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Abstract—The increasing adoption of DevOps and microser-
vices paradigm in enterprise software has not only brought about
several benefits but also a host of challenges. In particular, such
applications may suffer from frequent misconfigurations and
other faults that need to be diagnosed promptly. In this paper,
we propose a novel framework centered around the concept of
Partial Digital Twin (PDT) to enable isolated testing without
disrupting the main infrastructure. Our framework employs a
systematic methodology to replicate the chain of dependencies
relevant to reported faults, facilitating efficient root cause anal-
ysis. Additionally, we introduce a hierarchical categorization of
faults leading to the selection of tests tailored to specific fault
types. Through empirical evaluation, we demonstrate that the
median number of tests required to diagnose a misconfiguration
using our approach is only 7% above the ideal scenario.

Index Terms—Microservices, partial digital twin, root cause
analysis

I. INTRODUCTION

The DevOps transformation of IT services is fueling a
radical change in how cloud services are conceptualized,
designed, and implemented [1]. The emerging microservices
paradigm, aided by service-mesh to manage multiple instances
of a microservice, is increasingly replacing the traditional
monolithic designs [2]. The popular idea now is to decompose
a large service into relatively independent microservices, each
of which can be independently developed and maintained.
This is facilitated by mechanisms to limit coupling between
them such as asynchronous calls, weak consistency, lock-free
operation, circuit breaker, etc. Each microservice typically runs
in its own container environment, and the service-mesh archi-
tecture allows the number of running microservice instances
to be changed dynamically based on the offered load. Such
transparent instancing also allows for concurrently running
multiple versions of a microservice simultaneously (e.g., an
older proven version and a newer test version) along with
means to direct workload to specific instances.

Unfortunately, splitting a sequential application into a large
number of microservices creates a large distributed system out
of a centralized one. The dynamic, heterogeneous instancing
and features like lock-free shared data access further increase
the conceptual complexity of the application and hence the
chances of concurrency, synchronization, and other faults. Fur-
thermore, the Continuous Integration/Continuous Deployment
(CI/CD) processes associated with DevOps result in contin-
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ual updates, reconfiguration, and instancing of microservices,
which substantially increases misconfiguration faults.

Thus an online diagnosis mechanism that can quickly root-
cause the problems becomes essential. Because of the typical
small sizes of microservices, automated root-causing is needed
only at the level of microservices and their interactions, and
this is a focus of this paper. Deeper analysis such as identifying
incorrectly set individual configuration variables or program
bug identification is not within the scope of this paper and may
be tackled by other mechanisms, including manual checking.

Microservices diagnosis has been explored in several prior
works but is typically concerned with offline analysis and
visualization of collected logs [3] [4]. The intent is to proac-
tively find potential problems. Zhou et al. [5] discusses various
tools for such diagnosis in a microservices environment.
Recent works often use machine learning algorithms for
such diagnosis [6]. Van Aken et al. [7] presents a machine
learning technique to predict configuration-induced failures in
microservices environments.

To effectively solve the microservices level root cause
analysis problem, we propose a novel framework that imple-
ments the concept of a Partial Digital Twin (PDT). Unlike a
digital twin (DT) that replicates the entire system at certain
level of abstraction [8], a PDT temporarily replicates only
a part (i.e., some microservices and the data they use). The
PDT provides a controlled environment that replicates a part
of the production system without disturbing the mainstream
infrastructure [9] services. Testing in this isolated environment
ensures that potential faults or failures discovered during
analysis do not impact end users or business operations. An
example is running test transactions that modify tables, which
would be highly undesirable to do in real databases. Instead,
we can reproduce specific states or conditions in the digital
twin to observe and analyze faults. The contributions of this
paper include:

1) We demonstrate how the PDT can be implemented
efficiently by using Istio’s microservices orchestration
and logging features.

2) We propose a hierarchical fault categorization to create
a systematic diagnosis procedure for various microser-
vices faults.

3) Our experiments show that the proposed automated
method nearly matches ideal diagnosis performance.

The rest of the paper is organized as follows. Section II
explains the microservices architecture and configuration pa-



rameters, Section III elaborates on the framework design for
fault diagnosis, Section IV explains the evaluation of our
proposed framework, and Section V provides a conclusion.

II. MICROSERVICE ENVIRONMENT AND SERVICE MESH

A. Microservices and Configuration Parameters

Modern microservice-based applications decompose func-
tionality into independent, loosely coupled services, which
form a well defined path, represented as a DAG (directed
acyclic graph) and known as a service graph.

< —)—
5

1.8% /\

0 loadgenerator

Ddefault B default
=» | Traffic Flow
O Node
Service frontend
A Traffic Flow @ default
7.5%
x% | "percent 5% oi% 5.7%
recommendation checkout adservice
service service
detault | 4520, | default
27.4% 9%
recommendation
service
default |
grpc
31%

22% 13.4% 89% 67% 267%\ ..
shipping product payment email currency cart
service catalogservice service service service service

D default|| @ ® default ||  default default] | @® default | | default
Shipping pro;ucl paymen emai currency car
service || catalogservice service service service service

[ default|| @ default || D default| |(B default| | @ default | | default]

Fig. 1: Sample DAG for a request using Istio

Fig. 1 shows such a graph for the service mesh of a mi-
croservices based shopping application [10] that we have used
for this paper. The green arrows depict a sample transaction,
with requests facing contention at infrastructure (individual
servers) and platform (communication channels) levels. This
contention, coupled with the service processing times influence
the performance during the journey through the graph [11].

TABLE I: Test-based Configuration Parameters for Microservices

Attribute Type
Network
Security
Infrastructure

Configuration Parameters

DNS Resolution, Network Latency, Network Routing

Access Control, API/JWT Keys, Authentication

Service Discovery, Istio Config. (Dest. Rules, Request Routing, mTLS Encryp-
tion), Port Accessibility, Payload, Response Time

DB Connectivity, DB Grants, DB Query Execution, Maximum File Size,
Caching, Cron Jobs Scheduling

Data Formatting, Invalid Input Handling, Environment Type Config.

Database

Data

Kubernetes [12] or K8s, a container orchestration plat-
form, offers several configuration management options like
ConfigMaps and Secrets. It facilitates the management of
configuration data separately from the application code. Istio
extends Kubernetes’ capabilities by providing traffic man-
agement, security, and observability features. A ReplicaSet
in K8s is a fundamental controller that ensures a specified

number of pod replicas are running at any given time.'. K8s
maintains the desired state of the application by managing
pod instances. If a pod crashes or is deleted, the ReplicaSet
automatically creates a new pod to replace it. Within the
KS8s environment, infrastructure parameters like “replicas” and
“ingress” play a critical role in managing load and ensuring
stability. In addition to microservices themselves, there are
several configuration parameters (CPs) associated with the
service mesh that concern how microservices are instantiated
and invoked. Our diagnosis is focused on detecting problems
in these CPs. For example, DestinationRules in Istio defines
policies that apply to traffic intended for a specific service,
such as load balancing, connection pool settings, etc. Table I
shows the functionalities of various resources that are usually
specified via a set of CPs.

B. Service Mesh

Microservice architectures are commonly described as col-
lections of loosely coupled services designed by independent
development teams. Real-world deployments often integrate
a substantial number of services created by external entities.
These external services can be categorized as either sidecar
services or core services [13].

Sidecar services encapsu-
late common functions es-
sential for microservices.
It acts as an intermediary
by intercepting all external
requests for configuration
management, logging etc.
For example, when “SER-
VICE1” needs to communi-
cate with "SERVICE2”, it
sends its request to its lo-
cal sidecar proxy instead of
directly contacting the tar-
get service (Fig 2). Two pri-
mary types of sidecars are Fig 2: Service Mesh Architec-
(a) Service Mesh and (b) (yre
API Gateway. In contemporary cloud-native architectures, ser-
vice meshes have emerged as a pivotal solution for managing
communication between microservices. We chose Istio [14]
to conduct this research, , although any other service-meshes
such as Linkerd [15] could also be used. Both K8s and Istio
provide several logging tools that we will be using in our work.
We have used Prometheus [16], a service monitoring tool,
to collect metrics from all services in the system, providing
insights into performance and resource utilization. Analyzing
these metrics can help identify potential bottlenecks or anoma-
lies that might be causing faults. Distributed tracing techniques
like Jaeger [17] allow tracing requests across multiple services.
This helps developers identify the path taken by a request to
pinpoint the service where a fault occurred.
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A pod is the smallest unit of deployment in K8s and represents a single
instance of a running process.



ITII. CONDUCTING DIAGNOSIS USING PDT

A. Building and Maintaining PDT in Istio

In this section, we discuss the details of constructing the
partial digital twin (PDT). PDT provides reproducibility of
the environment, which is crucial in a live environment where
conditions continuously change. PDT supports such repro-
ducibility but can also effectively deal with the impacts of
configuration/code changes by allowing for specific microser-
vice instances to be represented in the PDT. In particular, tests
on new or old instances can run in PDT while the production
system processes transactions with its current settings or
CI/CD related changes [18]. Furthermore, running tests in
a production environment during episodes of congestion or
heavy load may result in unexpected consequences including
the impact on normal transactions or failed tests due to the
load [19]. Note that a full digital twin (FDT) of a large
enterprise system is essentially impractical — in addition to
requiring enormous amounts of extra resources, it will also
likely be bogged down by the synchronization traffic. In
contrast, an on-demand PDT can allow for isolated testing
without the need for substantial resources. The key to using
our proposed mechanism successfully is to keep the PDT as
small as possible and yet include the parts most relevant for the
root cause analysis. We assume that the microservices system
uses a service-mesh for dynamic scaling, and we exploit this
capability for constructing PDT as well. We use Istio features
to launch, idle, and destroy microservices instances that are
intended to be part of the PDT, without the need for any
specialized infrastructure.

We build PDT with the help of Istio features for repli-
cation of microservices and redirection of workload queries
to various microservice instances. Because of the expense
of replicating large parts of the enterprise system, we build
PDT incrementally and dynamically based on the diagnosis
needs. This involves two aspects: (a) Selecting the subset of
microservices for which we want to create PDT instances,
and (b) The data to be used for running the test queries in the
PDT. For (a), we maintain a cache so that the microservices
that most often are involved in diagnosis have their instances
present, while others may be evicted depending on the cache
size maintained. This is achieved by maintaining a hash map
and a doubly linked list. The former provides O(1) access
time to cache entries, while the latter maintains the order of
access, with the most recently accessed items being moved
to the front and the least recently accessed items to the
end. The real databases used by the queries may be quite
large and it is not possible to replicate them in the PDT or
synchronize them. Therefore, we use a mechanism that we
call as query transformation for (b), which effectively reduces
the data requirements of the query. This is essential since
the PDT cannot afford to maintain huge amounts of data
contained in large relational tables. Instead, we judiciously
compress the size of large tables, and alter the queries on
the fly to refer to only the limited data range stored in PDT.
In general, it can be very complex to achieve such reduction

while retaining the query semantics. This is particularly true in
the context of joins where we would like to maintain similar
levels of join selectivity. Our current solution is based on an
intimate knowledge of the tables involved, and not intended
to be fully automated. However, to reduce handpicking of
data, we employ two techniques: a) stratified sampling and
b) aggregation. For large tables, we apply stratified sampling,
where data is divided into homogeneous subgroups (strata)
based on important attributes like time ranges, transaction
amounts, or customer demographics. In cases where random
sampling is more appropriate (e.g., in datasets where the
distribution of values is uniform), we employ this method
to ensure that the reduced dataset does not introduce bias.
For queries that involve summary statistics (e.g., order totals
by period), we use pre-aggregated tables to store condensed
representations of the data. For example, if a query targets
all transactions over $100 in the last five years, the query
transformation mechanism redirects it to an aggregated table
that only stores orders for high-value transactions over a
reduced time period, such as the last two years.

The implementation involves the deployment of object-
relation mapping models of the database entities as separate
services. We then implement in-memory caching using a Redis
cache server. As shown in Fig. 4, we determine the most fre-
quently used queries through empirical analysis by identifying
the most invoked microservices and, hence backtracking to the
type of query triggered. Specifically, we compute the access
frequency f; for each microservice ¢ and its associated queries
gi, Where f; = g voeations of all microsenvicas - Lirstly, we
find all frequently called microservices, and then enumerate all
the queries. Queries with the highest frequencies are selected,
and the cache is updated accordingly to reflect these priorities.

We are using a Redis cache server [20] for our experiments.
It does not have a predefined size; instead, Redis provides
a configurable parameter to specify how long to maintain a
query. When a query encounters problems, we match this
query against the queries present in the cache. The principle
of query matching is the exact match of keys between the
query request and cache entries. For instance, if user profiles
are cached with a key like user:x, a query to fetch user ”10”
would use the command GET user:10. Redis performs a hash-
based lookup to find this key and returns the associated value
if it exists and has not expired. The SCAN command is then
used with a pattern like user:* to match multiple keys. If
no matching query exists, we insert it in the cache, else we
increment the frequency of the matching query.

B. Framework of PDT based Fault Diagnosis

Our diagnosis is triggered by a reported problem chosen
from a predefined set of 8 fault types (Table II), typically from
users and administrators, but could also come from automated
monitoring systems. It results in launching a diagnosis session
with the help of PDT. The human-reported problems may be
vague or may incorrectly state the problem. This invariably
requires a dialog to gather adequate pertinent information
to enable a focused diagnosis procedure. Although, we do



not delve into it, the rapid progress in the large language
model (LLM) area could enable suitably fine-tuned LLMs to
substitute people for holding such a dialog.
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part of the framework. Once, they are identified, it is then
checked if they are already present in the PDT or not. If
they are not present, they are replicated. The next step is
to run a series of hierarchical tests on the replicated set of
microservices in the PDT environment. The selection of tests
is done using a two step approach. First, a neural network
is built to implement Zero Shot Learning (ZSL) [21], which
categorizes objects by leveraging semantic information. In
our case, it outputs the probability of relevance associated
with each fault and test pair as shown in Fig 3. The second
part is to determine the order of running the tests. That is
done by executing the tests in a specific order that captures
all the necessary attributes of a specific reported fault (Fig 5).
For example, if we consider a Service Unreachable test, the
tests that are going to be executed are {B, R-W, I-Q} or {B,
I-Q} depending on the outcome of the tests. The test IDs
mentioned above are explained in Table V. We execute the
tests unless the misconfiguration is detected. If they are all
used up without finding the misconfiguration, we rerun the
subset indentification step and add more services again for
testing. Further explanation is provided later in Section III-D.

C. Fault Types and Tests

To effectively diagnose issues in a microservices architec-
ture, it’s crucial to categorize fault types and design corre-
sponding tests. We have categorized faults into primarily 8
types (Table II) on the basis of commonly reported faults in the
industry [22] and have come up with 26 unit tests (Table III)
that can assist us in finding misconfiguration related faults.
Faults such as UN (Unreachable Network) and SN (Slow
Network) can be investigated by simulating network failures
or latency to assess application behavior under these condi-
tions. For US (Unreachable Service) and SS (Slow Service),
tests can include service unavailability to identify issues with
specific features or service response times. DE (Data Error)
and DC (Data Corruption) require tests that validate data
integrity and consistency, including checks for accurate data
representation and error handling. UA (Unauthorized Access)
can be addressed with access control tests to ensure proper

user permissions. Finally, BA (Blocked Access) can be tested
by implementing scenarios that simulate restricted access and
examining how the application handles blocked resources.

TABLE II: Reported Symptoms and Fault Classes

Code | Fault Type Symptoms Leading to User Report

UN | Unreachable Network | Unable to load the application or parts of it.
SN | Slow Network Experiences delays in loading content.

US | Unreachable Service |Specific features not working with er-
rors/timeouts.

Certain actions taking longer than usual to
complete.

Incorrect/inconsistent data displayed within
the application.

Errors during data processing, or data loss.
Access denied when using previously acces-
sible feature/data.

Unable to access parts of the application due
to restrictions.
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D. Diagnosis Algorithm

Effective diagnosis requires that the detailed logging is
switched on all the time so that the log data can be accessed
whenever a problem is reported. This is currently true with
most microservices systems since the overhead of detailed
logging is rather small [23]. For simplicity, this paper deals
with the common case of a single fault being reported at
any time. While multiple simultaneous faults are possible,
the complex procedures to handle them are beyond the scope
of this paper. All the assumptions have been detailed in
Table IV for clarity. Our diagnosis procedure includes two
parts discussed below.

1) Identifying Microservices for Replication in PDT: In
this section we present a heuristic method, shown in Algo-
rithm 1 to determine the subset of microservices, denoted
by Mo adda. The algorithm establishes the chain of dependent
microservices M corresponding to the reported fault £ based
on the notion of a fault-score, computed by Algorithm 2, and
iteratively adds the one with the highest score to set Mg add



TABLE III: A-Z Unit Test Descriptions

1D C Is to Run Pass/Fail Conditions
A nslookup <domain> 1 iff successful DNS resolution
takes <Is.
B ping -c 4 <domain> 1 iff ICMP latency to destination
domain is <100ms in 4 attempts.
C traceroute < domain> 1 iff destination is reachable.
D ping <service_url> 1 iff ping to the target succeeds.
E curl -I <service_url> 1 iff expected HTTP code.
F curl -  -u  <user>:<pass> 1 iff 200 for auth, 403 for unauth.
<service_url >
G curl -H “Authorization: Bearer 1 iff 200 for valid, 401 for invalid.
<token>" <api_url>
H curl -  -u  <user>:<pass> 1 iff 200 for valid, 401 for invalid.
<auth_url >
I kubectl get svc <service_name> 1 iff service listed and accessible.
J kubectl get destinationrule 1 iff rule correct.
<rule_name> -0 yaml
K curl <istio_route_url> 1 iff correct service instance.
L kubectl get peerauthentication -n 1 iff mTLS enabled and enforced.
istio-system
M kubectl top pods 1 iff CPU, memory <80%.
N kubectl get pods -n <namespace> 1 iff all pods running.
(0] netcat -zv <host> <port> 1 iff port open.
P curl -X POST -d @payload.json 1 iff correct response.
<service_url >
Q curl -w %time_total <service_url> 1 iff <500ms.
R nc -zv <db_host> <db_port> 1 iff reachable in <Is.
S mysgl -u <user> -p -¢ "SHOW 1 iff correct grants.
GRANTS FOR <user>@ <host>;”
T mysql -u <user> -p -e "SELECT * 1 iff expected results.
FROM <table>;”
u upload_test_file.sh 1 iff upload <100MB.
A\ curl -1 <cached_url> 1 iff cache hit (X-Cache: HIT).
A crontab -1 — grep <job_name> 1 iff job scheduled correctly.
X python data_formatting_test.py 1 iff data matches schema.
Y python invalid_input_test.py 1 iff handles gracefully, appropriate
error.
Z kubectl config view 1 iff configurations correct.

TABLE IV: Assumptions in the implementation

No. | Assumption Description

1 |Stateless: Microservices (MS) are stateless, with no session
information retained between calls.

2 | Cascading: Configuration changes may affect dependent MS.

3 |Query Transformation: Queries are correctly transformed be-
tween environments without adding bias.

4 | Single Fault: Only one fault occurs at a time within the system.
5 [No Intermittence: Faults persist until resolved, with no intermit-
tent behavior.

6 |Identifiability: All misconfigurations are definitively identifiable.

if not already present in it. Each such iteration also runs the
diagnosis procedure, which continues until either the fault’s
root cause is determined or the algorithm stops prematurely.
The success rate of the algorithm or diagnosis accuracy,
defined as the fraction of the cases where root-cause analysis
terminates with correct root-cause, is an important measure
that we report in the experimental results.

Algorithm 1 begins by initializing an empty list M, adq to
store microservices that need to be added. It then enters a loop
to identify candidate microservices C that are not currently in
the LRU cache A but are called by at least one microservice in
A. If no such candidates exist, the loop breaks. Otherwise, it
computes a fault-score for each candidate microservice using a
scoring function. The computation of the fault-score in Algo-
rithm 2 uses performance metrics obtained from Prometheus,
such as historical error rate (HER), historical call frequency

Algorithm 1 : Replicating Microservices in the PDT

Require: G = (M, E): Call graph,
Ec: Class of the reported problem,
A: LRU cache of available microservices,
Cim: Set of callers for a microservice m,
error_rates: Historical error rates,
call_count: Historical call frequency
¢ Mio_ada ¢ i
: while true do
C<—{meM|3ceCnnAand m ¢ A}
if (C = 0) break
4 S« {}
5 for all m € C do
6: S[m] < scoring_function(m, &, error_rates, call_count)
7 end for
8.
9
10

W N =

T om* ¢ argmaxm,ec S(m); Mio_add-append(m™)
: end while
. while My, 494 # 0 do

11:  new_addition <— Mo_aqa[0]

12:  if | A| < CACHE_SIZE then

13: A < AU {new_addition}; M, ,dd-remove(new_addition)
14: else

15: evict «— LRU(A); A < (A\ {evict}) U {new_addition}
16: Mio_add-remove(new_addition)

17: end if

18: end while
19: return M, ,dq

(HCF), and transaction call graph (TCG), services exhibiting
anomalous behavior are identified and considered for the next
stage of analysis. The HER measures the frequency of faults
for a given microservice over time, and the HCF captures how
often the microservice is called. In computing the score from
these measures, we use exponential smoothing over successive
fault episodes and also introduce penalties to the fault rates
based on a predefined threshold value. The candidate with the
highest fault-score, m*, is selected and appended to M, _add-

Then, for each microservice in this list, it attempts to
add it to the cache A. If the cache has space (i.e., the
size of A is less than the predefined CACHE_SIZE), the
microservice is added directly. If the cache is full, the least
recently used (LRU) microservice is evicted from .4, and
the new microservice is added in its place. This eviction
policy ensures that the most frequently and recently used
microservices remain in the cache, optimizing the cache’s
performance. The process continues until all microservices in
M o_ada have been processed. Finally, the updated list M, add,
now containing the optimal set of replicated microservices, is
returned. This greedy approach ensures that the most critical
microservices, as determined by their usage patterns and error
rates, are available in the cache.

2) Selecting Tests to run for determining misconfigured CP:
Test selection can be defined as the process of determining
a set of unit tests from a list of 26 tests (Table III) whose
purpose is to diagnose the misconfiguration in the replicated
set of microservices M, ,dq Obtained from Algorithm 1. As a
prerequisite, we use ZSL to train a neural network to extract
abstract features from the test-fault relationship [21]. Then,
we calculate the weighted sum of the probabilities of the
mapped features to determine the relevance of each test to
a fault. Test selection begins by defining semantic features



Algorithm 2 : Computing Fault-Score of a Microservice

Require: microservice: The microservice to be scored,
problem_class: The class of the reported problem,
historical_error_rates: A dictionary of historical error rates,
historical_call_rate: A dictionary of historical call rate,
decay_factor: A factor to give more weight to recent data,
error_threshold: A threshold for score penalty,

« and B: Coefficients for score calculation

Ensure: A score for the microservice

: call_count <— HCF.get(microservice, 0)

: error_rate <— HER.get(microservice, 0)

: last_update_time <— time_of_last_update.get(microservice, 0)

: teurrent <— current_time()

: recent_factor; < v X HCF; + (1 — ) x recent_factor;_1

: ncc < call_count/max_call_count

: ner <— error_rate/max_error_rate if (error_rate > error_threshold) penalty

< 1.5 else penalty < 1.0
: fault-score <— (v X ncc + B X ner X recent_factor X penalty
9: return score

oo

for both reported faults and diagnostic tests. Each fault and
test is characterized by a set of numerical features, capturing
the relevance to each other. For example, for a timeout fault,
doing a DNS check first is more relevant than doing database
configuration checks. The training data is constructed by
combining these features for all possible pairs of faults and
tests, with labels indicating whether each test is relevant to
diagnosing a specific fault.

To enable ZSL, we encode the test and fault pairs into a
high-dimensional vector using the popular Word2Vec [24] [25]
model. These vectors encode semantic relationships between
tests and faults for which we use 4 semantic features: (a)
Specificity, which measures the number of fault types a test is
relevant to, (b) Number of nodes to which the fault may be
propagated, (c) Number of microservices to which the fault
may be propagated, and (d) Zest level, which denotes the
detail provided by the test. For instance, a "ping’ test provides
basic connectivity data, while a ’traceroute’ test offers detailed
network path insights, thus occupying a higher level. Let’s
consider the fault types and tests in our example: “Network
Unreachable” and “ping.” When we use embeddings, we
convert these phrases into vectors. These vectors are essen-
tially points in a multi-dimensional space where the distance
between points reflects their semantic similarity. For instance,
“network unreachable” and “ping” might be represented as
vectors that are close to each other in this space because both
relate to network connectivity issues. By calculating the cosine
similarity between the vectors, we determine how closely
related these concepts are. Finally, we get the relevance scores
as the output as shown in Figure 3.

We built a table of relevance scores for the 26 diagnostic
tests ("A-Z”) and 8 fault types. Due to lack of space, only
some entries are shown in Table V. The flowchart in Fig. 5
shows how to determine the order of test execution pertaining
to each fault type (denoted by the grey boxes). Depending
on the outcome of the tests, we follow the green (meaning
success) or red (meaning failure) arrows to proceed to one of
the five artribute types (in blue). Note that each attribute type
consists of a set of tests and is executed sequentially on the
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Fig. 5: Test Flowchart
TABLE V: A-Z Hierarchical Testing Suite
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(B) [0.99 J0.97 T0.85 J0.92 J0.00 J0.00 J0.41 0.9
Infrastructure
I 0.37 [0.00 [0.00 [0.00 [0.00 [0.00 |0.00 [0.49
Q) 0.87 (093 (022 [0.78 [0.11 0.02 [0.21 0.25
Database

(R) 0.53 049 [0.61 0.00 [0.79 [0.88 |0.00 [0.00
(W) 0.56 [0.84 [0.95 098 [0.00 [0.00 |0.00 [0.00

basis of the determined relevance score. For example, if we
consider faults of type ”US”, the tests executed are {B, R-W,
I-Q} or {B, I-Q} depending on the outcome of the tests.

IV. EVALUATION

A. Experimental Setup

Our experimental environment consisted of a K8s cluster
deployed on a set of virtual machines provisioned with the
following specifications: each VM was equipped with 16
vCPUs, 8 GB of RAM, and 64 GB of SSD storage. The cluster
was composed of 10 worker nodes and 3 master nodes to
ensure high availability and scalability. The Istio sidecar proxy
was injected into each microservice pod to facilitate service
mesh functionalities. A representative set of microservices was
designed to mimic a typical enterprise application [10]. The
architecture included 26 microservices, each deployed as a
separate Docker [26] container within the KS8s cluster. The
dependency chains were intentionally constructed to reflect
real-world complexity, with an average of 5 dependencies
per microservice. The longest chain in the setup comprised 9
microservices. To validate the diagnosis procedure, faults were
systematically injected into the microservices. Specifically,
386 fault scenarios were built to target various faults. 260
of them were labeled as System A and the remaining 126
as System B, as shown in Fig. 6(c). These numbers were
chosen to see the behaviour of the algorithm under different
workloads. These faults were injected at random intervals to
ensure comprehensive testing of the algorithm’s robustness.
The Redis cache server was deployed within the K8s cluster,
with a memory allocation of 16GB.
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Fig. 6: (a) Caching perf. of Workload A, (b) Caching perf. of Workload B, (c) Distribution of faults reported

B. Experimental Results

Fig. 7 shows the performance of the algorithm as a measure
of steps taken. We see that the mean number of steps taken
is approximately 22% above the ideal case for all fault types
combined. The average median is about 7% above the ideal
case. Note that we have considered the ideal route (Fig. 5)
to comprise a maximum of 1 test (highest score) from every
attribute box, which adds up to form the ideal number of
tests for each fault type. Each fault type displays distinct
performance characteristics. For instance, faults such as ”SN”
and ”SS” show a relatively higher number of steps taken,
with a noticeable deviation from the ideal steps. This could be
attributed to the complexity and variability inherent in diagnos-
ing network-related issues. On the other hand, faults like "US”
and "DC” exhibit a smaller gap between the actual steps taken
and the ideal steps, suggesting that these fault types are more
straightforward to diagnose within the proposed framework.
Additionally, the number of incorrect reports, represented by
the dotted line, provides insight into the algorithm’s accuracy.
A higher number of incorrect reports for faults like "UN” sug-

Number of Steps
Incorrect Reports

UN SN US SS DE DC UA BA

Fault Types
A Peak High HEE Mean # Steps Ideal # Steps
Peak Low EEm Median # Steps =@+ Incorrect Reports

Fig. 7: #Steps taken to diagnose misconfiguration using pro-
posed diagnosis framework vs ideal scenario

gests that these cases are not only more complex but also more
prone to diagnostic faults. The observation holds true even
when multiple application instances are tested for misconfig-
uration diagnosis, later shown in Fig. 12. This emphasizes the

need for further refinement in the algorithm to enhance its
accuracy and reduce false positives or negatives. This could
also indicate the need for further categorization of fault types.
For the scoring logic in Algorithm 2, we performed a grid
search to determine optimal values of « and 3 by considering
the percentage of successful diagnoses with each combination.
We varied both from 0.0

to 1.0 in steps of 0.1 and 0.2

discovered optimal values |@ 0.18

as a = 0.7 and 8 = %0.16

0.3, which were used sub- |2

sequently. The values are |< 014

assumed to be constants. 0.12

Fig. 8 shows the error rate 0 1 2 3
of microservices obtained Time (in 10,000 seconds)

from the K8s metrics as a Fig. 8: Error rate vs. time
function of time in 1000 sec units. As expected, the error rate
goes down, but at a diminishing rate and eventually plateaus.
This behavior simply shows that diagnosing frequently occur-
ring misconfigurations can reduce the number of error reports.
(This is somewhat optimistic since in reality, the CI/CD related
changed may continue to bring in or expose new problems,
but we do not consider that aspect in this paper.)

Next, we evaluate the performance of a Redis
caching layer under two scenarios(Fig 6(c)). From our
experimentation, we derive the hit rate and access
latencies for both as shown in Figs. 6(a) and 6(b).
System A achieved an aver-

age hit rate of 91%, com- |_ 90

pared to 86% for B. This i;_

shows that the cache is more | 3 &

effective under higher de- |2

mand, serving a larger pro- |5 7

portion of requests directly geo

from memory. Latency aver- |5 o 1 2 3
aged 3 milliseconds in both Time (in 10,000 seconds)

systems. However, the ac- Fig. 9: Accuracy vs. time

cess latency values are more consistent for system B compared
to system A. A low access latency indicates that the time taken
to retrieve the data from the Redis caching layer is minimal,
reducing the overall overhead compared to fetching the data
from slower storage. The accuracy of the model also showed a



positive growth and plateauing at a high value of 85% (Fig. 9).
The results above consider only a single e-commerce appli-
cation. We next configured two such applications in our Istio
implementation, one focusing on browsing (i.e., read heavy or
I,) and the other focusing on purchase (i.e., write heavy or
I,). In instance I, the queries result in 90% read operations,
whereas in instance [, the queries result in 80% write/update
operations. We programmed the load generator to issue a total
of 10,000 requests over a 10-hour period to each application.
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Fig. 10: I, & I, error rates Fig. 11: I, & I,, accuracy

Figs. 10 and 11 demonstrate the error rates for both
I, and I,. The superior results for [, is directly a re-
sult of fewer updates which makes diagnosis more difficult.
This can be seen from
Fig 12 which shows the
number of tests required for
each fault class for the two
cases. It is seen that more
tests are required in the
write-heavy situation. This
signifies the tradeoff be-
tween the number of tests
required to diagnose a mis-
configuration and the accuracy of the algorithm. Moreover, the
previous findings from Figs. 8 and 9 remain consistent here
as well.

e Read-Heavy
Write-Heavy

N W M~ n

Median Steps

UN SN US SS DE DC UA BA
Error Types

Fig. 12: Median #steps required
for successful diagnosis

V. CONCLUSIONS

In this paper, we proposed a framework for performing
online diagnosis of microservices triggered by an observed or
reported malfunction. It uses the notion of a dynamic partial
digital twin of the system to enable testing without perturbing
the production system. Our empirical evaluation shows that the
median number of tests required to diagnose misconfigurations
is only 7% above the idealized scenario. In the future, we will
focus on refining the fault categorization process and tackling
a wider range of microservices faults.
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