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Abstract Dynamical systemsoften exhibit limit cycle
oscillations (LCOs), self-sustaining oscillations of lim-
ited amplitude. LCOs can be supercritical or subcrit-
ical. The supercritical response is benign, while the
subcritical response can be bi-stable and exhibit a hys-
teretic response. Subcritical responses can be avoided
in design optimization by enforcing LCO stability.
However, many high-fidelity system models are com-
putationally expensive to evaluate. Thus, there is a
need for an efficient computational approach that can
model instability and handle hundreds or thousands
of design variables. To address this need, we pro-
pose a simple metric to determine the LCO stability
using a fitted bifurcation diagram slope. We develop
an adjoint-based formula to efficiently compute the
stability derivative with respect to many design vari-
ables. To evaluate the stability derivative, we only need
to compute the time-spectral adjoint equation three
times, regardless of the number of design variables.
The proposed adjoint method is verified with finite dif-
ferences, achieving a five-digit agreement between the
two approaches. We consider a stability-constrained
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LCO parameter optimization problem using an ana-
lytic model to demonstrate that the optimizer can sup-
press the instability. We also consider a more realistic
LCO speed and stability-constrained airfoil problem
that minimizes the normalized mass and stiffness. The
proposed method could be extended to optimization
problems with a partial differential equation (PDE)-
based model, opening the door to other applications
where high-fidelity models are needed.
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1 Introduction

A limit cycle oscillation (LCO) is a closed trajectory
where neighboring trajectories either spiral toward or
away from it [1]. LCOs are frequently encountered in
engineering applications, such as, aircraft aeroelastics
[2–7], bipedal robotics [8–10], and combustion [11,
12].

In many cases, such as flutter, delaying LCO onset
is desired [7]. This can be handled by design optimiza-
tion (see the review by [4] and recent work by the
authors [13]). For partial differential equation (PDE)
constrained optimization problems with large numbers
of design variables, the most promising approach is
to use a gradient-based optimizer with gradients com-
puted by the adjoint method [14]. This is because the
adjoint method can compute the derivative at a cost that
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is independent of the number of design variables [15,
Sec. 6.7]. There has been significant progress in apply-
ing the adjoint method to dynamical systems: fixed
point [16–19], LCO [2,20], and chaotic dynamical sys-
tem [21–23].

For derivatives related to LCO, most of the pre-
vious research focused on computing derivatives of
LCO parameters, such as amplitude, phase, or period
[2,20,24]. The stability of LCO and its derivative are
also critical characteristics. The stability of LCO is
determined by the behavior of its neighboring trajec-
tories. If all the neighboring trajectories spiral toward
the LCO, the LCO is stable. On the other hand, if all
the neighboring trajectories spiral away from the LCO,
it is unstable. Finally, if some trajectories spiral toward
and others away from the LCO, it is semi-stable. In a
supercritical bifurcation diagram, all of its neighboring
trajectories are stable, while in a subcritical bifurcation
diagram, a portion of its neighboring trajectories are
unstable (see Fig. 1).

LCO stability is traditionally evaluated using Flo-
quet theory [25–27], continuation methods [28,29], or
central manifold-based methods [30–34]. Floquet the-
ory states that the stability of a periodic dynamical
system is determined by the eigenvalue distribution
of the monodromy matrix. The monodromy matrix is
obtained by evaluating the fundamental solutionmatrix
of the periodic system at t = 0 and t = T , where t is the
time, and T is one period of the system [25, Ch. 2.4].
In practice, the monodromy matrix is obtained by sim-
ulating the time-periodic dynamical system N times
for one period, where N is the number of states of
the dynamical system. This is prohibitively expensive
for problems governed by PDEs, particularly when N

Fig. 1 Bifurcation diagram for systems with subcritical and
supercritical responses

is large, such as the high-fidelity aeroelastic systems
considered by Thomas et al. [7] and He et al. [2].

Bauchau and Nikishkov [35] realized that it is pos-
sible to use the Arnoldi algorithm to compute the dom-
inant eigenvalue instead of computing all eigenvalues
to determine the stability of a periodic dynamical sys-
tem. This approach is appealing because the matrix
is never formed explicitly; only matrix–vector prod-
ucts are required by the Arnoldi algorithm, where the
response vector can be evaluated using a time integra-
tion for one period for a given initial condition. How-
ever, an unsteady adjoint implementation is required to
compute the derivative of this approach, which incurs
significant development effort and computational time
[36]. The Floquet analysis was differentiated in the for-
wardmode by [37], but the computational cost of such a
derivative computation method scales with the number
of design variables.

The continuation method tracks the LCO response
starting from the bifurcation solution [28,29]. Shukla
and Patil [29] developed a method that continuously
tracks the LCO commencement speed. They optimized
the control variables to increase the LCO commence-
ment speed to get a more benign response. The deriva-
tive was computed via a direct implicit analytic method
[15, Sec. 6.7]. The computational cost of the direct
method scales linearly with the number of design vari-
ables. Consequently, this approach can be computa-
tionally intractable if detailed high-fidelity models are
considered in the design optimization.

The central manifold-based method states that the
stability of a large-dimensional dynamical system solu-
tion near the bifurcation point can be captured by a low-
dimensional manifold named the central manifold [30–
34]. To construct the central manifold, higher-order
(second- and third-order) derivatives are required ([32],
Ch. 5), making it challenging to implement in practice
if the analytic form of the derivatives is not known a
priori. Stanford and Beran [34] applied a multi-scale
method to capture the bifurcation diagram near the
bifurcation point and conducted optimization to sup-
press the subcritical response. However, as the magni-
tude increases, the true bifurcation deviates from the
approximation. The finite differences used to compute
the derivatives make this approach very expensive for
problems governed by large-scale PDEs.

Besides themethods mentioned above, several other
methods were proposed to simulate LCO. Shukla and
Patil [38] developed a nonlinear normal mode method
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to approximate the LCOmagnitude. The approximated
LCO magnitude may cause numerical issues when
conducting gradient-based optimization, impacting the
robustness of such methods in design optimization.
Riso et al. [39] proposed an approximate recovery rate
as a metric for post-flutter analysis and gradient-based
optimization that avoids the expensive transient simula-
tion. Themethod is demonstrated in a simple optimiza-
tion problem on a typical airfoil section, minimizing
the mass ratio, subject to flutter and the proposed post-
flutter constraint. The proposed method successfully
eliminates any subcritical characteristics and accounts
for mode switches and hump modes. However, the
method requires sampling multiple flight conditions
andmodal shapes to evaluate the post-flutter constraint,
making it numerically expensive. Stanford et al. [40]
proposed a cyclic-finite difference method to solve the
periodic response of a nonlinear beam that can poten-
tially capture LCOs.

Tomitigate the computational cost and implementa-
tion challenges encounteredwhen applying the Floquet
theory, we propose a bifurcation diagram-based fitting
method to capture the instability, including an adjoint
method to evaluate the derivative of the instability met-
ric efficiently with respect to the design variables. A
third-order polynomial is fitted by sampling three post-
bifurcation points and enforcing the intersection angle
with the parameter axis at the Hopf-point to be 90◦. In
principle, the sampling points can be computed using
various approaches, but in this work, they are evaluated
by solving the so-called time-spectral LCO equation
[7,41,42]. The slope is used as a metric to determine
LCO stability. The derivative of the stability metric is
then computed using the adjoint method. The fitted
curve adjoint requires the solution of the time spec-
tral LCO adjoint [2,20] for all three points. This is the
first time the time spectral method has been applied for
LCO optimization with the LCO stability constraint.
Themethod can be used to solve optimization problems
withmany design variables because the derivative com-
putational cost is independent of the number of design
variables. However, the proposed method focuses on
problemswith bifurcation diagrams that can be approx-
imated using a third-order polynomial. Problems with
multiple branches and problems that switches to differ-
ent bifurcationmechanisms in optimization are beyond
the scope of the paper.

We consider two optimization problems to demon-
strate the proposed method: (1) A simple analytic
model and (2) a more practical airfoil section in quasi-
steady incompressible flow. For the analytic model, we
maximize the LCO parameter while also ensuring the
LCO stability. In the airfoil case, we minimize a func-
tion dependent on the airfoil’s weight and softening
effect. However, by doing so, the structure may poten-
tially become more flexible and prone to LCO at a
lower airspeed. Thus, to avoid this, we constrain the
LCO parameter, in this case, airspeed, in addition to
the LCO stability constraint.

To summarize, the new contributions in this work
are (1) the bifurcation diagram-based fitting method to
capture the instability; (2) an efficient adjoint approach
to evaluate the derivative of the instability metric with
respect to the design variables.

The paper is organized as follows. In Sect. 2,we gave
an overview of the problem and optimization setup. In
Sect. 3, we discuss the governing time spectral equa-
tions used for LCO computation. The proposed fitted
curve-based stability criterion is presented in Sect. 4.
Section5 derives the adjoint equations used to com-
pute the underlying LCO parameter derivative and the
formula to compute the stability derivative. Then, in
Sect. 6, we provide numerical results, including deriva-
tive verification and optimization results. Finally, we
present our conclusions in Sect. 7.

2 Problem setup

This section provides an overview of the problem setup
and optimization problem statement. A dynamic sys-
temcan be described by the following general equation:

dw
dt

= f(μ,w(x), x), (1)

where f : RN → R
N is some nonlinear function, μ ∈

R is the LCO parameter, and w(x) ∈ R
N is the vector

of state variables. Also, when the motion magnitude
approaches zero, μ is equal to the LCO parameter at
bifurcation (see Fig. 1). The state variables depend on
the design variable vector, x ∈ R

nx , where nx is the
number of design variables, and N is the dimension of
the state space.
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The optimization problem is formulated as follows:

minimize −μ(x)

by varying x,

subject to gstab(x) > ĝ,

x− ≤ x ≤ x̄,

(2)

where gstab(x) is the stability constraint, ĝ is a non-
negative real number that can be tuned to make sure the
solution of the dynamical system is stable, and x and
x̄ are the lower and upper bound vectors for the design
variable, x, respectively. Here gstab(x) is a scalar since
only one operation condition is considered. When per-
forming a multipoint optimization, we can use a vector
to store the stability of all points that need to be con-
strained.

It is also possible to choose a different objective
function to be optimized and set both the LCO stability
and the LCO parameter as constraints. In this case, the
problem is formulated as follows,

minimize f (x),

by varying x,

subject to gstab(x) > ĝ,

μ(x) ≥ μ,

x ≤ x ≤ x̄,

(3)

where f (x) is the objective function and μ is a lower
bound for the LCO parameter.

3 Time spectral LCO equation

In this paper, we solve the time spectral LCO equa-
tion first proposed by [7] to construct the bifurcation
diagram. Alternatively, the bifurcation diagram can be
constructed using other methods, e.g., a continuation
method, as discussed in Sect. 1. Here, it comprises a
time spectral dynamic equation,motionmagnitude, and
phase equation. Themotionmagnitude and phase equa-
tions are used to form constraints, which are necessary
to ensure a unique solution.

The fundamental idea of the time spectral method
is to approximate a periodic dynamical system using
several equally-spaced time snapshots. The temporal
residual is computed by first computing the Fourier
coefficient of the periodic state variables, evaluating the

time derivative in the frequency domain, and convert-
ing it back to the time domain snapshots. The spatial
residual is computed in the time domain.

The dynamic system, Eq. (1), can be cast into the
time-spectral form as follows. We write the LCO equa-
tion in residual form as

Rdyn = ẇn −
⎡
⎢⎣
f(μ,w1)

...

f(μ,wn)

⎤
⎥⎦

=
(
PᵀDN (ω)P

)
wn −

⎡
⎢⎣
f(μ,w1)

...

f(μ,wn)

⎤
⎥⎦

, (4)

wherewn ∈ R
n×N represents the state variables for all

time instances,wi are the states for the i th time instance,
andω is the angular velocity defined asω = 2π/T . The
matrix P is a permutation matrix defined as

Pi, j =
{
1 if mod( j, N ) = �i/n�
0 otherwise

. (5)

The matrix DN is composed of N spectral differen-
tiation matrices on the diagonal and is given by

DN (ω) =

⎡
⎢⎢⎢⎢⎣

D 0 . . . 0

0 D
. . .

...
...

. . . D 0
0 . . . 0 D

⎤
⎥⎥⎥⎥⎦

,

Di, j (ω) =

⎧⎪⎨
⎪⎩

ω(−1)( j−i)

2 sin (π( j − i)/n)
, if i 	= j,

0, if i = j,

. (6)

where i, j = 1, . . . , n. Here, we have N matrix blocks
of D on the diagonal.

In addition to the LCO equations, we constrain the
magnitude and phase of the motion of one DOF. In
residual form, this can be written as

Rm(wn) = |ŵ1| − α̂ = 0,

Rp(wn) = φ(ŵ1) − φ̂ = 0,
(7)

where |ŵ1| is the motion magnitude of the first DOF
from wn , φ is the phase of the motion, and α̂, φ̂ are the
prescribed motion magnitude and phase, respectively.
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Here, ŵ1 is the state variables for all the first DOF. The
two additional constraints are used to obtain unique
LCO solutions. Without the magnitude constraint, any
point from the bifurcation diagram satisfies the dynam-
ical equation (see Fig 1). Similarly, any phase between
[0, 2π] will be feasible without the phase constraint.
The introduction of the two constraints eliminates the
ambiguity, resulting in unique LCO solutions. He et
al. [42] provide more details on how the motion mag-
nitude and phase constraints are implemented.

Combining Eqs. (4) and (7), the full system of equa-
tions becomes

R(q) =
⎡
⎢⎣
Rm(wn)

Rp(wn)

Rdyn(μ, ω,wn)

⎤
⎥⎦ = 0, (8)

where q is the state vector defined as

q =
⎡
⎣

μ

ω

wn

⎤
⎦ . (9)

This system can be solved by segregated Newton–
Raphson method [7], or by a coupled Newton–Krylov
method [41,42]. In thiswork,we use the latter.Newton-
type methods are appealing because of their quadratic
convergence rate property. However, all Newton-type
methods require the initial point to be within the basin-
of-attraction to converge, which often leads to issues
with solution robustness. In the following sections, we
discuss our proposed solution strategy.

3.1 Jacobian-free Newton–Krylov method

In thiswork,weapply a coupled Jacobian-freeNewton–
Krylovmethod to solve Eq. (8). The Newton increment
�q is computed by solving the following equation:

J(q(k))�q = −R(q(k)), (10)

where J is the Jacobian matrix of Eq. (8), and q(k) is
the solution from the kth iteration. The updated state
approximation is defined as

q(k+1) = q(k) + θ�q, (11)

where θ is determined by a line search.

When applying a Krylov subspace method to solve
Eq. (10), onlymatrix–vector products are required. The
product can be approximated by the directional finite
difference

J(q(k))v ≈ R(q(k) + εv(k)) − R(q(k))

ε
, (12)

thus never explicitly forming and storing the Jacobian.
He et al. [42] provides more details on the solver and
preconditioners used to obtain the Newton increment
in Eq. (10). In this work, we use the Scipy [43] imple-
mentation of the Jacobian-freeNewton–Krylovmethod
[44].

3.2 Warm-start strategy based on Hopf bifurcation
analysis

Newton-typemethods require the initial point to be rea-
sonably close to the final solution to converge robustly.
However, determining or finding a suitable initial point
can be challenging and problem-dependent. Globaliza-
tion methods that address the issue of robustness exist,
such as the approximate Newton–Krylov (ANK) [45],
but this approach is not implemented here. Initializa-
tion with a prescribed motion is usually sufficient for a
simple problem. However, this initialization strategy is
insufficient for a more complex problem and requires a
better strategy. Here we implement a warm-start strat-
egy, proposed by [7], where the initial point is based
on a Hopf bifurcation analysis.

The idea is that we first linearize Eq. (1) around a
steady solution for certain μ. We decompose the state
variable into a steady component and a perturbed state

w = w + δw, (13)

wherew is a steady solution and δw is a perturbed state.
Inserting the decomposed state into Eq. (1), we obtain

d(w + δw)

dt
= f(μ,w + δw). (14)

Linearizing about the steady component of the state,
we obtain

f(μ,w + δw) = f(μ,w) + Jdyn(μ,w)δw + H.O.T.(δw).

(15)
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It follows that the steady solution, w, satisfies

f(μ,w) = 0, (16)

and the perturbed state variable δw satisfies

dδw
dt

= Jdyn(μ,w)δw + H.O.T.(δw). (17)

The Jacobian matrix is defined as

Jdyn(μ,w) = ∂f
∂w

(μ,w) . (18)

We can now identify the bifurcation point from the
eigenvalues of the Jacobian matrix. The eigenmode of
the solution δw takes the form

δw = eλtδw̃, (19)

where λ is the eigenvalue and δw̃ is the eigenvector.
Inserting Eq. (19) into Eq. (17) and ignoring the higher-
order terms, we obtain

Jdyn(μ,w)δw̃ = λδw̃. (20)

The bifurcation happens when the maximum real part
(the damping) of one conjugate pair of the eigenvalues
is equal to zero, that is,

max
j

Re
(
λ j

(
Jdyn(μ,w)

)) = 0. (21)

We denote the steady solution of Eq. (16) at the
bifurcation point as

μbif,wbif. (22)

Similarly, we denote the eigenpair for the eigenvalue
problem, Eq. (20), at the bifurcation point as

λbif, δw̃bif, (23)

where Re (λbif) = 0. There are multiple ways to solve
for μbif. One way is to define a search range and use
bisection to find μbif.

After the bifurcation problem is solved, we can use
the solution to initialize the time spectral LCO solver.
The process of converting an eigenvalue problem solu-
tion to an initial point for the time spectral LCO solver

is detailed inAlgorithm 1. In lines 2 and 3, we construct
the initial guess of the LCO solution LCO parameter
and the frequency using the values computed at the
bifurcation point. Then, in lines 4–13, we use the bifur-
cation eigenvector to approximate the LCO motion by
scaling the bifurcation eigenvector according to the pre-
scribed motion magnitude and phase of the LCO. To
be specific, in line 8, the phase difference between the
jth DOF and the first DOF is measured and recorded.
In line 9, the phase is computed taking into account
the phase difference computed in the previous step. In
line 10, themagnitude ratio is computed to compute the
motion for the jth DOF using this ratio and the motion
magnitude of the first DOF. Finally, the displacement
is computed using the computed phase and magnitude
information in line 11. The output q(0) is the initial
solution found by this warm-start strategy.

4 Stability criterion via fitted bifurcation diagram

The stability of an LCO point can be determined by
the slope of its bifurcation diagram. As a reminder, α̂
is the prescribed motion magnitude of the LCO, and μ

is the corresponding LCO parameter. For a bifurcation
diagram with μ < μbif the steady solution is stable,
we have

dα̂

dμ
> 0, (24)
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indicating that the LCO is stable; if otherwise, dα̂/dμ
< 0, the solution of the system is unstable; and
dα̂/dμ = 0 is a critical point. We assume that when
μ < μbif the steady solution is stable because, oth-
erwise, by defining μ as −μ, the conclusion will be
the opposite. This assumption can usually be met in
many physical problems. For example, for aeroelastic
LCO, where μ can be chosen as the airspeed, we know
that the steady solution is stable when the airspeed is
low. However, if a chosen parameter does not meet this
condition, we can redefine a new LCO parameter as
the additive inverse of the previous one, thus satisfying
the condition. This can also be verified by checking the
Jacobian of a steady solution with an LCO parameter
slightly lower than the bifurcation point to ensure that
all the eigenvalues are negative.

In this work, the bifurcation diagram is approxi-
mated using a third-order polynomial,

aα̂3 + bα̂2 + cα̂ + d = μ, (25)

where a, b, c, and d are coefficients to be deter-
mined by three sampling points and an intersection
angle constraint. We chose the third-order polynomial
because of its simplicity. Other interpolations, such as
the non-uniform rational B-splines (NURBS), can also
be applied. Three sampling points are considered,

(μ0, α̂0), (μ−, α̂−), (μ+, α̂+), (26)

where (μ0, α̂0) denotes the parameters with the origi-
nal LCO point, and (μ−, α̂−) and (μ+, α̂+) denotes
parameters from two neighboring points. The α̂0 is
chosen to simulate the original LCO, and the adjacent
α̂−, α̂+ can be chosen close to the original magnitude
to provide a better local estimation, or to be more uni-
formly distributed to provide a better global estima-
tion. In practice, we found that setting α̂− ≈ 0.8α̂0 and
α̂+ ≈ 1.2α̂0 gave reasonable approximation. However,
these values may differ for different applications.

The intersection angle of the bifurcation diagram
approximation curve and the x−axis (at the Hopf-
point) should be 90◦, as shown in Fig. 2. In terms of
the third-order polynomial fitting, the slope dα̂/ dμ at
α̂ = 0 shall be zero. The slope constraint at the inter-
section can be satisfied by

c = 0. (27)

Fig. 2 Stability measure via fitted curve slope

The remaining coefficients are found by solving the
following equation

⎡
⎢⎢⎣

α̂3− α̂2− 1

α̂3
0 α̂2

0 1

α̂3+ α̂2+ 1

⎤
⎥⎥⎦

⎡
⎣
a
b
d

⎤
⎦ =

⎡
⎣

μ−
μ0

μ+

⎤
⎦ . (28)

The stability criterion fromEq. (24) can then be written
as

gstab = 3aα̂2
0 + 2bα̂0 > ĝ, (29)

where gstab is the stability measure. As mentioned
before, ĝ is a non-negative parameter that can be used
to stabilize the system further. For problems with mul-
tiple unstable branches, we can enforce the constraint
at several locations on the bifurcation diagram with
different motion magnitudes. However, this is beyond
the scope of the paper and remains to be investigated in
the future. Furthermore, we assume that the bifurcation
diagram changes smoothly with respect to the design
variables. Problems with a change in the bifurcation
mechanism are also out of the scope of this paper.

5 Derivative computation

For PDE-constrained gradient-based optimization, the
derivatives must be computed efficiently, particularly
when the function evaluations are expensive. The
adjoint method is ideal for such a task because the com-
putational cost is independent of the number of design
variables [15]. In this section, we derive an adjoint-
based approach to compute the derivatives of the pro-
posed constraint.
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5.1 Computing dμ/ dx using adjoint method

Toderive the total derivative of a parameterwith respect
to the design variables, we apply the adjoint method to
Eq. (8). For more details about the adjoint method, we
refer the reader to Sect. 6 of the textbook by [15]. The
objective, f (μ, ω,wn; x), is a functional of q (i.e., the
statesμ,ω,wn), and the design variables x. For a given
x, which is determined by the optimizer, q is found
by solving the governing equation. Differentiating the
function of interest and Eq. (8), applying the chain rule,
we have

d f

dx
= ∂ f

∂x
+ ∂ f

∂q
dq
dx

,

dR
dx

= ∂R
∂x

+ ∂R
∂q

dq
dx

= 0,
(30)

where the second equality arises because the residual
remains zero for any design variable x. Applying the
adjoint method, we have

d f

dx
= ∂ f

∂x
− ψψψᵀ ∂R

∂x
,

∂R
∂q

ᵀ
ψψψ = ∂ f

∂q

ᵀ
,

(31)

where ψψψ is the adjoint variable. It is evident that by
solving one linear equation, we obtain the derivative
with respect to all the design variables.

5.2 Computing dgstab/ dx

The derivative of the constraint dgstab/dx is computed
using Eqs. (28), (29), and (31). We use the adjoint
equation Eq. (31) by setting the entries of the μμμ as the
function of interest f . It can be computed using the
chain rule

dgstab
dx

= dgstab
dc

dc
dμμμ

dμμμ

dx
, (32)

where

c =

⎡
⎢⎢⎣
a
b
c
d

⎤
⎥⎥⎦ , μμμ =

⎡
⎣

μ−
μ0

μ+

⎤
⎦ . (33)

The derivatives

dgstab
dc

,
dc
dμμμ

, (34)

can be evaluated analytically. The most computation-
ally demanding derivative is

dμμμ

dx
. (35)

It can be computed by applying the above adjoint
method three times, independent of the number of
design variables. It is also possible to use the adjoint
method to compute dα̂/dμ. However, this makes the
computation of its derivative challenging because it
requires a second-order adjoint method to compute
design variable derivatives, which is expensive. The
proposed fitting method circumvents this by formulat-
ing the constraint in terms ofμ instead of its derivative.

6 Numerical results

In this section, we first verify the analysis and deriva-
tive computation capability of the proposed method
in Sect. 6.1. Then, in Sect. 6.2, we consider a sim-
ple analytic dynamical system where the initial insta-
bility is suppressed, and a higher LCO parameter is
sought. Finally, in Sect. 6.3, we demonstrate the pro-
posed approach using an aeroelastic problem where
we optimize the dimensionless weight and softening
effect. The data of the problems are available online.1

6.1 Verification

6.1.1 Stability analysis

In this section, we verify that the proposed fitting
method can capture and represent the bifurcation dia-
gram characteristics, and the proposed Eq. (32) can
compute its slope accurately. Consider the following
analytical dynamical system

ẇ1 = (μ − 1)w1 − w2 + w3
1,

ẇ2 = w1 + (μ − 1)w2 + w3
2.

(36)

1 https://github.com/SichengHe/LCO_stability_fit_data.
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Fig. 3 Stability measure using the proposed method via fitted
curve slope compares well with the actual bifurcation map

Table 1 Verification of stability measure, gstab, computed in the
analytic form of the fitted curve and finite difference methods of
the actual curve (central difference, step size 2 × 10−7)

Fitted curve, gstab Actual curve, FD

−0.74309383 −0.74319293

The dynamical system is constructed in such a way
that the bifurcation point is at μ = 1, and the nonlin-
ear term will make the system unstable. Here, we have
N = 2, and the number of time instances used to solve
the problem is set to n = 5. The center sampling points
is arbitrarily chosen with the adjacent points selected
following guidelines discussed in Sec. 4. For verifi-
cation, we have (α̂−, α̂0, α̂+) = (0.4, 0.5, 0.6). As a
reminder, the α̂ refers to themagnitude of the first DOF,
|ŵ1|.

The fitted and the actual curve for the bifurcation
diagram are shown in Fig. 3. Overall, there is a good
agreement between the two curves, particularly close
to the sampling points, but further away at the extreme
α̂ = 1, there is a minimal visible difference. The stabil-
ity measure, gstab, obtained from the fitted curve using
analytic formula, Eq. (29), and by central finite differ-
ences at the center point, are compared in Table 1. We
achieve a 4-digit match for this specific case, demon-
strating that the proposed method can accurately cap-
ture the underlying physics.

6.1.2 Derivative verification

In the previous section, we verified the stability mea-
sure for the proposed method. In this section, we ver-
ify adjoint computation of the derivative of this stabil-
ity measure, dgstab/ dx. The dynamical system for this

Table 2 Verification of the stability measure adjoint derivative,
dgstab/ dx, compared with the finite difference method

Design variable Adjoint FD

x1 −0.69548584 −0.69549213

x2 −1.47698321 −1.47698905

task is constructed for optimization purposes and now
includes design variables and is defined as,

ẇ1 = (μ − x1)w1 − w2 + (2x1x2 − 1)w3
1,

ẇ2 = w1 + (μ − x2)w2 + (2x2 − 1)w3
2.

(37)

The dynamical system is constructed in this way such
that the bifurcation point is at μ = (x1 + x2)/2. The
nonlinear term can be either stabilizing or destabilizing
depending on the design variables value determined by
the optimizer. The prescribed motion magnitude is set
to α̂0 = 0.5, and the delta magnitude is the same as
before (±0.1) for the adjacent sampling points. The
numerical values are listed in Table 2. We obtain a 4–5
digit match for this case, demonstrating that the adjoint
method can be used to compute the derivatives accu-
rately.

6.2 Instability suppression using gradient-based
optimization

Having verified the derivatives, we can now perform
an optimization. The objective is to maximize the LCO
parameter, subject to the proposed stability constraint
that characterizes the LCO stability for a given design.
The optimization problem statement is summarized by
Eq. (2). The physical interpretation of this problem is
that we want to postpone the onset of bifurcation while
ensuring that the LCO branch is stable.

The dynamical system is defined in Eq. (37). Also,
we need to specify a motion magnitude for the time
spectral LCO solver. As before, we set the prescribed
motion magnitude to α̂0 = 0.5 and the number of time
instances to n = 5. The design variable bounds we
consider here are set to be 0 ≤ x ≤ 1. The lower
bound of the constraint value from Eq. (29) is set to
ĝ = 0.1, to make sure the solution of the dynamical
system is indeed stable. The optimization is conducted
using SNOPT [46] with the Python interface provided
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Fig. 4 Stability constraint
gstab (left) and the objective
function μ (right) contour.
The infeasible region is
shaded. The brown arrows
indicate the path of the
optimization. The square
mark indicates the starting
point, and the diamond
mark indicates the
optimized solution

by pyOptSparse [47]. For more details about the prob-
lem definition, see Eq. (2).

It is possible to visualize this problem’s design space
because there are only two design variables. The con-
tour plots for the constraint and objective functions are
shown in Fig. 4. The major iterations, initial, and opti-
mal points are shown in Fig. 4. The optimizer started
from the baseline design (x1 = 0.3, x2 = 1) and found
the optimal point to be at x∗

1 = 1, x∗
2 = 0.43.

The baseline and optimized bifurcation diagrams are
shown in Fig. 5. The two extreme bifurcation maps
from left to right correspond to the baseline and opti-
mized designs. The intermediate maps correspond to
the analysis of the design variables that are equally
spaced on a straight line between the baseline and opti-
mized designs, demonstrating that bifurcation diagram
characteristics change smoothly. The baseline design
has a lower value of μ and turns out to be unstable; the
optimized result has a higher value of μ and is stable.
This demonstrates the capability of the algorithm for
LCO stability optimization.

6.3 Aeroelastic LCO optimization problem

6.3.1 Problem setup

In this section, we consider an aeroelastic LCO opti-
mization problem. The aeroelastic model used here
is adopted from [39], consisting of a flat-plate typi-
cal section in a quasi-steady incompressible potential
flow. The airfoil is restrained in translation and rota-
tion by springs, and the elastic reaction by the rota-
tional spring includes nonlinear terms. The dynamical
system is given as,

Fig. 5 Baseline, optimized, and intermediate design bifurcation
diagrams. The intermediate diagrams are analyses of designs
on an equally spaced straight line linking the baseline and the
optimized solution

ẇ = f(μ,w, x) = A(μ, x)w + Fnl(w, x), (38)

where the total function, f(μ,w, x), is composed of
a linear coefficient matrix, A(μ, x), and a nonlinear
vector, Fnl(w, x).

The state variable vector is defined as

w =

⎡
⎢⎢⎣

h
α

ḣ
α̇

⎤
⎥⎥⎦ , (39)

where h and α are dimensionless plunging and pitching
variables, respectively. The design variable vector is
defined as

x =
[
m

κ
(3)
α

]
, (40)
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Table 3 Constant non-dimensional parameters for the aeroelas-
tic LCO problem

Property Description Value

m Mass 10.0

e Elastic center offset from
the aerodynamic center

0.2

� Plunge-pitch structural
frequency ratio

0.5

rα Radius of gyration 0.3

xα Static unbalance 0.2

wherem is a dimensionlessmass per unit length defined
as the ratio of the typical section mass per unit length
and themass of the fluid in a circlewith the half chord as
the radius, and κ

(3)
α is a dimensionless stiffness param-

eter defined as the ratio of the third-order and the first-
order spring rotational stiffness constants. In the opti-
mization, we vary m by changing the mass per unit
length where the mass of the fluid in a circle with the
half chord as the radius is fixed.

The linear coefficient matrix is defined as

A(μ, x) =
[

02×2 I2×2
−M−1

S (KS + KA(μ, x)) −M−1
S DA(μ, x)

]
.

(41)

The structural mass and stiffness matrices are defined
as

MS =
[
1 xα

xα r2α

]
, KS =

[
�2 0
0 r2α

]
, (42)

where xα ,�, and rα are constant parameters. The aero-
dynamic damping and stiffness matrices are defined as

DA(μ, x) = 2

m
μ

[
1 0

−e 0

]
, KA(μ, x) = 2

m
μ2

[
0 1
0 −e

]
,

(43)

where μ is dimensionless LCO speed, e is a constant
parameter. The nonlinear load is defined as

Fnl(w, x) =
r2α

(
κ

(3)
α α3 + κ

(5)
α α5

)

r2α − x2α

⎡
⎢⎢⎣

0
0
xα

−1

⎤
⎥⎥⎦ (44)

Table 4 Parameter values for subcritical and supercritical anal-
ysis

Property Subcritical Supercritical

κ
(3)
α −1.5 1.5

κ
(5)
α 50.0 0.0

where κ
(5)
α is another constant dimensionless stiffness

parameter. The values of the constants are listed in
Table 3.

6.3.2 Bifurcation diagram

Similar to the example shown in Sect. 6.1.1, we com-
pare the fitted bifurcation diagramwith the true bifurca-
tion diagram for two sets of parameters corresponding
to a subcritical and a supercritical behavior. For the
time-spectral analysis, the number of time instances is
n = 5. The prescribed motion center point is set to
5◦ with a delta of ±4◦. Other motion magnitudes can
be selected if the behavior of that point is of interest.
Both cases use the non-dimensional parameters shown
in Table 3. The parameters used for the subcritical and
supercritical cases are shown in Table 4.

The results are shown in Figs. 6 and 7. The fitted
curve agrees well with the actual curve for the super-
critical case. However, for the subcritical case, there is
somedeviation. In the region between 1◦ ≤ α ≤ 9◦, the
fitted curve is close to the actual curve, but for the pre-
scribed motion magnitude α > 9◦ there is some devia-
tion. Since our goal is to improve the stability property
of one LCO point at α = 5◦, the current method is suf-
ficient. Otherwise, if we want to improve the stability
of the whole bifurcation diagram, like the current one,
adding more sampling points and using a higher-order
polynomial for the curve fitting is necessary. However,
the agreement is sufficient for optimization as it cap-
tures the overall characteristics of the bifurcation dia-
gram, particularly in the unstable branch. Furthermore,
as the optimization progresses, the difference between
the fitted and actual bifurcation diagrams should reduce
as it approaches a supercritical response, which is well
represented by the fitting method.

6.3.3 Optimization

With the bifurcation verified, we are ready to conduct
an optimization. The detailed problem parameters are

123



3202 S. He et al.

Fig. 6 True (red line) and fitted (blue line) bifurcation diagrams
with sampling points (red dots) using parameters from Table 3
for the subcritical case. (Color figure online)

Fig. 7 True (red line) and fitted (blue line) bifurcation diagrams
with sampling points (red dots) using parameter from Table 3 for
the supercritical case. (Color figure online)

defined in Sect. 6.3.2. The optimization problem state-
ment is given in Eq. (45) and is a special formof Eq. (3).
The objective is to minimize a function of the dimen-
sionless weight and softening effect with respect to the
structuralweight and cubic stiffness coefficient, subject
to the LCO speed (not flutter speed) and LCO stability
constraints. As mentioned before, the dimensionless
mass is varied by changing the mass per unit length
while keeping the mass of the fluid in a circle with the
half chord as the radius fixed. We subtract the stiff-
ness coefficient squared to penalize the nonlinearity of
the design. It is because the nonlinear property, such
as geometric nonlinearity, is more difficult to predict
accurately than the linear property.

minimize m − κ(3)
α

2
,

by varying m, κ(3)
α ,

subject to gstab(m, κ(3)
α ) ≥ ĝ, (45)

μ(m, κ(3)
α ) ≥ μ,

x ≤
[
m

κ
(3)
α

]
≤ x̄.

Both constraints are bound,where ĝ is theLCOstability
lower bound, and μ is the LCO speed lower bound. In
this work, the lower bounds are as follows,

ĝ = 0.02,

μ = 0.8.
(46)

The bounds for the design variables are defined as

x =
[

5

−3

]
, x̄ =

[
15

0

]
. (47)

As before, the number of time instances is set to
n = 5, corresponding to two temporal modes. This
choice was shown to be sufficient by [42] for an airfoil.
For more complex problems where the higher modes
play a more significant role, the users can always add
moremodes at a price of computational time.Asbefore,
we conducted the optimization using SNOPT [46] with
the Python interface provided by pyOptSparse [47].

The contour plot for the two constraints in the given
design space is shown in Fig 8. The initial solution is
set to be

[
m

κ
(3)
α

](0)

=
[
15

−3

]
, (48)

and the optimized solution is found to be

[
m

κ
(3)
α

](∗)

=
[

9.25

−0.37

]
. (49)

The initial design has a lower objective function value,

m(0) −
(
κ(3)
α

)(0)2 = 6.00. (50)

However, this violates the stability constraint; the opti-
mized solution has a higher objective function value of

m(∗) −
(
κ(3)
α

)(∗)2 = 9.11, (51)

but this design does not violate the stability constraint.
This is evident in Fig. 9, which shows the initial
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Fig. 8 Contours of the
LCO stability constraint
gstab (left), the LCO speed
constraint μ (middle), and
the objective function
(right) with the infeasible
regions shaded. The brown
arrows indicate the path of
the optimization. The
square mark indicates the
starting point, and the
diamond mark indicates the
optimized solution

Fig. 9 Baseline, optimized, and intermediate design bifurcation
diagrams. The intermediate designs are taken equally spaced on
the straight line linking the baseline and the optimized solution.
(Notice these are not intermediate optimization results)

and optimized bifurcation diagrams. Although it has
a higher LCO speed, the baseline design is subcritical.

7 Conclusion

This paper proposes a fitting curve-based method as a
metric for LCO stability and an adjoint-based deriva-
tive computation that can be used for design optimiza-
tion. The advantage of this method is that the stabil-
ity metric is computed with only three points, in this
case, solved using a time-spectral method, making the
approach computationally efficient for estimating the
bifurcation diagram. Further, the computational cost of
the adjoint approach is independent of the number of
design variables. Three adjoint solutions are required
to compute the total derivative.

We demonstrated the proposed method in two prob-
lems: (1) An LCO stability constrained LCO parame-
ter optimization problem where we found that the ini-

tial instability was suppressed and the optimized solu-
tion was stable, (2) an aeroelastic optimization prob-
lemwithLCOparameter andLCOstability constraints,
where the baseline design subcritical behavior was suc-
cessfully suppressed, resulting in a supercritical opti-
mized design. This method can potentially be used to
solve large-scale design optimization problems, such
as a flutter speed optimization problem with a LCO
stability constraint for an aircraft wing.
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