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Abstract—Personalized robotic exoskeleton control is essential
in assisting individuals with motor deficits. However, current
research still lacks a solution from the end of a practical
need of the problem to the end of its successful demonstration
in physical environments, namely an end-to-end solution, that
enables stable and continuous walking across different tasks.
This study addresses this challenge by introducing a hierarchical
control framework for the purpose. At the low level, impedance
control ensures joint compliance without causing injury to users.
At the high level, a reinforcement learning (RL)-based optimal
adaptive controller automatically personalizes assistance to both
hip extension and flexion (namely, bi-directional) to reach a
target range of motion (ROM) under multiple walking conditions.
As the first potentially feasible approach to this challenging
problem and to meet practical use requirements, we developed
a least-square policy iteration-based solution to configure the
intrinsic parameters within the well-established finite state
machine impedance control (FSM-IC). We successfully tested
the control solution on eight young unimpaired participants
and one participant post-stroke wearing a hip exoskeleton while
walking on an instrumented treadmill. The proposed method
can be applied to solving for optimal impedance parameters
for individual users and different task scenarios to increase
joint ROM. Our next step is to further evaluate this solution
framework on additional people with hemiparesis who may
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benefit from hip joint assistance in therapy or daily activities to
restore normative or improve gait patterns.

Index Terms—Assistance personalization, impedance control,
optimal adaptive control, rehabilitation exoskeletons, rehabilita-
tion robotics, reinforcement learning (RL).

I. INTRODUCTION

DVANCES in wearable lower-limb exoskeletons have
shown great promise in augmenting the movement capa-
bility of human wearers [1], [2]. These systems have been
developed for different applications, such as military [3],
industry [4], and medical rehabilitation [5], [6]. Focusing on
rehabilitation implementations, lower-limb exoskeletons have
been designed to deliver active assistance to patients with
neurological deficits for improving locomotor performance,
including people with paraplegia (no motor functions), such
as complete spinal cord injury (SCI) [7], [8] and individuals
with reduced force-generating capacity caused by incom-
plete SCI, stroke, cerebral palsy, and multiple sclerosis,
etc. [9], [10], [11]. The appeal of modern wearable robotic
exoskeletons in physical rehabilitation is their intelligent,
active components that can be programmed toward the needs
of different patient populations [5]. For example, early designs
of powered exoskeletons were for patients with paraple-
gia, where exoskeletons were programmed to take over the
entire lower-limb movement control. Typical control strate-
gies often focused on tracking the kinematics of individual
joints during walking or other locomotion tasks [12], [13].
This control technique is quite mature and has been used
in the majority of commercial exoskeletons for rehabilita-
tion. Nevertheless, for individuals who still have voluntary
motor ability, joint position control is inappropriate and can
potentially cause injuries to patients. Instead, compliance
is essential to ensure safe human-exoskeleton interactions.
Currently, there remains an open question as to how to
provide the desired mechanical assistance, tailored to the
individual patient, task context, and the environment, despite
the emergence of many engineering efforts by the research
community [2], [9], [14], [15], [16], [17].
A fundamental challenge for walking assistance control is
that individuals with neurological disorders, such as stroke,
present with large variability in their motor impairments
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and gait patterns [18], [19]. Or to put it intuitively, the
presentation of each person with stroke is different. The
significant variability in an individual’s physical and physi-
ological functioning is further confounded by the difficulty
in properly and accurately modeling the human-robot system,
which has made the associated control problem more challeng-
ing. Given the inherent variability and numerous unknowns, a
data-driven learning control method makes a natural alternative
to address this challenge. As a backdrop, current clinical
practice relies on experienced clinicians or experts to tune a
robotic device’s control parameters while heuristically observ-
ing the user’s gait performance [14]. The tuning criteria of
the control parameters are usually not clarified or difficult
to quantify due to the inherent dependence on individual
tuning experts’ knowledge and the user’s condition [20],
which may deteriorate the tuning effectiveness. With the
increased dimensionality of control parameters, manual tuning
significantly reduces the time efficiency and becomes more
impractical due to the unexpected long-time tuning procedure.

To provide personalized and optimal assistance (OA),
some recent studies, known as human-in-the-loop (HIL)
optimization approaches [21], [22], [23], [24], [25], [26], have
been proposed. Almost all the studies of HIL optimization
approaches used open or closed-loop force/torque control
to operate each individual joint of exoskeletons, where a
prescribed time-depended reference joint torque with a cer-
tain shape is usually parameterized by some timing and
magnitude values with the control goal of minimizing the
person’s metabolic cost during locomotion tasks [22], [23].
More recently, human preference-based learning algorithms
for exoskeleton assistance personalization have also attracted
more attention [27], [28], [29]. For example, Tucker et al. [28]
proposed to implement a coactive learning paradigm in
which wearers chose between paired selections and provided
improvements for assistance in each trial. The controlled
gait parameters were from a gait library that was pre-
computed based on a set of nominal walking gaits over a
grid of various parameters. Ingraham et al. [29] measured
users’ preferences in the applied torque control parameters
of bilateral ankle exoskeletons and characterized how pref-
erence changed with walking speed, device exposure, and
prior device familiarization. However, these HIL optimization
approaches usually do not have rigorous formulation from the
perspective of control theory/application as they do not focus
on modeling and dynamics of the human-robot-interaction
system.

Another significant challenge associated with controlling
exoskeletons for walking assistance is that the personalized
control of robotic exoskeleton assistance needs to adapt to
different people, different environments, different walking
tasks, and the physical changes of users that occur over
time (both positive [e.g., therapy] and negative [e.g., disuse
atrophy]). This stringent requirement for adaptation over time
means that the control tuning procedure is time-efficient while
maintaining meaningful robustness in practical use scenarios.
Currently, available results are scarce, while some studies have
demonstrated potential. For example, Zhang et al. [22] showed
the generality of a HIL optimization approach in single-subject
studies employing an ankle exoskeleton device for walking
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under different locomotion conditions. However, results show
that learning to walk under new conditions requires almost
the same amount of time as the baseline learning condition.
This is caused by the nature of the method, which learns
control parameters, but not control policies. Consequently,
when walking conditions change, control parameters have to
be learned from anew.

To address these above challenges for powered exoskele-
tons, reinforcement learning (RL) approaches [30], [31],
[32], [33], [34] lend themselves as alternative solutions to
personalize assistance from exoskeletons. However, in the
state-of-the-art, most existing studies either only focused
on simulations without any physical systems [35], [36], [37]
or only focused on unimpaired human participants under
a single locomotion task [32], [33], [34], [38], [39]. The
proposed design was inspired by RL-based solutions for
powered prostheses [40] used in various locomotion tasks.
However, due to the distinct differences between prosthesis
(in series, no actuation redundancy) and exoskeleton (in par-
allel, with actuation redundancy) interactions, the formulation
of an OA control problem and its implementation in real-
world human testing remained uncertain. This study primarily
aimed to increase the hip joint range of motion (ROM) in
human wearers, emulating individuals with hip joint motor
deficits. Therefore, compared to existing RL-based strategies
for human-exoskeleton interactions, the novelty of this study is
as follows. It provides an end-to-end hierarchical solution with
RL as an essential element to personalize powered exoskele-
tons to offer customized assistance. This approach is uniquely
adaptive and robust across various walking conditions. It has
been successfully implemented on both unimpaired partici-
pants and persons with chronic hemiparesis post-stroke. To
the authors’ knowledge, this is the first exoskeleton control
strategy capable of simultaneously addressing safety, effective-
ness, time efficiency, and adaptation for neurorehabilitation.
The study focuses on bilateral hip exoskeletons, chosen for
their lower moment of inertia during walking, making them
potentially suitable for clinical use in individuals with motor
deficits. Additionally, manipulating the hip joints can directly
affect step length, step width, and walking cadence [20], [41].
Our comprehensive and hierarchical solution framework was
constructed to directly address all the above challenges. At
the low level, the finite state machine impedance control
(FSM-IC) was used to ensure exoskeleton compliance for safe
human-exoskeleton interaction. At the high level, a data-driven
RL-based controller was designed to tune impedance control
parameters in order to provide OA adaptively for the individual
wearer.

The main contributions and innovations of this study are
given below. 1) We formulated an end-to-end control solution
for the rehabilitation lower-limb exoskeletons that can pro-
vide personalized, task-independent, and compliant assistance;
2) Our control design enabled the human-exoskeleton system
to achieve increased ROM by tuning the hip joint impedance
control parameters while maintaining walking stability and
user safety. 3) We successfully demonstrated the effectiveness,
efficiency, and adaptation of the proposed control solution in
experiments involving eight unimpaired participants and one
recovering stroke patient.
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Fig. 1.

RL-enabled customization of a hip exoskeleton assistance during walking. (a) Intrinsic low-level control tracks the assistive torque profile. (b) Middle-

level control uses the FSM-IC to calculate desired torque profiles. (c) High-level RL control tunes the impedance control parameters and updates the control
policy. (d) Target and real hip joint kinematic trajectories during a GC, where the peak flexion/extension locations in the target trajectory and actual trajectory
are represented by orange points and blue points, respectively. (e) Hip joint target trajectories for different locomotion tasks.

II. SOLUTION FRAMEWORK

In this study, we aim to provide a solution that meets the
critical requirements of human user safety, the customization
of robotic assistance to the human user of different needs, and
is potentially transferable to clinical implementations.

A. Addressing User Safety

As previously mentioned, position control is especially
useful for people without any voluntary motor function as they
have little ability to interact with or influence the control of
the exoskeleton. Thus, the control design usually focuses on
completely overriding human motor functions. However, for
people with residual motor functions, position control restricts
the person’s residual volitional efforts and necessary gait-to-
gait variation for locomotion balance control [14], and the
needed flexibility to interact with the exoskeleton [16]. In
addition, people with neurological disorders may also have
abnormal neuromuscular control, e.g., spasticity. High stiffness
in position control or torque control may lead to injuries in
these users and lead to a safety concern. Therefore, under
these scenarios where people with neurologic deficits have
residual motor functions, the compliant behaviors of wearable
lower-limb robotic exoskeletons are commonly preferred for
locomotion assistance [9], [14]. The basic mechanism of this
compliance lies in the notion that the human musculoskeletal
system is characterized to have a spring-like behavior and the
concept of mechanical impedance is presented as a rigorous
dynamic generalization of the limb’s postural control [42].
Impedance control has been widely used in robotic exoskele-
tons because the compliant behavior of legs is fundamental
for locomotion to adapt to various environments [43].

To guarantee the safety of human users when using wearable
lower-limb robotic exoskeletons for locomotion assistance,
existing studies have investigated either compliant hardware

design [23], [44], [45] or compliant and adaptive control
design [9], [14], [46]. Compared to the position control
described above, the FSM-based force/torque control for soft
robotic devices and impedance control for rigid robotic devices
are more compliant, and have applied locomotion assistance
to people with motor dysfunction, such as incomplete SCI,
cerebral palsy, and stroke [14], [44]. In this study, we restrict
our design to two fundamental rules to guarantee the safety of
human users, including 1) the intrinsic FSM-IC (see the sub-
sequent section) and 2) the interlimb assistance coordination
with moderate assistance level to the hip joints.

B. Intrinsic Impedance Control of the Hip Exoskeleton

Fig. 1 is a comprehensive construct of our solution
approach. The behavior of the intrinsic impedance control
parameters can be interpreted as a spring-damper system, thus
providing necessary compliance to guarantee the safety issue.
The personalized gait assistance is realized within a well-
established FSM-IC framework [14]. There are two reasons
that we chose to apply the FSM-IC framework instead of
applying a predefined assistance torque profile, as described
in previous studies [22], [23]. First of all, our hip exoskeleton
mechanical design is a rigid structure, which may cause a stiff
hip motion if the predefined assistance torque magnitude is
too high. Second, the shape of the predefined torque profile
usually depends on the time duration of the previous gait
cycle(s) (GCs) instead of the actual hip joint motion state.
Consequently, this may be hazardous if the hip joint suddenly
stops moving, causing the wearer to perceive a sensation that
the foot is blocked by an obstacle during walking.

The FSM-IC control relies on major gait events, such as
heel-strike (HS) and toe-off (TO), to determine transitions
between the phases. Transitions are identified according to
measurements of hip joint angles 6 and vertical ground
reaction force (VGRF). Transitions occur according to the
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threshold values in the supplementary Table SI. In the current
study, the hip joint angle 6 was initialized to be O at the neutral
standing posture, positive during hip flexion, and negative
during hip extension. For either phase of stance or swing in a
single GC, the FSM determines impedance parameters during
either stance or swing phases to be used in the low-level
intrinsic torque tracking control [47] [Fig. 1(b)] for generating
the desired torque profile t; on the targeted hip joint based on

= Kp(0e — 0) + Kab ()

where K, K4, and 0, represent the three impedance param-
eters, corresponding to stiffness gain, damping gain, and
equilibrium position. # and 6 represent the angular position
and velocity on the hip joint, respectively. Given two distinct
phases in each GC, a total of 6 parameters are to be tuned.

C. Personalizing Assistance by Bilateral Hip Exoskeleton

Most of the existing HIL optimization studies of
exoskeleton-assisted walking have focused on unimpaired
human wearers as device users. As such, metrics like the
wearer’s energetic or metabolic cost reduction, or muscle
electromyography activity reduction have been used as the
device control goal [21], [22], [23], [24], [25], [26], [33],
[48], [49]. These measures, however, may not serve as an
appropriate control goal for people with neurological deficits
as they usually have reduced ROM and/or different gait
patterns, as shown in [50], [51], and [52]. Therefore, we aim
to design an impedance-tuning strategy for wearable hip
exoskeletons to provide personalized walking assistance to
increase the target ROM. Toward this aim, we formulated the
control solution for the human-exoskeleton interactive system
as an online impedance parameter tuning problem based on
the least-square policy iteration (LSPI) algorithm. There are
three levels of the control design, which includes a hierarchy
of high-, middle-, and low-level controls. At the high-level
control [Fig. 1(c)], the RL adjusts the impedance parameters of
the hip exoskeleton for the corresponding FSM. At the middle-
level control, an impedance control with two FSMs [Fig. 1(b)]
is used to determine the desired assistance torque. At the low-
level control [Fig. 1(a)], a closed-loop torque controller [47]
is used to accurately track the desired torque.

Refer to Fig. I1(d) for a normative human hip joint
movement trajectory (black curve) during one GC, where the
stance phase is between the HS event and TO event, while
the swing phase is between the TO event and next HS event.
The corresponding 0% and 100% represent the time instances
between two consecutive HSs. Points Py and P, (Piy and
P>4) represent the actual (target) peak extension and peak
flexion positions, respectively, and D and Dy (D14 and Dyy)
represent the actual (target) timings that peak extension and
peak flexion occur, respectively. As a consequence of lower-
limb injury, a realistic gait profile for the affected person
may appear as shown in the dashed blue curve. Our goal
is to devise a control solution to provide personalized bi-
directional assistance (extension during the stance phase and
flexion during the swing phase) to increase the affected hip
joint ROM. To examine the feasibility of the newly proposed
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control framework, we include multiple unimpaired human
subjects and a person post-stroke in this study. For unimpaired
human subjects, the control goal is set as an increased ROM
of the targeted hip joint (a 25% increase from the nominal
profile in both max flexion and max extension). For the person
post-stroke, the control goal is set to generate the normative
ROM (matching the unaffected side) for the affected hip joint.
Several exampled target hip joint trajectories with increased
ROM are shown in Fig. 1(e).

III. CONTROL SOLUTION APPROACH
A. Problem Formulation

We consider minimizing wearers’ kinematic errors as the
control objective to be optimized by the RL-based control
framework. As demonstrated in Fig. 1(d), we define state
variables x” € R? as the differences between the target and
measured peak extension or peak flexion during the stance or
swing phase (including both amplitude error and timing error),
respectively. The state variables are then defined as

X" = [Py — Pmd, Din — Dyual” 2)

where m = 1,2 represents the stance and swing phases,
respectively. The control inputs ¥ € R? are the adjustment of
the impedance parameters as given subsequently for the stance
and swing phases, respectively. Correspondingly, the discrete
system dynamical model is given as

o =" ) 3)

where k = 1, 2, 3, ..., represents the index of the data sample.
The state variables and action variables from the current data
sample could be used to map the upcoming state variables
iteratively through dynamics ™ (unknown). This mapping is
denoted by the tuning policy 7" and determines the action
variables, defined as u}' = 7" (x]").

For ease of discussion, we omit the subscript m from
hereon as the solution approach is the same for either
the stance or swing phase albeit to say that the respec-
tive controllers are independently designed. We consider the
human-exoskeleton interaction as an integrated system as
depicted in Fig. 1(a) with unknown dynamics. The state
variables x at the sample index k correspond to the definitions
in (2) and (3), while the action variables u; are defined as the
adjustment of impedance parameters in either FSM and noted
as up = [AK)p, AKy, A@e],{. The domain of both state and
action variables are denoted as D £ (x, ulxe X C R% uc
U C R3. The same definitions apply to both stance and swing
phases as described in the above.

A stage cost function with a quadratic form in either the
stance or swing phase is given below

ROxk, ug) = xp Moxx + uf My )
where M, € R*>*? and M, € R>*3 are semi-positive definite

and positive definite matrices, respectively. Observations from
a dynamic system are usually organized in tuples, noted
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as (xx, uk, R(xk, ur), xx+1). We define the total cost-to-go
function or the state—action Q-function as

O(xk, ux) = R(xx, uk) + Z VR (ks k) )
=1

where 0 < 9/ < 1 is the discount factor. Given a deterministic
policy m, the value function Q7 (xt, ux) is defined as the
summation over all possible combinations of state and action
variables. It implies that Q" (x, uy) contains the expected and
discounted total cost when selecting policy 7 and taking action
ug in state xg [53], thus the Bellman equation is

o0
O™ (k. we) = ROxi, ) + Y ¥ *RCxr, uy)
t=k+1
= R(xk, ) + v Q" (Xk+1, Ut1)- (6)

To extract Q™ values for all state—action pairs, a set of linear
equations based on the Bellman equation is represented as

Q" =R+yQ" (7

where Q" and R are vectors of appropriate dimensions. The
approximate policy iteration algorithm is based on approxi-
mated state—action value functions, which are implemented by
a linear combination of quadratic basis functions and a set of
weighting parameters [53], learned from samples.

The goal of RL control is to attain an optimal policy, which
can then be employed to minimize the state—action value
function Q7 (xx, ur) as below

O* (X, ug) = H}ZinQ” (o, ug)
= R(xx, ) +y mian*(xk+1, Upy1)

Uje+1 €

= RO, wp) + yOQ* (%s1, 75 0g1))  (8)

where Q* represents the optimal state—action value function
and 7* represents the current optimal policy.

B. Least-Square Policy Iteration Solution

Let i denote the ith iteration in policy iteration. In each
iteration, the step of policy evaluation calculates the approxi-
mation of the value function, denoted as Q”(l) by solving the
Bellman equation. The subsequent step of policy zmprovement
defines 71 the improved greedy policy, over Q”

7 () = argminQ™" (o, ). )

ukéu
Thereafter, the policy 70D is not worse than 7@, if not
better than 7 ®. The two interleaving steps proceed until no
change is observed in the policy [40], [53], [54].
A linear architecture of the following form is utilized to
approximate the state—action value function

2wt ww)”

J=1

0" (x, u) = (10)

where wj@ and v;(x, u) represent the parameters and quadratic

basis functions, respectively. Define ¥ (x, u) to be a column
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vector of size n where each entry j is the corresponding basis
function v; computed at (x, u)

Yx, u) = W1 w), Yolx, w), ..., Yalx w)'. (1)
Then Q” © can be expressed as
0™ =y (x, w W (12)
where w™"” is a column vector with a length of n.

Recall that the value function Q” is the solution of the
Bellman equatlon in (7). By substltutlng the value function

approximation o" “ in place of Q” we have
vTw™” ~ R+ yyTw™”. (13)

In the least-squares sense, the solution of the above over-
constrained system is derived as

1
N (vy') YR .
-y
Note that the above solution minimizes the Ly norm of the
Bellman residual [53].

(14)

C. Stability Annotations

Remark 1: To ensure the stability and safety of the human-
exoskeleton system during walking, several considerations
have been given and implemented in real-time control.

First, note that the convergence of LSPI hinges on the
convergence of the approximate policy iteration. The details of
LSPI convergence proof can be found in [53, Th. 7.1]. Our RL
control policy implementation does not deviate from the LSPI,
and therefore, the learning convergence of our implementation
is also guaranteed by [53, Th. 7.1]. As such, our RL-tuned
control parameters will also converge without going out-of-
bounds.

Second, the middle-level control within our hierarchical
framework (Fig. 1) was realized as impedance control, which
is the most adopted approach to control the interaction force
between the human user and the robot [55]. This results
in compliant behavior of the wearable exoskeleton to the
human wearer, and thus leads to a biologically natural and
safe physical interaction. According to the basic principles of
impedance control [42], the stability of the human-exoskeleton
system during walking is thus inherently ensured in such
design realization, in the same sense as how typical human
stability is guaranteed by our neuromuscular control.

Third, the high-level RL approach to tuning provided a
set-point for each tunable parameter during training, where
each set-point was constrained to be within a prescribed
human locomotion safety bound (see details in subsequent
Section IV-C). Without any further (analytical) assumptions,
these safety bounds imposed stability conditions on the
human-robot system during the RL-based control parameters
tuning.

IV. EVALUATION BY HUMAN WALKING EXPERIMENTS

The feasibility and effectiveness of the proposed LSPI-based
control personalization to provide bi-directional assistance
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Fig. 2. Overview of a wearable hip exoskeleton designed to personalize
robotic assistance during walking. (a) and (b) Lateral and back views of the
wearable hip exoskeleton prototype. (c) Walking experimental environment
with an instrumented treadmill with split belts and a motion capture system.

(b)

were assessed through human walking experiments under
multiple scenarios. Below, we provide details of the exper-
imental design, implementation of the LSPI-based control
solution, as well as data collection, processing, and analysis.
The evaluations also aim to show the task-independence nature
of the solution approach, by which it refers to the hierarchical
control structure does not require any change, but fine-tuning
of the impedance parameters only requires a meaningfully
short duration.

A. Human Subjects and Experimental Apparatus

The experimental protocol of treadmill walking was
approved by the Institutional Review Board (IRB) at
North Carolina State University (IRB approval number:
24671). Eight young unimpaired participants (6M/2F, mass:
72.3+6.5 kg, height: 173.2+ 2.5 cm, age: 28.8+3.1 years old,
identified as AO1, A02,...,A08) and a person with chronic
hemiparesis post-stroke (F, mass: 54.4 kg, height: 160.1 cm,
age: 62 years old, paretic side: right, identified as SO1) were
included in the study. All participants were instructed on the
walking experimental details, and they provided an informed
consent form before participating in any experiments.

The treadmill walking experimental setup is shown in
Fig. 2(c), where the participant wore the bilateral light-
weighted hip exoskeleton affixed to the body. The details of
the hip exoskeleton’s mechatronics design can be found in
the supplementary Fig. S1 and Table SII. Even though the
inevitable loss of mechanical power caused by the physical
attachment of the device to the ‘nonrigid’ thigh segment, the
robotic assistance torque, when transferred to the human hip
joint, could still follow the reference torque profile with a
relatively low-tracking error by using the low-level controller.
The GREF signals were obtained from two force plates (Bertec,
Columbus, OH, USA) positioned beneath the belts. These
signals were then utilized to distinguish between the stance
and swing phases of each leg.

B. Experimental Protocol

Three sessions of walking experiments were conducted on
each participant: 1) baseline walking trials; 2) LSPI-enabled
walking as control tuning trials; and 3) evaluation walking
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trials. Due to the different locomotion abilities of unimpaired
participants and those with stroke, some adjustments were
made to the experimental protocol. Prior to any trial in
training and evaluation, all unimpaired participants performed
baseline walking trials under different walking task scenarios
using a similar setup as in Fig. 2. In the baseline walking
trials, each unimpaired subject walked on the treadmill for
100 GCs under 12 scenarios (four speeds of 0.6, 0.8, 1.0, and
1.2 m/s and three slopes of 5° incline, level, and 5° decline),
while the person post-stroke walked on the treadmill for
100 GCs with a level terrain at the preferred speed of 0.8 m/s.
Based on baseline walking from unimpaired participants, the
results of reference peak flexion and extension are deter-
mined. Details can be found in Fig. S2 in the supplementary
file.

Control tuning and evaluation were conducted for all
unimpaired participants with five out of the 12 walking task
scenarios, including level terrain with speeds of 0.8, 1.0, and
1.2 m/s, as well as 5° incline and 5° decline terrains with
the speed of 1.0 m/s. For each of those five walking task
scenarios, a target hip joint trajectory was determined by
scaling the respective normative joint trajectory by a factor
of 1.25 to simulate an increased hip joint ROM for the
participants. Thereafter, the walking task scenario-dependent
target trajectory, as shown in Fig. 1(e), was used in each trial
of the LSPI-based training and evaluation sessions. For the
participant post-stroke, training and evaluation were conducted
only for the preferred walking condition. The desired/reference
hip joint trajectory of the affected side was determined to be
the trajectory of the unaffected side.

During each LSPI-enabled walking training trial for each
participant, one post-learning trial (of up to 25-min duration or
375 impedance parameter updates) and one evaluation trial (of
100 GCs) were conducted. If a training trial was not completed
within 25 min or 375 impedance parameter updates, it was
considered a failure, and the training trial was terminated.
Detailed implementation procedures of the LSPI-based tuning
in the learning trials are displayed in the next section. The
evaluation trials included walking with the hip exoskeleton
under two conditions: 1) walking in individualized OA mode
for 50 GCs and 2) walking in the zero impedance (ZI) or
walking without assistance mode for 50 GCs.

During all training trials, in order to mitigate the potential
influence of human fatigue, participants were instructed to
engage in multiple 5-min walking segments, interspersed with
3-min rest intervals (could be longer if needed). To improve
the training efficiency, all impedance parameters during both
stance and swing phases were auto-tuned according to the
kinematics measurements from the right hip joint. However,
for unimpaired participants, to maintain symmetry between
the left and right hip joints as well as to guarantee the user’s
safety, the fine-tuned impedance parameters set originally
assigned to the right hip joint was also applied to the
left hip joint, so as to provide bilateral assistance on hip
joints during walking. For the participant post-stroke, only
impedance parameters of the affected (right) hip joint were
tuned while the unaffected hip joint remained unassisted at all
times.
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TABLE I
TUNING RANGE OF EACH IMPEDANCE PARAMETER DURING THE
WALKING STANCE AND SWING PHASES

Phase in FSM Stance phase | Swing phase
Stiffness [Nm/rad] [0 31] [0 31]
Damping [Nms/rad] [-0.1 0.1] [-0.1 0.1]

Equilibrium position [rad] [-0.4 0] [0.6 1.0]

C. Impedance Tuning and Policy Update Using LSPI

1) Hyperparameters: In this study, to mitigate gait-to-gait
variations during walking, a measurement sample that contains
the current state xj, action uy, stage cost R(xg, ux), and next
state xx1, is defined as the respective average values across
three consecutive GCs. The number of samples N, is usually
at least twice the number of weights in (14). Therefore, N, was
30 in each training trial. For either the swing phase or stance
phase, the action update occurred at intervals of every three
GCs. In order to gather samples for the solution of the Q-value
by utilizing the LSPI approach, the policy update, as shown
in (9), was executed every 30 samples (i = |k/30] € N).

The weighting matrices M, and M, in (4) were set as
M, = diag([10, 0.01]) and M, = diag([0.01, 0.1, 0.1]),
respectively. The discount factor y was set as 0.9. For the
regeneration of the target hip joint trajectory, we designed
appropriate tolerance levels of state variables (specifically,
+5°/ 4 3° for peak flexion/extension amplitude errors and 2%
for peak flexion/extension timing errors) and action variables
10% range of variation of the corresponding impedance
parameters to account for the inherent walking variability,
which was used to derive the stage cost tolerance levels of
0.06, noted as &, and 0.15, noted as &f, for hip extension
and flexion, respectively. It was considered that the impedance
parameters tuning procedures were successful if the stage
cost values stayed within the tolerance levels for 8 out of
the very recent 12 consecutive samples. If both stance and
swing phases become successful, the impedance tuning trial
was considered to reach the stopping criterion. To prevent any
possible harm to the human participants stemming from unsafe
impedance parameters, a set of ranges for each impedance
parameter was predefined [56] in Table I, where positive
and negative equilibrium positions represent the flexion and
extension directions, respectively. We also designed safety
bounds for both ROM on the targeted hip joint and the ROM-
associated gait symmetry (GS), e.g., 0.5 rad < ROM < 1.6
rad and —0.1 < GS < 0.1. If any impedance parameter was
beyond the safety range, any ROM or GS values were beyond
the safety bounds, all control parameters were reset to the safe
and feasible initial values below.

2) Policy and Impedance Parameters Initialization and
Personalization: We applied one set of initial impedance

parameters (K, = 2 Nm/rad, K; = —0.01 Nms/rad, and
6, = 0.6 rad for flexion, as well as K, = 2 Nm/rad,
K; = —0.01 Nms/rad, and 6, = —0.2 rad for extension)

to initialize a policy. In the impedance parameters tuning
trials, each participant conducted treadmill walking with the ZI
mode for the first 10 GCs. Subsequently, the hip exoskeleton
started to provide both hip extension and flexion assistance
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with the initial impedance parameters above. The impedance
parameters were tuned according to a pretrained policy from
a user who has much experience in using the hip exoskeleton
as the initial policy 7 for online training. To acquire the
pretrained initial policy, the walking task scenario was set
as the level terrain at 1.0 m/s with a pseudo-random initial
policy and the same initial impedance parameters as described
above. Seven pretraining trials on the same experienced user
were conducted using different pseudo-random initial policies.
Eventually, the policy derived from the most recently success-
ful trial was subsequently employed with the same participant
in the remaining four walking task scenarios and on all other
unimpaired participants under all five walking task scenarios
and on the stroke patient under her most preferred walking
condition. The implementation of the proposed LSPI-based
control is described as pseudocodes in Algorithm 1 of the
supplementary file.

D. Data Collection and Processing

Throughout the impedance parameters tuning trials accord-
ing to LSPI, we recorded temporally discrete samples of all
state and action variables, impedance parameters, stage costs,
and policies for both stance and swing phases every three GCs.
Onboard data measurements of the exoskeleton were online
sampled and collected simultaneously at 500 Hz in MATLAB
(R2022a, MathWorks, MA, USA), including angle, velocity,
assistive torque, and interaction torque on both hip joints, in
addition, GRF signals from both left and right force plates
on the instrumented treadmill were recorded at 500 Hz in
MATLAB. The low-level torque control of the hip exoskeleton
was implemented in C++ and operated at 1000 Hz. All
onboard signals and GRF signals were filtered by using a 4th-
order, zero-lag, low-pass Butterworth filters, where the cut-off
frequencies were set as 10 Hz and 20 Hz, respectively.

V. RESULTS
A. Online Training Results

Given the limited space, results from representative partic-
ipants are shown in this section. Additional subject-specific
and group-level demonstrations can be found in the supple-
mentary file. The mean and standard deviation (SD) values of
iteration numbers when reaching the termination criteria was
150.0159.5 across these seven pretraining trials from the expe-
rienced participant during the determination of the pretrained
initial policy. Among all online training trials other than the
pretrained initial policy determination, take participants A0l
and SO1 as examples with the top performance, during the
online LSPI-based impedance parameters post-tuning trials,
the iterative changes of cost function values in each walking
task scenario are demonstrated in Fig. 3. For participant AOI,
the iteration numbers when reaching the stopping criterion for
these five walking task scenarios were 23, 63, 62, 11, and
93, respectively. Correspondingly, the impedance parameters
tuning duration for these five walking task scenarios were 1.55,
4.02, 3.63, 0.67, and 6.02 min, respectively. For the participant
post-stroke (SO1), the iteration number and tuning duration
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Iterative cost function values of both hip extension and flexion phases during the LSPI-based control parameters tuning procedures. The presented
results in (a)—(e) are from participant AO1 walking under five scenarios (level walking at 0.8, 1.0, and 1.2 m/s, and 5° decline and 5° incline walking at
1.0 m/s), and results in (f) are from participant SO1 under level walking at 0.8 m/s. The horizontal black solid and dashed lines represent the ultimate stage
cost tolerance values of both hip extension and hip flexion.
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Fig. 4. Individual values of the iteration numbers and tuning duration (the

elapsed time for auto-tuning during the treadmill walking experiments counted
by MATLAB timer) when reaching the stopping criterion under each walking
task scenario as well as the mean and SD across all participants. Different dots
represent data from all eight unimpaired participants and the reverse triangle
represents data from the participant post-stroke. The asterisks represent the
significant difference level of p < 0.05.

when reaching the stopping criterion under the preferred
walking condition were 69 and 4.75 min, respectively.

The bar plots in Fig. 5 show the mean and SD values of the
tuning iteration numbers and tuning duration when reaching
the stopping criterion under each walking task scenario across
all eight young healthy participants. It is noted that all bars
are composed of 8 data points, but one data point shown
with a triangles represents that from the stroke participant. For
the 8 unimpaired participants across walking conditions, the
overall number of impedance updates was an average of 85,
corresponding to 4.72 min of walking. Results of unimpaired
participants from the Shapiro—Wilk parametric hypothesis test
validated that each group followed the normal distribution,
and results from one-way ANOVA indicated that the iteration
number or tuning duration under the walking scenario of 5°
decline walking was significantly less than the other four
walking task scenarios (all p < 0.05), while no statistically
significant difference was found among other four scenarios.

To inspect the dynamic behavior of impedance tuning using
LSPI from the beginning to the point meeting the termination
criteria, we present representative results from participants
AO05 and SOI under the level walking at 0.8 m/s in Fig. 5,
which shows that impedance parameters, e.g., stiffness and
equilibrium position, converged to relatively constant values
when the LSPI-based learning trial for both stance and swing
phases reached the ending, and these relatively constant values
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Fig. 5. Iterative impedance parameters (i.e., stiffness, damping, and

equilibrium position) of both stance (blue dashed curves) and swing (red solid
curves) phases during the training trial. Data in (a) to (c) and in (d) to (f) are
from participants AO5 and SOI1 under the level walking at 0.8-m/s scenario.
Positive and negative equilibrium positions represent the flexion and extension
directions, respectively.

were considered as the personalized impedance parameters.
Even though the damping parameters were not quite settled,
both tuning trials reached the stopping criteria. This indicates
that the robotic assistance was not sensitive to the damping
parameters as the predefined range was relatively small.

B. Evaluation Results—Hip Joint Kinematics

For both unimpaired participants and the participant post-
stroke, we focused on the kinematics of the right hip joint.
Fig. 6 illustrates the hip joint trajectories from participant
AO03 under the five walking task scenarios and from the SO1
under the level walking at 0.8-m/s scenario. In each plot, the
blue dashed curve represents the desired/reference hip joint
trajectory under each scenario, and the green (red) curves
and corresponding light-colored areas represent the mean and
SD values of the actual hip joint trajectories across all GCs
in ZI (OA) mode of the hip exoskeleton. Given the primary
control goal of the proposed control framework is not a
point-to-point position tracking (rigid) on the targeted hip
joint, but an adaptive optimal control solution (compliant)
to personalize robotic assistance based on RL, the point-to-
point errors between the desired and actual trajectories do not
need to be minimized as long as the magnitude error and
timing error at the peak extension and peak flexion meet the
predefined threshold values. The direct effect is the joint ROM
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Fig. 6. Desired and real hip joint trajectories from one unimpaired participant
and the person post-stroke under multiple walking task scenarios. The blue
dashed curves represent the desired hip joint trajectories for different walking
task scenarios, the green curves represent the actual hip joint trajectories under
ZI mode, and the red curves represent the actual hip joint trajectories under
OA mode. Data in (a) to (e) are from participant AO3 during level walking at
0.8 m/s, level walking at 1.0 m/s, level walking at 1.2 m/s, 5° decline walking
at 1.0 m/s, and 5° incline walking at 1.0 m/s, respectively. Data in (f) are
from a person post-stroke during level walking at 0.8 m/s.

increase after adding the personalized assistance from the hip
exoskeleton. From the results of evaluation trials in Fig. 6,
it is observed that A03’s right hip joint ROM significantly
increased from 34.9611.17° to 42.594+1.08° (p < 0.05), from
39.07£0.92° to 49.294+1.02° (p < 0.05), from 43.10£1.31°
to 54.754+0.97° (p < 0.05), from 38.49+1.14° to 52.90£0.91°
(p < 0.05), and from 44.88+1.28° to 60.08+0.77° (p < 0.05)
under those five walking conditions, respectively. It is also
observed that SO1°s right hip joint ROM significantly increased
from 39.5742.72° to 54.244+4.14° (p < 0.05) during level
walking at 0.8 m/s. Results of the ROM values of the right
hip joint from both unimpaired participants and our participant
recovering from stroke under each walking task scenario are
summarized in Table SIII of the supplementary materials.

The outcomes of the proposed control framework regarding
hip joint kinematics were also evaluated by the magnitude
error and timing error at peak flexion and peak extension
points between the desired and actual hip joint trajectories.
Fig. 7 is a summary of kinematic errors of hip joint motion
(magnitude and timing) for all unimpaired participants in
all evaluation scenarios, which indicates these errors were
effectively reduced in OA mode regardless of walking task
scenarios. Averaged across all unimpaired participants under
each walking task scenario, the improvement percentage of the
peak extension/flexion magnitude and timing errors by using
the OA mode are summarized in Table II.

C. Evaluation Results—Hip Joint Kinetics

Given the customized impedance parameters for each partic-
ipant, once the hip joint angular position and velocity signals
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Fig. 7. Magnitude error and timing error result at peak extension and peak
flexion points between ZI mode and OA mode. Presented bars and error bars
are the mean and SD values of each metric on the right hip joint across all
unimpaired participants, respectively. (a) and (c) Stance phase and (b) and
(d) Swing phase. The statistically significant difference is denoted by * at a
level of p < 0.05.

TABLE II
IMPROVEMENT (IN PERCENTAGE) OF MAGNITUDE/TIMING ERROR FOR
PEAK FLEXION/EXTENSION UNDER EACH WALKING SCENARIO
FrROM ZI MODE TO OA MODE

Scenario 0.8 m/s 1.0 m/s 1.2 m/s | Decline Incline
Stance AP | 74.16% | 37.32% | 21.35% | 48.38% | 88.43%
Stance AD | 26.69% | 28.88% | 27.21% | 50.18% | 78.01%
Swing AP | 66.07% | 65.73% | 83.65% | 95.46% | 73.38%
Swing AD | 74.65% | 51.86% | 42.35% 7.03% 63.41%

were measured, the assistance torque during hip extension and
flexion in OA mode could be calculated based on (1). As
stated in the experimental protocol, the human-exoskeleton
interaction torque was measured by using the embedded
load cell after interacting with the wearer’s thigh during
walking. Representative interaction torque profiles (mean and
SD values across all GCs in the evaluation session) under
multiple walking task scenarios from both participant A03
and participant SO1 are presented in Fig. 8. The positive and
negative values represent hip flexion and extension assistance
torques, respectively. The green (red) curves and correspond-
ing light-colored areas present the mean and SD values of the
interaction torque profiles across all GCs in the ZI (OA) mode
of the hip exoskeleton. Consistent results were obtained for all
other participants. Results from all participants showed that the
interaction torque between the exoskeleton and human thigh
was between —20 N-m and 20 N-m. To quantify the assistance
level throughout the GC, the root mean square (RMS) values
of the interaction torque and assistive power within each GC
are calculated, whose mean and SD values across all recorded
GCs and all participants from each walking task scenario in
the evaluation session are summarized in Table SIV of the
supplementary materials. It is observed that the interaction
torque and assistive power were not completely zero in the ZI
mode because a necessary interaction torque/assistive power
(with a reverse direction from the exoskeleton to wearers) was
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required to achieve backdrivability. Compared to the ZI mode,
the OA mode significantly increased the interaction torque and
assistance power throughout the GC, which assisted the hip
joint in flexing and extending during walking.

VI. DISCUSSION AND CONCLUSION
A. Interpretation of LSPI-Based Assistance Personalization

This study presents a safe, efficient, and effective adaptive
control solution for providing personalized walking assistance
to individuals with motor impairments. Our experimental
results, involving eight unimpaired participants and one stroke
survivor (as shown in Fig. 3 through Fig. 5), demonstrate
that the LSPI-based hierarchical control framework effectively
optimizes the high-dimensional control parameters of the
exoskeleton. The proposed approach successfully increased
the targeted hip joint ROM to the desired levels across
five different walking task scenarios. Notably, we observed
significant variability in the final optimal impedance param-
eters for each scenario, highlighting the need for customized
assistance tailored to individual differences, which ultimately
led to similar improvements in hip joint kinematics across
participants.

We observed the highest-learning time efficiency during
decline walking, and the lowest-learning time efficiency dur-
ing incline walking for our unimpaired participants (Fig. 4),
indicating that the proposed LSPI-based control framework
tended to aid participants in reaching a target hip trajectory
faster if the given target is lower [Fig. 1(e)]. Remarkably,
the learning time efficiency of the participant post-stroke was
very similar to the average performance from the unimpaired
participants, which implies the possibility of automatically
personalizing robotic assistance for neurologically impaired
users with only a short period of training/tuning. As an effi-
cient and generic learning-based control solution, the proposed
LSPI-based assistance personalization can also be imple-
mented in other wearable assistive devices, including upper
or lower-limb exoskeletons, prostheses, and neuroprosthetics
[40], [571, [58], [59].

Our finding in regards to the simultaneous optimization of
6 control parameters in about 5 min is appropriate for clinical
rehabilitation applications according to the detailed evidence
in the supplementary file. This performance would be unlikely
to achieve by using manual updates for high-dimensional
control parameters, as detailed in the supplementary file.
Based on the discussed evidence, we believe that our finding
with optimization of close to 5 min while auto-tuning six
control parameters in the current study is the most responsive
technique shown in the literature. We also want to point
out other practical values of our proposed new method. Our
auto-tuning algorithm does not require additional sensors.
In addition, many current HIL optimization methods do not
converge, rather the investigators use time limits (20 to 25 min)
as the termination criterion [22], [23]. Finally, compared to
manual tuning, our automatic tuning method is more accurate
and time-efficient. Therefore, we believe our proposed method
is significant and feasible for potential clinical use in the
future.
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Fig. 8. Interaction torque profiles on the right hip joint from one unimpaired
participant and the participant following stroke under multiple walking task
scenarios. The green curves represent the interaction torque under ZI mode
while the red curves represent the interaction torque under OA mode. Data
in (a) to (e) are from participant AO3 during level walking at 0.8 m/s, level
walking at 1.0 m/s, level walking at 1.2 m/s, 5° decline walking at 1.0 m/s,
and 5° incline walking at 1.0 m/s, respectively. Data in (f) are from SOl
(post-stroke) during level walking at 0.8 m/s.

B. Insights From Evaluation Outcomes

The primary goal of the proposed control framework was
not to achieve a point-to-point good tracking performance
like traditional position control approaches. Consequently, we
observed a relatively high error between the desired/reference
and actual hip joint trajectories other than the moments of
peak extension and peak flexion, as shown in Fig. 6. This
is a fact that all FSM-IC approaches encounter, especially
when the number of FSMs is small, like the two FSMs in
the current study. In this sense, the hip exoskeleton provided
compliance to some degree without strictly constraining the
human hip joint. This could be the main reason that all
participants felt comfortable with the hip assistance and could
easily get used to walking with external robotic assistance.
Based on a post hoc analysis of human-exoskeleton interaction
torque in Fig. 8, the profile shape was very similar for both
unimpaired participants and the individual post-stroke. The
difference in magnitude and any timing shift mainly depend on
various personalized impedance parameter sets and hip joint
kinematics from person to person. It is also observed that the
variation of the interaction torque on the person with stroke
was much higher than that of the unimpaired participants. We
attribute this finding to larger GC-to-cycle variability in our
participant with stroke, compared to the unimpaired partic-
ipants. Furthermore, the results from [60] reported that the
overall hip joint torque remained invariant despite substantial
external assistance from the hip exoskeleton, according to
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inverse dynamics. We also found similar observations in the
current study (see representative results in the supplementary
Fig. S17), while the hip joint kinematics were significantly
affected as shown in Fig. 6. By subtracting the robotic assis-
tance torque from the overall hip joint torque, we hypothesize
that the biological torque on the hip joint could be reduced,
thus suggesting a potential energy expenditure reduction when
using personalized robotic assistance. Given the focus of
this article is to demonstrate the preliminary implementation
of a new adaptive optimal control solution under multiple
walking conditions, we will examine this hypothesis in the
future by calculating inverse dynamics from more participants
and systematic evaluations on whether and how energetic
alterations are achieved.

As similar results reported in [61], we also found partici-
pants tended to have longer stride lengths under scenarios with
faster level walking speed and incline ramp with both ZI and
OA modes (see the supplementary Fig. S16). In addition, the
stride length of unimpaired participants’ left and right sides
(as well as the right side of the person with stroke) were
significantly increased by applying the personalized OA for
each walking task scenario. The most likely reason could be
the improvement of the hip joint ROM after imposing the
OA mode, which indicates potential walking speed increase
if the walking cadence is stable during over-ground walking
in the real world, a promising outcome for patients with
mobility deficits. Although a kinematics change at the knee
joint might also contribute to the stride length increase, this
effect would be minor compared to a change in hip joint
kinematics. Lastly, one note is that even though impedance
parameters were learned based on the kinematics from the
right hip joint, the current control framework is expected
to be extensible for assistance personalization on both sides
when considering motor deficits for individuals with other
neurological disorders.

C. Limitations and Future Work

Although our proposed LSPI-based control design and
experimental study are promising, there are still some limita-
tions. The primary limitation is the small population size and
limited walking task scenario of evaluation on human partici-
pants with mobility impairments due to the focus here being
the feasibility investigation and proof-of-concept study of the
proposed novel assistance personalization method instead of a
clinical implementation. Second, considering that our applied
target hip joint trajectories, as suggested in Fig. 1(e), were
walking task scenario-dependent and designed with a scaling
factor of 1.25 based on data from the lookup library that
was established according to the normative treadmill walking
data under 12 different scenarios, a possible limitation is
that the target hip joint trajectory is not adaptive online
or directly appropriate for daily use overground walking
task scenarios with time-variant speed. Also, no cross-task
generalization results were investigated in the current study. To
address these issues, future work may consider, for example,
building a high-dimensional regression model for generating
a trajectory library according to the real-time estimation of
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the walking speed and terrain slope, such as the approaches
in [62] and [63].

Third, two FSMs (stance and swing phases) were applied
in the current study, and the optimal personalized impedance
parameters from the LSPI-based tuning were constant through-
out each FSM under each walking task scenario. Switching
between the stance and swing phases during locomotion as
well as the distinct impedance parameters in these two FSMs is
likely to create a sharp change in the desired torque command.
In future work, one possible solution for addressing this issue
is to increase the number of FSMs with a more reliable
detection approach or build a continuous impedance model
throughout the GC [64]. Lastly, the multiple 5-min walking
sections in the experimental protocol were just an elapsed time
approximation due to the reasons that human participants may
change GC counts in one training section at different gait
speeds. The 3-min resting period during walking experiments
was provided in order to avoid the potential fatigue of the
participants, and the de-adaptation during this resting period
is not within the scope of the current study and will be an
interesting point for future study.
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