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ABSTRACT

This paper studies validation of a simulation-based process digital twin (DT). We assume that at any point
the DT is queried, the system state is recorded. Then, the DT simulator is initialized to match the system
state and the simulations are run to predict the key performance indicators (KPIs) at the end of each time
epoch of interest. Our validation question is if the distribution of the simulated KPIs matches that of the
system KPIs at every epoch. Typically, these KPIs are multi-variate random vectors and non-identically
distributed across epochs making it difficult to apply the existing validation methods. We devise a hypothesis
test that compares the marginal and joint distributions of the KPI vectors, separately, by transforming the
multi-epoch data to identically distributed observations. We empirically demonstrate that the test has good
power when the system and the simulator sufficiently differ in distribution.

1 INTRODUCTION

Process Digital Twins (DTs) continue to grow in popularity as a decision-making tool in industries,
while stochastic simulation models are increasingly seen as a potential base model for DT in many
applications (Biller et al. 2022). The key difference between simulation DT and a traditional simulator is
that the DT is continuously updated to keep up with the changes in the target system to enable context-specific
predictions and decisions. Here, a context is the state of the system or the decision to be implemented at
some time point when the DT is queried to predict the system performance in the near future; we refer
to this time window as an epoch in this paper. The context determines the initial conditions of the DT
simulator so that the simulated key performance indicators (KPIs) at the end of the epoch provides valid
prediction for the system KPIs provided that the simulation model approximates the system well.

Since misalignment between the system and the DT may impact future decisions and the system
performance, it is important to quickly detect it if the simulated KPIs start deviating significantly from
the KPIs observed from the system. However, the context-dependency of the DT use brings significant
challenges to validation of the DT simulator (Lugaresi et al. 2023). That is, the differences in initial
conditions of the epochs makes it difficult to apply traditional validation procedures that assume that the
underlying distribution of the system outputs remains unchanged across epochs and multiple observations
at each epoch are available. Moreover, in a realistic system, there are several statistically dependent KPIs.
Simply validating each KPI marginally ignores the potentially important dependence among the KPIs. For
example, in a manufacturing system, understanding the dependence between the delays at two stations
is crucial for efficiently managing the workflow. This paper proposes a validation method that utilises
multi-variate KPIs observed from the system and simulated by the DT from multiple epochs.

There is a stream of literature on simulation model validation that relies on hypothesis tests to determine
whether the KPIs observed from the system and generated by the simulator are identically distributed (Naylor
and Finger 1967; Shannon 1976; Schruben 1980; Balci and Sargent 1981). These methods require a large
number of independent and identically distributed (i.i.d.) system observations (Sargent 2015). On the other
hand, in the DT setting, system-observed KPIs at multiple epochs are rarely i.i.d. which makes it difficult
to extend the existing methods to pool multi-epoch data for model validation.
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More recent approaches compare the real and simulated time series. Hua et al. (2022) apply trace-driven
simulation (Kleijnen et al. 1998) to enable the validation, however, this only tests the deterministic model
logic, not the stochastic input models of the simulator. Addressing the shortcoming, Lugaresi et al. (2019)
propose the quasi Trace-Driven Simulation (qTDS), where observed random quantities are modified through
the simulation input models. They apply spectral density estimation to the two time-series observed from
the system and generated by qTDS to measure their difference. Adopting qTDS, Lugaresi et al. (2023)
propose subsequence measures for the comparison such as the longest common subsequence and dynamic
time warping, which produce a statistic that can be compared against a threshold. However, the threshold
can be difficult to set and interpret. The experiments on a small manufacturing line suggest the methods
are able to detect changes in mean processing times at bottlenecks, but are less sensitive to changes in
variance or differences not at a bottleneck. Morgan and Barton (2022) take a discrete Fourier transform
of both time series and propose a hypothesis test on the Fourier coefficients. The use of a statistical test
allows a threshold to be selected based on the required confidence level. Each of these methods consider
a single epoch at a time, with the focus on whether the simulation model is aligned within the epoch.

When multi-epoch data is available, it is natural to utilise them to achieve a greater degree of statistical
confidence. However, the non-i.i.d. nature of the data imposes challenges. Oakley et al. (2020) propose a
method that assumes that conditional on the initial states, the relative system trajectories across multiple
epochs are i.i.d. This approximation may hold for some systems, but may not make sense in the DT
applications.

All aforementioned methods assume that there is only one KPI of interest, not multi-variate. dos
Santos et al. (2023) propose a method that can handle multi-variate data by collecting an equal number
of observations, n, from the system and the simulator and then train a k-nearest-neighbour classifier on
the results. The accuracy of the classifier is then monitored for each set of n observations using a control
chart. However, their approach requires more granular system data than those discussed in this paper. For
instance, their experiment includes a factory DT in which the processing and waiting times of all parts are
the observations from a single epoch, where the control chart’s thresholds are set from the past epoch’s
data. In this research, we assume that only system-level KPIs are measured, not part-level.

We propose a hypothesis test that aggregates multi-epoch, multi-variate KPIs to test if the distributions
of the simulated and system KPIs match in all epochs. The test is decomposed to a set of marginal tests
and a joint test. The former examines if each marginal KPI’s distributions match applying the hypothesis
testing framework proposed by Rhodes-Leader and Nelson (2023) designed for one-dimensional KPIs. For
the joint test, we impose an assumption that the copula of the marginal distributions in all epochs are
identical. Under this assumption, we first transform each system KPI at each epoch using the marginal
cumulative distribution function (cdf) of the simulated KPI. Then, the resulting transformed random vector
has the same copula in all epochs under the null. This allows us to compute a test statistic by aggregating
all epochs’ data. Lastly, we adopt the multiple hypothesis testing framework proposed by Romano and
Wolf (2005) to lessen the conservatism from achieving the family-wise error rate (FWER).

The paper is structured as follows. Section 2 defines the scope of our DT simulator calibration problem.
The test for the marginals is reviewed in Section 3 and the proposed copula-based test is described in
Section 4. Section 5 discusses how to combine the marginal and joint tests into the multiple hypothesis
testing framework. Empirical results from a controlled experiment are presented in Section 6.

2 PROBLEM DEFINITION

To describe the multi-epoch data collected from the system and the DT simulator, we first establish notation
with a system illustration in Figure 1. Let subscript i label the ith epoch. We denote the start time and
duration of the epoch by ti and ∆i, respectively. At the beginning of each epoch, the system records the
snapshot of the system state (e.g., work-in-progress—WIP—level, elapsed processing times, operator/tool
status at each station, etc.), which can be summarized by the state vector, Ψi. The d-dimensional system
KPI, Wi = (Wi1, . . . ,Wid), are collected at the end of the epoch, i.e., at time ti +∆i. We also denote the
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Figure 1: An illustration of the system and simulated KPIs at the ith epoch.

system control adopted during the ith epoch by xi, and the collection of random realizations (e.g., processing
times) occurred during the epoch by ξi. Then, Wi is a function of Ψi,xi, and ξi.

Typically, Ψi and ξi are random in the target system, and xi is chosen based on Ψi. Also, only one
realization of (Ψi,ξi) is observed for each i. However, considering the randomness in ξi, we can view
Wi = Wi(Ψi,xi,ξi) as a random vector with cumulative distribution function (cdf) Fi(·|Ψi,xi). Notice that
the distribution is conditional on Ψi and xi clearly indicating the within-epoch KPI’s dependence on the
initial state of the epoch. Therefore, Wi is not identically distributed across all is in general. To address this,
we introduce the following assumption, where n denotes the total number of epochs and [n] = {1,2, . . . ,n}.
Assumption 1 {Wi}i∈[n] are independent conditional on the initial states {Ψi}i∈[n] and controls {xi}i∈[n].
For each epoch, we refer to the initial state and control together as the epoch’s context. Assumption 1
posits that the dependence among {Wi}i∈[n] arises from their dependence on the contexts. Hereafter, all
probability statements we make are conditional on the observed contexts.

We assume that the DT simulator is set up so that the KPI observed at the end of each epoch i can be
emulated by initializing the simulator’s state variables to Ψi and adopting the same control, xi, as in the
system. What corresponds to ξi observed from the system is the vector of random inputs, ωi, generated by
the DT simulator. Similarly, the simulated KPI at epoch i, Yi, is a function of the initial state, the control,
and within-epoch random realizations, i.e., Yi = Yi(Ψi,xi,ωi), and we denote its distribution conditional
on Ψi and xi by Gi(·|Ψi,xi), where the randomness comes from ωi. As in Assumption 1, we assume that
the simulation outputs are independent across the epochs given the contexts. Furthermore, we assume that
both Wi and Yi are continuous random vectors in all epochs.

Since no model is perfect, the distributions of Wi and Yi conditional on Ψi and xi are unlikely to be
equal in general. The discrepancy may be due to logical error, mismatch in the distributions of ξi and ωi,
and/or some parameter settings of the simulation model. Nevertheless, the hope is that the DT can closely
mimic the target systems’ KPIs in all epochs so that predictive and prescriptive analyses derived from the
DT outputs will be meaningful. To this end, the first step is to validate the simulation model. At the high
level, we aim to test the following hypothesis:

H0 : Fi(·|Ψi,xi) = Gi(·|Ψi,xi) for all i ∈ [n]. (1)

There are two challenges at testing (1). The first is that it involves multi-epoch KPIs collected from
the system and the simulator that are not identically distributed across all epochs. In particular, we have
only one observation of the system KPI vector, Wi, from each epoch i, which makes it difficult to estimate
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Fi. Secondly, we are interested in multi-dimensional KPI in this work, which further complicates the test
as the joint distribution of d elementwise KPIs must be considered.

The approach we take in this paper is to construct a multiple hypothesis testing that examines if each set
of marginal distributions (system and simulated KPI’s) as well as the joint distributions match by converting
the non-identically distributed data to be approximately identically distributed via transformation.

3 HYPOTHESIS TESTING FOR MARGINAL PERFORMANCE MEASURE

As part of the validation process, we propose that each dimension of the KPI is tested marginally applying
the framework proposed by Rhodes-Leader and Nelson (2023).

Unlike the target system, one can run r > 1 replications of the simulation at each epoch. These simulation
outputs can be then used to compute statistical risk measures such as the probability of completing a job
within a certain time window, or the percentile of the number of jobs waiting at each station. Let {Yi j} j∈[r]
represent the collection of r simulated KPIs from the ith epoch, where Yi j = (Yi j1, . . . ,Yi jd).

Consider the lth performance measure. At the end of the nth epoch, we have {Wil}i∈[n] from the real
system and r replications of simulated performance measure in each epoch, {Yi jl}i∈[n], j∈[r]. Let Fil(·|Ψi,xi)
and Gil(·|Ψi,xi) be the lth marginal distribution of Wi and Yi j, respectively. We conduct hypothesis
testing to determine whether the marginal distributions are identical across all n epochs. Namely, the null
hypothesis for the lth test is stated as follows

H l
0 : Fil(·|Ψi,xi) = Gil(·|Ψi,xi) for all i ∈ [n]. (2)

From the probability integral transform, Gil(Wil|Ψi,xi) is uniformly distributed under the null hypothesis.
Thus, {Gil(Wil|Ψi,xi)}i∈[n] is an i.i.d. sample from U(0,1) under H l

0, which can be tested for uniformity
using a standard goodness-of-fit test, such as Kolmogorov–Smirnov (KS) and Anderson-Darling (AD) tests.

Let U(1) ≤ U(2) ≤ ·· · ≤ U(n) be the order statistics of {Gil(Wil|Ψi,xi)}i∈[n]. Then, the KS test rejects
the null hypothesis of uniformity if the statistic, DKS = maxi∈[n](

i
n −U(i),U(i)− i−1

n ), exceeds a critical
value. Similarly, the AD test computes DAD =−n−∑

n
i=1

2i−1
n (ln(U(i))+ ln(1−U(n+1−i))) and rejects the

null hypothesis if the statistic is greater than a critical value.
Although Gil(·|Ψi,xi) is unknown, it can be estimated to an arbitrary precision using a sufficiently large

number of replications, r, of the DT simulator and setting up the empirical cdf (ecdf) of the observations
of the lth KPI for the ith epoch:

Ĝil(y) =
1
r

r

∑
j=1

1
{

Yi jl ≤ y
}
, (3)

where 1{·} is the indicator function. For sufficiently large r, Ĝil(Wil) is approximately uniformly distributed
under H l

0. In the empirical study in Section 6, we modify (3) to prevent infinite values when calculating
the logarithmic terms in DAD.

Since there are d > 1 KPIs of interest, the null hypothesis for matching all marginal distributions is:

HM
0 : H l

0 holds for all l ∈ [d].

To test HM
0 , the FWER must be carefully controlled. In general, the d KPIs are statistically dependent with

an unknown dependence structure. A standard Bonferroni correction can be adopted, however, is known to
be conservative, which diminishes the power of the test, i.e., the probability of correctly rejecting the null
hypothesis when differences do exist is lower. This reduces the ability of the test to detect a misalignment
between the real system and the simulator. Section 5 discusses a multiple hypothesis testing framework
that reduces such conservatism.
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4 COPULA HYPOTHESIS TESTING FOR JOINT DISTRIBUTION

In this section, we discuss a hypothesis test on the joint distributions of W and Y assuming their element-wise
marginal distributions match. Under this assumption, we characterize their respective joint distributions
by copulas and utilize the copula goodness-of-fit test for validation.

A d-dimensional copula is a joint distribution of d random variables marginally distributed as U(0,1).
Sklar’s theorem states that for any d-dimensional random vector X with cdf H : Rd → [0,1], there exists
copula C that satisfies H(x1, . . . ,xd) = C(H1(x1), . . . ,Hd(xd)) for all (x1, . . . ,xd) ∈ Rd , where Hℓ is the
marginal cdf of the ℓth element of X (Durante et al. 2013). Moreover, for continuous X, the copula, C, is
uniquely defined by H and the marginal distributions. Conversely, given the d marginals and the copula,
the joint distribution is uniquely determined. Thanks to these properties, the copula has been adopted as a
powerful tool for characterizing a joint distribution of random variables.

Let Ul = Fil(Wil|Ψi,xi) for l ∈ [d]. Then, the distribution of (U1, . . . ,Ud) defines unique copula
CW

i (u) ≜ P(U1 ≤ u1, . . . ,Ud ≤ ud), where u = (u1, . . . ,ud) ∈ [0,1]d . We define the copula, CY
i , from the

marginal and joint distributions of Yi j in a similar fashion. Suppose the marginal distributions of Wi and Yi
match in all epochs. Then, we can adopt the following null hypothesis to compare their joint distributions:

HC
0 : CW

i =CY
i for all i ∈ [n]. (4)

Namely, HC
0 implies that the copulas constructed form Wi and Yi match in each epoch.

Clearly, the analytical expressions for CW
i and CY

i are unknown in general. Since the r simulation
replications {Yi j} j∈[r] are i.i.d. within each epoch, we can construct an estimator for CY

i for each i ∈ [n].
On the other hand, we have only one observation of Wi from the ith epoch, which makes it challenging
to construct a test statistic for HC

0 . To facilitate the hypothesis testing, we make the following assumption.

Assumption 2 Conditional on {Ψi}i∈[n] and {xi}i∈[n], CW
i and CY

i remain unchanged for all i ∈ [n].
Assumption 2 is clearly weaker than assuming Fi is identical for all i ∈ [n]; the marginal distributions of
the KPIs may still vary by the epoch. Moreover, it allows {Wi}i∈[n] and {Yi j}i∈[n], j∈[r] to be dependent as
long as Assumption 1 holds. Under Assumption 2, we can now pool {Wi}i∈[n] to estimate CW

i .
To construct the test statistics for HC

0 , we start by introducing the estimator for CY
i . For each

epoch i, by transforming {Yi j} j∈[r] using the marginal ecdfs given in (3), we define V̂i j = (V̂i j1, . . . ,V̂i jd)≜

(Ĝi1(Yi j1), . . . , Ĝid(Yi jd)) and ZY
i j = (zY

i j1, . . . ,z
Y
i jd) ≜

r
r+1 V̂i j =

r
r+1(Ĝi1(Yi j1), . . . , Ĝid(Yi jd)) for j ∈ [r]. We

refer to {ZY
i j, j ∈ [r]} as the pseudo-sample from the ith epoch generated by Yi, while each ZY

i j as a
pseudo-vector. Note that rĜil(Yi jl) is the marginal rank of the lth simulated KPI observed from the jth
replication among all r replications. The scaling term, r/(r+1), ensures that ZY

i j is contained in the interior
of [0,1]d . Since simulated KPIs from all r replications are utilized to estimate Ĝil for each l, {ZY

i j} j∈[r] are
no longer i.i.d. Nevertheless, when r is sufficiently large, Ĝil closely approximates Gil and the dependence
among ZY

i j, j ∈ [r] becomes weaker. Consequently, the psuedo sample behaves more closely to an i.i.d.
observation from CY

i . From this intuition, Deheuvels (1979) introduces the empirical copula estimator:

ĈY
i (u)≜

1
r+1

r

∑
j=1

1{zY
i j1 ≤ u1, . . . ,zY

i jd ≤ ud} for i ∈ [n]. (5)

Under Assumption 2, {V̂i j}i∈[n], j∈[r] are identically distributed, therefore, we can further improve (5) by
pooling all V̂i j’s. Let {ZY

i j}i∈[n], j∈[r] be the new pseudo-sample after pooling, where for each l ∈ [d],

zY
i jl =

Ri jl
nr+1 and Ri jl is redefined as the rank of V̂i jl among {V̂ikl}i∈[n],k∈[r]. The resulting estimator of CY is

ĈY(u)≜
1

nr+1

n

∑
i=1

r

∑
j=1

1{zY
i j1 ≤ u1, . . . ,zY

i jd ≤ ud}.
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Next, we discuss estimation of CW
i . Since we only observe one Wi for each i, we do not have estimators

for Fil, l ∈ [d]. However, under HM
0 , we can estimate Fil with Ĝil . From this, let Ûi = (Ûi1, . . . ,Ûid) =

(Ĝi1(Wi1), . . . , Ĝid(Wid)). From Assumption 2, {Ûi}i∈[n] are i.i.d, therefore, we can compute the pseudo-
samples {ZW

i }i∈[n] out of {Ûi}i∈[n] by taking zW
il = 1

n+1 ∑
n
k=1 1{Ûkl ≤ Ûil}. Then, we can estimate ĈW in a

similar way as in (5):

ĈW(u)≜
1

n+1

n

∑
i=1

1{zW
i1 ≤ u1, . . . ,zW

id ≤ ud}.

We note that in the classical copula goodness-of-fit literature, the pseudo-samples {ZW
i }i∈[n] are computed

from ranks of the raw data {Wi}i∈[n] rather than from those of the transformed vectors {Ûi}i∈[n]. We make
this modification because the pseudo-samples should ideally be computed from i.i.d. data. However, in our
case, the Wi’s may not be identically distributed, while the transformed Ûi’s are, under Assumption 2 and
HM

0 . For a similar reason, we favor estimating ĈY from the transformed V̂i j’s rather than Yi j’s. By pooling
the V̂i j’s across epochs to compute the pseudo-vectors, we enlarge the sample size used in the copula
estimation. This enhancement improves the estimation convergence rate, albeit at the cost of compromising
the independence among the V̂i j’s.

To measure the discrepancy between the two estimated copulas, we select three test statistics from
the literature, construct the copula hypothesis tests based on them, which are empirically compared in
Section 6. For a comprehensive review of the copula goodness-of-fit testing, see Berg (2009).

Genest and Rémillard (2008) propose a Cramér–von Mises (CvM)-type statistics based on the pseudo-
vector copulas that measures

T̂1 = n
∫
[0,1]d

(
ĈW(u)−ĈY(u)

)2
dĈW(u) = ∑

n
i=1

(
ĈW(ZW

i )−ĈY(ZW
i )

)2
,

which is the expected squared difference between ĈW(u) and ĈY(u) with respect to ĈW(u).
The second approach involves projecting the d-dimensional copulas to one dimension using Kendall’s

dependence function, K(u) = P(C(Z) ≤ u),u ∈ [0,1]. The sample versions for W and Y are K̂W(u) =
1

n+1 ∑
n
i=1 1{ĈW(ZW

i )≤ u} and K̂Y(u) = 1
nr+1 ∑

n
i=1 ∑

r
j=1 1{ĈY(ZY

i j)≤ u}, respectively. Genest et al. (2006)
propose to compute the CvM-type test statistic on the distance between KW and KY:

T̂2 = n
∫ 1

0

(
K̂W(u)− K̂Y(u)

)2
dK̂W(u).

Unlike the first two test statistics that measure the distance between the empirical copulas, Panchenko
(2005) propose to measure the distance between the pseudo-samples using a positive definite kernel, kd(·, ·).
In our experiments, we adopt the Gaussian kernel: kd(S1,S2)≜ exp(−∥S1−S2∥2/(2dh2)), where S1 and S2
are d-dimensional vectors, ∥·∥ denotes the Euclidean norm in Rd and h is a bandwidth parameter. For two
d-dimensional integrable functions h1 and h2, an inner product of h1 and h2 can be defined from the Gaussian
kernel as ⟨h1|kd |h2⟩ ≜

∫ ∫
kd(s1,s2)h1(s1)h2(s2)ds1ds2. The inner product induces a squared distance Q:

Q(h1,h2)≜ ⟨h1−h2|kd |h1−h2⟩= ⟨h1|kd |h1⟩+⟨h2|kd |h2⟩−2⟨h1|kd |h2⟩. If h1 and h2 are probability densities
of S1 and S2, respectively, then the inner product ⟨h1|kd |h2⟩ is identical to the expectation, E[kd(S1,S2)].
Consequently, we have Q(h1,h2) = E[kd(S1,S1)]+E[kd(S2,S2)]−2E[kd(S1,S2)].

Applying Q to measure the distance between the probability densities of ZW
i and ZY

i j, we have the third
test statistic

T̂3 =
1
n2

n

∑
i=1

n

∑
ℓ=1

kd(ZW
i ,ZW

ℓ )+
1
n2

n

∑
i=1

n

∑
ℓ=1

kd(Z̃Y
i , Z̃

Y
ℓ )−

2
n2

n

∑
i=1

n

∑
ℓ=1

kd(ZW
i , Z̃Y

ℓ ), (6)

where {Z̃i}i∈[n] is a size-n random sample uniformly drawn from the pseudo-vectors, {ZY
i j}i∈[n], j∈[r]. Notice

that the expectations in the definition of Q are replaced with the sample averages in (6). As we have nr
pseudo-vectors of the simulated KPIs and only n system KPIs, we subsample the former in computing T̂3.
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To perform the hypotheses tests using the three test statistics defined above, we first estimate their
critical values via bootstrapping at a given confidence level α . Let B be the bootstrap size. In the ith
epoch, we bootstrap B sets of r+ 1 simulation outputs, {Y∗b

i j } j∈[r+1] for b ∈ [B], by sampling {Yi j} j∈[r]
with replacement. We then implement the test procedure independently on each {Y∗b

i j } j∈[r+1] data set.
Namely, for each b ∈ [B], we compute the marginal ecdfs Ĝb

il from replications {Y∗b
i j } j∈[r] and compute

V̂b
i j = (V̂ b

i j1, . . . ,V̂
b
i jd) = (Ĝb

i1(Y
∗b
i j1), . . . , Ĝ

b
id(Y

∗b
i jd)) for j ∈ [r]. We take Y∗b

i(r+1) in the place of Wi and compute

Ûb
i = (Ûb

i1, . . . ,Û
b
id) = (Ĝi1(Y ∗b

i(r+1)1), . . . , Ĝ
b
id(Y

∗b
i(r+1)d). We proceed by calculating the pseudo-samples and

corresponding statistics T̂ b for each of the three tests. Finally, we compute the 1−α empirical quantile
among {T̂ b}b∈[B] as the critical value for the test. Let T̂ be the statistic calculated from the original {Wi}i∈[n]
and {Yi j}i∈[n], j∈[r]. The null hypothesis (4) is rejected if T̂ exceeds the quantile.

5 MULTIPLE HYPOTHESIS TESTING

To summarize our discussion thus far, H0 in (1) consists of d + 1 hypotheses, H l
0 for l ∈ [d] and HC

0 . If
each of these are tested at α significance, the probability that at least one of the true hypotheses is rejected
(FWER) is greater than or equal to α .

To achieve α-level FWER at α for testing H0 in (1), we first split the error rate between the marginal
and joint tests as αM = d

d+1 α and αJ = α/(d+1), respectively. Then, the Bonferroni correction guarantees
that the FWER is bounded away from α. However, the Bonferroni correction can be very conservative.
Applying it to all d marginal tests makes each test have α/(d+1) significance level. This implies that the
null is much more likely to be accepted, and consequently reduces the full procedure’s ability to detect
misalignment.

To lessen the conservatism, we adopt a stepdown procedure for multiple hypothesis tests proposed by
Romano and Wolf (2005) for the marginal tests. It is a sequential procedure that tests a series of joint
hypotheses, each time potentially rejecting a hypothesis and removing it from consideration. The aim of
this procedure is to exert strong control over the FWER whilst accounting for dependence between tests.

The first step is to calculate the test statistic for each of the marginal goodness-of-fit tests, {Tl}l∈[d], and
sort them in decreasing order: T(1) ≥ T(2) ≥ ...≥ T(d). For simplicity, assume their corresponding labels are
l = 1, . . . ,d. Let cd(α) denote the critical value of the maximum of d statistics at α confidence. We then
test T(1) against the critical value cd(1−αM). If T(1) ≤ cd(1−αM), then the procedure does not reject any
of the null hypotheses and we conclude there is no statistical evidence to reject HM

0 . If T(1) > cd(1−αM),
then we reject H1

0 , redefine HM
0 to only include the remaining d −1 hypotheses, HM

0 = {H l
0 : 2 ≤ l ≤ d},

and move on to testing HM
0 . That is, we test T(2), the maximum of d−1 statistics, against the corresponding

critical value, cd−1(1−αM). As before, if T(2) ≤ cd−1(1−αM), do not reject the (new) null hypothesis,
HM

0 , then the procedure stops. Otherwise, it rejects H2
0 and continues in the same manner. In Theorem 1 of

Romano and Wolf (2005), this stepdown procedure is proved to have strong control of the FWER, under
the assumption that cl(1−αM) increases with l.

The critical values can be estimated using resampling techniques such as bootstrapping (Romano and
Wolf 2005). For each bootstrap sample, we first compute a full set of {Tl}l∈[d]. To estimate cd(1−αM),
for instance, T(1) is calculated from each sample and the critical value is estimated by the 1−αM empirical
quantile of the T(1) values. Similarly, cl(1−αM) is estimated by the 1−αM empirical quantile of the
T(d+1−l) values from the same bootstrap samples. This procedure avoids independent resampling in each
step and is computationally efficient; it also accounts for the dependence among the {Tl}l∈[d] statistics.

One can include the joint test within the stepdown procedure. However, as Romano and Wolf (2005)
remark, their stepdown procedure works best when each of the tests is balanced (from the power perspective).
The scales of the marginal and joint test statistics are not necessarily the same, which may lead to unbalanced
tests. There are methods to achieve the balance, such as studentization, but these would require an additional
layer of bootstrapping. Thus, for simplicity, we do not apply this routine.
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Although a single rejection from the marginal tests is sufficient to reject H0, and so we could stop
at this point having declared the simulation model invalid, we continue through all of the marginal tests.
Identifying which of the KPIs are not being adequately predicted can be instructive when it comes to model
correction and calibration. We do not proceed to the copula test in this circumstance, as the validity of the
joint test is dependent on the validity of the marginal distributions.

6 EMPIRICAL STUDY

In this section, we examine the performance of the multiple hypothesis testing framework we propose using
a toy example set up with multivariate Gaussian random vectors.

Suppose that in the ith epoch, the lth system KPI, Wil , follows a normal distribution: Wil ∼ N (Ail +

ε
√

l,δ lB2
il). Here, Ail and Bil are components of the initial state vector Ψi, with Ail ∼ N (2

√
l,0.52) and

Bil ∼ N (2,0.52). For the DT simulator, we set Yil|Ψi ∼ N (Ail, lB2
il). Therefore, ε and δ , characterize the

discrepancy between the system KPIs and the simulated KPIs in their marginals. In our study, we adjust
the values of ε and δ to control the extent of discrepancy.

Let D(θ) be the correlation matrix of Wi, with [D(θ)]kl denoting its (k, l)th entry. By definition,
each diagonal element [D(θ)]ll = 1 for l ∈ [d]. We make each off-diagonal entry identical by setting
[D(θ)]kl = θ

d−1
d for k ̸= l. Here, θ is a constant that controls the level of discrepancy in the joint

distributions of the KPI vectors, which subsequently affects the discrepancy of copulas. We assume that
D(θ) remains unchanged for Wi across all epochs, i.e., Assumption 2 holds in this example. For the DT
simulator, we set the correlation matrix of Yi j as [D(1

2)] for all i ∈ [n] and j ∈ [r]. That is, when θ = 1/2,
the correlation matrices of the system and the DT simulator match. The farther θ moves away from 1/2,
the more discrepancy in the joint distribution is induced.

To study the power of our test under various degrees of discrepancy, we choose ε , δ and θ at different
levels. Since ε changes the mean vector of Wi, we measure its impact by looking at the lth dimension’s
mean’s relative error,

φε,l ≜
|E[Wil −Yi jl]|√

Var[Yi jl]
=

|E[ε
√

l]|√
Var[E[Yi jl|Ψi]]+E[Var[Yi jl|Ψi]]

=
ε
√

l√
0.25+4.25l

.

To select the values of ε for the experiments, we consider an asymptotic relative error by taking l → ∞:
φε ≜ liml→∞ φε,l =

ε√
4.25

. We control the value of ε such that φε equals 0, 0.25 and 0.5. Similarly, as δ

controls the marginal variance in Wi, we study the relative error in variance:

φδ ,l ≜
|Var[Wil]−Var[Yi jl]|

Var[Yi jl]
=

|4.25(1−δ )l|
0.25+4.25l

,

and it follows that φδ ≜ liml→∞ φδ ,l = |1− δ |. We choose δ = 0.75,1 or 1.25 to make φδ = 0 or 0.25.
Finally, we make θ ∈ {0,0.5,1} to control the dependency in measures within W.

In our experiment, we set n = 100 as the number of epochs and fix the number of replications per
epoch at r = 1,000. All tests are performed with a FWER of α = 0.05. For marginal hypothesis testing,
we utilize the KS and AD tests with the error rate, αM = d

d+1 α . We perform copula tests based on T̂1, T̂2

and T̂3 with the error rate, αJ = α/(d +1). To examine the effect of the dimensions to the performances
of the tests, we run the experiments with dimension d = 3 and 10. Subsequently, the values of αM and αJ
depend on d. The critical value of each test statistic is computed according to the bootstrap resampling
procedure described in Section 4 with bootstrap size B = 10,000.

As mentioned in Section 3, we modify the ecdf formula in (3) to prevent infinite values when performing
the AD test. In detail, for the lth performance measure in the ith epoch, let Yi(1)l ≤Yi(2)l ≤ ·· · ≤Yi(r)l be the
order statistics of the simulation replications {Yi jl}r

j=1. We modify Ĝil so that Ĝil(y) = 1
r+1 if y <Yi(1)l and

Ĝil(y) = r
r+1 if y > Yi(r)l . For y ∈ [Yi(1)l,Yi(r)l], we first apply linear interpolation on the step function (3),
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and then utilize the transformation Γ(x) = r−1
r+1 x+ 1

r+1 to scale the probability into the range [ 1
r+1 ,

r
r+1 ]. To

summarize, we adopt the following estimator for Gil:

Ĝil(y) =
1

r+1
+

r−1
r+1

r−1

∑
j=1

1
{

Yi( j)l ≤ y < Yi( j+1)l
}( j

r
(Yi( j+1)l − y)

Yi( j+1)l −Yi( j)l
+

j+1
r

(y−Yi( j)l)

Yi( j+1)l −Yi( j)l

)
.

With this change, we adopt ZY
i j = V̂i j instead of scaling V̂i j by r/(r+1) as discussed in Section 4.

Table 1 presents the rejection rates of the marginal and copula tests under different ε , δ and θ values
when the dimension d is set to 3. Additionally, we increment n and report the mean rejection rates, along
with their standard errors in parentheses, based on 4,000 macro runs. Note that when ε = 0, δ = 1 and
θ = 0.5, the distributions of W and Y match perfectly. We mark these cases with an asterisk in the second
column of controls. Table 1(a) focuses on the marginal test using KS and AD statistics. The error rate
allocated for the marginal test is αM = d

d+1 α = 0.0375. For the first set of comparisons, we fix δ = 1
and θ = 0.5 while changing the value of ε . In this case, the marginal variances and copulas of W and Y
perfectly match. When ε = 0, the detection rates for both KS and AD remain stable for different choices
of n, meeting the αM Type-I error. As ε increases, the AD test generally exhibits a higher detection rate
compared to the KS test, particularly demonstrating an advantage when n is small. However, in the second
setting when ε = 0 and θ = 0.5, both KS and AD test fail to achieve satisfactory detection rates when
δ = 1±0.25. In Table 1(b), detection rates of copula tests are compared when ε = 0 and δ = 1. In this
case, the marginal distributions of W and Y are identical, but their copula structures differ. The error rate
allocated for the copula test is αJ =

1
d+1 α = 0.0125. When θ is set to 0.5, all three methods achieve

acceptable Type-I error. When θ is away from 0.5, both T̂1 and T̂2 show high rejection rates when n is
big. Specifically, both methods exhibit higher detection rates when θ = 1 than when θ = 0. When the
dependence decreases, T̂2 tends to outperform T̂1 and vice versa when dependence increases. It also shows
that when the null hypothesis is not true, both T̂1 and T̂2 methods are not reliable when n is small. The
T̂3 method fails to achieve a satisfactory detection rate when the null hypothesis is incorrect. Moreover, it
also requires some fine-tuning of the bandwidth h in the Gaussian kernel.

In Table 2 we show the detection rate of the multiple hypothesis testing with n = 50 or 100 across all
combinations of ε , δ and θ . We use asterisks to indicate the cases where the marginal mean/variance or
the copula structures of W and Y are identical. The row with all three identical parameters is highlighted
in which case the null hypothesis holds and the rejection rate α = 5%. Suggested by the results in Table 1,
the AD test outperforms the KS test and T̂2 is better than T̂1 in most of the cases. To demonstrate the
potential performance differences with respect to the choice of test statistics, we present the best and
worst combinations of the marginal and copula tests in Table 2, (a) KS and T̂1 and (b) AD and T̂2. Both
combinations yield detection rate close to α = 0.05 when all three parameters are aligned. When the
marginal means differ significantly, namely ε = 1.0308, the detection rates of both approach one and are
robust regardless of the number of epochs n. When the marginal means are mildly different (ε = 0.5154),
the detection rates generally stay high, except when θ = 0.5. For θ = 0.5, the detection rates of both (a)
and (b) decrease dramatically when n = 50 and the former shows rates below 0.8 even at n = 100. The
sensitivity of the detection rate on n becomes far more pronounced when ε = 0. The detection rates of (b)
drop to ∼ 0.2 in some cases. Similar to the observations made for Table 1, both combinations struggle when
ε and θ match while δ does not. For the case ε = 0, δ = 0.75 and θ = 0.5, multiple hypothesis testing
slightly improves upon the detection rates of the marginal tests. Overall, the data in Table 2 indicates (b)
exhibits better power than (a) when the system and simulated KPIs do not match in distribution.

Table 3 shows the detection rates of (a) and (b) when dimension d is set to 10. When all values of ε , δ ,
and θ are consistent, both combinations give reasonable Type-I error around α = 0.05. Compared with the
results in Table 2, when the marginal means do not match (ε ̸= 0), the detection rates of both (a) and (b)
increase when d is increased from 3 to 10. When the marginal means coincide (ε = 0), the detection rates
decrease dramatically when θ = 0, exhibit a slight increase when θ = 0.5, and grow significantly when
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Table 1: Detection rate of marginal and copula tests for different values of ε , δ and θ when d = 3.

controls test n = 20 n = 40 n = 60 n = 80 n = 100

δ = 1,
θ = 0.5

ε∗ = 0
KS 0.0367(0.0030) 0.0352(0.0029) 0.0340(0.0029) 0.0393(0.0031) 0.0375(0.0030)
AD 0.0357(0.0029) 0.0333(0.0028) 0.0362(0.0030) 0.0372(0.0030) 0.0375(0.0030)

ε =
0.5154

KS 0.2028(0.0064) 0.3585(0.0076) 0.5327(0.0079) 0.6655(0.0075) 0.7850(0.0065)
AD 0.2595(0.0069) 0.4572(0.0079) 0.6462(0.0076) 0.7883(0.0065) 0.8855(0.0050)

ε =
1.0308

KS 0.6575(0.0075) 0.9360(0.0039) 0.9940(0.0012) 0.9995(0.0004) 1.0000(0.0000)
AD 0.7875(0.0065) 0.9795(0.0022) 0.9990(0.0005) 1.0000(0.0000) 1.0000(0.0000)

ε = 0,
θ = 0.5

δ = 0.75
KS 0.0302(0.0027) 0.0338(0.0029) 0.0375(0.0030) 0.0455(0.0033) 0.0530(0.0035)
AD 0.0170(0.0020) 0.0200(0.0022) 0.0257(0.0025) 0.0367(0.0030) 0.0510(0.0035)

δ = 1.25
KS 0.0532(0.0036) 0.0512(0.0035) 0.0555(0.0036) 0.0658(0.0039) 0.0750(0.0042)
AD 0.0732(0.0041) 0.0805(0.0043) 0.0955(0.0046) 0.0995(0.0047) 0.1235(0.0052)

(a) Detection rate of marginal tests with allocated error rate αM = 0.0375.

controls test n = 20 n = 40 n = 60 n = 80 n = 100

ε = 0,
δ = 1

θ = 0
T̂1 0.0008(0.0004) 0.0515(0.0035) 0.2552(0.0069) 0.5240(0.0079) 0.7422(0.0069)
T̂2 0.1772(0.0060) 0.4760(0.0079) 0.7037(0.0072) 0.8682(0.0053) 0.9410(0.0037)
T̂3 0.0220(0.0023) 0.0330(0.0028) 0.0483(0.0034) 0.0620(0.0038) 0.0848(0.0044)

θ ∗ = 0.5
T̂1 0.0107(0.0016) 0.0107(0.0016) 0.0147(0.0019) 0.0132(0.0018) 0.0152(0.0019)
T̂2 0.0118(0.0017) 0.0135(0.0018) 0.0138(0.0018) 0.0105(0.0016) 0.0107(0.0016)
T̂3 0.0127(0.0018) 0.0158(0.0020) 0.0130(0.0018) 0.0077(0.0014) 0.0095(0.0015)

θ = 1
T̂1 0.3887(0.0077) 0.7065(0.0072) 0.8835(0.0051) 0.9583(0.0032) 0.9880(0.0017)
T̂2 0.2203(0.0066) 0.5687(0.0078) 0.7855(0.0065) 0.9095(0.0045) 0.9698(0.0027)
T̂3 0.0177(0.0021) 0.0470(0.0033) 0.0725(0.0041) 0.1275(0.0053) 0.1640(0.0059)

(b) Detection rates of the copula tests with nominal error rate αJ = 0.0125.

θ = 1. This may be explained by that for d = 10, we allocate a bigger portion of FWER to the marginal
tests. Overall, (b) maintains an advantage in power over (a) when the W and Y distributions do not match.
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Table 3: Detection rates of family-wise tests for different values of ε , δ and θ when d = 10.

controls KS+T̂1 AD+T̂2

ε δ θ n = 50 n = 100 n = 50 n = 100
0.0000∗ 0.75 0 0.0498(0.0034) 0.0747(0.0042) 0.0217(0.0023) 0.9950(0.0011)
0.0000∗ 0.75 0.5∗ 0.0488(0.0034) 0.0767(0.0042) 0.0262(0.0025) 0.0490(0.0034)
0.0000∗ 0.75 1 1.0000(0.0000) 1.0000(0.0000) 0.9998(0.0002) 1.0000(0.0000)
0.0000∗ 1∗ 0 0.0480(0.0034) 0.0540(0.0036) 0.0475(0.0034) 0.9960(0.0010)
0.0000∗ 1∗ 0.5∗ 0.0467(0.0033) 0.0548(0.0036) 0.0437(0.0032) 0.0498(0.0034)
0.0000∗ 1∗ 1 1.0000(0.0000) 1.0000(0.0000) 0.9992(0.0004) 1.0000(0.0000)
0.0000∗ 1.25 0 0.0793(0.0043) 0.1115(0.0050) 0.1388(0.0055) 0.9960(0.0010)
0.0000∗ 1.25 0.5∗ 0.0770(0.0042) 0.1035(0.0048) 0.1163(0.0051) 0.1605(0.0058)
0.0000∗ 1.25 1 1.0000(0.0000) 1.0000(0.0000) 0.9992(0.0004) 1.0000(0.0000)
0.5154 0.75 0 0.8325(0.0059) 0.9982(0.0007) 0.8892(0.0050) 1.0000(0.0000)
0.5154 0.75 0.5∗ 0.6715(0.0074) 0.9583(0.0032) 0.6860(0.0073) 0.9705(0.0027)
0.5154 0.75 1 1.0000(0.0000) 1.0000(0.0000) 0.9992(0.0004) 1.0000(0.0000)
0.5154 1∗ 0 0.7398(0.0069) 0.9842(0.0020) 0.8845(0.0051) 1.0000(0.0000)
0.5154 1∗ 0.5∗ 0.5825(0.0078) 0.8872(0.0050) 0.6715(0.0074) 0.9365(0.0039)
0.5154 1∗ 1 1.0000(0.0000) 1.0000(0.0000) 0.9995(0.0004) 1.0000(0.0000)
0.5154 1.25 0 0.7490(0.0069) 0.9848(0.0019) 0.9283(0.0041) 1.0000(0.0000)
0.5154 1.25 0.5∗ 0.5910(0.0078) 0.8875(0.0050) 0.7370(0.0070) 0.9530(0.0033)
0.5154 1.25 1 1.0000(0.0000) 1.0000(0.0000) 0.9998(0.0002) 1.0000(0.0000)
1.0308 0.75 0 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
1.0308 0.75 0.5∗ 0.9990(0.0005) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
1.0308 0.75 1 1.0000(0.0000) 1.0000(0.0000) 0.9998(0.0002) 1.0000(0.0000)
1.0308 1∗ 0 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
1.0308 1∗ 0.5∗ 0.9958(0.0010) 1.0000(0.0000) 0.9990(0.0005) 1.0000(0.0000)
1.0308 1∗ 1 1.0000(0.0000) 1.0000(0.0000) 0.9998(0.0002) 1.0000(0.0000)
1.0308 1.25 0 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
1.0308 1.25 0.5∗ 0.9905(0.0015) 1.0000(0.0000) 0.9978(0.0007) 1.0000(0.0000)
1.0308 1.25 1 1.0000(0.0000) 1.0000(0.0000) 0.9998(0.0002) 1.0000(0.0000)

Shannon, R. E. 1976. Systems Simulation: The Art and Science. New Jersey: Prantice-Hall, Inc.
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