter space (Figure 16). We
 733 infer that quenching in low-mass TNG100 satellites occurs when interactions with massive host halos deplete
 734 these galaxies of star-forming gas. These interactions are more likely to occur, and remove more gas, with
 735 increasing time spent in the halo. However, z_j and ΔM_{SFG} are only loosely correlated with each other (Figure
 736 18). Thus, the efficiency with which environmental processes (e.g., ram pressure stripping and galaxy-galaxy
 737 interactions) remove the gas reservoir appears to be highly dependent on the nature of individual interactions.

738 In conclusion, we find that high-mass galaxies, both centrals and satellites, in the TNG100 simulation are quenched
 739 from the inside-out via AGN feedback energy, in agreement with expectations based on previous observational and
 740 theoretical studies of quenching. Quenching in low-mass TNG100 satellites appears to be driven by interactions with
 741 their hosts' hot gas halos. These low-mass quenched populations are not always reflected in the average radial profiles
 742 of different environmental populations; the parameters we have explored only capture the likelihood of interactions
 743 occurring, rather than the natures of the interactions. Environmental effects drive quenching from the outside-in,
 744 resulting in radial age_L profiles that are positive in slope beyond $R \sim 1 - 1.25R_e$ and $\Delta\Sigma_{\text{SFR}}$ profiles that are
 745 quenched at large radii. We have shown previously that the radial profiles of age_L and $\Delta\Sigma_{\text{SFR}}$ for TNG100 galaxies
 746 are generally in agreement with observations (McDonough et al. 2023). However, the results we report here should
 747 still be interpreted with the understanding that simulations are limited by resolution, size, and the physical models
 748 that are employed.

749 We thank the reviewer for providing detailed feedback on our work. We would like to acknowledge the work and
 750 documentation provided by the IllustrisTNG team that has made this paper possible. The IllustrisTNG simulations
 751 were undertaken with compute time awarded by the Gauss Centre for Supercomputing (GCS) under GCS Large-Scale
 752 Projects GCS-ILLU and GCS-DWAR on the GCS share of the supercomputer Hazel Hen at the High Performance
 753 Computing Center Stuttgart (HLRS), as well as on the machines of the Max Planck Computing and Data Facility
 754 (MPCDF) in Garching, Germany. The additional computational work done for this paper was performed on the
 755 Shared Computing Cluster which is administered by Boston University's Research Computing Services. This work
 756 was partially supported by NSF grant AST-2009397. BM acknowledges support by Northeastern University's Future
 757 Faculty Postdoctoral Fellowship Program. We also thank Dr. Paul Tol for providing an online resource for sequential
 758 color maps that are colorblind-friendly.

759 *Software:* astropy (Astropy Collaboration et al. 2013, 2018, 2022)

REFERENCES

760 Abraham, R. G., van den Bergh, S., & Nair, P. 2003, ApJ,
 761 588, 218, doi: [10.1086/373919](https://doi.org/10.1086/373919)
 762 Astropy Collaboration, Robitaille, T. P., Tollerud, E. J.,
 763 et al. 2013, A&A, 558, A33,
 764 doi: [10.1051/0004-6361/201322068](https://doi.org/10.1051/0004-6361/201322068)
 765 Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,
 766 et al. 2018, AJ, 156, 123, doi: [10.3847/1538-3881/aabc4f](https://doi.org/10.3847/1538-3881/aabc4f)
 767 Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,
 768 et al. 2022, apj, 935, 167, doi: [10.3847/1538-4357/ac7c74](https://doi.org/10.3847/1538-4357/ac7c74)
 769 Beifiori, A., Courteau, S., Corsini, E. M., & Zhu, Y. 2012,
 770 Monthly Notices of the Royal Astronomical Society, 419,
 771 2497, doi: [10.1111/j.1365-2966.2011.19903.x](https://doi.org/10.1111/j.1365-2966.2011.19903.x)
 772 Bluck, A. F. L., Maiolino, R., Sánchez, S. F., et al. 2020a,
 773 MNRAS, 492, 96, doi: [10.1093/mnras/stz3264](https://doi.org/10.1093/mnras/stz3264)
 774 Bluck, A. F. L., Mendel, J. T., Ellison, S. L., et al. 2014,
 775 MNRAS, 441, 599, doi: [10.1093/mnras/stu594](https://doi.org/10.1093/mnras/stu594)
 776 Bluck, A. F. L., Piotrowska, J. M., & Maiolino, R. 2023,
 777 ApJ, 944, 108, doi: [10.3847/1538-4357/acac7c](https://doi.org/10.3847/1538-4357/acac7c)
 778 Bluck, A. F. L., Mendel, J. T., Ellison, S. L., et al. 2016,
 779 MNRAS, 462, 2559, doi: [10.1093/mnras/stw1665](https://doi.org/10.1093/mnras/stw1665)
 780 Bluck, A. F. L., Maiolino, R., Piotrowska, J. M., et al.
 781 2020b, Monthly Notices of the Royal Astronomical
 782 Society, 499, 230, doi: [10.1093/mnras/staa2806](https://doi.org/10.1093/mnras/staa2806)
 783 Bundy, K., Bershadsky, M. A., Law, D. R., et al. 2015, ApJ,
 784 798, 7, doi: [10.1088/0004-637X/798/1/7](https://doi.org/10.1088/0004-637X/798/1/7)
 785 Cano-Díaz, M., Sánchez, S. F., Zibetti, S., et al. 2016,
 786 ApJL, 821, L26, doi: [10.3847/2041-8205/821/2/L26](https://doi.org/10.3847/2041-8205/821/2/L26)
 787 Colombo, D., Sanchez, S. F., Bolatto, A. D., et al. 2020,
 788 A&A, 644, A97, doi: [10.1051/0004-6361/202039005](https://doi.org/10.1051/0004-6361/202039005)
 789 Corcho-Caballero, P., Ascasibar, Y., Sánchez, S. F., &
 790 López-Sánchez, Á. R. 2023, MNRAS, 520, 193,
 791 doi: [10.1093/mnras/stad147](https://doi.org/10.1093/mnras/stad147)
 792 Donnari, M., Pillepich, A., Nelson, D., et al. 2019, Monthly
 793 Notices of the Royal Astronomical Society, 485, 4817,
 794 doi: [10.1093/mnras/stz712](https://doi.org/10.1093/mnras/stz712)
 795 Ellison, S. L., Sánchez, S. F., Ibarra-Medel, H., et al. 2018,
 796 MNRAS, 474, 2039, doi: [10.1093/mnras/stx2882](https://doi.org/10.1093/mnras/stx2882)
 797 Finn, R. A., Desai, V., Rudnick, G., et al. 2018, ApJ, 862,
 798 149, doi: [10.3847/1538-4357/aac32a](https://doi.org/10.3847/1538-4357/aac32a)
 799 García-Benito, R., Zibetti, S., Sánchez, S. F., et al. 2015,
 800 A&A, 576, A135, doi: [10.1051/0004-6361/201425080](https://doi.org/10.1051/0004-6361/201425080)
 801 Genel, S., Nelson, D., Pillepich, A., et al. 2018, MNRAS,
 802 474, 3976, doi: [10.1093/mnras/stx3078](https://doi.org/10.1093/mnras/stx3078)
 803 González Delgado, R. M., Pérez, E., Cid Fernandes, R.,
 804 et al. 2014, A&A, 562, A47,
 805 doi: [10.1051/0004-6361/201322011](https://doi.org/10.1051/0004-6361/201322011)
 806 González Delgado, R. M., Cid Fernandes, R., Pérez, E.,
 807 et al. 2016, A&A, 590, A44,
 808 doi: [10.1051/0004-6361/201628174](https://doi.org/10.1051/0004-6361/201628174)
 809 Lin, L., Hsieh, B.-C., Pan, H.-A., et al. 2019, ApJ, 872, 50,
 810 doi: [10.3847/1538-4357/aafa84](https://doi.org/10.3847/1538-4357/aafa84)

811 Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 163,
812 doi: [10.1086/421849](https://doi.org/10.1086/421849)

813 Ma, W., Liu, K., Guo, H., et al. 2022, ApJ, 941, 205,
814 doi: [10.3847/1538-4357/aca326](https://doi.org/10.3847/1538-4357/aca326)

815 Marasco, A., Poggianti, B. M., Fritz, J., et al. 2023,
816 Monthly Notices of the Royal Astronomical Society, 525,
817 5359, doi: [10.1093/mnras/stad2604](https://doi.org/10.1093/mnras/stad2604)

818 Marinacci, F., Vogelsberger, M., Pakmor, R., et al. 2018,
819 MNRAS, 480, 5113, doi: [10.1093/mnras/sty2206](https://doi.org/10.1093/mnras/sty2206)

820 Martig, M., Bournaud, F., Teyssier, R., & Dekel, A. 2009,
821 ApJ, 707, 250, doi: [10.1088/0004-637X/707/1/250](https://doi.org/10.1088/0004-637X/707/1/250)

822 Matharu, J., Muzzin, A., Brammer, G. B., et al. 2021, ApJ,
823 923, 222, doi: [10.3847/1538-4357/ac26c3](https://doi.org/10.3847/1538-4357/ac26c3)

824 McDonough, B., Curti, O., & Brainerd, T. G. 2023, ApJ,
825 958, 19, doi: [10.3847/1538-4357/acf0b](https://doi.org/10.3847/1538-4357/acf0b)

826 Naab, T., & Ostriker, J. P. 2017, ARA&A, 55, 59,
827 doi: [10.1146/annurev-astro-081913-040019](https://doi.org/10.1146/annurev-astro-081913-040019)

828 Naiman, J. P., Pillepich, A., Springel, V., et al. 2018,
829 MNRAS, 477, 1206, doi: [10.1093/mnras/sty618](https://doi.org/10.1093/mnras/sty618)

830 Nelson, D., Pillepich, A., Genel, S., et al. 2015, Astronomy
831 and Computing, 13, 12, doi: [10.1016/j.ascom.2015.09.003](https://doi.org/10.1016/j.ascom.2015.09.003)

832 Nelson, D., Pillepich, A., Springel, V., et al. 2018, MNRAS,
833 475, 624, doi: [10.1093/mnras/stx3040](https://doi.org/10.1093/mnras/stx3040)

834 Nelson, D., Springel, V., Pillepich, A., et al. 2019, Comput.
835 Astrophys., 6, 2

836 Nelson, E. J., Tacchella, S., Diemer, B., et al. 2021,
837 Monthly Notices of the Royal Astronomical Society, 508,
838 219, doi: [10.1093/mnras/stab2131](https://doi.org/10.1093/mnras/stab2131)

839 Oyarzún, G. A., Bundy, K., Westfall, K. B., et al. 2023,
840 ApJ, 947, 13, doi: [10.3847/1538-4357/acbbca](https://doi.org/10.3847/1538-4357/acbbca)

841 Pan, H.-A., Lin, L., Ellison, S. L., et al. 2024, ApJ, 964,
842 120, doi: [10.3847/1538-4357/ad28c1](https://doi.org/10.3847/1538-4357/ad28c1)

843 Peng, Y.-j., Lilly, S. J., Renzini, A., & Carollo, M. 2012,
844 ApJ, 757, 4, doi: [10.1088/0004-637X/757/1/4](https://doi.org/10.1088/0004-637X/757/1/4)

845 Peng, Y.-j., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721,
846 193, doi: [10.1088/0004-637X/721/1/193](https://doi.org/10.1088/0004-637X/721/1/193)

847 Pillepich, A., Nelson, D., Hernquist, L., et al. 2018,
848 MNRAS, 475, 648, doi: [10.1093/mnras/stx3112](https://doi.org/10.1093/mnras/stx3112)

849 Planck Collaboration. 2016, A&A, 594, A13

850 Reines, A. E., & Volonteri, M. 2015, ApJ, 813, 82,
851 doi: [10.1088/0004-637X/813/2/82](https://doi.org/10.1088/0004-637X/813/2/82)

852 Rodriguez-Gomez, V., Snyder, G. F., Lotz, J. M., et al.
853 2019, MNRAS, 483, 4140, doi: [10.1093/mnras/sty3345](https://doi.org/10.1093/mnras/sty3345)

854 Saglia, R. P., Opitsch, M., Erwin, P., et al. 2016, ApJ, 818,
855 47, doi: [10.3847/0004-637X/818/1/47](https://doi.org/10.3847/0004-637X/818/1/47)

856 Sánchez, S. F. 2020, ARA&A, 58, 99,
857 doi: [10.1146/annurev-astro-012120-013326](https://doi.org/10.1146/annurev-astro-012120-013326)

858 Sánchez, S. F., Walcher, C. J., Lopez-Cobá, C., et al. 2021,
859 RMxAA, 57, 3, doi: [10.22201/ia.01851101p.2021.57.01.01](https://doi.org/10.22201/ia.01851101p.2021.57.01.01)

860 Sánchez, S. F., Rosales-Ortega, F. F., Jungwiert, B., et al.
861 2013, A&A, 554, A58, doi: [10.1051/0004-6361/201220669](https://doi.org/10.1051/0004-6361/201220669)

862 Sarzi, M., Rix, H.-W., Shields, J. C., et al. 2005, ApJ, 628,
863 169, doi: [10.1086/428637](https://doi.org/10.1086/428637)

864 Sérsic, J. L. 1963, Boletin de la Asociacion Argentina de
865 Astronomia La Plata Argentina, 6, 41

866 Silk, J., & Mamon, G. A. 2012, Research in Astronomy and
867 Astrophysics, 12, 917, doi: [10.1088/1674-4527/12/8/004](https://doi.org/10.1088/1674-4527/12/8/004)

868 Simons, R. C., Peebles, M. S., Tumlinson, J., et al. 2020,
869 ApJ, 905, 167, doi: [10.3847/1538-4357/abc5b8](https://doi.org/10.3847/1538-4357/abc5b8)

870 Snyder, G. F., Torrey, P., Lotz, J. M., et al. 2015, Monthly
871 Notices of the Royal Astronomical Society, 454, 1886,
872 doi: [10.1093/mnras/stv2078](https://doi.org/10.1093/mnras/stv2078)

873 Sparre, M., & Springel, V. 2016, MNRAS, 462, 2418,
874 doi: [10.1093/mnras/stw1793](https://doi.org/10.1093/mnras/stw1793)

875 Spindler, A., Wake, D., Belfiore, F., et al. 2018, Monthly
876 Notices of the Royal Astronomical Society, 476, 580,
877 doi: [10.1093/mnras/sty247](https://doi.org/10.1093/mnras/sty247)

878 Springel, V., Pakmor, R., Pillepich, A., et al. 2018,
879 MNRAS, 475, 676, doi: [10.1093/mnras/stx3304](https://doi.org/10.1093/mnras/stx3304)

880 Steyrlleithner, P., Hensler, G., & Boselli, A. 2020, MNRAS,
881 494, 1114, doi: [10.1093/mnras/staa775](https://doi.org/10.1093/mnras/staa775)

882 Tonnesen, S., & Bryan, G. L. 2008, ApJL, 684, L9,
883 doi: [10.1086/592066](https://doi.org/10.1086/592066)

884 Tonnesen, S., Bryan, G. L., & van Gorkom, J. H. 2007,
885 ApJ, 671, 1434, doi: [10.1086/523034](https://doi.org/10.1086/523034)

886 Villanueva, V., Bolatto, A. D., Vogel, S. N., et al. 2024,
887 ApJ, 962, 88, doi: [10.3847/1538-4357/ad1387](https://doi.org/10.3847/1538-4357/ad1387)

888 Vogelsberger, M., Genel, S., Springel, V., et al. 2014,
889 Nature, 509, 177, doi: [10.1038/nature13316](https://doi.org/10.1038/nature13316)

890 Wechsler, R. H., & Tinker, J. L. 2018, ARA&A, 56, 435,
891 doi: [10.1146/annurev-astro-081817-051756](https://doi.org/10.1146/annurev-astro-081817-051756)

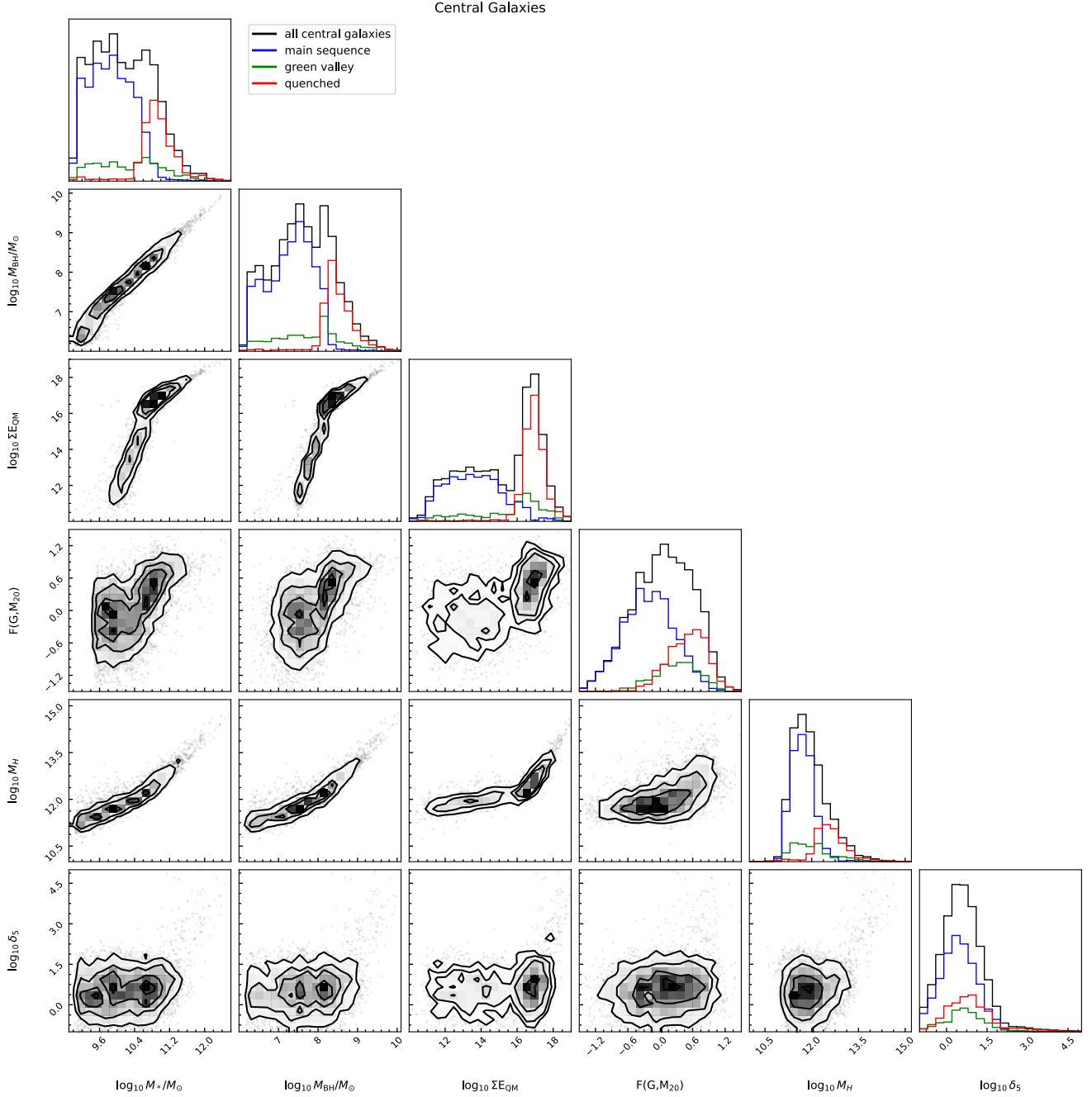
892 Weinberger, R., Springel, V., Hernquist, L., et al. 2017,
893 MNRAS, 465, 3291, doi: [10.1093/mnras/stw2944](https://doi.org/10.1093/mnras/stw2944)

894 Weinberger, R., Springel, V., Pakmor, R., et al. 2018,
895 MNRAS, 479, 4056, doi: [10.1093/mnras/sty1733](https://doi.org/10.1093/mnras/sty1733)

896 Wilkinson, A., Almaini, O., Wild, V., et al. 2021, Monthly
897 Notices of the Royal Astronomical Society, 504, 4533,
898 doi: [10.1093/mnras/stab965](https://doi.org/10.1093/mnras/stab965)

899 Woo, J., Dekel, A., Faber, S. M., & Koo, D. C. 2015,
900 MNRAS, 448, 237, doi: [10.1093/mnras/stu2755](https://doi.org/10.1093/mnras/stu2755)

901 Wuyts, S., Förster Schreiber, N. M., Nelson, E. J., et al.
902 2013, ApJ, 779, 135, doi: [10.1088/0004-637X/779/2/135](https://doi.org/10.1088/0004-637X/779/2/135)


903 Zheng, Z., Wang, H., Ge, J., et al. 2017, MNRAS, 465,
904 4572, doi: [10.1093/mnras/stw3030](https://doi.org/10.1093/mnras/stw3030)

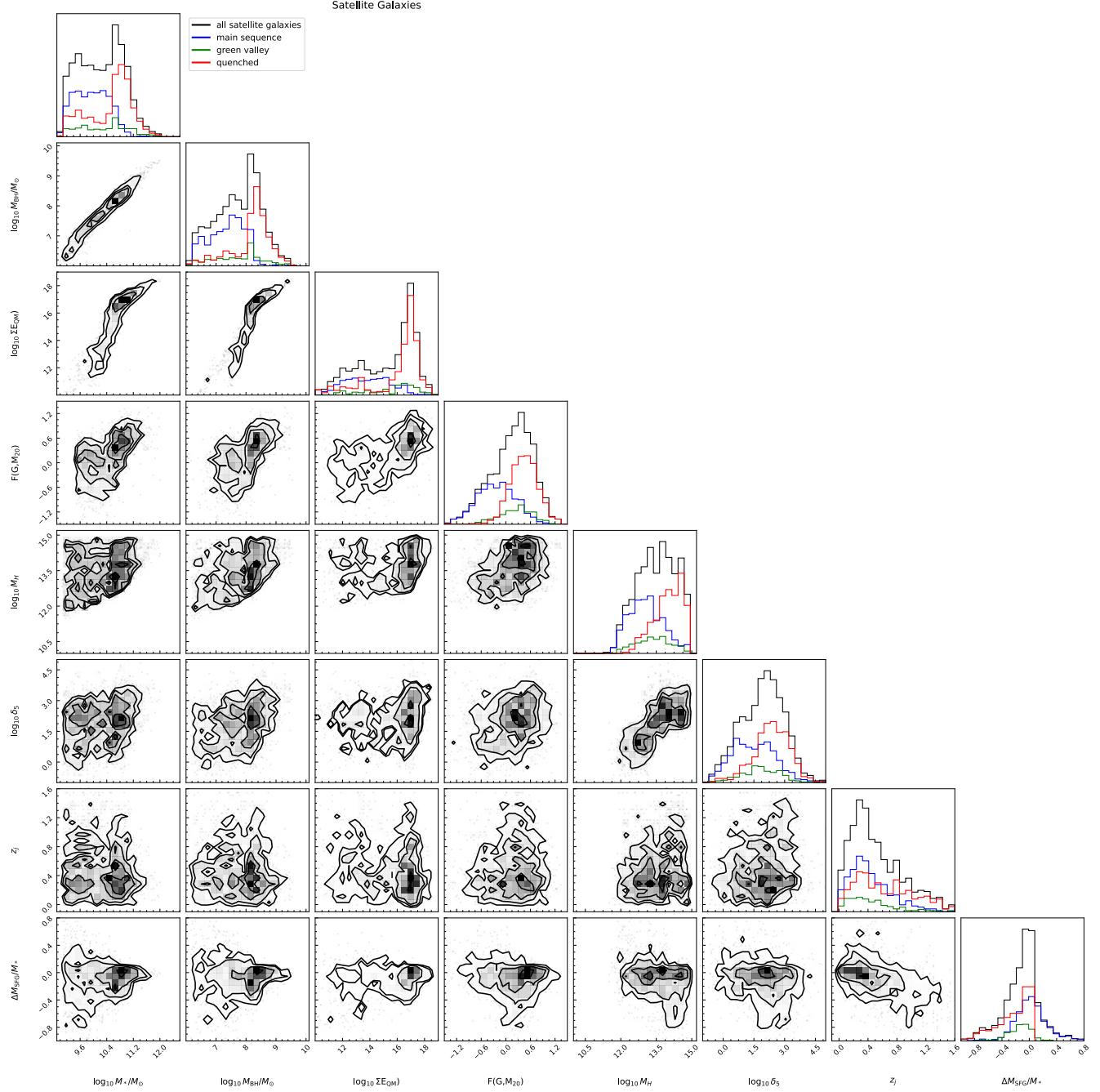
905

APPENDIX

906

A. INTER-CORRELATION OF PARAMETERS

Figure 17. Corner plot illustrating correlations among the parameters explored in this paper, for central galaxies only. The diagonal displays the total distribution of each parameter (black), and the distribution separated by galaxy star-formation type: main sequence (blue), green valley (green), and quenched (red). Off-diagonal plots are two-dimensional histograms revealing relationships between two parameters. Contours are drawn at (0.5, 1, 1.5, 2)-sigma levels.


907 Galaxy evolution is a complex process that is by no means fully understood at this time. Adding to the inherent
 908 complexity of the galaxy evolution process is that parameters that describe properties of galaxies are often correlated,
 909 either through causation or co-evolution. Because of this, it is important to understand how the parameters we
 910 have explored in this paper are related to one another. In Figures 17 and 18, we present corner plots showing the
 911 relationships between the parameters we explored for central and satellite galaxies, respectively. On the diagonals, the
 912 one-dimensional distribution of each parameter is shown for all galaxies (black), and separately for galaxies based on
 913 their star-formation activity. Adopting the definitions from McDonough et al. (2023), we show the distributions for
 914 galaxies that are classified as quenched (red), green valley (green), or on the main sequence (blue).

915 Figure 17 shows the tight linear correlation between galaxy stellar mass and black hole mass, $M_* - M_{BH}$, for TNG100
 916 central galaxies. Stellar mass is also correlated with total cumulative AGN energy imparted in the quasar mode, total
 917 halo mass, and, to a lesser extent, the bulge statistic. The existence of these correlations is well-documented in the
 918 literature (e.g., Beifiori et al. 2012; Reines & Volonteri 2015; Wechsler & Tinker 2018). On average, more massive
 919 TNG100 galaxies have more massive black holes, more massive halos, and more bulge-like morphologies. The total
 920 energy imparted by a SMBH is not directly observable, but it is expected to correlate well with black hole mass, as
 921 the imparted energy is related to the accretion rate. More massive galaxies are also more likely to be quenched.

922 On the diagonal in Figure 17, the distributions of quenched and main sequence central galaxies are distinct for all
 923 parameters related to stellar mass. At higher stellar masses, more galaxies are quenched. This phenomenon is thought
 924 to be driven by the central SMBH, and is often referred to as ‘mass quenching’ (Peng et al. 2010). The distribution
 925 is especially bimodal for cumulative energy injected, where quenched central galaxies lie almost entirely in the range
 926 of $\Sigma E_{QM} = 10^{16} - 10^{19}$. This provides further evidence that mass quenching is driven by the energy imparted by the
 927 SMBH.

928 Local galaxy overdensity is not correlated with stellar mass or other parameters, except at the highest galaxy
 929 masses. The most massive central galaxies will only exist in dense cluster centers, where they can accumulate stellar
 930 mass through accretion.

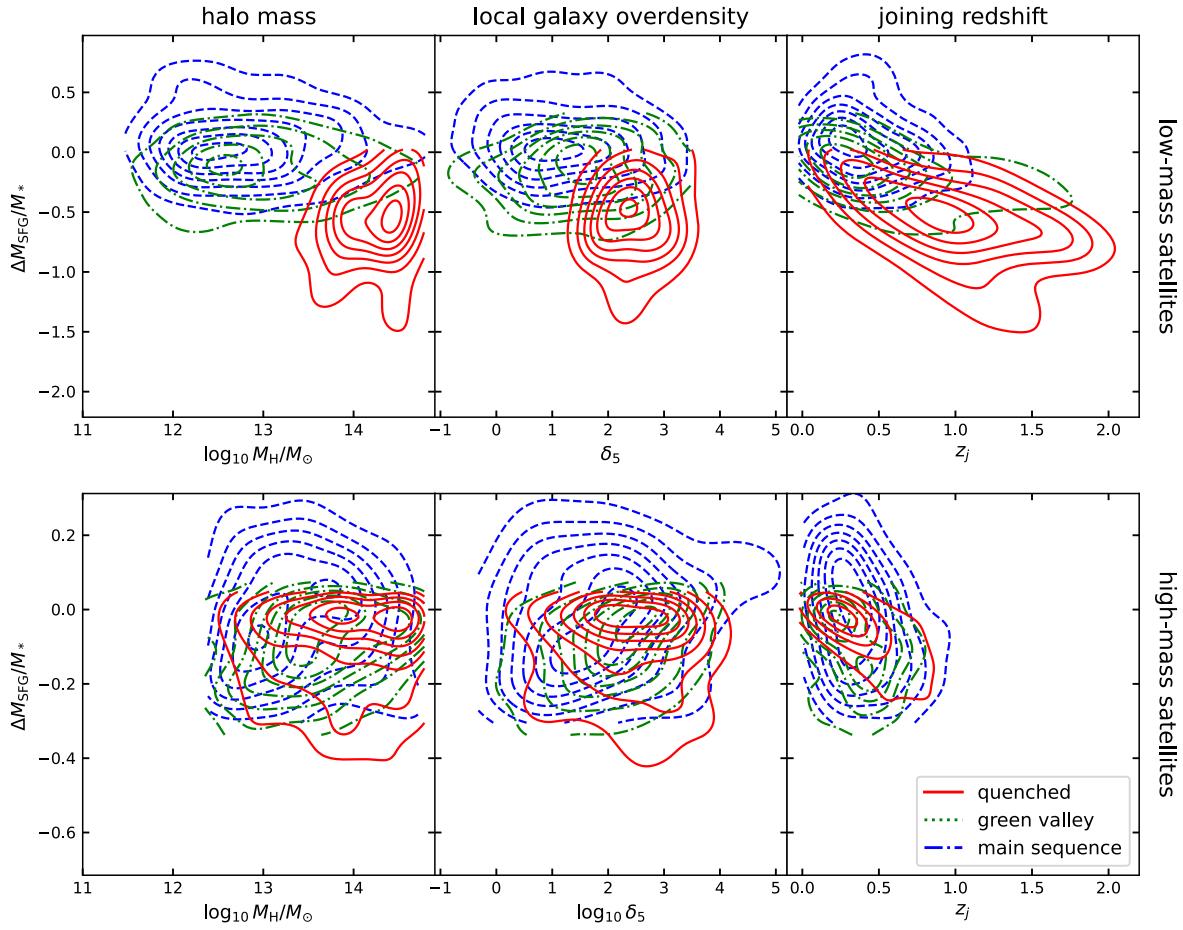

931 In Figure 18, we present the correlations between parameters for satellite galaxies. For parameters that are also
 932 measured in central galaxies, the plotted ranges are identical to 17. For satellite galaxies, we also include the z_j and
 933 ΔM_{SFG} parameters. As for the central galaxies, there is a correlation between stellar mass and black hole properties
 934 (mass and energy injected), as well as a loose $M_* - F(G, M_{20})$ correlation. Here, halo mass is no longer correlated with
 935 stellar mass, since satellites reside within the larger halo of their central host galaxy. However, halo mass is correlated
 936 with δ_5 . The redshift at which a satellite joined its host, z_j , and the change in star-forming gas, ΔM_{SFG} , are not

Figure 18. Corner plot illustrating correlations among the parameters explored in this paper, for satellite galaxies only. Formatting, including parameter ranges, is identical to Figure 17, with the addition of two parameters not computed for central galaxies: z_j and ΔM_{SFG} .

well correlated with any of the other parameters and are only slightly correlated with one another. The most negative values of ΔM_{SFG} only occur at the highest halo masses.

Differences between the one-dimensional histograms in Figures 17 and 18 are especially illuminating. While only $\approx 6\%$ of quenched TNG100 central galaxies have $M_*/M_\odot < 10^{10.4}$, just over 50% of quenched TNG100 satellites fall

Figure 19. Correlation between ΔM_{SFG} and environmental parameters for low-mass (top) and high-mass (bottom) satellite galaxies: halo mass (left), local galaxy overdensity (middle), and joining redshift (right). Density contours for the main sequence (blue), green valley (green), and quenched (red) populations are shown. Note that the ordinate limits differ between rows.

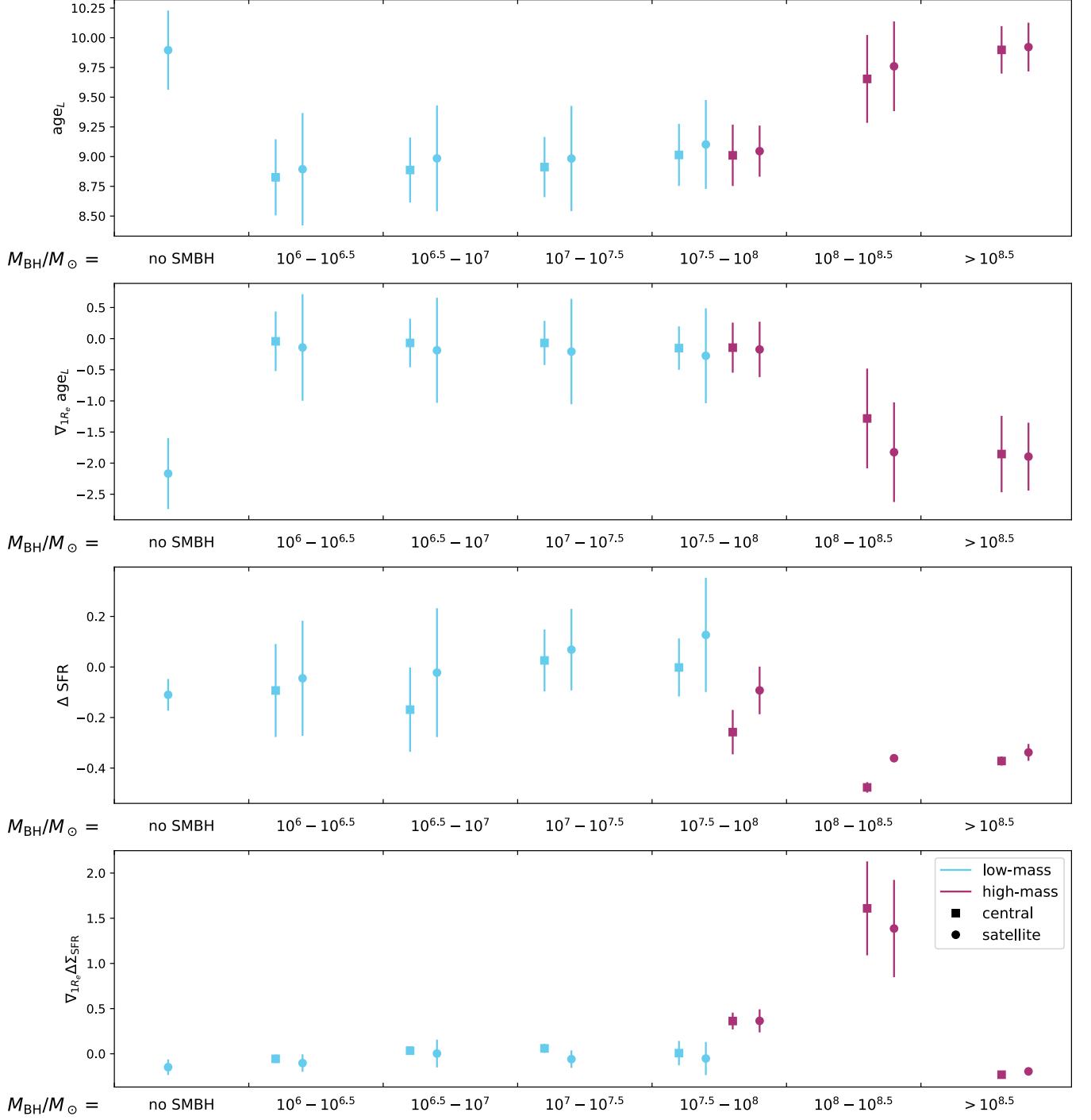
within this mass regime. The distributions of M_* , M_{BH} , and ΣE_{QM} for quenched satellite galaxies appear similar to the distributions of those parameters for quenched central galaxies, with an additional component at low values. This indicates that, while satellite galaxies will undergo mass quenching at high stellar masses, an additional quenching pathway is available for satellite galaxies.

This additional pathway allows for the quenching of low-mass satellite galaxies for which AGN feedback is weak or non-existent, and is most likely related to environmental processes. Quenched satellite galaxies are more likely to reside in more massive halos and in more dense areas, as shown in the distributions of M_H and δ_5 in Figure 18. The net effect of environmental processes is on the availability of star-forming gas.

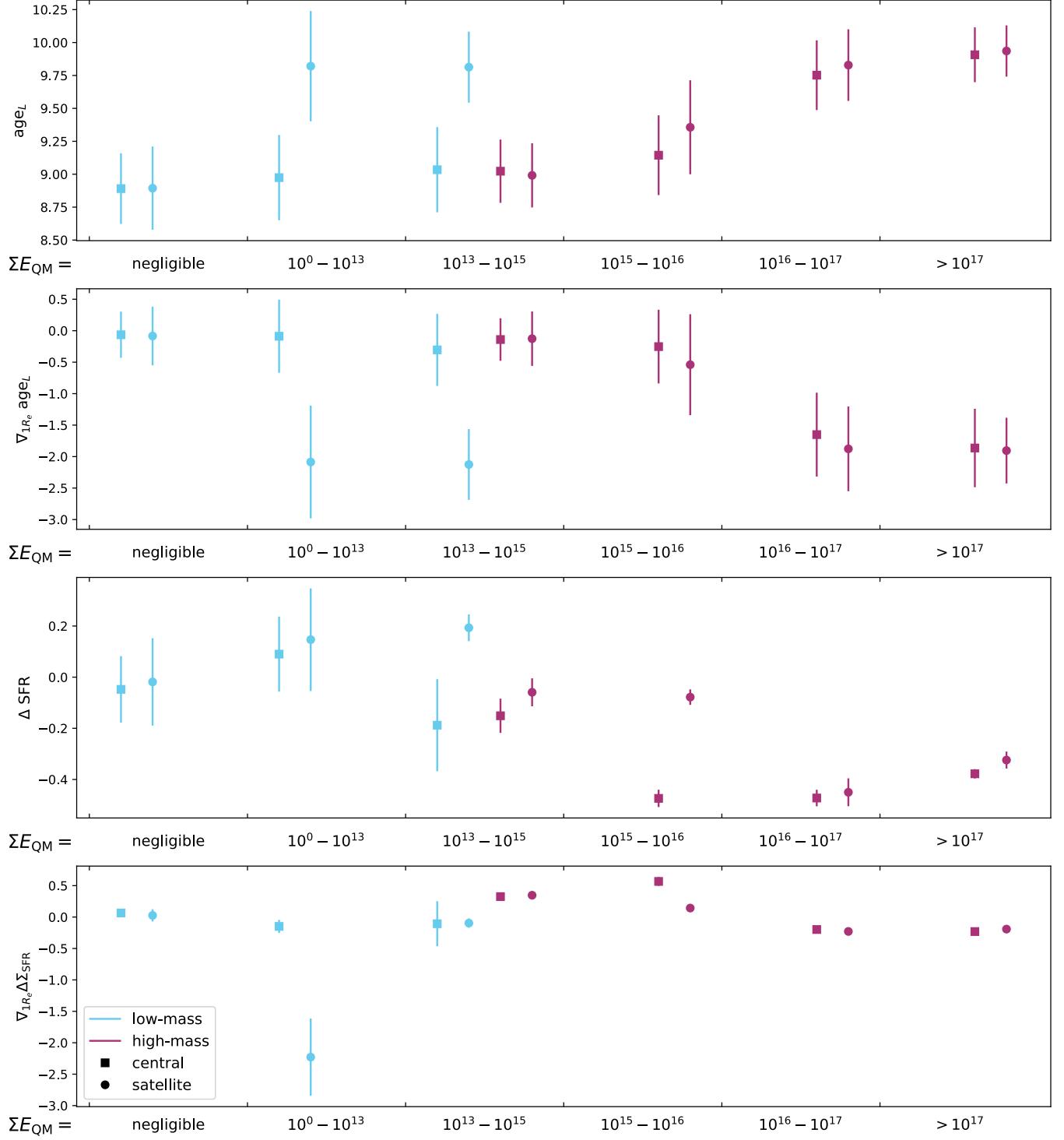
949 The bottom right panel in Figure 18 shows the distribution of ΔM_{SFG} . When ΔM_{SFG} is positive, star-forming gas
 950 has been added to the galaxy, likely through compression shocks or possibly accretion, resulting in main sequence
 951 galaxies at $z = 0$. In contrast, all quenched galaxies have values of ΔM_{SFG} that are zero or negative, indicating that
 952 these systems entered their hosts' halos as objects that were already quenched, or they were quenched as the halo
 953 stripped them of their star-forming gas.

954 As quenching occurs differently in galaxies of different masses, we further explore the correlation between ΔM_{SFG}
 955 and M_H (left), δ_5 (center), and z_j (right) in Figure 19 for low- and high- mass satellites separately. From this figure,
 956 it is clear that the quenched (red) population of high-mass satellites (bottom row) differs very little from the main
 957 sequence (blue) or green valley (green) high-mass satellite populations in these parameter spaces. This is in contrast
 958 to the population of quenched low-mass satellites (top row). This indicates that quenching in high-mass satellite
 959 galaxies is not driven by environmental factors that remove star-forming gas, but it is the dominant mechanism for
 960 quenching of low-mass satellites. A likely explanation for this phenomenon is that the greater gravitational potential of
 961 high-mass satellite galaxies better enables these systems to retain their gas reservoir during environmental interactions.
 962 The quenching in high-mass satellites is then primarily driven by AGN feedback energy, which introduces turbulence,
 963 reducing star formation efficiency.

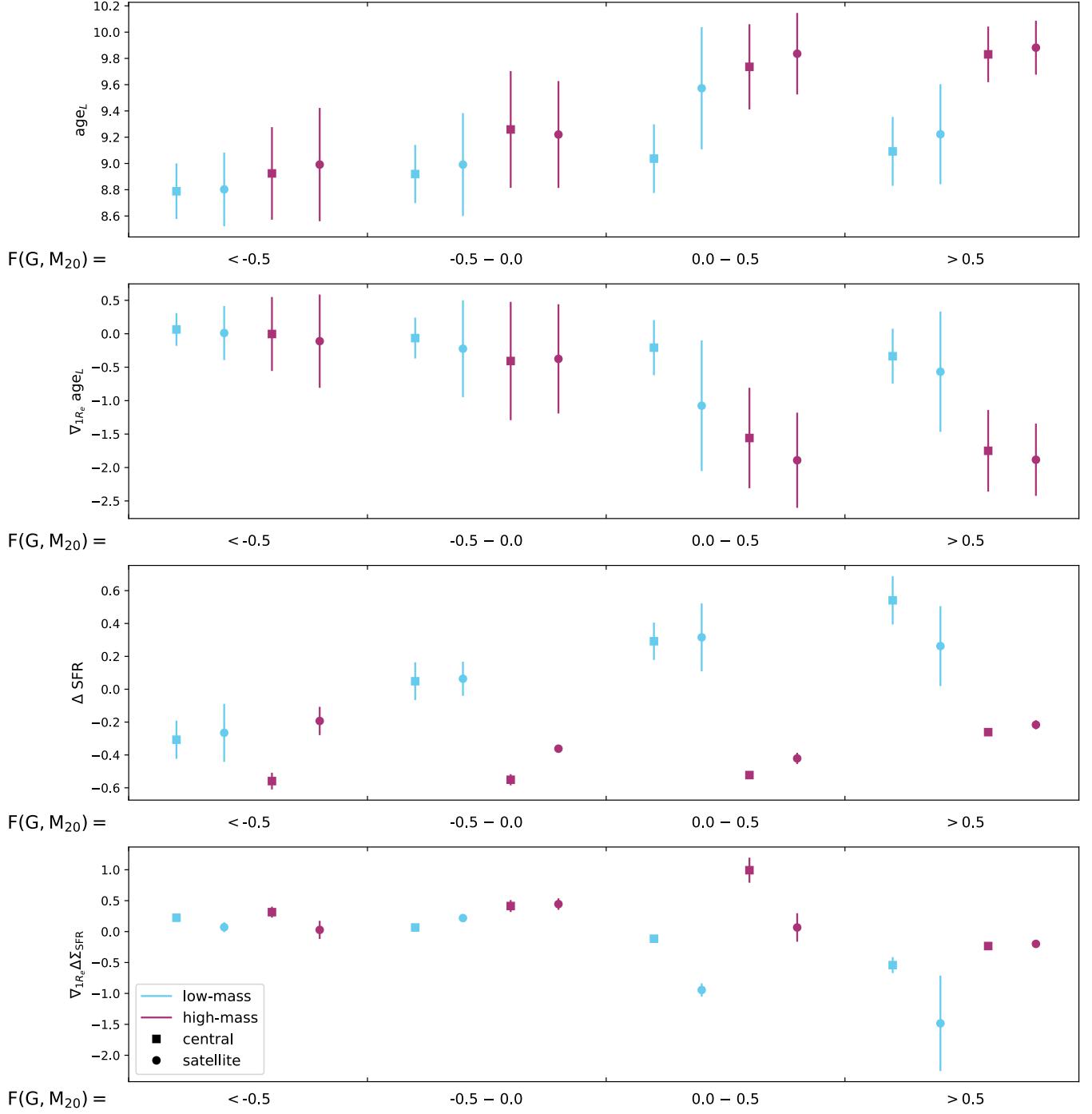
964 Quenched, low-mass satellite galaxies form the most distinct population in $M_H - \Delta M_{\text{SFG}}$ parameter space in Figure
 965 19. Galaxy-galaxy interactions that scale with local galaxy overdensity could also drive star-forming gas loss, although
 966 it is correlated with halo mass (Figure 18). Low-mass satellites with high z_j are much more likely to be in the quenched
 967 or green valley populations, and z_j is loosely correlated with ΔM_{SFG} loss.

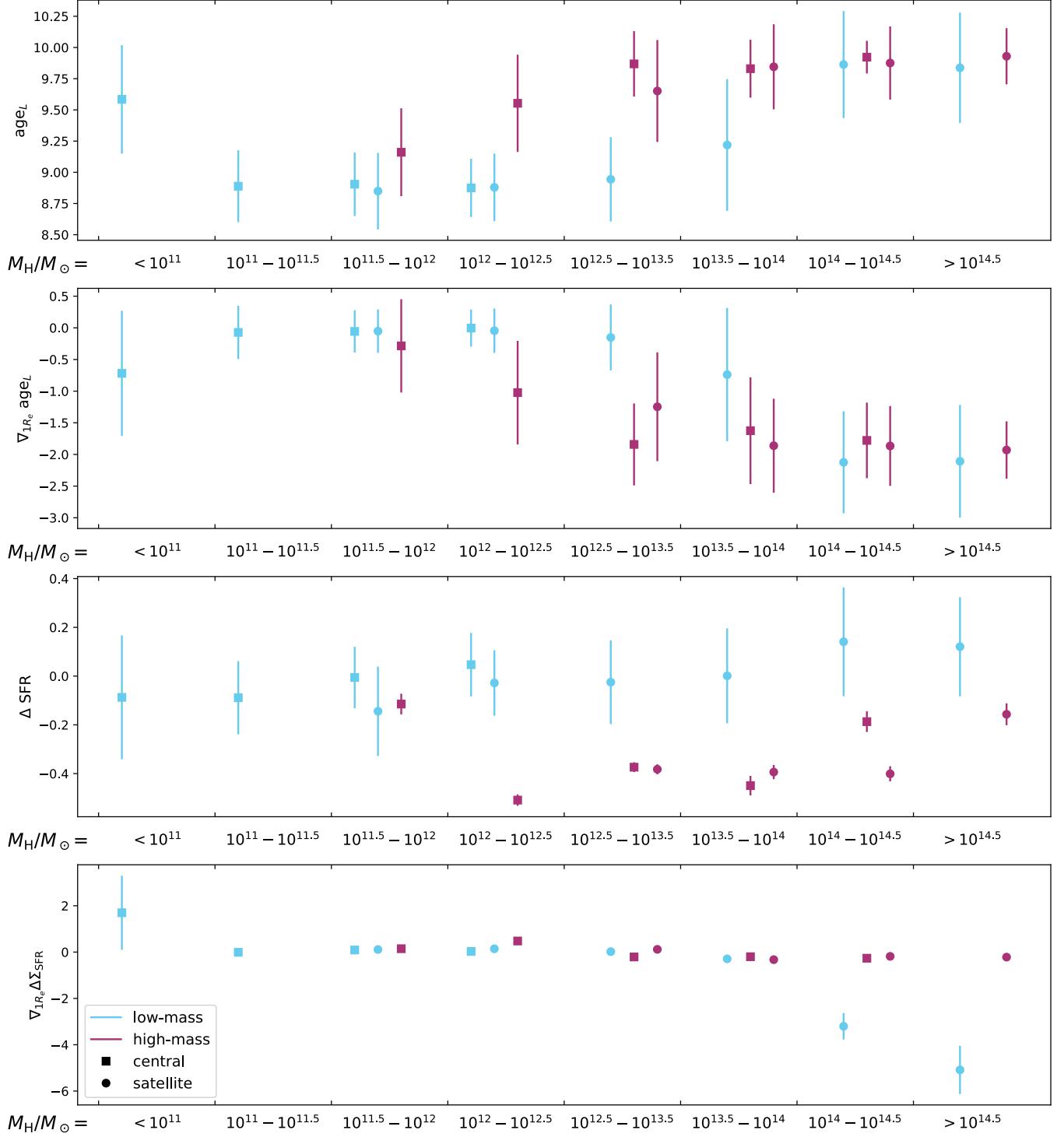

968 B. SUMMARY OF GRADIENTS AND GLOBAL AVERAGES

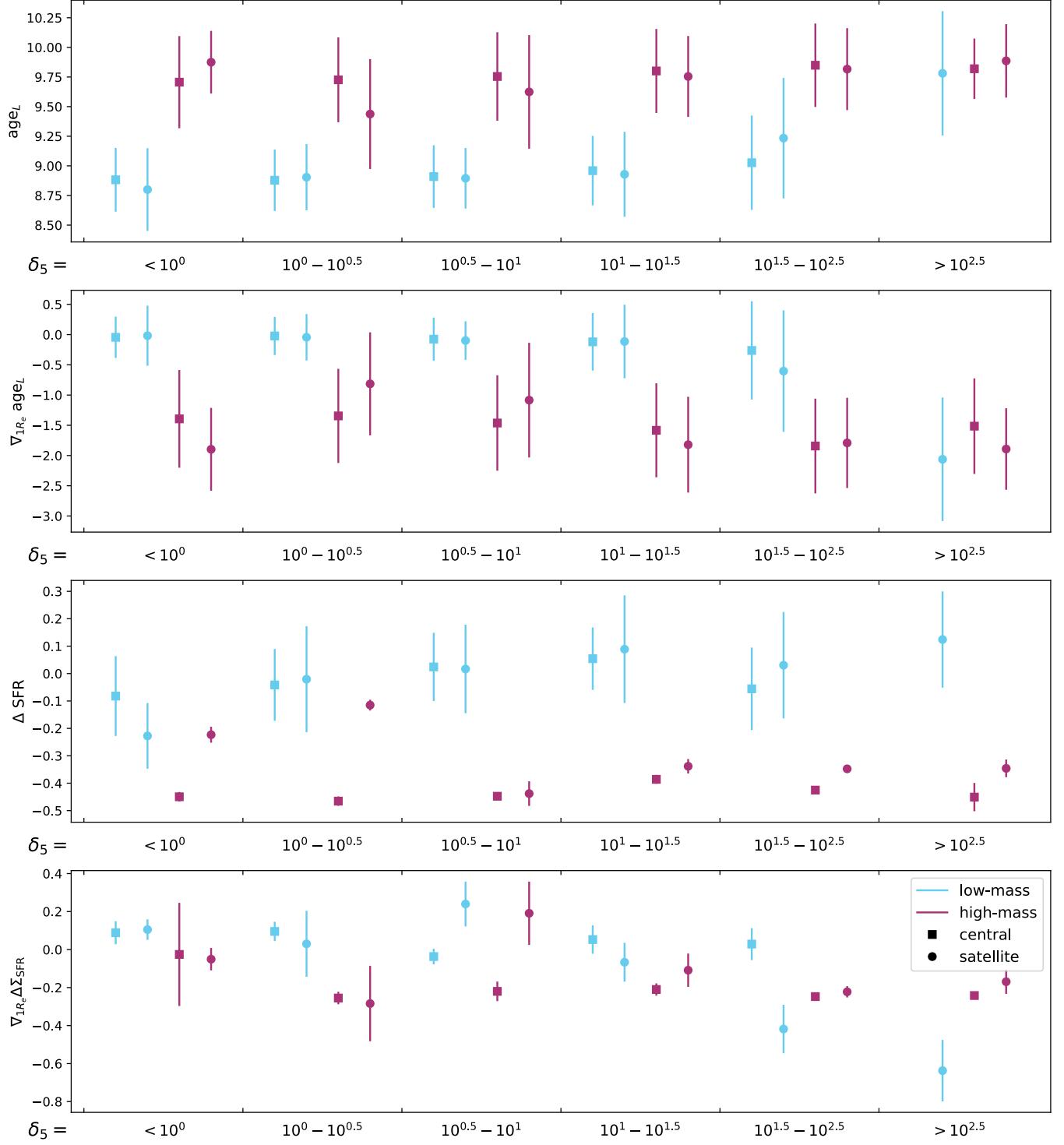
969 In this appendix, we include figures that summarize the gradients reported in the legends of Figures 1 - 14 and the
 970 overall normalization of the profiles. For the normalization of age_L , we take the luminosity-weighted age of all stellar
 971 particles that are bound to the galaxy. For the normalization of $\Delta \Sigma_{\text{SFR}}$, we report ΔSFR , the logarithmic distance
 972 from the star-forming main sequence line reported in McDonough et al. (2023). Figures 20 - 26 each summarize the
 973 results from one of the explored parameters: M_{BH} , ΣE_{QM} , $F(G, M_{20})$, M_H , δ_5 , z_j , and ΔM_{SFG} . The x-axes are the
 974 bins used in Figures 1 - 14, and points within those bins are arbitrarily offset for visibility. Low-mass galaxies are
 975 given in blue and high-mass galaxies are given in magenta. Central galaxies are shown as squares and satellite galaxies
 976 are shown as circles. From top to bottom, the panels are the median global age_L for the population with errors given
 977 by the standard deviation, the age_L gradient for the population with errors given by the fit, the median ΔSFR for the
 978 population with errors given by the standard deviation, and the gradient of $\Delta \Sigma_{\text{SFR}}$ with errors given by the fit.

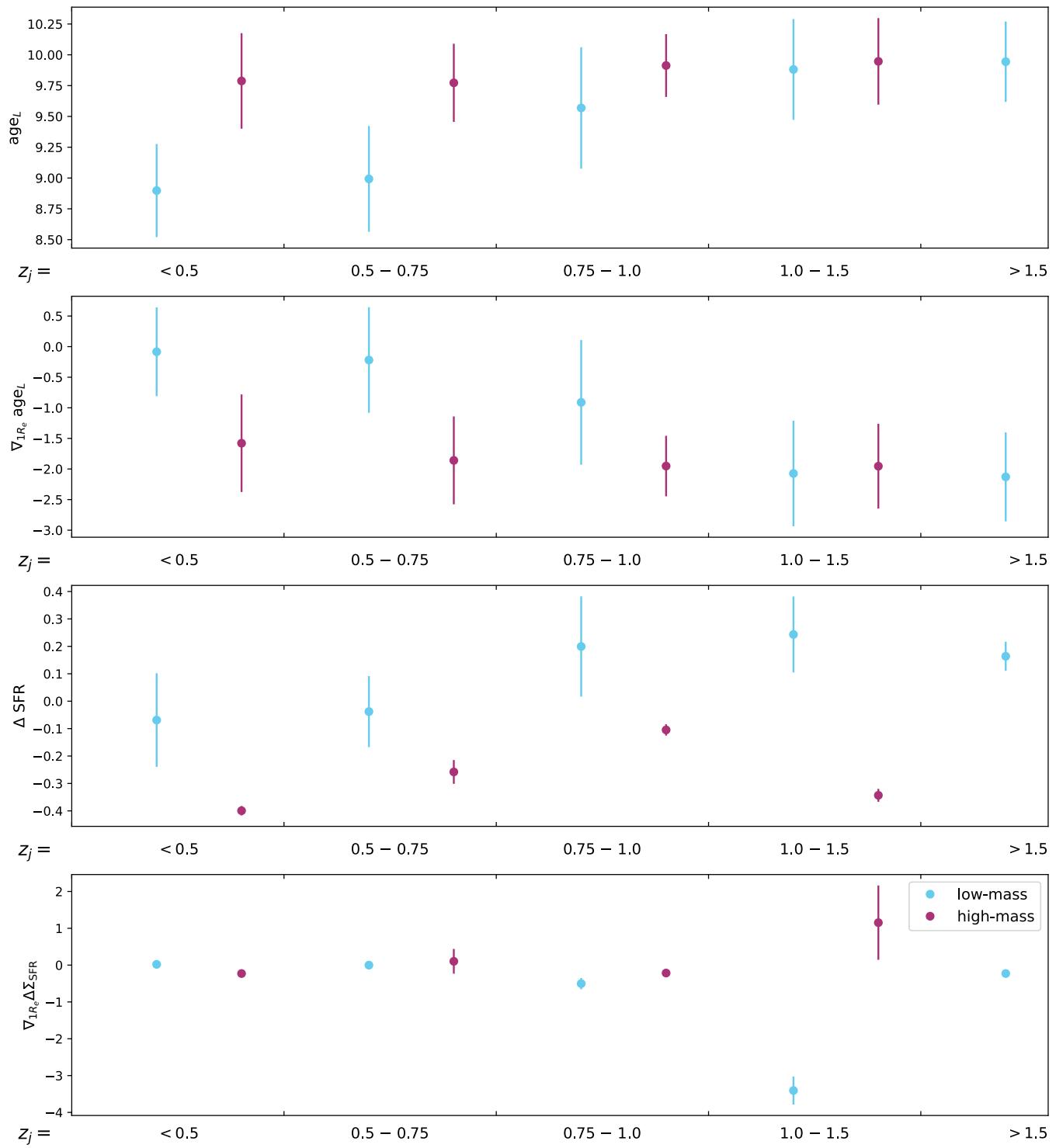

979 These figures do not capture the full variation in the shape of the radial profiles, but provide an overview of our
 980 results. The gradients reported are only measured from the center to $1R_e$, and therefore do not capture differences in
 981 the outer regions or between the disk and bulge regions.

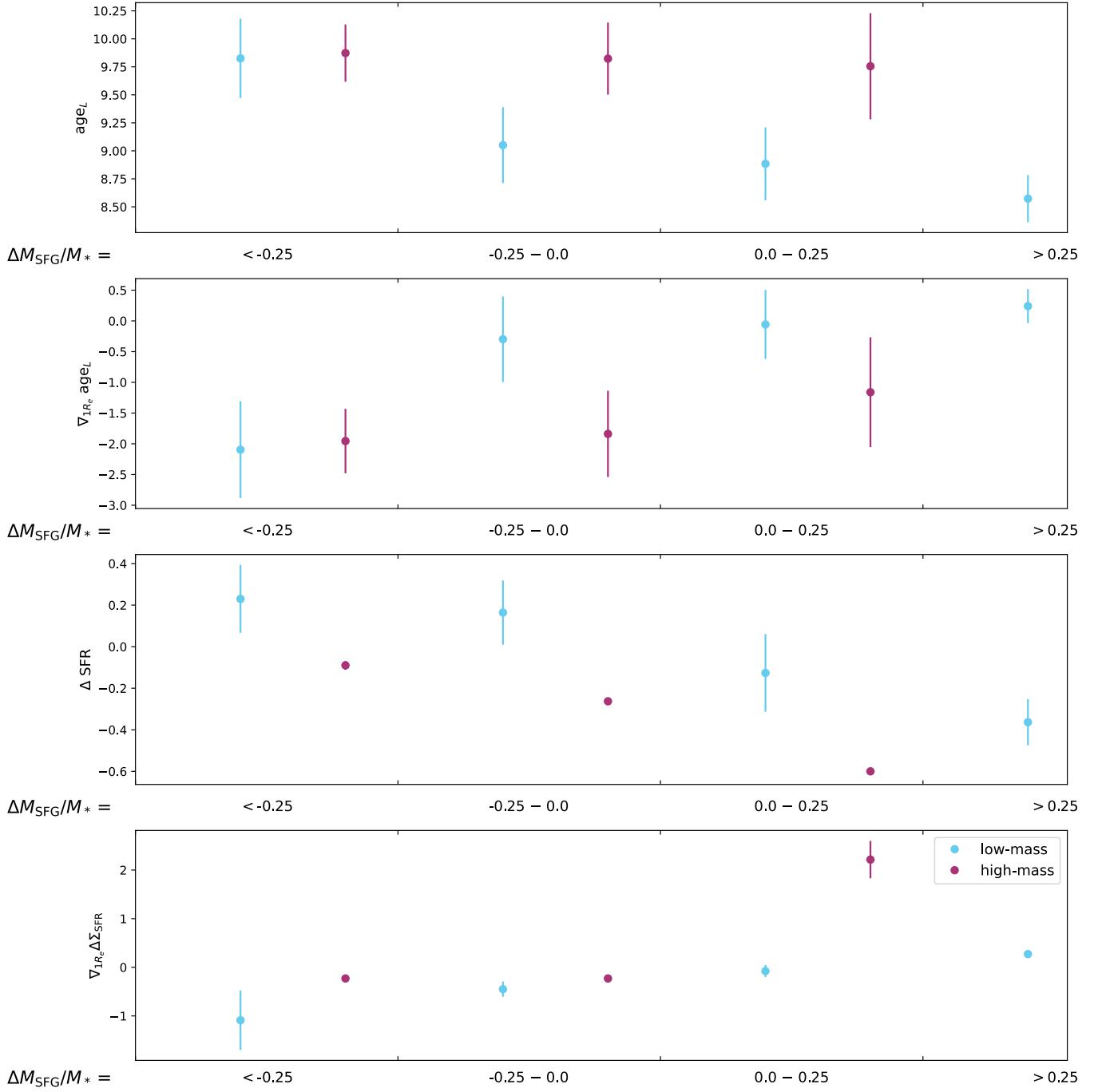
982 C. MASS-DEPENDENCY OF NORMALIZATIONS

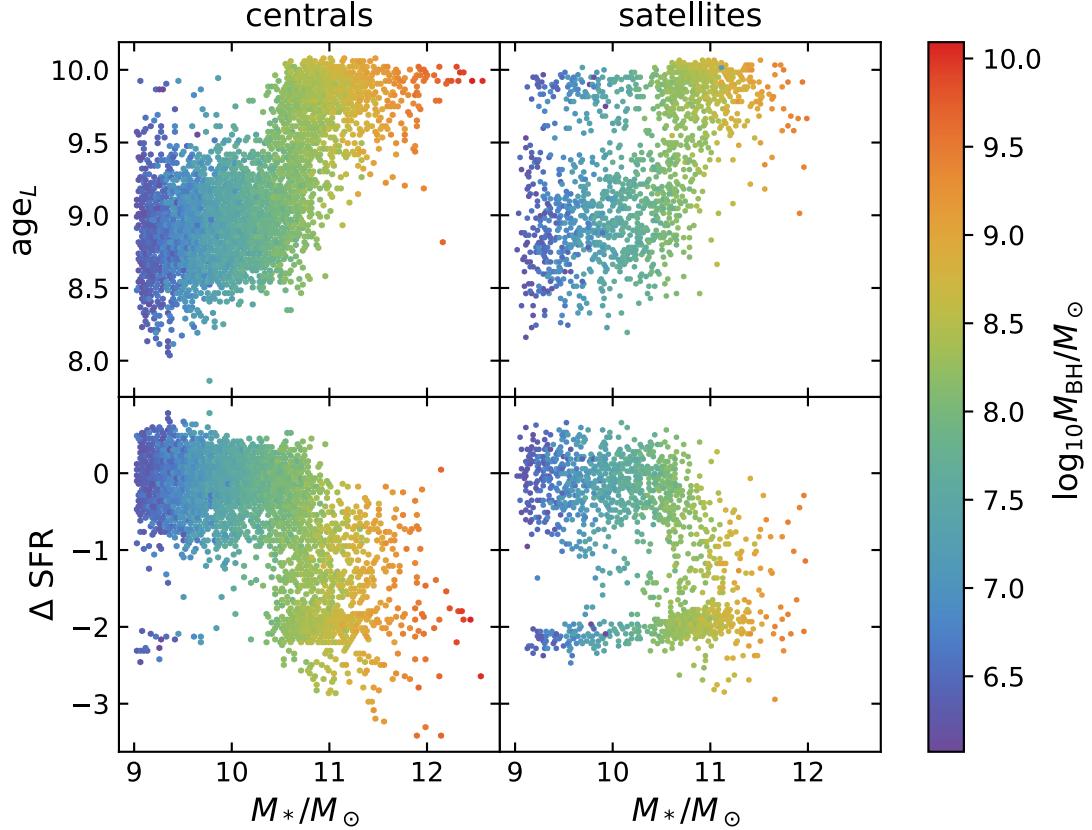

983 In this article, we have divided our sample into high- and low- mass galaxies ($M_* > 10^{10.5} M_\odot$ and $M_* < 10^{10} M_\odot$,
 984 respectively). However, the shape and normalization of age_L and $\Delta\Sigma_{\text{SFR}}$ profiles are mass-dependent (e.g., Figures
 985 4 and 5 in McDonough et al. 2023). Many of the parameters we have explored in §3 and §4 are intrinsically related
 986 to stellar mass, which may modulate the effect. In this appendix, we present figures that explore how the cumulative
 987 age_L and the logarithmic offset from the global star-forming main sequence (ΔSFR) for galaxies in our sample depend
 988 on stellar mass and the explored parameters. In Figures 27 - 31, we plot M_* against total age_L (top rows) and ΔSFR
 989 (bottom rows) for central galaxies (left panels) and satellites (right panels). Points are colored by the value of the
 990 explored parameters for each galaxy. Figures 32 and 33 are identical in formatting, but only include a single column
 991 for satellite galaxies. While we use a similar color scheme, the point colors do not necessarily correspond to the colors
 992 of profiles in Figures 1 - 14. In Figures 29 and 33, we use a different color scheme that diverges at $F(G, M_{20}) = 0$ and
 993 $\Delta M_{\text{SFG}} = 0$ to emphasize the difference between galaxies with and without bulges and satellites that have lost and
 994 gained star-forming gas. We remind readers that low-levels of SFR in the simulation are not resolved, but are here
 995 artificially set to $s\text{SFR} = 10^{-12} \text{yr}^{-1}$ with some scatter, which results in the linear trend appearing in some panels at
 996 $\Delta\text{SFR} \sim -2$. We do not include figures that explore the mass-dependency of profile gradients because the profiles of
 997 individual galaxies are too noisy to obtain good estimates of the slopes, especially at lower masses where there are less
 998 stellar particles.

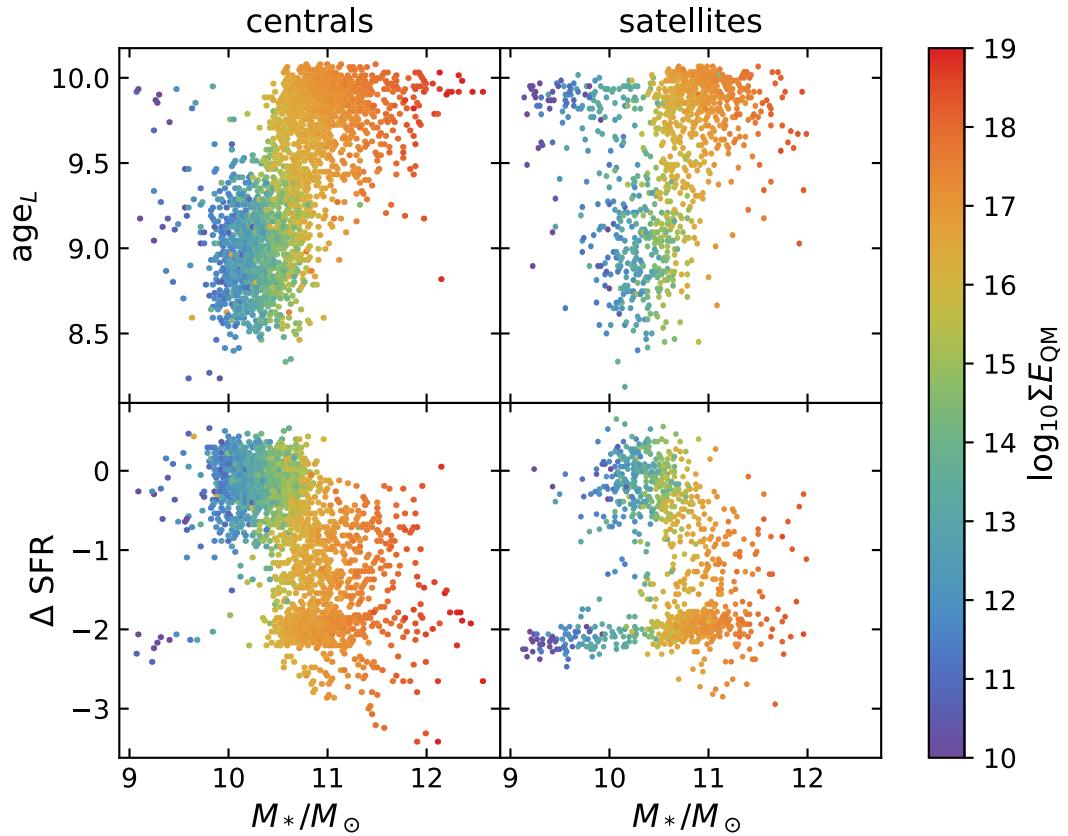

Figure 20. A summary of the median age_L and SFR, as well as the gradients measured for populations of TNG100 galaxies whose radial profiles are shown in Figures 1 and 2. From top to bottom, the panels are the median global age_L of each population subset, the age_L gradient reported in the legend of Figure 1, the median offset from the global star-forming main sequence (ΔSFR), and the $\Delta\Sigma\text{SFR}$ gradients reported in the legend of Figure 2. The galaxy populations are divided into bins of M_{BH}/M_{\odot} , which are given by the x-axis. Galaxies in these bins are further divided into high- and low- mass (magenta and blue, respectively) and classification as central or satellite galaxies (square and circle, respectively). Points within each bin are arbitrarily offset for visibility.

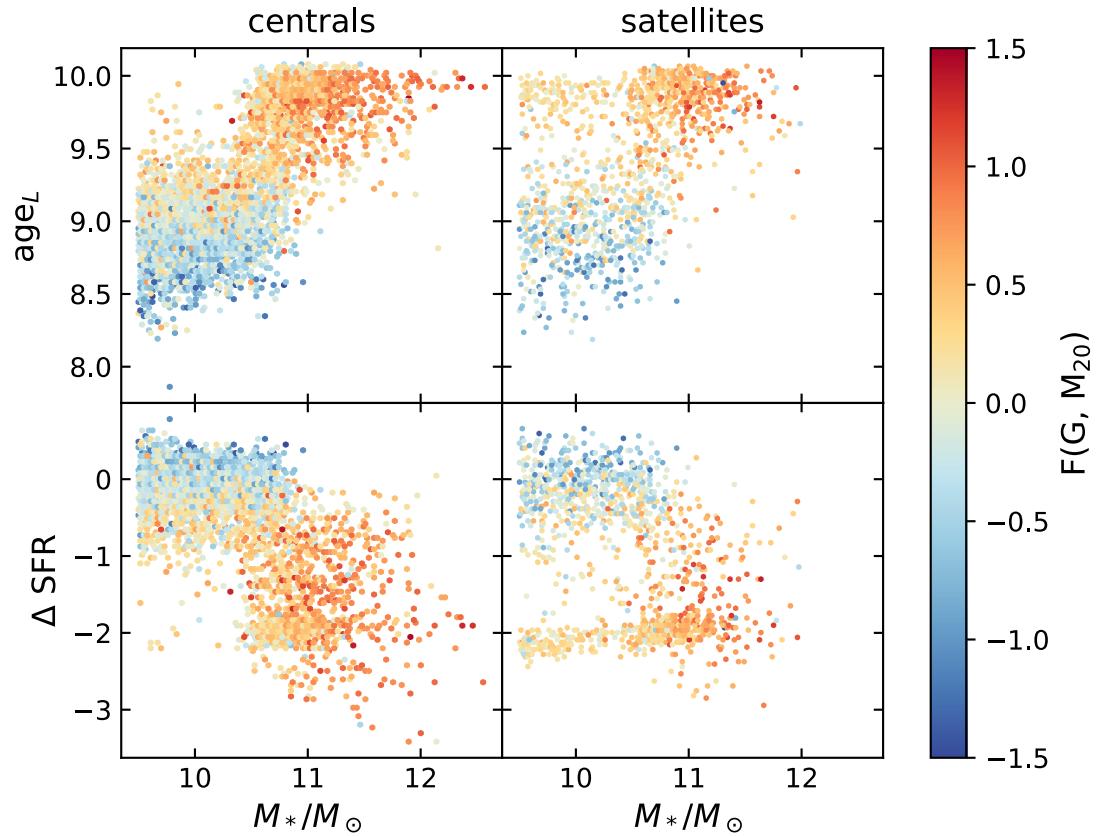

Figure 21. Formatting is identical to Figure 20, except the figure summarizes results from the ΣE_{QM} parameter shown in Figures 3 and 4.

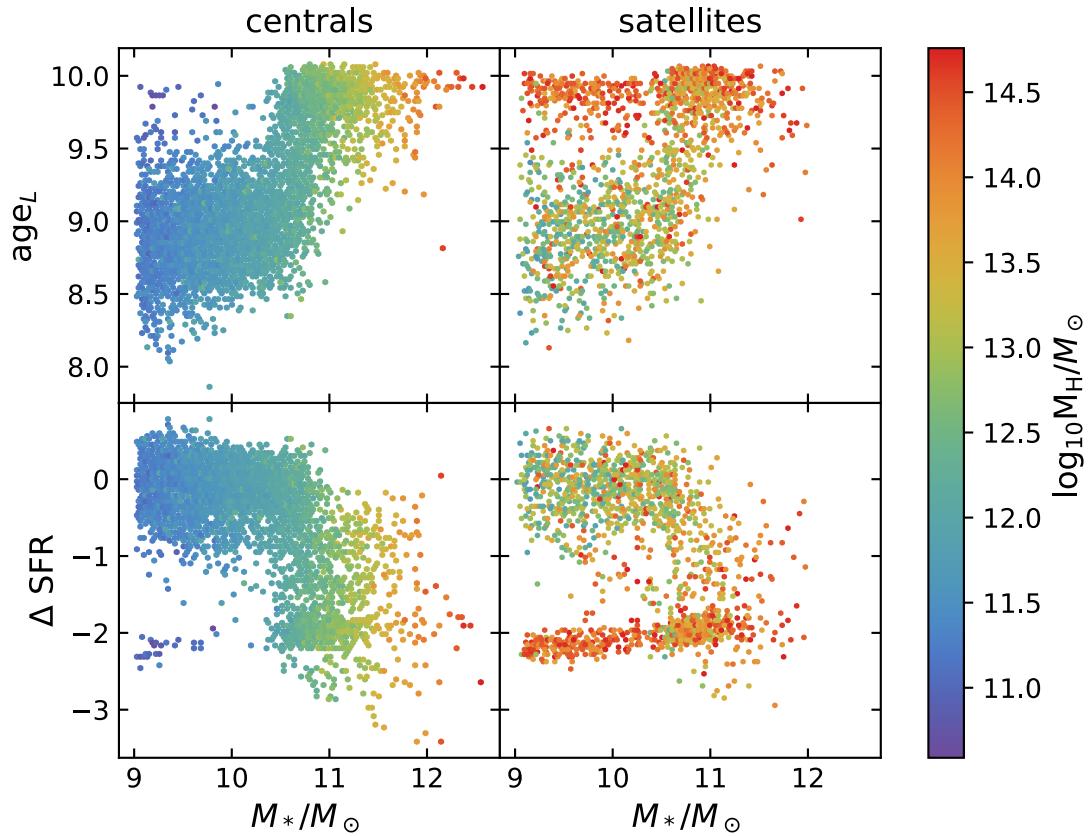

Figure 22. Formatting is identical to Figure 20, except the figure summarizes results from the $F(G, M_{20})$ parameter shown in Figures 5 and 6.

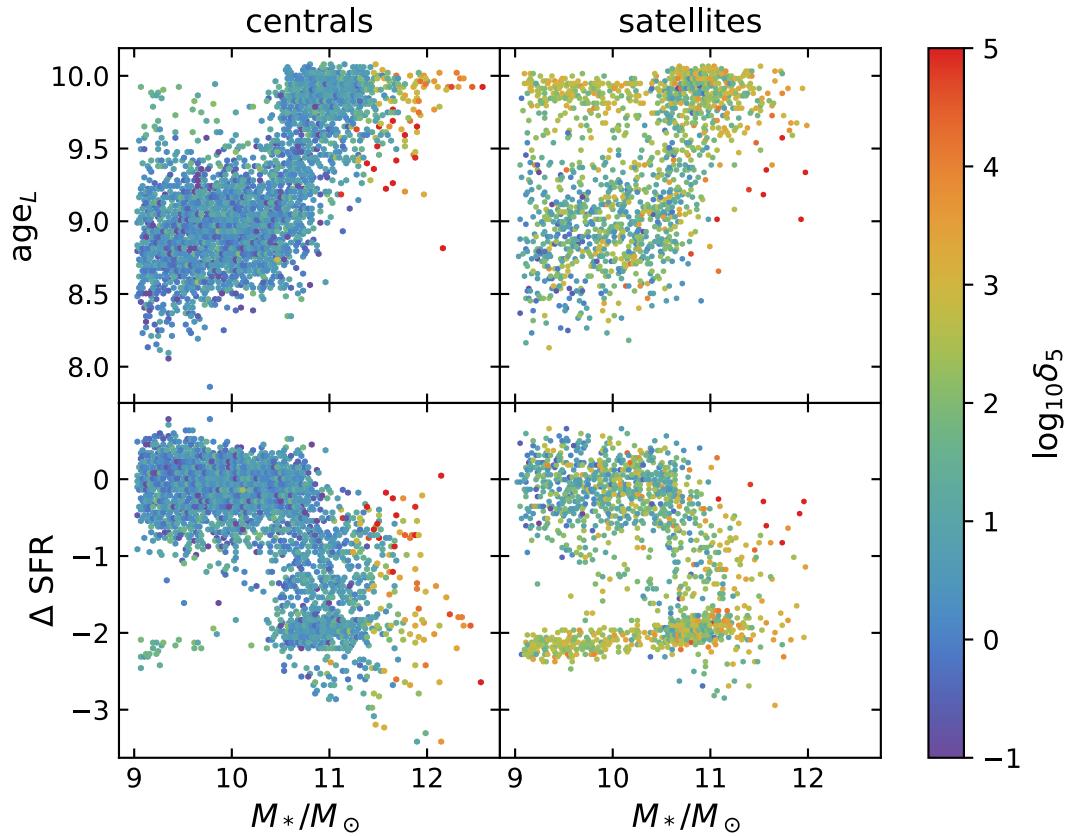

Figure 23. Formatting is identical to Figure 20, except the figure summarizes results for populations divided by M_H shown in Figures 7 and 8.

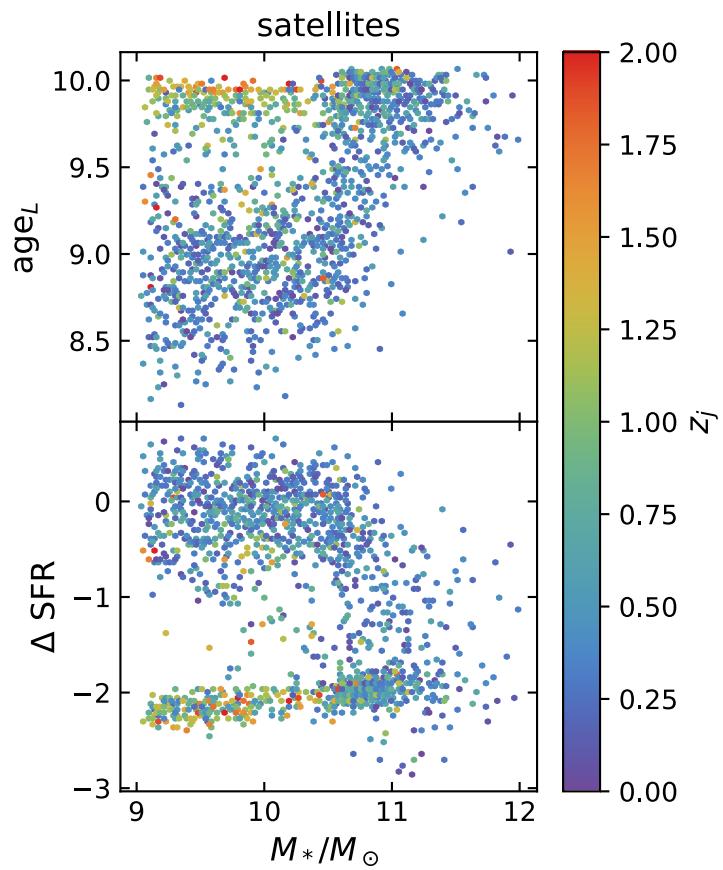

Figure 24. Formatting is identical to Figure 20, except the figure summarizes results for populations divided by δ_5 shown in Figures 9 and 10.


Figure 25. Formatting is identical to Figure 20, except the figure summarizes results for populations divided by z_j shown in Figures 11 and 12.


Figure 26. Formatting is identical to Figure 20, except the figure summarizes results for populations divided by ΔM_{SFG} shown in Figures 13 and 14.


Figure 27. The total age_L for a galaxy and the galaxy's logarithmic offset from the star-forming main sequence (ΔSFR) is plotted against stellar mass in the top and bottom panels, respectively. Central and satellite galaxies are plotted separately in the left and right columns, respectively. Points are colored according to the SMBH mass, M_{BH} .


Figure 28. Formatting is identical to Figure 27, except points are colored by ΣE_{QM} .


Figure 29. Formatting is identical to Figure 27, except points are colored by $F(G, M_{20})$.

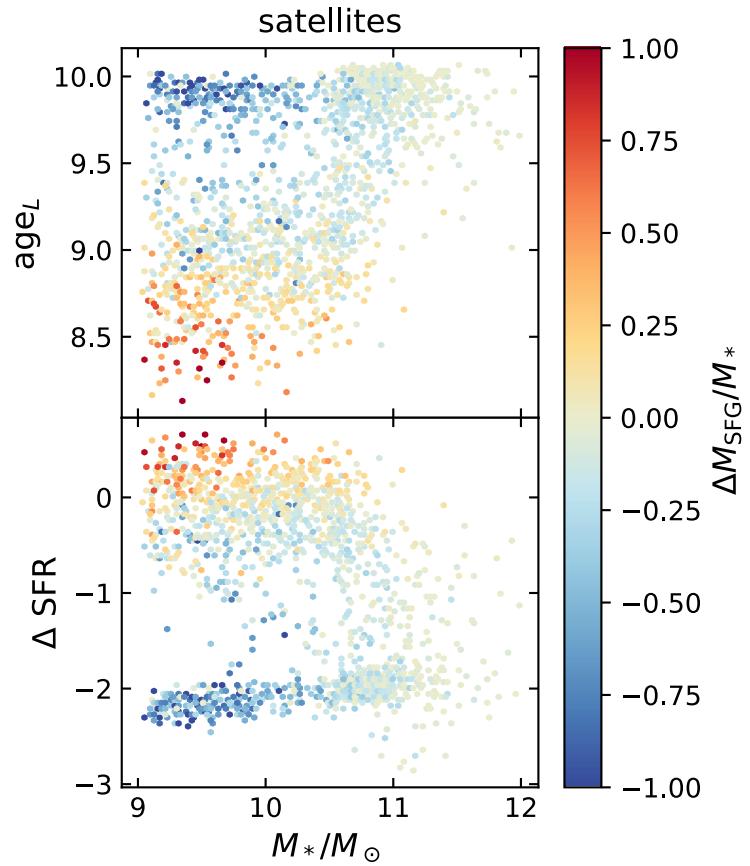

Figure 30. Formatting is identical to Figure 27, except points are colored by M_H .

Figure 31. Formatting is identical to Figure 27, except points are colored by δ_5 .

Figure 32. Formatting is identical to the right column of Figure 27, except points are colored by z_j .

Figure 33. Formatting is identical to Figure 32, except points are colored by ΔM_{SFG} .