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Abstract

Derivatives of eigenvalues and eigenvectors with respect to design variables are required
for gradient-based optimization in many engineering design problems. However, for the
generalized and standard eigenvalue problems with general complex and non-Hermitian
coefficient matrices, no method can accurately compute the eigenvalue and eigenvec-
tor derivatives while remaining efficient for large numbers of design variables. In this
paper, we develop an adjoint method to compute complex eigenvalue and eigenvec-
tor derivatives with machine precision. For the special case when only the eigenvalue
derivative is required, we propose a reverse algorithmic differentiation (RAD) formula
using a newly developed dot product identity for complex functions. We verify the pro-
posed method against the finite differences (FD) for a simple algebraic example with a
3-by-3 complex non-Hermitian matrix and a plane Poiseulle flow stability problem that
is modeled as a generalized eigenvalue problem. The adjoint method is demonstrated
to scale well with the number of design variables, matching the FD reference to about
5 to 7 digits.

1 Introduction
Eigenvalue and eigenvectors are essential metrics that can be used for dynamic sys-
tem behavior characterization. They are widely used in engineering applications, such
as structural dynamics with mode superposition [1], aeroelastic simulation [2, 3, 4, 5],
laminar-turbulence transition prediction [6, 7, 8, 9, 10], buffet-onset prediction [11, 12],
reacting flow instability analysis [13], turbine blade mistuning prediction [14, 15, 16, 17],
and dynamic system identification [18, 19, 20]. There are different types of eigenvalue
problems encountered in practice. In this research, we consider two types of eigen-
value problems that are frequently encountered: (1) Eigenvalue problems of a gen-
eral complex matrix and (2) generalized eigenvalue problems with complex matrices.
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For example, buffet onset [11, 12] and dynamic system identification [18, 19, 20] be-
long to the first category; structural mode superposition [1] and laminar-turbulence
transition [6, 7, 8, 9, 10] belong to the second category. Other types of eigenvalue
problems, such as quadratic eigenvalue problems [21] and other nonlinear eigenvalue
problems [22], are out of the scope of the paper. In some cases, the coefficient matrices
are real and symmetric, e.g., structural mode superposition [1], but in more general
cases, the matrices are complex and not Hermitian, e.g., laminar-turbulence transi-
tion [6, 7, 8, 9, 10]. Problems whose solution involved repeated eigenvalues are beyond
the scope of this paper.

Eigenvalues and eigenvectors derivative with respect to design variables are im-
portant information required for gradient-based optimization in many aircraft de-
sign related field, e.g., flutter suppression [23, 24], aerodynamic drag reduction op-
timization with a laminar-turbulent transition model [10], and structural optimiza-
tion [25, 26, 27, 28, 29, 30]. Thus, it is crucial to compute the derivatives of eigenvalues
and eigenvectors accurately and efficiently. For a more extensive review of the field,
we refer the reader to a recent review paper by Lin et al. [31].

Several methods exist to compute derivatives, such as finite differences (FD), com-
plex step (CS), algorithmic differentiation (AD), direct method, and adjoint method
(see Martins and Ning [32, Chapter 6]), but they differ in the level of accuracy and
efficiency. In terms of efficiency, methods either scale well with the number of outputs
(functions of interest to be differentiated, eigenvalues and eigenvectors in this case) or
with the number of inputs (design variables), but unlikely both [33],[32, Chapter 6].

While FD is prone to truncation and subtraction cancellation errors, CS does not
suffer from these limitations (assuming small enough step-size) and can compute the
derivative to machine precision [34]. Both FD and CS require little effort to imple-
ment, due to their black-box-like application. However, their computational cost scales
proportional to the number of inputs, with CS being more costly due to the complex
arithmetic. Thus, they are not feasible for many high-fidelity applications with a large
number of design variables. For the comparison of the FD and the adjoint method see
[32, Chapter 6] (Fig. 6.43 from that chapter) and [35].

Alternatively, we can use AD to compute the derivative. AD is a well-known ap-
proach to differentiate a program based on a systematic application of chain rule [32,
Chapter 6]. AD can be implemented by transforming the source code line-by-line [36],
or, for some fundamental matrix operations, such as matrix products, inversion, and
eigenvalue and eigenvector computation, analytic AD formulas can be conveniently de-
rived Dwyer and Macphail [37], Giles [38]. The AD based on the analytic formula has
the advantage that the derivatives can then be computed using the optimized libraries
without differentiating the underlying library source code. AD can also be classified
into (1) forward algorithmic differentiation (FAD) and (2) reverse algorithmic differen-
tiation (RAD) based on the order in which the chain rule is applied. FAD computes the
derivatives by applying the chain rule in a forward sequence of operations propagating
from the inputs to the outputs; RAD computes the derivatives by applying the chain
rule backward, starting with the outputs and ending with the inputs. The computa-
tional cost of FAD is proportional to the number of inputs, while the computational
cost of RAD is proportional to the number of outputs.
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Finally, besides the explicit analytic methods such as AD, we can also use implicit
analytic methods. There are two approaches in the implicit analytic methods category:
direct and adjoint [32, Chapter 6]. The efficiency of the direct and adjoint approaches
depends on the number of inputs and outputs. When the number of inputs is less
than the number of outputs, the direct method is preferable. On the other hand, the
adjoint method is more efficient when the number of inputs is greater than the number
of outputs.

Any of the derivative computation methods mentioned previously can be applied to
eigenvalue and eigenvector problems. Previous developments have focused on methods
that scale well with respect to the number of outputs, for example, the Nelson method
[28] can be categorized as a direct method and [25] is a FAD-based method. However,
in many practical design problems, there are many more design variables (usually
O(100−1000)) than functions of interest (usually O(10)) [39, 40, 41]. Using the direct
method to compute derivatives for these PDE-constrained optimization problems can
be prohibitively expensive. Thus, it is crucial to develop methods that can compute
derivatives accurately and scale with the number of design variables.

As discussed before, there are mainly two methods that scale well with the number
of inputs: (1) the adjoint method proposed by Lee [42], and (2) the RAD method
proposed by Giles [38], He et al. [43], Jonsson et al. [23]. The RAD methods can be
further decomposed into two categories according to whether it applies an iterative or a
projection-based scheme. For the projection-based method, we can classify approaches
according to whether a full basis is applied or not. Thus, we have three variations of the
RAD method, i.e., (2.a) the RAD with a full basis proposed by Giles [38], (2.b) the RAD
with an incomplete basis (the modal-based method) proposed by He et al. [43], and
(3.a) the RAD with an iterative method proposed by Jonsson et al. [23]. Among all the
approaches, the adjoint method and the RAD with a full basis can achieve machine
precision. Lee [42] developed an adjoint derivative formulation for the generalized
eigenvalue problem with real and symmetric matrices. Using this formulation, they
computed the structural mode shape derivatives with machine precision. Kim and Cho
[44] proposed to compute the partial derivatives in the adjoint equation using CS to
reduce development effort. Lewandowski and  Lasecka-Plura [45] applied the method
to solve viscoelastic problems. Yoon et al. [46] developed an efficient adjoint-based
method to compute repeated eigenvalue derivatives building on the previous work by
Lee [42]. van der Veen et al. [47] studied a control problem with reduced order models
where the mode derivatives were computed using the adjoint method. However, the
coefficient matrices encountered in Lee [42] are complex and non-Hermitian in many
applications. Different adjoint methods have been proposed for the general complex
matrices by several authors [48, 49, 26, 50]. However, the adjoint method was named
after the adjugate matrix (or the classic adjoint matrix ) and is indeed a modal-based
method, as discussed next (see [50]). To obtain machine precision results, it requires
high computational cost because it requires the complete knowledge of the eigenvalues
and eigenvectors. In this paper, we extend the adjoint method proposed by Lee [42]
to eigenvalue problems and generalized eigenvalue problems with general complex and
non-Hermitian matrices.

Giles [38] derived an analytic RAD formula for eigenvalue problems using the dot
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product identity, and as mentioned before, this method can achieve machine precision
accuracy. Walter [51] applied the method proposed by Giles [38] to compute higher
order derivatives, and Seeger et al. [52] applied them in a deep learning application.
Peltzer et al. [53] used the RAD formulas developed by Giles [38] to improve efficiency
of a linear algebra package. However, the formula requires the complete knowledge of
the eigenvectors, and for problems with large dimensions, the computational cost of
computing all eigenvalue and eigenvectors is prohibitive. On the other hand, if only the
eigenvalue derivative is computed, the method can compute the derivative accurately if
the corresponding eigenvectors are known. Following Giles [38], Roberts and Roberts
[54] extended the dot product identity to complex functions (see C for more details).
In this paper, we propose a more succinct expression that can be used to derive the
identity proposed by Roberts and Roberts [54]. Furthermore, we compare and relate
the adjoint method and the RAD formula in eigenvalue derivative computation.

Besides the accurate method developed by Giles [38], we can also approximate
the derivatives of eigenvectors using a small set of known eigenvectors as proposed
by Fox and Kapoor [25]. This method is known as the modal-based method. We
can develop RAD formulas based on the modal-based method [43]. To remedy the
truncation error Lim et al. [29], Wang [30] proposed a correction that approximates
the higher-order terms based on spectral decomposition. Leveraging this correction
method, He et al. [43] proposed RAD formulas to compute eigenvalue and eigenvector
derivative that scales favorably with the number of design variables for the generalized
eigenvalue problem with positive definite coefficient matrices. They demonstrated that
with about six basis vectors, the relative error of the derivatives is about 10−6. However,
when more basis vectors were added, the relative error reduction plateaued somewhere
between 10−6 to 10−7.

The RAD method can also be used with an iterative eigenvalue problem solver,
such as a Lanczos method [55] based solver [23]. However, the implementation of this
method requires the knowledge of AD tools, such as Tapenade [56]. While transforming
highly optimized linear algebra libraries (e.g., LAPACK) is possible, it is tedious and
requires significant implementation effort. Its success depends on the transformation
tool used and the source code programming paradigm. Furthermore, it is likely that
the transformed code performance is sub-optimal compared to the original routine both
in terms of speed and memory usage.

Our contribution in this paper is summarized as follows: (1) we develop an adjoint
equation for the eigenvalue problem with a general complex matrix, (2) we develop
an adjoint equation for the generalized eigenvalue problem with complex matrices, (3)
we develop a succinct dot product identity for complex variables, (4) using the dot
product identity for complex functions, we find a new formula for eigenvalue derivative
computation based on RAD, and (5) we discuss the relationship between the RAD and
adjoint methods. The proposed methods can compute the derivative to machine pre-
cision, can be implemented easily, scale favorably with the number of design variables,
and can be used in gradient-based optimization.

The paper is organized as follows. In Section 2, we present the governing equation
for the eigenvalue problems involving complex eigenvectors and the proposed adjoint
method. The adjoint method is then extended to the generalized eigenvalue problems
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in Section 3. In Section 3, we develop a RAD formula when the function of interest
is only the eigenvalue, using our newly proposed dot product identity for complex
functions. Then, in Section 4, we present two test cases to verify the formulas we
obtained in Section 2 and Section 3. The test cases include a simple algebraic problem
with a complex 3-by-3 coefficient matrix and a plane Poiseulle flow stability problem
modeled as a generalized eigenvalue problem. Finally, we present our conclusions in
Section 5.

2 Eigenvalue problem
In this section, we discuss the eigenvalue problem with a complex coefficient matrix
and the proposed adjoint method to compute eigenvalue or eigenvector derivatives.
This is a special case of the generalized eigenvalue problem we present in Section 3.
In Section 2.1, we introduce the eigenvalue residual form, followed by the derivation
of adjoint method in Section 2.2 presenting. Finally, Section 2.3 presents the RAD
formula for derivatives of eigenvalues only.

2.1 Governing equation

The eigenvalue problem is given by

Aϕ = λϕ, (1)

where the coefficient matrix is in general a complex matrix, A ∈ Cn×n, the eigenvector
is a complex vector, ϕ ∈ Cn, the eigenvalue is a complex scalar, λ ∈ C, and n is the
dimension of the coefficient matrix. We assume that all eigenvalues are distinct, that
is, there are no repeated eigenvalues. In practice, the repeated eigenvalues are usually
due to some spatial symmetry [31]. Thus, it is less common compared with the case
that all eigenvalues are distinct. Given these definitions and the assumption, we can
prove that the eigenvalue is analytic as a function of matrix entries (see A for the
proof).

However, the eigenvalue problem given in Eq. (1) cannot determine one unique
eigenvector given an eigenvalue. This is because the eigenvector remains an eigenvec-
tor after scaling and rotating in the complex space. Suppose that λ,ϕ is a complex
eigenpair of a matrix A. By applying stretching and rotation about the origin in the
complex plane, we obtain the following equation

A
(
αϕeiθ

)
= λ

(
αϕeiθ

)
, (2)

where α ∈ R is the scaling factor, and θ ∈ R is the rotation angle. Here, αϕeiθ is
also an eigenvector. An illustration of scaling and rotating of a complex eigenvector is
shown in Fig. 1.
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Figure 1: Scaling and rotation of a complex eigenvector. The black arrows indicate
the original eigenvector ϕ = (ϕ,1, ϕ,2). The orange lines show ϕ after scaling by α. The
gray lines show ϕ after a rotation by θ. l is the norm of ϕj,2.

Thus, to obtain one unique solution we need to constrain the eigenvector to a certain
length and angle. The norm is constrained by

ϕ∗ϕ = 1, (3)

where (·)∗ is a conjugate transpose operator. There are many ways to constrain the
angle of a complex eigenvector. One approach is to make the entry with the maximum
norm be a positive real number. We can express these conditions as

Im
(
ϕ,k

)
= 0

Re
(
ϕ,k

)
> 0

k = argmaxj||ϕ,j||2
, (4)

where j is the entry index of the eigenvector.
To summarize, solving the following equation gives a unique complex eigenvector

Aϕ = λϕ

ϕ∗ϕ = 1

Im
(
ϕ,k

)
= 0

Re
(
ϕ,k

)
> 0

k = argmaxj||ϕ,j||2

. (5)

If multiple entries have the same norm, but they are not equal with each other, we set
the value of k to the smallest entry index.

Equation (5) is written using complex numbers. However, we can expand and
split the complex equation into two real equations, namely the real and imaginary
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components of the original equation. The resulting system of equations can then be
written in terms of real numbers only as

r(w) = 0, (6)

where r(w) and w are defined as

r(w) =


rmain,r

rmain,i

rm
rp

 =


Arϕr −Aiϕi − λrϕr + λiϕi

Aiϕr + Arϕi − λiϕr − λrϕi

ϕ⊺
rϕr + ϕ⊺

iϕi − 1
e⊺kϕi

 , w =


ϕr

ϕi

λr

λi

 , (7)

where the subscript “main” distinguishes the eigenvalue equations from the additional
phase and magnitude equations, the subscription r and i represents real and imaginary
parts, respectively, the subscription m and p represents the magnitude and the phase,
respectively, and the state variable w is obtained by stacking the eigenvector and the
eigenvalue together.

2.2 Adjoint method

Now we compute the derivative of a real function f(ϕ, λ) with respect to the design
variables x where the matrix A(x) is directly dependent on x. If the function f
is otherwise complex, we can compute its real and imaginary component derivatives
separately following a similar routine. Using the notation of [32, Sec. 6.7], we formulate
the total derivative of the adjoint method as

df

dx
=

∂f

∂x
−ψ⊺ ∂r

∂x
, (8)

where the partial derivatives are provided and the vector of adjoint variables ψ is
obtained by solving the adjoint equation

∂r

∂w

⊺

ψ =
∂f

∂w

⊺

, (9)

which is a linear system. In our case, this linear system can be expanded as

∂r

∂w

⊺

ψ =
∂f

∂w

⊺

⇔


Ar − λrI −Ai + λiI −ϕr ϕi

Ai − λiI Ar − λrI −ϕi −ϕr

2ϕ⊺
r 2ϕ⊺

i 0 0
0 e⊺k 0 0


⊺ 
ψmain,r

ψmain,i

ψm

ψp

 =
∂f

∂w

⊺

.
(10)

After solving these adjoint equations (10), we evaluate (∂r/∂x)⊺ψ, which can be further
decomposed using the chain rule as

∂r

∂x

⊺

ψ =
∂Ar

∂x

⊺ ∂r

∂Ar

⊺

ψ +
∂Ai

∂x

⊺ ∂r

∂Ai

⊺

ψ, (11)
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where ∂Ar/∂x and ∂Ai/∂x are problem-specific in the sense that they depend on
the design variables of the problem and usually straight-forward to evaluate; while
(∂r/∂Ar)

⊺ψ and (∂r/∂Ai)
⊺ψ are general. The derivative expression here involves

matrices, e.g., (∂r/∂Ar)
⊺ψ that involves tensor-vector product and may cause confu-

sion. To avoid that, we assume that the derivative is computed after the matrices are
flattened as vectors, and in the final result, the vectors are mapped back to the original
matrix sizes. This operation is defined in B. We can expand these two terms as

∂r

∂Ar

⊺

ψ = ψmain,rϕ
⊺
r +ψmain,iϕ

⊺
i

∂r

∂Ai

⊺

ψ = −ψmain,rϕ
⊺
i +ψmain,iϕ

⊺
r ,

(12)

where the adjoint vector can be a complex vector. These equations are derived in G.
Finally, if we want to compute the derivative of the eigenvalue and eigenvector

with respect to the entries of the coefficient matrix A, we can use the total derivative
equation (8) with A in place of x.

2.3 RAD formula to computing derivatives of eigenvalues

Before we proceed with the analytic formula, we define the forward (□̇) and reverse
seeds (□). Consider a computation with one input, sI , and one output, sO. Suppose
matrix A is some intermediate variable within the computation, then Ȧ denotes the
derivative of A with respect to sI and A denotes the derivative of sO with respect to
elements of A.

When we only need the eigenvalue derivatives, a more efficent method can be ap-
plied. The FAD form is given by Magnus [57] as

ϕ̃
∗
Ȧϕ = λ̇ϕ̃

∗
ϕ. (13)

where ϕ̃ is a left eigenvector corresponding with the complex conjugate eigenvalue λ∗.
The left eigenvector satisfies the following equation:

A∗ϕ̃ = λ∗ϕ̃. (14)

We derive the RAD formula using proposed complex dot product identity presented in
D. The detailed derivation is included in E. The results can be summarized as

dλr

dAr

= Re

(
ϕ̃ϕ∗

ϕ∗ϕ̃

)
,

dλr

dAi

= Im

(
ϕ̃ϕ∗

ϕ∗ϕ̃

)
,

dλi

dAr

= − dλr

dAi

,

dλi

dAi

=
dλr

dAr

,

(15)
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The last two equations are due to the Cauchy–Riemann conditions (61) for an analytic
function. In F we explore the relation between Eq. (12) and Eq. (15). When an
eigenvalue derivative is sought, Eq. (15) is cheaper to evaluate instead of using Eq. (12).
Thus, we recommend using Eq. (15).

3 Generalized eigenvalue problem
The generalized eigenvalue problems are frequently encountered in engineering appli-
cations. In this section, we extend the adjoint method to this class of problems.

3.1 Governing equation

The generalized eigenvalue problem is defined as follows:

Kϕ = λMϕ (16)

where K and M are complex matrices. The governing equation for the generalized
eigenvalue problem is as follows:

Kϕ = λMϕ

ϕ∗ϕ = 1

Im
(
ϕ,k

)
= 0

Re
(
ϕ,k

)
> 0

k = argmaxj||ϕ,j||2

, (17)

There are other ways to normalize the eigenvectors. For example, a commonly used
normalization functions yields

ϕ⊺Mϕ = 1. (18)

Different normalization conditions can be taken into account by replacing the normal-
ization condition in Eq. (17).

Expanding Eq. (17) to separate real and imaginary components, we obtain

r(w) =


rmain,r

rmain,i

rm
rp



=


(Kr − λrMr + λiMi)ϕr + (−Ki + λiMr + λrMi)ϕi

(Ki − λiMr − λrMi)ϕr + (Kr − λrMr + λiMi)ϕi

ϕ⊺
rϕr + ϕ⊺

iϕi − 1
e⊺kϕi

 ,

(19)

where

w =


ϕr

ϕi

λr

λi

 . (20)
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3.2 Adjoint method

The total derivative equation (8) still holds. However, the adjoint equation for the
generalized eigenvalue problem is different and is as follows:

∂r

∂w

⊺

ψ =
∂f

∂w

⊺

⇔


Kr − λrMr + λiMi −Ki + λiMr + λrMi −Mrϕr +Miϕi Miϕr +Mrϕi

Ki − λiMr − λrMi Kr − λrMr + λiMi −Mrϕi −Miϕr Miϕi −Mrϕr

2ϕ⊺
r 2ϕ⊺

i 0 0
0 e⊺k 0 0


⊺

·


ψmain,r

ψmain,i

ψm

ψp

 =
∂f

∂w

⊺

.

(21)

Also, the (∂r⊺/∂x)ψ is different from that of Eq. (11). The (∂r⊺/∂x)ψ term is
given by

∂r

∂x

⊺

ψ =
∂Mr

∂x

⊺ ∂r

∂Mr

⊺

ψ +
∂Mi

∂x

⊺ ∂r

∂Mi

⊺

ψ +
∂Kr

∂x

⊺ ∂r

∂Kr

⊺

ψ +
∂Ki

∂x

⊺ ∂r

∂Ki

⊺

ψ, (22)

where ∂Kr/∂x, ∂Ki/∂x, ∂Mr/∂x, and ∂Mi/∂x are problem-specific and usually
straight-forward to evaluate; while (∂r/∂Kr)

⊺ψ, (∂r/∂Ki)
⊺ψ, (∂r/∂Mr)

⊺ψ, and (∂r/∂Mi)
⊺ψ

are general. As before for the standard eigenvalue problem, the derivative expressions
involve matrices and are treated as defined in B. The final expressions are

∂r

∂Kr

⊺

ψ = ψmain,rϕ
⊺
r +ψmain,iϕ

⊺
i ,

∂r

∂Ki

⊺

ψ = −ψmain,rϕ
⊺
i +ψmain,iϕ

⊺
r ,

∂r

∂Mr

⊺

ψ = ψmain,r (−λrϕr + λiϕi)
⊺ +ψmain,i (−λiϕr − λrϕi)

⊺ ,

∂r

∂Mi

⊺

ψ = ψmain,r (λiϕr + λrϕi)
⊺ +ψmain,i (−λrϕr + λiϕi)

⊺ .

(23)

The detailed derivation is similar to Eq. (12), which is presented in G.

4 Numerical results
In this section, we verify the proposed adjoint methods with FD using two test cases.
The first case is a simple algebraic problem with a 3×3 matrix, where we demonstrate
and verify the adjoint and the RAD expressions. The second case involves the more
complicated Poiseuille flow modeled with Orr–Sommerfeld and Squire’s equation, which
we used to verify the adjoint expressions for generalized eigenvalue problems.

10



4.1 Eigenvalue problem test case: the eigenvalue problem adjoint
method verification

Consider the 3 × 3 complex matrix,

A = Ar + iAi, =

−1.01 0.86 −4.60
3.98 0.53 −7.04
3.30 8.26 −3.89

+ i

0.30 0.79 5.47
7.21 1.90 0.58
3.42 8.97 0.30

 . (24)

The matrix values are arbitrarily chosen by generating random numbers in the range
of (−10, 10). The first eigenpair ϕ, λ of this system is

ϕ = ϕr + iϕi =

0.378298320174238
0.448628978890548
0.703251318380440

+ i

0.211732867893793
0.340924032744271

0

 ,

λ = λr + iλi = −2.22367558699108 + i12.859852984709278.

(25)

Moreover, the full set of eigenvalues is

Λ =

−2.22367558699108 + i12.85985298470927
−5.81588878300751 − i2.05104471148432
3.66956436999860 − i8.30880827322497

 , (26)

where Λ is a vector contains all eigenvalues. No repeated eigenvalues show up in this
case.

The function of interest f is defined as

f = fr + ifi. (27)

We choose a linear function of interest, involving the first eigenpair (ϕ, λ),

f = c⊺1ϕ+ c2λ, (28)

where the constants c1 and c2 are defined as

c1 = c1r + ic1i =

0.16
0.53
0.11

+ i

0.78
0.11
0.77

 ,

c2 = c2r + ic2i = 1.0 + i0.5,

(29)

Similar to the coefficient matrices, the value of each entry is arbitrarily chosen by
generating random numbers in the range of (−10, 10). Expanding the function of
interest terms of real and imaginary components we have

fr = c⊺1rϕr − c⊺1iϕi + c2rλr − c2iλi,

fi = c⊺1rϕi + c⊺1iϕr + c2rλi + c2iλr.
(30)

The goal is to compute df/ dA, in particular dfr/ dAr, dfr/ dAi, dfi/ dAr, and
dfi/ dAi.
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We compute the derivative using the proposed adjoint method. First, we form the
RHS of the adjoint equation (10) and obtain,

dfr
dw

=


c1r
−c1i
c2r
−c2i

 ,
dfi
dw

=


c1i
c1r
c2i
c2r

 . (31)

Then, solving for the adjoint variables using Eq. (10) and we apply the following
equations to compute the total derivatives

dfr
dAr

= − ∂r

∂Ar

⊺

ψr,

dfr
dAi

= − ∂r

∂Ai

⊺

ψr,

dfi
dAr

= − ∂r

∂Ar

⊺

ψi,

dfi
dAi

= − ∂r

∂Ai

⊺

ψi,

(32)

where ψr and ψi are adjoint vectors for fr and fi, respectively. Finally, applying the
first row from Eq. (8), Eq. (11) and Eq. (12), we can compute the derivatives. We
tabulated the first row of the derivative matrix in Table 1. We note that the most
computational expensive steps are the adjoint equation solutions for ψr and ψi.

Table 1: Verification of the adjoint derivatives with FD

Type Index Adjoint FD

dfr/dAr (1, 1) 0.315879228919551 0.315879214340953
dfr/dAr (1, 2) 0.408674084806795 0.408674075913495
dfr/dAr (1, 3) 0.437931392924164 0.437931392482938

dfr/dAi (1, 1) −0.011401200176911 −0.011401210642248
dfr/dAi (1, 2) 0.039666848554661 0.039666858242526
dfr/dAi (1, 3) −0.254254544722728 −0.254254533871290

dfi/dAr (1, 1) 0.011625919400695 0.011625894913436
dfi/dAr (1, 2) −0.042150227409544 −0.042150237078431
dfi/dAr (1, 3) 0.266721810617628 0.266721789543567

dfi/dAi (1, 1) 0.300544793153509 0.300544812148473
dfi/dAi (1, 2) 0.388896314270688 0.388896319591936
dfi/dAi (1, 3) 0.416402795592258 0.416402807346117

Now we compute the derivative using the FD. We compute the derivative df/dA

12



using FD with step size ϵ = 10−6 using the following formulas:

dfr
dAr,pq

= Re

(
f(A + ϵEpq) − f(A)

ϵ

)
,

dfr
dAi,pq

= Im

(
f(A + iϵEpq) − f(A)

ϵ

)
,

dfi
dAr,pq

= Re

(
f(A + ϵEpq) − f(A)

ϵ

)
,

dfi
dAi,pq

= Im

(
f(A + iϵEpq) − f(A)

ϵ

)
,

(33)

where Epq is a matrix with a single entry set to one (indexed as (p, q)) and all other
entries are zero. The underlining in Table 1 indicates digits that differ from those
computed with the adjoint method. Overall, 5 to 7 digits match between the FD and
the adjoint method. Thus, it demonstrates that the adjoint method can be used to
compute the eigenvalue and eigenvector derivatives accurately. However, in comparison
with the adjoint method, for each entry (p, q), the eigenpair needs to be computed
again. So in total, this requires solving an eigenvalue problem for N ×N times, where
N × N is the matrix dimension. Compared with the adjoint equation solutions, the
FD requires many more operations.

4.2 Eigenvalue problem test case: a simple algebraic problem for
the RAD formula verification

In this section, we verify the proposed RAD formula (15) for eigenvalue derivative
computation. We reuse the coefficient matrix A defined in Eq. (24) and compute the
eigenvalue derivative using the RAD and the adjoint method.

Using the RAD formula defined by Eq. (15), we computed the derivatives listed in
Table 2. We also computed the derivative using the adjoint method (8), (10), where
the differences are highlighted by underlines. Overall, the results match to machine
precision. This is consistent with the fact that the RAD and the adjoint method are
equivalent. Both are accurate and are not subject to the errors encountered when
using FD approximations. Finally, we compute the derivatives using FD. Similar to
the adjoint method results, the differing digits are highlighted with underlines. Overall,
6 to 8 digits match between the FD and the adjoint method. As discussed before, the
differences are caused by the errors involved FD approximations. Moreover, as we
discussed before, the Cauchy–Riemann condition holds here because the eigenvalues
are distinct. This is verified in the table.

4.3 Eigenvalue problem test case: comparison of the adjoint method
and the RAD method derivative computation efficiency

In this section, we compare the computational speed and scalability of the two proposed
eigenvalue derivative computation methods, the adjoint method (see Eq. (8)) and the
RAD formula (see Eq. (15)). In this study, we use a sparse n×n matrix with tridiagonal

13



Table 2: Verification of the RAD derivatives with the adjoint method and FD

Type Index RAD Adjoint FD

dfr/dAr (1, 1) 0.229556432543903 0.229556432543903 0.229556418318566
dfr/dAr (1, 2) 0.319488240798766 0.319488240798767 0.319488238531562
dfr/dAr (1, 3) 0.219681767737122 0.219681767737123 0.219681774993319

dfr/dAi (1, 1) 0.132865295735042 0.132865295735042 0.132865288549056
dfr/dAi (1, 2) 0.129506466458660 0.129506466458660 0.129506453561135
dfr/dAi (1, 3) 0.369950215573716 0.369950215573717 0.369950194922808

dfi/dAr (1, 1) −0.132865295735042 −0.132865295735042 −0.132865295654483
dfi/dAr (1, 2) −0.129506466458660 −0.129506466458660 −0.129506453561135
dfi/dAr (1, 3) −0.369950215573716 −0.369950215573717 −0.369950205580949

dfi/dAi (1, 1) 0.229556432543903 0.229556432543903 0.229556462727487
dfi/dAi (1, 2) 0.319488240798766 0.319488240798767 0.319488250966060
dfi/dAi (1, 3) 0.219681767737122 0.219681767737122 0.219681794533244

entries statistically generated satisfying the standard normal distribution and other
entries are all zero. Each entry in the matrix is independent and identically distributed.
The choice of the sparse matrix is motivated by the fact that in many engineering
applications, such as computational fluid dynamics (CFD), the Jacobian matrix is
sparse. The dominant eigenvalue is considered in this test.

We compare the adjoint equation solution time with the left eigenvalue solution
time required by the RAD formula both solved to the tolerance of 10−8. The adjoint
equation is solved using the generalized minimal residual iteration (GMRES) method
[58], implemented in SciPy [59], using the function scipy.sparse.linalg.gmres The eigen-
value problem and the left eigenvalue problem are solved using the implicitly restarted
Arnoldi method, using the scipy.sparse.linalg.eigs function. In addition, thanks to the
knowledge of the eigenvalue from solving the original eigenvalue problem, for the RAD
equation, a shift-and-invert spectral transform is used to improved the convergence
rate. For more details about shift-and-invert spectral transform, see [60]. A row-based
sparse matrix format is applied in this study.

The computational wall time versus the number of rows for the square matrix
is plotted in Fig. 2. We consider 10 different randomly generated cases, with the
mean and variance of the wall time also shown.We also include the primal eigenvalue
problem solution time as a reference. From Fig. 2, we find that the variance of all
methods is small compared with their means. Also, the solution time scales linearly
with a similar trend was observed for problems with few off-diagonal terms [61]. The
computational cost of the RAD formula and the adjoint method is smaller compared
with the eigenvalue solution. For the test conducted here only a single set of solvers
from SciPy was used, with no preconditioners applied, but it’s possible that with
improved solvers and tailored preconditioners that the adjoint method performance
might improve relative to RAD method. To develop efficient preconditioners for the
adjoint equation is itself a research topic worth exploring and is beyond the scope of
this paper. However, we recommend the use of the RAD formula if the function of
interest is only dependent on the eigenvalue and not on the eigenvector as this approach
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offers an easier implementation with consistent scaling and performance.
Note that we only record the time for the adjoint equation solution and the left

eigenvalue problem solution for the RAD formula. We do not record the time to form
the total derivative matrix because in practice the total derivative matrix is low rank
(see Eq. (15) and Eq. (12)) but dense. Thus, it is better to store it in the matrix outer
product format.

104 105 106

n

10−3

10−2

10−1

100

101

Wall time (sec)

Primal

Adjoint
RAD

p = 1

Figure 2: Scalability of the adjoint and the RAD methods for eigenvalue derivative
computation. For the adjoint method, only the adjoint equation solution time is shown.
For the RAD formula, only the left eigenvalue problem solution time is shown. The
x-axis, n, is the row (column) number of the matrix. The y-axis, T , is the wall time
in second.

To summarize, we recommend using the proposed RAD method for the eigenvalue
derivative computation due to its slightly better efficiency and the fact that it requires
less implementation effort. However, this needs be tested for a more general set of
problems to make sure the conclusion is universal.

4.4 Eigenvalue problem test case: comparison of the adjoint method
and the adjugate method derivative computation efficiency

In this section, we compare the performance of the adjoint method and the adjugate
method for eigenvector derivative computation. We apply the same method to solve the
adjoint equation as stated in Section 4.3. Rogers [26] proposed the following formula
to compute the eigenvector derivatives

dϕ(i)

dxk

=
n∑

j=1

cijkϕ
(j), (34)
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where ϕ(i) denotes the ith eigenvector, xk is the kth design variable, and the coefficient
cijk is defined as follows

cijk =
ϕ̃

(j)⊺ dA
dxk
ϕ(i)

(λ(i) − λ(j))ϕ̃
(j)⊺
ϕ(j)

. (35)

Here ϕ̃
(j)

is the jth left eigenvector and λ(i) denotes the ith eigenvalue. Thus, it is
evident that to compute the eigenvector derivative for any design variable we have
to know the full set of eigenvalues and eigenvectors for both the left and the right
eigenvalue problem. This is prohibitively expensive for most applications. For the
Rogers’ method, we apply the Schur factorization based method implemented in the
function of numpy.linalg.eig in the NumPy package [62]. To use numpy.linalg.eig,
the matrix has to be in the dense format, which may add more computational cost.
However, this is the only function that implements the eigendecomposition method for
general complex matrix in NumPy or SciPy packages.

We compare the method proposed by Rogers [26] with our proposed adjoint method.
We consider the same matrix structure as discussed in Section 4.3. In addition, the
function of interest is defined as follows

f = c⊺1rϕ
(1)
r + c⊺1iϕ

(1)
i , (36)

where c1r, c1i are two randomly generated arrays with each entry satisfying the stan-
dard normal distribution. Each entry in the vector is independent and identically
distributed.

After running 10 randomly generated cases, we obtain the results shown in Fig. 3.
We found that the Rogers method quickly becomes computationally infeasible, demon-
strating a quadratic scaling for our problem. The proposed adjoint method is several
orders more efficient.

Notice we only record the time for the adjoint equation solution and the eigen-
decomposition for the Rogers method. We do not record the time to form the total
derivative matrix because in practice this matrix shall never be formed explicitly (see
Section 4.3). For the Rogers method, it is required to iterate through all the design
variables (see Eq. (34)) that can also be computationally expensive when there are
numerous design variables.

To summarize, we recommend using the proposed adjoint method for the scalar
function derivative computation. However, the fact that the current solver requires
using a dense matrix format for the eigendecomposition method may contribute to the
large time use of the Rogers method.
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Figure 3: Scalability of the adjoint and the Rogers methods for eigenvector derivative
computation. For the Rogers method, only the eigendecomposition time is shown. For
the adjoint method, only the adjoint equation solution time is shown. The x-axis, n,
is the row (column) number of the matrix. The y-axis, T , is the wall time in second.

4.5 Generalized eigenvalue test case: the plane Poiseuille flow
problem

This example is derived from an example in the textbook by Schmid and Henningson
[6]. We analyze the eigenvalue and eigenvector derivative for the stability analysis of
the plane Poiseuille flow. The linear stability analysis is the foundation of the en-
based laminar-turbulence transition prediction method proposed by [8]. For the plane
Poiseuille flow, the mainstream velocity component U is found to

U(y) = U0(1 − y2), (37)

where U0 is the dimensionless flow speed at the midpoint of two infinite planes, y is
the dimensionless coordinate perpendicular to the flow direction. The velocity profile
of the flow is shown in Fig. 4.
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Figure 4: Plane Poiseuille flow

The stability of the flow is captured using Orr–Sommerfeld and Squire’s equations.
They are defined as [

−iLOS 0
βU ′ −iLSQ

] [
ṽ
η̃

]
= λ

[
k2 −D2 0

0 1

] [
ṽ
η̃

]
, (38)

where the eigenvalue is λ, the eigenvector is composed of vertical velocity perturbation
component ṽ and vortex perturbation component η̃, D is a differentiation operator
for ∂(·)/∂y, k =

√
α2 + β2 is the wave number, and α and β are wave numbers in

x and z directions, respectively. The operators LOS and LSQ are coefficients of the
Orr–Sommerfeld and Squire’s equations. They are defined as

LOS = iαU(k2 −D2) + iαU ′′ +
1

Re

(
k2 −D2

)2
,

LSQ = iαU +
1

Re

(
k2 −D2

)
,

(39)

where Re is the Renoylds number. For more details about the equation definition, see
[6, Chapter 3].

Following Schmid and Henningson [6, Chapter 3], we discretize Eq. (38) using a
spectral collocation method based on Chebyshev polynomials. Then, we can write the
eigenvalue problem in the following form

Kϕ = λMϕ, (40)

where K is related with the coefficient matrix the left-hand side of Eq. (38), M is
related with the right-hand side, ϕ is the first eigenvector, and λ is the first eigenvalue.
For the test case with Re = 10000, α = 1, and β = 0, the eigenvalue distribution of
this problem is as plotted in Fig. 5. We want to compute the following derivatives:

df

dK
,

df

dM
(41)
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where we define
f = c⊺1ϕ+ c2λ. (42)

The constants c1 and c2 are set to

c1 =

1 + i
...

1 + i

 , c2 = 1. (43)

0.0 0.2 0.4 0.6 0.8 1.0
ωr

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

ωi

P

S

A

Figure 5: Orr–Sommerfeld spectrum of plane Poiseuille flow for Re = 10000, α = 1,
and β = 0. We have ω = iλ. The mode at ωr ≈ 0.2375 is slightly unstable. A, P, and
S are three branches of the eigenvalues.

Solving for the adjoint variables and computing the total derivative,

dfr

dKr
= −

∂r

∂Kr

⊺

ψr,
dfr

dKi
= −

∂r

∂Ki

⊺

ψr,
dfi

dKr
= −

∂r

∂Kr

⊺

ψi,
dfi

dKi
= −

∂r

∂Ki

⊺

ψi,

dfr

dMr
= −

∂r

∂Mr

⊺

ψr,
dfr

dMi
= −

∂r

∂Mi

⊺

ψr,
dfi

dMr
= −

∂r

∂Mr

⊺

ψi,
dfi

dMi
= −

∂r

∂Mi

⊺

ψi.

(44)

Using the results given in Eq. (23), we compute the total derivatives using the adjoint
method.

We compare our adjoint results with FD results for the selected entries of the
matrices K and M in Table 3. Most of the adjoint results agree with FD results by 5
to 6 digits except for the derivatives close to zero. This verifies our proposed adjoint
formulas.
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5 Conclusion
In this paper, we developed an adjoint method for complex standard eigenvalue and
generalized eigenvalue problems and a RAD formula for the eigenvalue derivative. The
proposed adjoint method requires fewer function evaluations than the forward meth-
ods, such as FD and the direct methods, for problems with more design variables than
functions of interest. This is a critical advantage for PDE-constrained gradient-based
optimization with the eigenvalue or the eigenvector, where there are usually more de-
sign variables than functions of interest. One potential application is the aerodynamic
shape optimization with transition modeled using the eN method, which requires differ-
entiating a generalized eigenvalue problem for derivative computation. We compared
the proposed derivative methods with FD approximations. We achieved a 5 to 6 digit
match of these two methods for both eigenvalue and generalized eigenvalue problems.
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A Proof of that the eigenvalue as a function of the
matrix is analytic

Theorem 1 For complex matrix A ∈ Cn×n with distinctive eigenvalues, λi ̸= λj, ∀i, j, i ̸=
j, we have λi, ∀i, is an analytic function of A.

Proof: First, we construct the characteristic polynomial, p(x), of a matrix, A,

p(x) = xn + cn−1(A)xn−1 + · · · + c0(A), (45)

where ci(A) ∈ C, i = 1, . . . , n − 1, are coefficients dependent on the matrix A. The
eigenvalues are the roots of the characteristic polynomial, p(x) = 0.

It can also be shown that the coefficients, ci(A) ∈ C, i = 1, . . . , n− 1, are analytic
function of the coefficient matrix A. Thus, by the composition property of the analytic
function, we only need to show that any root is an analytic function of the coefficients,
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ci, i = 1, . . . , n− 1, and then, we know that any root is indeed an analytic function of
the matrix A.

We apply the following lemma.

Lemma 2 (Brillinger [63]) The distinct roots of an n-th degree complex polynomial are
analytic functions of the coefficients in the region where the roots retain their various
multiplicities.

As long as we show that the roots retain their multiplicities, then we know it is analytic.
Now we show the roots retain their multiplicities. It can be shown that the roots are

continuous function of the coefficients, ci, i = 1, . . . , n−1. Because ci, i = 1, . . . , n−1,
is also continuous with respect to A. It follows that the roots are continuous with
respect to A. We measure the minimum distance between the distinct roots

ϵ0 = min
i,j,i ̸=j

|λi − λj|, (46)

where ϵ0 > 0 because the assumption of all distintive eigenvalues. Then, due to continu-
ity, with ϵ = ϵ0/4, we can pick a positive scalar, δ, such that, ∀Â ∈ Cn×n, |Â−A| < δ,
we have

|λ̂i − λi| ≤ ϵ, i = 1, . . . , n, (47)

where Â is a perturbed coefficient matrix, and λ̂i are the corresponding perturbed
eigenvalues. By construction, we have

λ̂i ̸= λ̂j, ∀i, j, i ̸= j. (48)

This is because if there is indeed a pair, i ̸= j, such that λ̂i = λ̂j, we then have

|λi − λj|
=|(λi − λ̂i) − (λj − λ̂j) + (λ̂i − λ̂j)|
=|(λi − λ̂i) − (λj − λ̂j)|
≤|(λi − λ̂i)| + |(λj − λ̂j)|
≤ϵ0

4
+

ϵ0
4

=
ϵ0
2

< ϵ0.

(49)

This is a contradiction
|λi − λj| < ϵ0 = min

i,j,i ̸=j
|λi − λj|. (50)

Thus, in a small neighborhood of A specified by δ, the eigenvalues retain their mul-
tiplicities, in this case, one for all the eigenvalues. This finishes the proof that any
eigenvalue is an analytic function of the coefficient matrix, A. □

B Notation conventions
The vectorization operator vec (·) is defined as follows,

(vec (A))i×(n2−1)+j = Aij, i = 1, . . . , n1, j = 1, . . . , n2, (51)
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where A ∈ Rn1×n2 , vec : Rn1×n2 → Rn1n2 , and the subscript indicates the index of an
element from the matrix, A, or the vector, vec (A). This linear operation transforms
a matrix into a vector, which simplifies matrix derivative notation and computation.
The inverse vectorization operator vec−1 (·) is the inverse operator for vec (·) defined
as,

vec−1 (vec (A)) = A, (52)

for arbitrary matrix A. As a special case, when the vectorization operator or the
inverse vectorization operator is operating on a vector, we obtain the vector itself, i.e.,

vec (a) = a,

vec−1 (a) = a,
(53)

where a ∈ Rn3 is an arbitrary vector.
The following convention is used when writing a derivative involving matrices in this

paper. For (∂A/∂B)⊺ A, where A ∈ Rn1×n2 , and B ∈ Rn2×n3 . Using the vectorization
notation, (∂A/∂B)⊺ A is a simplified notation of the following operation,

vec−1

((
∂vec (A)

∂vec (B)

)⊺

vec
(
A
))

∈ Rn2×n3 . (54)

C Trace identities
The following matrix trace identities are used in the remainder of the appendices [38,
64]:

Tr(AB) = Tr(BA)

Tr(A + B) = Tr(A) + Tr(B).
(55)

D Dot product identity for an analytic complex func-
tion

It is well-known for a real function that the following dot product identity holds for
function f(w) [38]

Tr(f⊺ḟ) = Tr(w⊺ẇ). (56)

We find that, for a complex analytic function, i.e., f(w) is analytic, w ∈ Cmw , f ∈ Cmf ,
where mw,mf are the dimensions of the vectors, similar results hold

Tr(f∗ḟ) = Tr(w∗ẇ). (57)

In this case, we apply a conjugate transpose instead of a transpose on the reverse seed.
We will prove this result.

We first expand the seeds of f and w into real and imaginary parts. Here, the “□̇”
specifies the accumulated derivative in a FAD mode, and “□” specify it in a RAD
mode. For the conventions of AD, such as seeds, we refer the reader to [38, 32, 43].

ḟ = ḟr + iḟi, ẇ = ẇr + iẇi,

f = f r + if i, w = wr + iwi.
(58)
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Then, the LHS of Eq. (57) can be written as

(LHS) Tr
(
f⊺r ḟr + f⊺i ḟi

)
+ iTr

(
−f⊺i ḟr + f⊺r ḟi

)
=Tr

(
f⊺r

(
∂fr
∂wr

ẇr +
∂fr
∂wi

ẇi

)
+ f⊺i

(
∂fi
∂wr

ẇr +
∂fi
∂wi

ẇi

))
+ iTr

(
−f⊺i

(
∂fr
∂wr

ẇr +
∂fr
∂wi

ẇi

)
+ f⊺r

(
∂fi
∂wr

ẇr +
∂fi
∂wi

ẇi

))
.

(59)

Going from the first equation to the second, we use the definition of the forward seeds.
Then, for the RHS, similarly, we have

(RHS) Tr (w⊺
rẇr + w⊺

i ẇi) + iTr (−w⊺
i ẇr + w⊺

rẇi)

=Tr

((
∂fr
∂wr

⊺

fr +
∂fi
∂wr

⊺

fi

)⊺

ẇr +

(
∂fr
∂wi

⊺

fr +
∂fi
∂wi

⊺

fi

)⊺

ẇi

)
+ iTr

(
−
(

∂fr
∂wi

⊺

fr +
∂fi
∂wi

⊺

fi

)⊺

ẇr +

(
∂fr
∂wr

⊺

fr +
∂fi
∂wr

⊺

fi

)⊺

ẇi

)
.

(60)

Now, we show that the LHS and the RHS are actually equal to each other, which
proves the theorem. The real parts of LHS and RHS are apparently equal. For the
imaginary parts, we need to apply the Cauchy–Riemann condition that is satisfied
because the function is analytic,

∂fr
∂wr

=
∂fi
∂wi

,

∂fr
∂wi

= − ∂fi
∂wr

.

(61)

Using the Cauchy–Riemann condition, we can convert all the partial derivatives in the
imaginary parts for LHS and RHS.

(Im (LHS)) Tr

(
−f⊺i

(
∂fr
∂wr

ẇr −
∂fi
∂wr

ẇi

)
+ f⊺r

(
∂fi
∂wr

ẇr +
∂fr
∂wr

ẇi

))
(Im (RHS)) Tr

(
−
(
− ∂fi
∂wr

⊺

fr +
∂fr
∂wr

⊺

fi

)⊺

ẇr +

(
∂fr
∂wr

⊺

fr +
∂fi
∂wr

⊺

fi

)⊺

ẇi

)
.

(62)

They are equal. Thus, we conclude that Eq. (57) holds.
Roberts and Roberts [54] proposed the following identity for complex functions:

Tr(f∗ḟ + (f∗ḟ)∗) = Tr(w∗ẇ + (w∗ẇ)∗). (63)

We can derive this identity using Eq. (57) such that,

Tr(f∗ḟ) = Tr(w∗ẇ),

Tr((f∗ḟ)∗) = Tr((w∗ẇ)∗).
(64)

Then, by adding up these two equations, we obtain the identity Eq. (63) proposed by
Roberts and Roberts [54].
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E Derivation of Eq. (15)
First, we present the derivation of the FAD formula. The classic complex eigenvalue
derivative found by Magnus [57], as a direct extension of its real counterpart [25], can
be derived as follows

Ȧϕ+ Aϕ̇ = λ̇ϕ+ λϕ̇. (65)

For more details of the seed definition in the context of AD, we refer the reader to [32,
43]. Then, we premultiply Eq. (65) with its corresponding conjugate transpose left
eigenvector ϕ̃ defined by Eq. (14). We have

ϕ̃
∗
Ȧϕ+ ϕ̃

∗
Aϕ̇ = λ̇ϕ̃

∗
ϕ+ λϕ̃

∗
ϕ̇,

⇒ϕ̃∗
Ȧϕ+ λϕ̃

∗
ϕ̇ = λ̇ϕ̃

∗
ϕ+ λϕ̃

∗
ϕ̇,

(66)

where going from the first to the second equation, we apply Eq. (14). Canceling
identical terms from both sides, we have

λ̇ =
ϕ̃

∗
Ȧϕ

ϕ̃
∗
ϕ

. (67)

Next, we derive the RAD formula using the proposed complex dot product identity
shown in C. Using Eq. (57), we have

Tr
(
A∗Ȧ

)
= Tr

(
λ∗λ̇
)
. (68)

Inserting Eq. (67) into Eq. (68), and using the second trace identity from Eq. (55) we
have,

Tr
(
A∗Ȧ

)
= Tr

(
λ∗ ϕ̃

∗
Ȧϕ

ϕ̃
∗
ϕ

)
= Tr

(
λ∗

ϕ̃
∗
ϕ
ϕϕ̃

∗
Ȧ

)
. (69)

Since the equation mush hold for arbitrary Ȧ we have,

A =
λ

ϕ∗ϕ̃
ϕ̃ϕ∗. (70)

Thus, to obtain the derivative of the real part of λ, i.e., dλr/dAr and dλr/dAi, we
simply seed λ = 1. We then have the following results

dλr

dAr

= Re

(
ϕ̃ϕ∗

ϕ∗ϕ̃

)
,

dλr

dAi

= Im

(
ϕ̃ϕ∗

ϕ∗ϕ̃

)
,

(71)

The remaining two partial derivatives of the imaginary parts, dλi/dAr and dλi/dAi,
can be obtained using the Cauchy–Riemann condition (see Eq. (61))

dλi

dAr

= − dλr

dAi

,

dλi

dAi

=
dλr

dAr

.

(72)
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Equation (71) then fully determines the derivatives.
Notice that the expression is independent of normalization condition of both ϕ and

ϕ̃. For example, if some other normalization condition is applied, the right and left
eigenvectors are scaled and rotated to the following new eigenvectors

ϕ = ϕ0αre
iθr ,

ϕ̃ = ϕ̃0αle
iθl .

(73)

Here, ϕ and ϕ0 are the new and original right eigenvectors, respectively, ϕ̃ and ϕ̃0 are
the new and original left eigenvectors, respectively, αr and αl are scaling factors for the
right and left eigenvector, respectively, and θr and θl are rotation angles for the right
and left eigenvector, respectively. Inserting Eq. (73) into Eq. (71), we have

dλ

dA
=
ϕ̃ϕ∗

ϕ∗ϕ̃

=
αlαre

iθle−iθrϕ̃0ϕ
∗
0

αrαle−iθreiθlϕ∗
0ϕ̃0

=
ϕ̃0ϕ

∗
0

ϕ∗
0ϕ̃0

.

(74)

Thus, the result is independent of the normalization condition.

F Relation between Eq. (10) and Eq. (15)
The derivative of dλr/ dAr and dλr/ dAi can be obtained by setting

f = λr, (75)

and solve Eq. (10). The solution of the adjoint equation is found to be

ψ =


ψmain,r

ψmain,i

ψm

ψp

 =


ur

ui

0
0

 , (76)

where u = ur + iui is a left eigenvector and satisfies the following normalization
condition

ϕ∗u = −1. (77)

By applying the adjoint solution ψ in Eq. (12) and the respective result in Eq. (8) we
obtain,

dλr

dAr

= −urϕ
⊺
r − uiϕ

⊺
i

dλr

dAi

= urϕ
⊺
i − uiϕ

⊺
r .

(78)
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Now we show that Eq. (78) is indeed equal to Eq. (71). Since for Eq. (71), we show
that we can pick arbitrary normalization condition. Thus, we set

ϕ̃ = u. (79)

Due to Eq. (71), we have

dλr

dAr

= Re

(
uϕ∗

ϕ∗u

)
= Re

(
uϕ∗

−1

)
= −urϕ

⊺
r − uiϕ

⊺
i ,

dλr

dAi

= Im

(
uϕ∗

ϕ∗u

)
= Im

(
uϕ∗

−1

)
= urϕ

⊺
i − uiϕ

⊺
r ,

(80)

Thus, we conclude that the eigenvalue derivative formula is a special case of the more
general adjoint-based formula.

G Derivation of Eq. (12)
In this section, we provide the derivation for (∂r/∂Ar)

⊺ψ. The derivation for (∂r/∂Ai)
⊺ψ

is similar and is therefore omitted. As mentioned in the main text of the paper, we
evaluate this product using RAD. Here, ψ can be taken as a seed for r, i.e., ψ is an
instance of r. We use the following identity for the derivation,

Tr(r⊺ṙ) = Tr(A⊺
rȦr). (81)

Before proceeding with deriving the RAD formulation, we derive the FAD expres-
sions. We differentiate Eq. (7) to obtain the partial derivative of r with respect to Ar.
The FAD formula is given as

ṙ =


Ȧrϕr

Ȧrϕi

0
0

 . (82)

Now we derive r. By taking ψ as a reverse seed, we obtain

Tr(r⊺ṙ) = Tr(ψ⊺ṙ). (83)

We now substitute in the FAD formula Eq. (82), followed by expanding the ψ =[
ψ⊺

main,r ψ⊺
main,i ψ⊺

m ψ⊺
p

]⊺
, we obtain,

Tr(ψ⊺ṙ) = Tr

ψ⊺


Ȧrϕr

Ȧrϕi

0
0


 = Tr

(
ψ⊺

main,rȦrϕr +ψ⊺
main,iȦrϕi

)
. (84)

Now, using the first identity from Eq. (55), and then factoring out similar terms, we
obtain

Tr
(
ψ⊺

main,rȦrϕr +ψ⊺
main,iȦrϕi

)
= Tr

(
ϕrψ

⊺
main,rȦr + ϕiψ

⊺
main,iȦr

)
(85)

= Tr
((
ϕrψ

⊺
main,r + ϕiψ

⊺
main,i

)
Ȧr

)
. (86)
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By Eq. (81), we can then write

Tr
((
ϕrψ

⊺
main,r + ϕiψ

⊺
main,i

)
Ȧr

)
= Tr(A⊺

rȦr). (87)

Since the equation holds for arbitrary Ȧr, comparing and matching the LHS and RHS
we conclude that

Ar = ψmain,rϕ
⊺
r +ψmain,iϕ

⊺
i , (88)

This finishes our derivation of Eq. (12).
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