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Abstract
Let Py, ..., Py € K[y] be polynomials with distinct degrees, no constant terms and coefficients in a general local
field K. We give a quantitative count of the number of polynomial progressions x, x + P{(y),...,x + P (y) lying

in a set S € K of positive density. The proof relies on a general L™ inverse theorem which is of independent
interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators
which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has
the potential to be applied in a number of problems in real, complex and p-adic analysis.

1. Introduction

Szemerédi’s famous theorem [43] states that any set S of integers with positive (upper) density must
necessarily contain arbitrarily long arithmetic progressions. Quantitative versions have been obtained by
several authors, first by Roth [40] for three-term arithmetic progressions and by Gowers [18] in general,
with the current best bounds due to Bloom and Sisask [7], Kelley and Meke [21] in the three-term case
and Leng, Sah and Sawhney [26] for longer progressions (see also Green and Tao [17] and Gowers [18]).
More generally, one can consider polynomial progressions x, x + P1(y), . ..,x + P, (y) forx, y € Z with
y # 0, where P; € Z[y] is a sequence of polynomials with integer coefficients and no constant terms
(the case of arithmetic progressions corresponding to linear polynomials). Bergelson and Leibman [6],
extending earlier work of Bergelson, Furstenberg and Weiss [5], generalised Szemerédi’s theorem to
polynomial progressions. Obtaining quantitative versions of Bergelson and Leibman’s result has been
a challenging problem and no progress (outside a few results on two-term progressions) has been made
until very recently.

Inspired by the earlier work of Bergelson, Furstenberg and Weiss, Bourgain obtained a quantitative
lower bound on the count of three-term polynomial progressions in the setting of the real field R. He
accomplished this by coupling a technique he developed in his work on arithmetic progressions [2],
together with Fourier-analytic methods.

Theorem 1.1 (Bourgain [3]). Given & > 0, there exists a 6(g) > 0 such that for any N > 1 and
measurable set S C [0, N] satisfying |S N [0, N]| = &N, we have

[{(x,y) € [0,N]x [0,NY9] : x,x + y,x +y? € S}| > oN'*!/4, (1.2)
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In particular, we have the existence of a triple x,x + y and x + y¢ belonging to S with y satisfying the
gap condition y > §N'/4.

The bound (1.2) implies a quantitative multiple recurrence result. Only recently have there been
extensions to more general three-term progressions x, x + P1(y), x + P (y); see the work of Durcik, Guo
and Roos [11] when P;(y) = y and general P, and of Chen, Guo and Li [8] for general Py, P, € R[y]
with distinct degrees. The methods in these papers, using delicate oscillatory integral operator bounds,
seem limited to three-term progressions.

In another direction, Bourgain and Chang [4] gave quantitative bounds for three-term progressions
of the form x,x + y,x + y2 in the setting of finite fields F,. This result was extended to more general
three-term polynomial progressions by Peluse [36] and Dong, Li and Sawin [10]. The techinques in
these papers, using a Fourier-analytic approach which relies on sophisticated exponential sum bounds
over finite fields, also seem limited to three-term progressions.

By using new ideas in additive combinatorics, by-passing the need of inverse theorems for Gowers’
uniformity norms of degree greater than 2, Peluse [37] recently made a significant advance, giving
quantitative bounds for general polynomial progressions x,x + Pi(y),...,x + P, (y) in F,, where
{P1,..., Py} C Z[y] are linearly independent over Q.

Inspired by this work, Peluse and Prendiville [39] obtained the first quantitative bounds for three-
term polynomal progressions in the setting of the integers Z. This has been extended recently to general
polynomial progressions x, x + Pi(y), ..., x + P,,(y) with P; € Z[y] having distinct degrees by Peluse
[38]. So although the first quantitative bounds for polynomial progressions were made in the setting
of the real field R, we have seen major advances in both the finite field F, and integer Z settings by
employing new ideas in additive combinatorics.

One purpose of this paper is to rectify this situation for the continuous setting by establishing
quantitative bounds for general polynomial progressions in the real field R, bringing it in line with the
recent advances in the finite field and integer settings. Another purpose is to illustrate how one can marry
these new ideas in additive combinatorics with other ideas, notably from the work of Krause, Mirek and
Tao [23] to obtain compactness results for general multilinear polynomial averaging operators which
have implications for problems in euclidean harmonic analysis. These ideas and arguments are robust
enough to allow us to obtain quantitative bounds for polynomial progressions in a general local field.

Theorem 1.3. Let K be a local field with Haar measure u. Let P = {Py,..., Py} be a sequence of
polynomials in K[y] with distinct degrees and no constant terms, and let d denote the largest degree
among the polynomials in 'P. When K has positive characteristic, we assume the characteristic is larger
than d.

For any € > 0, there exists a §(¢,P) > 0 and N(g,P) > 1 such that for any N > N(&,P) and
measurable set S C K satisfying u(S N By) = €N, we have

p({(x,y) € By X Byi/a : x,x + P1(y),...x + Pp(y) € S}) = sN'*V/4, (1.4)

In particular, we have the existence of a progression x,x + P1(y),...,x + Py, (y) belonging to S with y
satisfying the gap condition |y| > SNV, The proof will show that we can take 6 = g€ for some
C=Cp>0and N(e,P) =€ for a slightly larger C’ > Cp.

When K = R is the real field, Theorem 1.3 extends the work in [3], [11] and [8] from three-term
polynomial progressions to general polynomial progressions albeit for large N, depending on &.

When K = C, Theorem 1.3 represents the first known results for complex polynomial progressions.
The absolute value | - | used in the statement of Theorem 1.3 is normalised so that we can express the
result in this generality (see Section 3). For any sequence of complex polynomials { Py, ..., P, } € C[z]
with distinct degrees and P;(0) = 0, Theorem 1.3 has the following consequence: Given & > 0, there is
a6 > 0 such that for sufficiently large N and any set S in the complex plane satisfying |S N Dy | > N2,
we can find a progression of the form w, w + P{(2), ..., w + P,,(z) lying in S such that |z| > §N?/<.
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Important in our analysis are certain properties for m + 1 linear forms formed from our collection P =
{Py,..., Py} € K[y] of m polynomials with distinct degrees, say 1 < deg(P;) < ... < deg(P,,) =: d.
Let N > 1 and consider the form

Ay oo ) = 3z [ 16 [ T = P i ).
i=1

Here, duin(y) = N1, (0) (y)du(y) is normalised measure on the ball By (0) (we will describe
notation used in the paper in Section 4). The key result in the proof of Theorem 1.3 is the following L*
inverse theorem for Ap.y which is of independent interest.

Theorem 1.5 (Inverse theorem for (m + 1)-linear forms). With the setup above, let fy, fi,. .., fm be
1-bounded functions supported on a ball B c K of measure N¢. Suppose that

[Ap.N (for - s fm)] 2 6.

Then there exists Ni ~ §97 () N4&(PV) gych that

N_d”“[Nl] * fl”Ll(K) 2p 6970
The main application of Theorem 1.5 for us will be to prove a precise structural result for multilinear
polynomial operators of the form

A (fioeoos fo) () = /Kf1<x+P1<y>>~~-fm(x+Pm<y>>du[N]<y>.

We will use ideas in the recent work of Krause, Mirek and Tao [23] to accomplish this, and consequently,
we will be able to establish the following important Sobolev estimate.

Theorem 1.6 (A Sobolev inequality for Aﬁ). Let1 < py,...,pm < oo satisfying le +...+ me =1be
given. Then for N; ~ 507 (D Ndee(P)) e have

m
AR (fis- .o fimts (60 = o) = fis fist - oo fi) iy S o'/ l—l I fillr: (%),
i=1

provided N 2> 6~ Here, ®N; s a smooth cut-off function such that m(f) =1foré e BN’_—I (0).

Following an argument of Bourgain in [3], we will show how Theorem 1.6 implies Theorem 1.3.
Versions of Theorem 1.6 for two real polynomials { Py, P,} C R[y] were established in [3], [11] and [&]
using delicate oscillatory integral operator bounds. Our arguments are much more elementary in nature
and do not require deep oscillatory integral/exponential sum/character sum bounds outside a standard
application of van der Corput bounds (see [41]) when K = R or Hua’s exponential sum bound [13] when
K = Q, (which extends Mordell’s classical bound from the finite field setting to complete exponenial
sums over Z/p™Z) — these bounds extend readily to any local field K; see Section 3. Furthermore, the
Sobolev inequalities in [11] and [8] were only established for certain sparse sequences of scales N. The
bound in Theorem 1.6 holds for all sufficiently large scales N.

The Sobolev bound in Theorem 1.6 potentially has many other applications. See [3] for a discussion
on the implications of Theorem 1.6 to compactness properties of the multilinear operator AE . Pointwise
convergence results for multilinear polynomial averages are common applications of such Sobolev
bounds. See [8] where the Sobolev inequality is used to prove the existence of polynomial progressions
in sets of sufficiently large Hausdorff dimension. See also [22], [24], [19], [20] and [9].

Our results require the scales N to be large. It would be interesting, for various applications, to
establish these results for small scales as well.
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2. Structure of the paper

After a review of analysis in the setting of local fields, including some essential but basic oscillatory
integral bounds, we set up some notation and detail some tools involving the Gowers uniformity norms.
In Section 5, we give some preliminary results necessary to carry out the core arguments. In Section 6,
we give the proof of Theorem 1.5 which is based on a polynomial ergodic theorem (PET) induction
scheme and a degree lowering argument developed by the third author in earlier work. In Section 7, we
will prove Theorem 1.6. Finally, in Section 8, we show how Theorem 1.3 follows as a consequence of
Theorem 1.6.

3. Review of basic analysis on local fields
A basic reference for the material reviewed in this section is [35].

Let K be a locally compact topological field with a nondiscrete topology. Such fields are called local

fields and have a unique (up to a positive multiple) Haar measure p. They also carry a nontrivial absolute

value | - | such that the corresponding balls B, (x) = {y € K : |y — x| < r} generate the topology.
Recall that an absolute value on a field Kis amap | - | : K — R* satisfying

(@) |x[=0 & x=0, (b) xy[=Ix[ly| and (c) [x+y| < C(|x[+]y])

for some C > 1. It is nontrivial if there is an x # 0 such that |x| # 1. Two absolute values | - |; and | - |
are said to be equivalent if there is a @ > 0 such that |x|; = |x|lg for all x € K. Equivalent absolute values
give the same topology. There is always an equivalent absolute value such that the triangle inequality
(¢) holds with C = 1. If | - | satisfies the stronger triangle inequality (¢”) |x + y| < max(|x|, |y|), we say
that | - | is non-Archimedean. Note that if | - | is non-Archimedean, then all equivalent absolute values
are non-Archimedean. The field K is said to be non-Archimedean if the underlying absolute value (and
hence all equivalent ones) is non-Archimedean. Otherwise, we say K is Archimedean.

When K is Archimedean, then it is isomorphic to the real R or complex C field with the usual
topology. In this case, Haar measure is a multiple of Lebesgue measure. When K is non-Archimedean,
then it is a finite extension of a p-adic field Q,, in the characteristic zero case and a function field of
Laurent series over a finite field in the positive characteristic case. Furthermore, the ring of integers
ok := {x € K: |x| < 1} and the unique maximal ideal mx := {x € K : |x| < 1} do not depend on the
choice of absolute value (it is invariant when we pass to an equivalent absolute value). For any K, we
normalise Haar measure so that u(B;(0)) = 1.

When K is non-Archimedean, the unique maximal ideal mx = () is principal and we call any
generating element 7 a uniformizer. Furthermore, the residue field k := ox/my is finite, say with ¢
elements. For x € K, there is a unique n € Z such that x = 7"« where u is a unit. We can go further and
expand any x € K as a Laurent series in 13 x = 31,5 _j X ;m/, where each x; belongs to the residue field
k.Ifx_p # 0, then x = 7~ Fu, where u = 3 ;5 x;7/*" is a unit.

There is a choice of (equivalent) absolute value | - | such that u(B, (x)) = r forall r > 0 and x € K.
When K = R, we have |x| = x sgn(x) and when K = C, we have |z| = zz. When K is non-Archimedean,
then the absolute value |x| := g7, where x = 7™u and u a unit has the property that its balls satisfy
1(B-(x)) = ¢", where ¢" < r < ¢"*!" and so u(B,(x)) =~ r. We choose the absolute value with this
normalisation.

We will need a couple simple change of variable formulae which we will use again and again:

/K Flety) dulx) = /K () du(x) and /K FOTO du() = Iyl /K ) dux).

The first follows from the translation invariance of the Haar measure u. For the second formula, the
measure E — u(yE) defined by an element y € K is translation-invariant and so by the uniqueness
of Haar measure, we have u(yE) = mod, (y)u(E) for some nonnegative number mod,,(y), the so-
called modulus of the measure . In fact |y| := mod, (y) defines the absolute value with the desired

https://doi.org/10.1017/fms.2024.104 Published online by Cambridge University Press



Forum of Mathematics, Sigma 5

normalisation whose balls B, (x) satisfy u(B,(x)) =~ r. This proves the second change of variables
formula. There is one additional, more sophisticated, nonlinear change of variable formula which we
will need at one point, but we will justify this change of variables at the time.

The (additive) character group of K is isomorphic to itself. Starting with any nonprincipal character
e on K, all other characters y can be identified with an element y € K via y(x) = e(yx). We fix a
convenient choice for e; when K = R, we take e(x) = ¢2”*. When K is non-Archimedean, we choose
e so that e = 1 on og and nontrivial on B, (0); that is, there is a xo with |xo| = ¢ such that e(xg) # 1.
The choice of e on C does not really matter but a convenient choice is e(z) = " R°Z, We define the
Fourier transform

o) = /K F)e(—£x) dux).

Plancherel’s theorem and the Fourier inversion formula hold as in the real setting.

3.1. An oscillatory integral estimate

For P(x) = agx? + - - - + a;x € K[x], we will use the following oscillatory integral bound:

[I(P)| < C4[max|a;|]]"? where I(P) :/ e(P(x)) du(x). (3.1
J B (0)

When K = R, it is a simple matter to deduce the bound (3.1) from general oscillatory bounds due to van
der Corput (see [41]). When K = Q,, is the p-adic field, then

p-l
I(p) = p~* Z e2mOMN/P* where p* = max |a;| and Q(x) = bax® + -+ bix € Z[x]
J
x=0

satisfies ged(by, . .., b1, p) = 1; hence, a classical result of Hua [13] implies |I(P)| < Cyp~*/ which
is Equation (3.1) in this case. It is natural to extend Hua’s bound to other non-Archimedean fields; see,
for example, [45] where character sums are treated over general Dedekind domains which in particular
establishes Equation (3.1) for any non-Archimedean field K when the characteristic of K (if positive) is
larger than d, a basic assumption appearing in our main result Theorem 1.3.

It is not straightforward to apply van der Corput bounds when K = C. However, we can see the bound
(3.1) for both K = R and K = C as a consequence of the following general bound due to Arkhipov,
Chubarikov and Karatsuba [1]: Let P € R[ X}, ..., X,,] be a real polynomial of degree d in n variables.
If B" denotes the unit ball in R”, then

|/ 2P () d)_c| < CgnH(P)™' where H(P)= m]'%n maxlﬁ“P()_c)|l/|"’|. (3.2)
n xeB"” «a

A simple equivalence of norms argument shows that H(P) > cy[maxg |aq|]'/?, where P(x) =
Y @ex?® and d is the degree of P. Hence, Equation (3.2) implies Equation (3.1) when K = R. When
K=Cand f(z) = agz? +---+az € C[z], write f(x +iy) = P(x,y) +iQ(x, y) and note that

/ e(f(z)dz = / 2P XY) gy
B, (0) B2

for the choice of character e(z) = ¢?7RZ_ From the Cauchy—Riemann equations, we have H(P) =~
min ;<) maxg | £ (2)]/2* > c4[max; |a;]]'/?4 (recall we are using the absolute value |z| = zZ on C),
and so Equation (3.2) implies Equation (3.1) with exponent 1/2d in this case. There is an alternative
argument which establishes Equation (3.1) with the exponent 1/d when K = C but this is unimportant
for our purposes.
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6 B. Krause et al.

4. Some notation and basic tools

By a scale N, we mean a positive number when K is Archimedean and when K is non-Archimedean,
it denotes a discrete value N = qk, k € Z, a power of the cardinality of the residue field k. When
N is a scale, we denote by [N] := By (0) the ball with centre O and radius N. In this case, we have
MU([N]) = N (equality in the non-Archimedean case) by our normalisations of the absolute value | - |
and Haar measure y. An interval I is aball I = B,, (x;) with some centre x; € K and radius r; > 0. For
an interval I, we associate the measure

dur (x) = ﬁ%w) dn(x).

For an interval /, we define the Fejér kernel «; (x) = u(I)~21; * 1_;(x) and the corresponding measure
dvy(x) = k7 (x)dp(x). When I = [N] for some scale N, we have —/ = [ and so k[y](x) = N‘ZIL[N] *
1n(x). Furthermore, when K is non-Archimedean, we have [y (x) = N"'15(x) and so dv; = du;
in this case. When K = R and I = [0, N], we have «;(x) = N~'(1 — |x|/N) when |x| < N and zero
otherwise.

We now give precise notation which we will use throughout the paper.

4.1. Basic notation
As usual, Z will denote the ring of rational integers.

1. Weuse Z; := {1,2,...} and N := Z, U {0} to denote the sets of positive integers and nonnegative
integers, respectively.
2. For any L € R,, we will use the notation

[LTy:={¢eN:¢<L} and [L]:={€Zi:f<L}.

3. We use 1 4 to denote the indicator function of a set A. If S is a statement, we write 1 g to denote its
indicator, equal to 1 if S is true and 0 if S is false. For instance, 1 4(x) = T ca.

4.2. Asymptotic notation and magnitudes

The letters C, ¢, Cp, Cy, ... > 0 will always denote absolute constants; however, their values may vary
from occurrence to occurrence.

1. For two nonnegative quantities A, B, we write A <s B (A s B) if there is an absolute constant
Cs > 0 (which possibly depends on 6 > 0) such that A < CsB (A > CsB). We will write A ~5 B
when A <s B and A 25 B hold simultaneously. We will omit the subscript ¢ if irrelevant.

2. For a function f : X — C and positive-valued function g : X — (0, ), write f = O(g) if there
exists a constant C > 0 such that | f(x)| < Cg(x) for all x € X. We will also write f = Os(g) if the
implicit constant depends on . For two functions f, g : X — C such that g(x) # 0 for all x € X we
write f = o0(g) if limy_ f(x)/g(x) =0.

4.3. Polynomials

Let K[t] denote the space of all polynomials in one indeterminate t with coefficients in K. Every
polynomial P € K[t] can be written as a formal power series

o)

P(t) = Z cit!, 4.1)

Jj=0

where all but finitely many coeficients ¢; € K vanish.
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1. We define the degree of P € K[t] by
deg(P) :=max{j € Z, : ¢; # 0}.

2. A finite collection P c K[t] has degree d € N, if d = max{deg(P) : P € P}.

3. For a polynomial P € K[t] and j € N, let c;(P) denote j-th coefficient of P. We also let £(P) denote
the leading coefficient of P; that is, for P as in Equation (4.1) we have c;(P) = ¢, for j € N and
{(P) = cq where d = deg P.

4.4. LP? spaces

(X, B(X), A) denotes a measure space X with o-algebra 5(X) and o-finite measure A.

1. The set of A-measurable complex-valued functions defined on X will be denoted by L°(X).
2. The set of functions in L°(X) whose modulus is integrable with p-th power is denoted by LP (X) for
p € (0,0), whereas L*(X) denotes the space of all essentially bounded functions in L°(X).
. We will say that a function f € L°(X) is 1-bounded if f € L (X) and || f|lz~(x) < 1.
4. For any n € Z, the measure 1%" will denote the product measure 1 ® ... ® A on the product space
X" with the product o--algebra B(X) ® ... ® B(X).

[O]

4.5. Gowers box and uniformity norms

We will use the Gowers norm and Gowers box norm of a function f which is defined in terms of the
multiplicative discrete derivatives Ay, . f(x): for x,h € K, we set Ay, f(x) = f(x)f(x+h), and
iteratively, we define

.....

Appoon f(X) = Ap (Ap, (- (Ap, f(x))--+)) where x,hy,...,hy e K.
When h = (hy,...,hs) € K*, we often write Ay n f(x) as Apf(x) or A} f(x). For v =

(w1,...,w5) € {0,1}°, we write w - h = 3], w;ih; and |w| := w; + -+ + w,. If Cz = 7 denotes
the conjugation operator, we observe that

Apf(x) = ]—[ el f(x+w-h). 4.2)

we{0,1}

For any integer s > 1, we define the Gowers U® norm of f by
I = [ b £ dath) - dih) ()

We note that || fl,2 = || f]l.4-
For intervals I, I, . . ., I, we define the Gowers box norm as

From Equation (4.2), we see that

2s+1

IS = 18RI, v 43)

...,

A similar formula relates the Gowers US*! norm to the Gowers U* norm.
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4.6. The Gowers—Cauchy—Schwarz inequality

When s > 2, both the Gowers uniformity norm and the Gowers box norm are in fact norms. In particular,
the triangle inequality holds. The triangle inequality also holds when s = 1 and so we have that

If +8llus < I fllos +lglos and NIf +glls; oy < Wflleg oo+ lglls; o) (44

holds forevery s > 1. These inequalities follow from a more general inequality which we will find useful.
Let A be a finite set and for each @ € A; let (X,, du,) be a probability space. Set X = [],ea Xa»

and let f : X — C be a complex-valued function. For any x(*) = (xg)))(,eA and x(V = (xf,l))aeA in X

and w = (Wa)aea € {0, 1}4, we write x(©) = (xf,w">)(,€A. We define the generalised Gowers box norm
of fon X as

‘Al w w
I B = //X [T ') dux®)dux™),
we{0,1}A
where du denotes the product measure ® yeAdu . The following lemma is established in [16].

Lemma 4.5 (Gowers—Cauchy—Schwarz inequality). With the setup above, let f,, : X — C for every
w € {0, 1}4. We have

T eue) au® au| < [T Wollooo: (4.6)
X2 hef01yA we{0,1}4
We will need the following consequence.

Corollary 4.7. Let f : X — C and for each @ € A, suppose g : X — C is a 1-bounded function that
is independent of the x o, variable. Then

| /X f(x)llga(x)du(x)ﬂ < /X T c“lre @) duc®aue®). @)

we{0,1}A

Proof. For o° = (0,...,0), set f,,0 = f and for WP = (wa)aea Withw, = 0 when @ # B and wg = 1,
set f,5 = gp. For all other choices of w € {0, 1}4, set fo = 1. Hence,

[ o) =@ [ ]sat)

wef{0,1}A acA

since g, is independent of the « variable. Therefore, the inequality (4.6) implies

| /X F [Tga@du] < [T Moloo < 1l
acA

we{0,1}A

by the 1-boundedness of each g. This proves Equation (4.8). O

5. Some preliminaries

In this section, we establish a few useful results which we will need in our arguments.

5.1. U%inverse theorem

We will use the following inverse theorem for the Gowers box norms.
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Lemma 5.1 (U’-inverse theorem). Let H, and Hy be two scales, and let f be a 1-bounded function
supported in an interval I. Then

4
1713,

< (HiHD)  IFIPRw - (5.2)
HI],[Hzl(I) ( 1 2) fL (K)

Proof. We have

1
||f||g%H]]7IHZI(I) = m//]Ahl,hzf(x)dV[Hl](hl)dV[Hz](hZ)d,u(x)
K3

= [/g(hl,hz) dvig,(h1)dvim,) (hy) = //gA(é’l,fz)V/[;IT](fl)V/[;iz\](fz) du(é1)du(é2),
K2 K2

where

1
elhin) = o /K A f () dia(2).
Hence,

[ o < Vgl vl sup [g(61, )]
[H{],[Hy] §€K2

H'H!
_ 17 sup

u(l) £eK?

// Soo(x) fro(x + hy) for (x + ho) fi1 (x + by + ha) du(x)du(hy)du(hs),
K}

where foo(x) = f(x)e(-&1x — £2x),

fio(x) = flx)e(=&1x), for(x) = f(x)e(=&2x) and fii(x) = f(x).
The final equality follows since [V{g,1(£)| = |Z[x,1(£)]*, and so

IViE i) = ”ﬁ[H,-]HiZ(K) = |\H; "W ll; = H'  forj e {1,2}

by Plancherel’s theorem. Furthermore,

g(‘fl’ 62) =

ﬁ/f/ Ao f () €(E1h1 + E2h2) du(hy)dp(ho)da(x).
K3

Appealing to the Gowers—Cauchy—Schwarz inequality (4.6), we see that
1Ay S eDEHE) I = D HHE) T < ()T
| BRI

as desired. The last inequality follows from Plancherel’s theorem, the 1-boundedness of f and supp(f) c
I which implies

AU < NAIZSIANZ = IFIESIANZ < a(DIFIZ - o

5.2. van der Corput’s inequality

We will need the following useful inequality.
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Lemma 5.3 (van der Corput’s inequality). Let g € L'(K), and let J = B,,(x;) be an interval. Then for
any scale H, 0 < H < u(J), we have

2
C
' /K <5 /K /J o B () (5.4)

We can take C = 4 when K is Archimedean. When K is non-Archimedean, we can take C = 1 and
Sfurthermore, 15 (y)1y(y+h) = Lyn—n) (y) = 15 (y) for any h € [H] so that the above inequality can

be expressed as
/

since dvg| = dup in this case.

2
<[] sraOrdutm s ) 53)

Proof. We define g;(y) := g(y)1;(y). By a change of variables and Fubini’s theorem, we note

1
[ataiast) = == [ arto+ i ().

The function y +— /K 87 (y+h)du g (h) is supported on the set J— [ H] which in turn lies in By (., 4 g1y (X7)
(in the non-Archimedean case, J — [H] = J). Hence, by the Cauchy—Schwarz inequality and a change

of variables, we conclude that
J/ -l
K w2 | Sk
2,u(J) +H

T p)?
;1(]) +H
a0

-1
<o [ [ a0a0 v (),

/// 07 (v + h)ay O+ h)dugany (g (h)du ()

// k) (D)8 ()87 0 + W du(h)du(y)

since k[ g1 (h) = H™? fK Lig (A1) g (A + hy)du(hy). This gives the desired conclusion. O

5.3. Preparation for the PET induction scheme

‘We now give a simple application of van der Corput’s inequality which will be repeatedly applied in the
PET induction scheme.

Lemma 5.6. Let ¢ > 1, and let I,J C K be two intervals with u(I) = Ny. Assume that g1 € L (K) and
@ € L*(K?) are 1-bounded functions such that

lg1llzr ) < No, and sup [lg2(+, ¥) 1 k) < eNo. (5.7
yE

Suppose H is a scale such that 0 < H < u(J). When K is Archimedean, we have

2
‘NLO .//Kz 81 (x)82(x, y)dpy (y)du(x)

+ 8¢

u([H])]"
u(J)

1 -
N ///Kam(x’ Y)82(x,y + h)dpey (y)dv e (h)dp(x)
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where 6 = 1 when K =R and 0 = 1/2 when K = C. When K is non-Archimedean, this improves to

2

'Nio //Kz 81(x)@2(x, y)dpy (y)dp(x)

= NL0 ///H@ 2(x, )82 (x, y + h)dp s (y)dpppay (h)du(x).

Proof. Applying the Cauchy—Schwarz inequality in the x variable, it follows that

2 1/
S_
No Jx

since by Equation (5.7) and the 1-boundedness of g;, we have ||g;||

2

1
‘Fo //K2 81 (x)82(x, y)dpy (y)du(x) /ng(x,y)dﬂj(y) du(x)

2

L2(K) < Np. By van der Corput’s

inequality in Lemma 5.3, we obtain

/K ‘ /K 82(x, y)duy (y)

1 —
<t [ Lrmgs [ el B

2
du(x)

when K is Archimedean. In this case, we have u(J \ [J N (J —h)]) < 2u([H]) when K = R and
u(J\[INJ=h)]) <2+/u([H])u(J) when K = C. Hence,

4 ] #([H])r
4 B —— W) |du () du(y)du(h) < 8 :
s /K oy [ /K 102 (x, ) () dia(y) du(h) < c[ o

In the last line, we used Fubini’s theorem and Equation (5.7) for g,. This gives the desired bound when
K is Archimedean.
When K is non-Archimedean, the bound (5.5) in Lemma 5.3 gives

v /K ‘ /K 025, Y)dyts (7)

1 -
=N ///K 8203 )82 v + W)ty (V)11 (1) ()

2
du(x)

which is the desired bound in this case. ]

The next result is an essential building block of the PET induction scheme, which will be employed
in Section 6.

Proposition 5.8. Letr N, Ny > 0 be two scales, I an interval such that u(I) = No, m € N, iy € [m],
and let P := {Py,..., Py} be a collection of polynomials. Suppose that To,f1,...,fm € L°(K) are
1-bounded functions such that ||f;||11 ) < No for everyi € [m],.

Let 0 < 6 < 1, and suppose that

> 6. (5.9)

'Nio ,[/Kz fo(x) E[ fi(x = Pi(y))du N (y)du(x)

Then there exists an absolute constant C 2p 1 such that for all §' < §*/C we have

2c 6%, (5.10)

1 o ’
‘Vo //Kz fo(x) !:1[ fi (x = Pi(¥)dun (y)du(x)
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where m’ < 2m and P’ .= {P}, ..., P, } is a new collection of polynomials such that

P =A{P1(y) = Piy(y). P1(y + h) = Pig(y)s - - .. Pm(¥) = Pig(¥), Pm(y + h) = Piy ()},
for some §'6’N/C? < |h| < 6'N < 6*N/C, where P, (y) := Pu(y) = Piy(y), and {i},....T,,} =
{fl, fls LIS fm, fm} WZth f,/ﬂ/ = fm

Proof. Let1 := [m] and C > 1 be a large constant to be determined later. We shall apply Lemma 5.6
with J = [N], the functions g; (x) = fo(x) and g2 (x, y) = [ §i (x—P:(y)), and the parameter H = §’N.
Note that [|g1||~@x) < 1 and [|g2]l~k2) < 1 since ||fillL~x) < 1 for all i € I. Moreover, g; and g»
satisfy Equation (5.7). If ¢’ < 6*/C and C > 1 is sufficiently large, using Lemma 5.6, we conclude

> &2

1 —_—
0 K3
By the pigeonhole principle, there exists |2| > 6>H/C? so that

1 -
e L st G iy o) 2 o
0 K2

We make the change of variables x — x + P;,(y) to conclude

> &2

1
No .//Kz li;lfi(x = Pi(y) + Piy(Y)Fi(x = Pi(y + h) + Piy () dp vy (v)dpa(x)

This completes the proof. O

6. The L*-inverse theorem

The goal of this section is to present the proof of Theorem 1.5, the key L*-inverse theorem for general
polynomials with distinct degrees, which we now restate in a more formal, precise way.

Theorem 6.1 (Inverse theorem for (m + 1)-linear forms). Let N > 1 be a scale, m € Z, and 0 < § < 1
be given. Let P := {Py, ..., Py} be a collection of polynomials such that 1 < deg P| < ... < deg P,
Set No = N%ePm) and let fy, fi,..., fm € LO(K) be 1-bounded functions supported on an interval
I ¢ K of measure Ny. Define an (m + 1)-linear form corresponding to the pair (P; N) by

1 m
Apy o) = 50 [ 5660 | | = P ()0 (62)
i=1
Suppose that
(Ao (o fud 2 . (63)

Then there exists Ny =~ 697D NIee(P1) 55 thar

No ey + f1||L1(K) 2p 697 (6.4)
If necessary, we will also write Ap.n (fo, - - .. fm) = Ap.n.1(fo, - - -, fm) in order to emphasize that
the functions fy, fi, ..., fin are supported on /.
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Remark

When K = C is the complex field, the proof of Theorem 6.1 will also hold if the form Ap.y is defined
with the disc [N] = D /5 replaced by the square

[Nlsg == {x+iyeC:|x]| < \/ﬁ’ ly| < \/ﬁ}

In this case, the conlusion is Ny [|z[n,]
point in the proof of Theorem 1.6.

The proof of Theorem 6.1 breaks into two main steps: First, an application of PET induction to show
that whenever

% fillLicy 2 6971 This observation will be needed at one

sq

|A73;N(f0’f1"'°9fm)| >0

is large, then necessarily f;, has a fairly large U® norm for an appropriately large s = sp. Second,
an inductive ‘degree-lowering’ step to reduce U® control to U? control. We accordingly subdivide the
argument into two subsections.

6.1. PET induction

Our first goal is to show that whenever the multilinear form Ap.; is large, necessarily f;,, has some fairly
large (sufficiently high degree) Gowers box norm. We begin with the definition of (d, j)-admissible
polynomials. Recall that for a polynomial P € K[y], the leading coefficient is denoted by £(P).

Definition 6.5 (The class of (d, j)-admissible polynomials). Let N > 1 be ascale,0 < § < 1,d € Z,,
J € [d] and parameters Ag > 1 and A > 0 be given. Assume that a finite collection of polynomials
P has degree j, and define P; := {P € P : deg(P) = j}. We will say that P is (d, j)-admissible with
tolerance (Ag, A) if the following properties are satisfied:

1. For every P € P;, we have
A SN < |E(P)| < Ao AN, (6.6)
2. Whenever P,Q € P; and £(P) # £(Q), we have
A 6N < |E(P) - €(Q)] < Agd AN, 6.7)
3. Whenever P,Q € P; and P # Q and £(P) = £(Q), we have
A" SN < |O(P - Q)] < Ags AN (6.8)

and deg(P-Q)=j - 1.

In the special case where the polynomials in P are linear, we require that £(P) # £(Q) foreach P,Q € P.
The constants Ay, A will be always independent of 6 and N but may depend on P. In our applications,
the exact values of Agp, A will be unimportant, and then we will simply say that the collection P is
(d, j)-admissible.

Remark 6.9. Under the hypotheses of Theorem 6.1, it is not difficult to see that the collection of
polynomials P = {Py,..., P} suchthat 1 <degP| <...<degP,, =dis (d,d)-admissible with the
tolerance (max{|¢(P,,)|~!,|€(P,n)|},0). Indeed, condition (6.6) can be easily verified and conditions
(6.7) and (6.8) are vacuous as Py = {P,,}.

The main result of this subsection is the following theorem.

https://doi.org/10.1017/fms.2024.104 Published online by Cambridge University Press
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Theorem 6.10 (Gowers box norms control (m+ 1)-linear forms). Let P := {Py, ..., Py} be a collection
of (d, d)-admissible polynomials such that 1 < degP; < ... < degP,, = d. Let N,Ny > 1 be two
scales, I an interval with measure No and 0 < 6 < 1 be given, and let fy, fi, ..., fm € L°(K) be 1-

bounded functions such that || fi|l 1) < No for all i € [m],. If Equation (6.3) is satisfied, then there
exists s := sp € Z, such that

ol ey 1) 2P 677, (6.11)

where H; ~ §97 (D Nde(Pm) for i e [5].

The proof of Theorem 6.10 requires a subtle downwards induction based on a repetitive application
of Proposition 5.8 on the class of (d, j)-admissible polynomials. To make our induction rigorous, we
will assign a weight vector to each collection P C K[t] of polynomials.

Definition 6.12 (Weight vector). For any finite P C K[t], define the weight vector
v(P) == (vi,va,...) € N%,
where
vj=v;j(P) =#{¢(P): P € Pand deg(P) = j},

is the number of distinct leading coefficients of P of degree j € Z,.

For example, the weight vector for the family P = {x, 5x, x2, x%+x, x4} isv(P)=(2,1,0,1,0,0,...).
There is a natural ordering on the set of weight vectors.

Definition 6.13 (Well-ordering on the set of weight vectors). For any two weight vectors v(P) =
(v1(P),v2(P),...) and v(Q) = (v;(Q),v;(Q),...) corresponding to finite collections P, Q c K][t]
we define an ordering < on the set of weight vectors by declaring that

v(P) <v(Q)
if there is a degree j € Z, such that v;(P) < v;(Q) and v (P) = v (Q) forall k > j.
It is a standard fact that < is a well ordering, we omit the details.

Proof of Theorem 6.10. We begin by stating the following claim:

Claim 6.14. Let N,Ny > 1 be two scales, 0 < 6 < 1, d,m € Z, and j € [d] be given, and let
P :=A{P1,..., Py} be a collection of (d, j)-admissible polynomials with tolerance (Ag, A) such that
degPy < ... < degP,, = j. Let I be an interval with u(I) = No, and let fy, fi,..., fm € L°(K) be
1-bounded functions such that || f;||1 ) < No for all i € [m],. Suppose that

|Ap:n (fo,---s fm)] 2 6. (6.15)

Then there exists a collection P’ := {P{,..., P, .} of (d, j — 1)-admissible polynomials with tolerance
(A(,A") and m’ := #P’ so that deg(P]) < ... < deg(P,,) = j — 1, and 1-bounded functions
I3 flse oo [y € LY(K) such that I ) < Noforalli € [m']ywith f,, := fu and satisfying

IApin (oo f)] 20 697, (6.16)

The proof of Claim 6. 14 will use the polynomial exhaustion technique based on an iterative application
of the PET induction scheme from Proposition 5.8. The key steps of this method are gathered in
Proposition 6.20. Assuming momentarily that Claim 6.14 is true, we can easily close the argument to
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prove Theorem 6.10. We begin with a collection of (d, d)-admissible polynomials such that deg P; <

. < deg P,, = d and apply our claim d — 1 times until we reach a collection of (d, 1)-admissible
linear polynomials £ with distinct leading terms, which satisfies Equation (6.16) with P’ = L. In the
special case where all polynomials are linear matters simplify and can be handled using the next result,
Proposition 6.17, which in turn implies Equation (6.11) from Theorem 6.10 as desired. O

Proposition 6.17. Let N, Ny > 1 be two scales, I an interval with u(I) = No, 0 < 6 < 1, d,m € Z,

be given and let L := {Li,...,Ly} be a collection of (d,1)-admissible linear polynomials. Let
fos fis- oo fm € LYK) be 1-bounded functions such that I fillLixy < No for alli € [m],. Suppose
that

Then we have
-1

fonllegs, ) 2267 (6.19)

where H; ~ 69N fori € [[s].
In fact Proposition 6.17 is a special case of Theorem 6.10 with the collection of linear polynomials
L in place of P.

Proof of Proposition 6.17. Defining L' = {L} := L; — L;(0) : i € [m]} we see that each L’ € L’ is
linear with vanishing constant term and

AN (fos- s fn) = Acrin (805 - -+ 5 8m)s

where g;(x) = T_z, (o) fi(x) = fi(x+L;(0)) for each i € [m]]. We now apply Lemma 5.6 with functions
g1(x) = go(x) and g2(x, y) = [}, gi(x — L](y)) and intervals J = [N], and a parameter H = SMN/M
for some large absolute constant M > 1, which will be specified later. Using Lemma 5.6 and changing
the variables x — x — L;(y) we obtain

> 62,

‘—// A[(Ll)hgl(x)l_lAf(L)hgl(x (Li = LO)(M)dpn ) (Y)du(x)dvi (h)

Applying Lemma 5.6 m — 2 more times and changing the variables x + x — L,,(0), we obtain

1

L /Km“ Bty Bt stis ALy Sin VAV (B ) ()

> 62m—l
~M >
No

where u; := €(L,,) — {(L;) fori € [m — 1]. By another change of variables we obtain Equation (6.19)
with

Hp = 6(Lp)|6MN/M, and  H; = |€(L,,) - £(L)|6M N/ M

fori € [[m — 1]. Using Equation (6.6) with P = L,,, and Equation (6.7) with P = L,, and Q = L; we
obtain that H; ~ %= N9 for i € [s] provided that M > 1 is sufficiently large. This completes the
proof of Proposition 6.17. m}

Proposition 6.20. Let N, Ny > 0 be two scales, 0 < 6§ < 1, d,m € Z, and i, j € [d] be given, and let
P :=A{P1,...,Pn} be a collection of (d, j)-admissible polynomials with tolerance (Ag, A) such that
i=degP; <...<degP,, = j. LetI be an interval with u(I) = Ny, and let fy, fi,. .., fin € L°(K) be
L-bounded functions such that || f;|| 1 (x) < No for all i € [m]|y. Suppose that

[Ap:n (fo, -5 fm)] 2 6. (6.21)
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Then there exists a collection of polynomials P’ := {P{,..., P, } with m’ := #P’' < 2#P satisfying
P!, = Py — Py and deg(P}) < ... < deg(P},), and 1-bounded functions f, f|,..., f,, € LO(K)
such that || f{ |1 x) < No for all i € [m']|, and satisfying

IApN (fys s Fo)| 2P 62 (6.22)
We also know that {f], f{, ..., fi} = {f1s fis -+ oo fins fn} With £, = fn.
Moreover, v(P’) < v(P), and one of the following three scenarios occurs.
(i) The collection P is of type I; that is, P # P;. In this case, P’ is a (d, j)-admissible collection of
polynomials with tolerance (A(, A”) and for some 1 <i < j -1,

v(P)=i(P)),....vict(P),vi(P) = Lvis1 (P),...,v;(P),0,0,...). (6.23)

(ii) The collection P is of type II; thatis, P = P; and v j(P) > 1. In this case, P’ is a (d, j)-admissible
collection of polynomials with tolerance (A(, A”) and

v(P') = (i(P),...,vji-1(P),v;(P) - 1,0,0,...). (6.24)

(iii) The collection P is of type LI that is, P = P; and v;(P) = 1. In this case, P’ isa (d,j — 1)-
admissible collection of polynomials with tolerance (A}, A”) and

v(P’)=(0,...,0,v;_1(P),0,0,...). (6.25)

Moreover, the leading coefficients of the polynomials in P’ are pairwise distinct.

The tolerance (A}, A’) of the collection P’ only depends on the tolerance (Ao, A) of the collection P
and is independent of 6 and N.

Using Proposition 6.20, we now prove Claim 6.14.

Proof of Claim 6.14. We may assume, without loss of generality, that the collection P from Claim 6.14
is of type I or type II. Then we apply Proposition 6.20 until we reach a collection of polynomials of
type III with weight vector v(P) = (0,...,0,v;(P),0,0,...), where v;(P) = 1 and such that Equation
(6.16) holds. We apply Proposition 6.20 once more to reach a collection of (d,j — 1)-admissible
polynomials satisfying Equation (6.16). This completes the proof of the claim. O

Proof of Proposition 6.20. Appealing to Proposition 5.8 with iy = 1, we may conclude that there exists
a collection of polynomials P’ := {P{,..., P, } withm’ = #P’ < 2#P and P, , = P, — P} such that

P ={P1(y) = Pi(y), Pr(y+h) = P1(y),....Pu(y) = P1(y), Pnu(y + h) = P1(¥)},

for some 6’6°N/C? < |h| < 8’N < §*N/C. Proposition 5.8 also ensures that bound (6.22) holds for
certain 1-bounded functions f;, f{,.... f,, € LO(K) such that || f/|| Lik) < Noforalli € [m'], and
satisfying { /7, f{,-- - [} =1 Fis fis- ooy fons fn} with Sy = Jm- Now, it remains to verify conclusions
from (i), (ii) and (iii). For this purpose, we will have to adjust §” < 5 /C, which can be made as small

as necessary. O
Proof of the conclusion from (i)

Suppose that the collection P is of type I. Then i = deg(P;) < deg(P,,) = j and v(P) =
0,...,0,vi(P),...,v;(P),0,0,...). To establish Equation (6.23), we consider three cases. Let P € P.
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If deg(P) > i, then

deg(P — Py) = deg(P(- + h) — Py) = deg(P),

6.26
(P =Py = E(P(-+ ) = P1) = £(P), (620
which yields that vy (P’) = v (P) for all k > i. If deg(P) =i and £(P) # £(P}), then
deg(P - Py) = deg(P(- + h) — P) =1,
eg( 1) =deg(P(-+h) - Py) =i 627)

C(P—Py)=L(P(-+h)—Py) =£(P)—L(P)).
If deg(P) =i and £(P) = £(Py), then
deg(P—Py) <i, and deg(P(-+h)—Py) <i.

The latter two cases show that vi (P’) > Oforall k € [i — 1] and v;(P’) = v;(P) — 1. Hence, Equation
(6.23) holds. We now show that P’ is (d, j)-admissible.
We begin with verifying Equation (6.6) for P’ € PJ’.. We may write P’ = P(- + €h) — P for some
P € P;and ¢ € {0, 1}. By Equations (6.26) and (6.6) for P € P;, we obtain
AG'SANTT < |E(P')| < Ags AN (6.28)
We now verify Equation (6.7) for Q7, Q) € 73]’. with £(Q]) # £(Q)). We may write
Q1 =0i(-+&1h)-Py, and Q) = Qa(-+&h) — P, (6.29)

for some Q1,02 € P; and g1, &; € {0, 1}. By Equation (6.26), we have £(Q7) = ¢(Q1) and £(Q)) =
£(Q»). Then £(Q1) # €(Q>) and by Equation (6.7) for Q1, Q> € P;, we deduce

A 0N < 10(Q)) - £(Q5)] < Ags AN (6.30)

We finally verify Equation (6.8) for Q,Q} € PJ’. as in Equation (6.29) such that Q] # Q) and

£(Q1) = £(Q}%) = . By Equation (6.26), we see that £(Q1) = £(Q2) = {. Since P is (d, j)-admissible,
using Equation (6.6), we also have

AG 0N < 0] < AgsTANI (6.31)

Recall that 6’6>N/C? < |h| < 6’N, where ¢’ > 0 is an arbitrarily small number such that &’ < §*/C.
Set 6" := 6™ (CM)~! for a large number M > 1, which will be chosen later.
First, suppose Q1 = Q. Then &1 # &> and deg(Q| — Q) = j — 1. Furthermore, £(Q] — Q}) =
Jth(e — &) implying |£(Q] — Q})| = |j¢h|, and so by Equation (6.31),
/1(AC3 M)A MNA < | jen] < |jlAg(CM) T M AN, (6.32)

and this verifies Equations (6.8) in the case Q| = Q5.
Now, suppose Q1 # Q> so thatdeg(Q—Q») = j— 1 and Equation (6.8) holds for £(Q1 —Q>); that is,

AP SANDTITY < 10(Q1 - Q)] < Ags AN (6.33)
Taking M := max{2A, 2|j|Aé} in Equation (6.32), we see that | j€h| < %AaléANd_j” if C > 1islarge
enough.

In this case, £(Q] — Q%) = £(Q1 — Q2) + jhl(e| — &2) and so

16(Q1 = Q)| = 1jCh] < |6(Q] — Q3)| < |6(Q1 — Q)| +|jhl.
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From Equation (6.33) and |j¢h| < %AaléANd_f“, we conclude

] - —7 ’ ’ 3 — —7
5A0]6ANd <0 - 0yl < 400 ANG-THL (6.34)
This verifies Equation (6.8) in the case Q1 # Q».

In either case, we see that deg(Q] — Q) = j — 1 and (see Equations (6.32) and (6.34)) we can find a
tolerance pair (A(), A”) for P’ depending on the tolerance (Ao, A) of PP and the constants C and M such
that

(A TISA NI < 10(0) - Q)] < ApsTA NI (6.35)
holds, establishing Equation (6.8).

Proof of the conclusion from (ii)

Suppose that the collection P is of type II. Then deg(Py) = ... = deg(P,,) = j and v(P) =
0,...,0,v;(P),0,0,...) with v;(P) > 1. To establish Equation (6.24), we will proceed in a similar
way as in (i). If P € P = P; and £(P) # {(P1), then

deg(P — P1) = deg(P(-+h) - P1) = ], (6.36)
C(P —Py) =L(P(-+h) — P1) =€(P) — (Py). .
If P € P ="P; and £(P) = £(P1), then by the fact that P is (d, j)-admissible, and by Equation (6.8),
we see that

deg(P-P;) <j, and deg(P(-+h)—Py)<]. (6.37)

This shows that v (P’) > Oforall k € [/ — 1] and v;(P’) = v;(P) — 1. Hence, Equation (6.24) holds.
We now show that P’ is (d, j)-admissible.

We begin with verifying Equation (6.6) for P’ € PJ’.. We may write P’ = P(- + €¢h) — P for some
P € P; such that £(P) # ¢(P) and & € {0, 1}. Since P is (d, j)-admissible, using Equations (6.36)
and (6.7) (with £(P) — £(P) in place of £(P) — £(Q)), we obtain Equation (6.28) which is Equation
(6.6) for P’ € PJ’..

We now verify Equation (6.7) for Q1, Q) € PJ’- with £(Q1) # £(Q}). As in Equation (6.29), we may
write Q1 = Q1(- +&1h) — Py, and Q) = Qa(- + &2h) — P for some Q1,0> € P; and €1, &, € {0,1}
such that £(Q1) # ¢(P1) and £(Q2) # {(P1). By Equation (6.36), we have £(Q]) = £(Q1) — ¢(P) and
£(Q)) = £(Q2) — £(Py). Then £(Q1) # £(Q2) and Equation (6.30) is verified by appealing to Equation
(6.7) (with €(Q1) — €(Q>) in place of £(P) — £(Q)).

We finally verify Equation (6.8) for 01,0} € 73]{ as in Equation (6.29) such that Q1 # Q) and
£(Q}) = t(Q}) = ¢. By Equation (6.36), £(Q1) — €(P1) = £(Q2) — £(P1) = € and since P is (d, j)-
admissible, we see that ¢ satisfies Equation (6.31). Now, by following the last part of the proof from (i),
we conclude that Equation (6.35) holds.

Proof of the conclusion from (iii)
Suppose that the collection P is of type III. Then deg(P;) ... = deg(Py) = j and v(P) =
0,...,0,v;(P),0,0,...) with v;(P) = 1, thus £(P1) = ... = £(Py) := . To establish Equation
(6.25), we will proceed in a similar way as in (i) and (ii). If P € P; and £(P) = ¢, then Equation (6.31)
holds for £ and once again Equation (6.37) holds. This in turn implies that v;_; (P’) > O and v (P’) = 0
for all k # j — 1. Hence, Equation (6.25) holds. We now show that P’ is (d, j — 1)-admissible.

We begin with verifying Equation (6.6) (or equivalently Equation (6.28) with j replaced by j — 1) for
P e 77]’._1. We may write P’ = P(-+&h) — P} for some P € P; such that {(P) = {(P;) and ¢ € {0, 1}.
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Then
C(P) = €(P(-+&h) — P)) = (P - Py) + jhte. (6.38)

As in (i) we have 6’6°N/C? < |h| < §’'N, where ¢’ := 6™ (CM)~" for a large number M > 1, which
will be chosen later. Furthermore if P # Py, then AaléANd_jJr1 < |6(P - Py)| < Agd AN+ since
P is (d, j)-admissible and so Equation (6.8) holds with Q = P;. This takes care of the case € = 0.

If e = 1 and P = Py, then Equation (6.32) gives the desired bound for [£(P’)|. When P # P, we use
the upper bound from Equation (6.32)

. 1 R
ljht| < |jlAo(CM) ™ 6M-ANI—T*1 < 5A(;la-f‘Nd-f“ (6.39)

when M = max(2A, 2| leg) and C > 1 chosen large enough. Thus, as before, condition (6.6) holds for
P’ with some tolerance pair (A, A’) as desired.

For Q] # Q) € PJ’._I, we may write Q1 = Q1(- + &1h) — Py, and Q) = Qz(- + &2h) — Py for some
01,02 € Pjand g1, &, € {0, 1} such that £(Q1) = £(Q2) = £(P1) = £. We have £(Q — P1) - £(Q> -
P1) =£(Q1 — Q») and so by Equation (6.38),

€(Q1) = €(Q3) = 6(Q1 = Q2) + jht(er - &2). (6.40)

We consider two cases.

If Q1 = O, then necessarily |e; — &2| = 1 and so £(Q7) # €(Q}), deg(Q] — Q)) = j -1, and
Equation (6.32) shows that Equation (6.7) holds for Q1, Q} € 77]’._1.

If Q1 # O, then Aald“‘Nd_jJr1 < €01 — 02)| < Ags~AN?=7*1 since P is (d, j)-admissible, and
so Equation (6.8) holds with P = Q1 and Q = Q5. From Equation (6.39), we see that £(Q1) # £(Q%)
and Equation (6.40) implies that Equation (6.7) holds for Q}, Q} € P]’._l.

In either case, we see that Equation (6.8) is vacuously satisfied by P’ and Equation (6.7) holds for
Q07,05 € 77]’._1 with (necessarily) €(Q}) # £(Q)).

Concluding, we are able to find a tolerance pair (A}, A”) for P’ depending on the tolerance (Ao, A)
of P and the constants C and M such that the required estimates for Equations (6.38) and (6.40) hold.
This completes the proof of Proposition 6.20.

6.2. Degree-lowering
Here, we establish a modulated version of the inverse theorem, which will imply Theorem 6.1.

Theorem 6.41 (Inverse theorem for modulated (m + 1)-linear forms). Let N > 1 be a scale, and let
0<d6<1,meZ,andn € N be given. Let P := {Py,...,Pp} and Q :={Q1,...,0n} be collections
of polynomials such that

1 <degP;<...<degP, <degQ; <...<degQ,.
Let fo, fi,..., fm € LY(K) be 1-bounded functions supported on an interval I < K of measure

No := NP Forn € Z,, we define an (m + 1)-linear form corresponding to the triple (P, Q; N) and
a frequency vector & = (&1, ...,&,) € K" by

ARG o) = 50 [ A0 [ [ = Pitoe( Y 6,0, )i (). (642)
i=1 j=1

Forn =0, we set Q = 0 and we simply write Agfl (fos- s fm) = Ap:n(fo,- .., fm) as in Equation
(6.2). Suppose that

https://doi.org/10.1017/fms.2024.104 Published online by Cambridge University Press



20 B. Krause et al.

IAZS (for- s f)] 2 6. (6.43)

Then there exists a Cy = C(P) > 1 such that
No vy # fillr gy 2P 6970, (6.44)

for any Ny = §C N¥2P1 yith C > C).

If necessary we will also write A%fj (fos--s fm) = A%f, ;(fos- .., fin) in order to emphasise that
the functions fy, fi, ..., fin are supported on /.

We first show how the Gowers box norms control the dual functions. The dual function, or more
precisely the m-th dual function, corresponding to Equation (6.42) is defined as

Fie = [ FiyWdin0). xei (6.45)
K
where
m—1 n
Fiay () 1= fole 4 P [ ] fil = Piy) + Puoe( 3 £:05(0). (6.46)
i=1 J=1

Proposition 6.47 (Gowers box norms control the dual functions). Letr N > 1 be a scale, and let
0<d6<1,d,meZ,withm>2andn € N be given. Let P .= {Py,...,Pn} and Q :={Q1,...,0n}
be collections of polynomials such that P is (d, d)-admissible and

1 <degP; <...<degP, <degQ; <...<degQ,.

Let fo, fi,..., fm € LYK) be 1-bounded functions supported on an interval I < K of measure
No := N9&Pm_ For & e K" let F,f’z be the dual function defined in Equation (6.45). Suppose that
Equation (6.43) is satisfied. Then for the exponent s € Z, which appears in the conclusion of Theorem
6.10, we have

Ian"’zllnf;;1 L ZP 597, (6.48)

where H; ~ §97 (D N4e(Pm) for i e [s + 1]

Proof. By changing the variables x — x + P,,(y) in Equation (6.42), we may write

ARG o) =5 [ ([ Py @ ) ).

2

12(K) < Np), we have

By the Cauchy—Schwarz inequality (observing once again that || f;, ||

s /K | /K Fé oy )i )] dua)

1
= N

= |A’%:f](f07 fla e ’fm—l’me)L

L Bl 0 Es e 01,321

where in the last step we changed variables x — x — P,,(y1). Denote g,, := F,;”i, and g; = f; for
J € [[m —1],. Our strategy will be to reduce the matter to Theorem 6.10 with the family P. Observe
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that g is a 1-bounded function and ||g; |1 (k) < No forall j € [m],. Changing the variables x + x +h

in the definition of Agff, and averaging over h € [Hy,1] where Hyyy = 69D NP e have

8t < IARS (80v- - gm)I?

)
No Jx2

where in the last line we have used the Cauchy—Schwarz inequality in the x and y variables, noting that
x — go(x + h) is supported a fixed dilate of  for every i € [Hy,1]. By another change of variables, we
obtain

A

m 2
oot i) [ T h= PaCo a0 dii ()
i=1

‘/.Ap;N (Angos- - s Angm)dvim,, | (h) 2 &°.
K
Now, we may find a measurable set X C [H.] such that

|A7D;N (Aths ey AthH)l be 64

forall h € X and vg,,,1(X) 2 5. Since Apgj is a 1-bounded function and ||Ag; .1 k) S No for all
J € [[m],, we may invoke Theorem 6.10 and conclude that

forall h € X, where H; ~ §97 (D Ndee(Pn) forj € [[s]. Averaging over 4 € X and using V[Hg 1 (X) 2 54,

we obtain
IFS 1P = [ lAnFLIE v, (h) 2p 6970
ot @ ® "8y D) s+l ~ ’
which is Equation (6.48) as desired. ]

We first establish a simple consequence of the oscillatory integral bound (3. 1) which will be important
later.

Lemma 6.49. Let N > 1 be a scale, m € Z, and n € N be given. Let P := {Py,...,Py,} and
Q :={01,...,0,} be collections of polynomials such that

1 <degP; <...<degP, <degQ; <...<degQ,. (6.50)

Define the multiplier corresponding to the families P and Q as follows:

mZ’Q(f,f) 3=‘/Ke(iépi(w+Zn;§ij(Y))dﬂ[N](J’),
i= j=

where { = ({1,...,¢m) € KM and & = (&1,...,&,) € K™ Let 0 < 6 < 1 and suppose that
Iy 2(Z,€)] = 6. (6.51)
Then there exists a large constant A 2p o 1 such that

NeE@) g < 67A for e [n].

(6.52)
Ndeg(Pf)|§j| <6, for jel[m].
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Proof. Fix an element a € K such that |a| = N, and make the change of variables y — ay to write
m n
i@ = [ o Diarien) + )0 @ .
! i=1 Jj=1

Define R(y) = 212, iPi(y) + Z?Zl £;0;(y). Then R(y) may be rewritten as

deg Oy

R(y) = ci(R)y'
=1

The oscillatory integral bound (3.1) implies

deg Qn —l/deg On
) (6.53)

mews@+waw4

I=1

Hence, Equation (6.51) implies max; | ¢;(R)|N* < 6~%, where d, = deg Q,, and the maximum is taken
over all [ € [[deg(Q,)]. From this, we see that for any sufficiently large A > d.,

[c/(R)IN' < 674/A (6.54)

for all I € [[deg(0.)]-
Using Equation (6.50), we observe that

n

caecg0; (R) = ) Caeg 0, (Qx)éx,  for  j € [n]), (6.55)
k=j
Cdeg P; (R) = Z Caeg P; (Q1)Ek + Z Cdeg P; (Pk)k,  for  j e [m]. (6.56)
k=1 k=j

Using Equation (6.55) for j = n, we see that Equation (6.54) implies Equation (6.52) for N2 ©@n|¢,|.
Inductively, we now deduce, using Equation (6.55), that Equation (6.54) implies that Equation (6.52)
holds for all N4€9i|¢;|, j € [n]. Similarly, using Equations (6.56) and (6.54), we see that that the
second displayed equation in Equation (6.52) holds. O

The key ingredient in the proof of Theorem 6.41 will be a degree-lowering argument, which reads
as follows.

Theorem 6.57 (Degree-lowering argument). Let N > 1 be a scale, and let 0 < 6 < 1, m € Z, and
n € N be given. Let P .= {Py,...,Pn}and Q :={Q1,...,0n} be collections of polynomials such that

1 <degP; <...<degP, <degQ; <...<degQ,.

For & € K", let F,ﬁ be the dual function from Equation (6.45) corresponding to the form (6.42) and
1-bounded functions fy, fi,..., fmo1 € L°(K) supported on an interval I < K of measure
No := N%ePm_Suppose that for some integer s € Z.,. one has

Fmllet,, ey 2 6 (6.58)
where H; ~ 97 (D Nde(Pm) for i € [s]. Then
& Op (1)
”Fm”Dfl;]l] AAAA [Hs—l](l) zp o T (6.59)

Assuming momentarily Theorem 6.57, we prove Theorem 6.41.
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Proof of Theorem 6.41. Our goal is to prove Equation (6.44) when

5 < IApin (s oos fon)l.

The proof is by induction on m € Z,. We divide the proof into two steps. In the first step, we establish
the base case for m = 1. In the second step, we will use Theorem 6.57 to establish the inductive step. O

Step 1.
Assume that m = 1 so that Ng = NP1 For/ € Kand & = (¢1,...,&,) € K", we define the multiplier

(6.6 = [ (= 2P+ €0, )duimi ).
K =

We now express

AR o) = N5 [ OGO m (¢ Odu0).
Using the Cauchy—Schwarz inequality and Plancherel’s theorem, we see

|A7%§f,(go,g1)| < Ny'llgollzyllgillzzey  sup  Imn(Z.8)]. (6.60)
£ esupp (8081)

When K is non-Archimedean, let ¢(x) = 1[j(x) = 1p,(0)(x) so that () = 1;7(£). When K is
Archimedean, choose a Schwartz function ¢ : K — K such that

L0 <e(Q) <1p(), (€K
For a scale M, we set @p(x) = M~ 'o(M~'x) when K = R and when K = C, we set ¢y (z) =

M~'o(M~1/2z). When K is non-Archimedean, we set @7 (x) = M~ 171 (x).
Consider two scales M| ~ §€ N9€P1 and N ~ §2€ N4e¢P1 /C . Then we obtain

§ < IAZS (fo Al < IAZS (fooary * O+ IAZE (o fi = ean, * ).

Note that
|A7%;;§(f0790M1 s )l < NG folleco lean * Fillzie < Ny'llemn * fillo e,
and
loa, * filliey < llean, * mingy * filloiy + (e, = emy = miniy) = fillo @
S N = filli g + €16 Ny
since ¢p, — @m, * uin,] = 0 when K is non-Archimedean and when K is Archimedean, we have the

pointwise bound

- - - -10
loa, (¥) = oagy * vy (0] s €716 M (1 My xl) T
If C > 1 is sufficiently large, then we may write
(9313 -1 [0}
6 S ALK (o, Ol < Nyl * fillor ey + 1Ay (fos fi = omy = f1)I- (6.61)
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By Equation (6.60), we have that

ASS (fosfi—em = )l s sup  |mn(£.8)] (6.62)
ZeK:|Z|zM ]!

since || follz2 k) < Né/z and || fill2 gy < Né/z. We now prove that

sup  |mn (£, 8)] < 6% (6.63)
ek =M

Suppose that inequality (6.63) does not hold, then one has

Imn (¢, €)| 2 6%

for some ¢ € K so that || > Ml‘l. Then Lemma 6.49 implies N9&P1|7| < 674 for some large, fixed
A 2 1 by Equation (6.52). Since M; = 6 N%2P1 we have 6-C < 64 which is a contradiction if
C > A. Thus, Equation (6.63) holds.

Hence, by Equations (6.63), (6.62) and (6.61), we see that

6 < Nyl * fill

which establishes Theorem 6.41 when m = 1.

Step 2.

We now assume that Theorem 6.41 is true for m — 1 in place of m for some integer m > 2. Using Theorem
6.57, we show that this implies Theorem 6.41 for m > 2. Note that bound (6.43) implies inequality
(6.48) from Proposition 6.47. Now, by Theorem 6.57 applied s — 2 times we may conclude that

[HE zp 6770,

Hy 11y )

where Hy, H, ~ 697 (D N92Pn By emma 5.1, we can find a & € K such that

Ny '|Fn (€0)| 2 697V (6.64)

since Ng = N%2Pm By definitions (6.45) and (6.46) and making the change of variables x > x—P,,,(y),
we may write

N Fieo) = N5 [ Fye-eomdiai ()t

m—1 n
=85! [ Mafo) [ = Piome(ap) + 3 €50, i )
i=1 j=1
= M7'AZ Y Mg fo. fire o fuot),
Where Mfofo(x) = e(—fgx)fo(x), PI = P \ {Pm}’ Ql = Q U {Pm}a f, = (f()’ fls .. ’fn) € Kﬂ+1
and M := N9ee(Pn)=dee(Pn-1) The parameter N{ = NoM ~!'is what appears in the m-linear form Agf] .
We note that N = N9 Pm-1,

Thus, Equation (6.64) implies

MTNAZ S (Mg fo, fis oo fn)] 2 6900
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By translation invariance, we may assume that all functions fjy, fi, ..., fin—1 are supported in [Ny]. We
can partition [Ng] = U ke[r] Ex into L =~ M sets, each with measure ~ N contained in an interval
Iy lying in an O (N;) neighbourhood of Ey. Furthermore, Ey is an O(Ny) neighbourhood of a set Fi
such that u(Ex \ Fr) < Ny and supp(1r, * gyn,)) S Ex. Here, Ny = §97 (D N%e(P) 1In the non-
Archimedean setting, this decomposition is straightforward; in this case, we can take Fy = E = I. If
factif No = g™ and N = q"* so that M = ¢*, then

[Nol = Bgro(0) = | ] Byt ()

XEF

gives our partition of [Ny], where F = {x = Zf—o x;pot xj € ox/mx}. Note #F = g“ = M. When
K = R, one simply decomposes the interval [Ny] = [ Ny, No] into M subintervals (Ex )iy of equal
length and then extend and shrink to obtain intervals I and F; with the desired properties.

When K = C, the set [Ny] is a disc and the decomposition is not as straightforward but not difficult
to construct by starting with a mesh of squares of side length \/V(’) which cover [ Ny]. It is important that
for this case (when K = C) that we allow the sets Ey and Fj to be general sets (not necessarily intervals)
with the above properties. The picture should be clear.

Hence, by changing variables x — x + P;(y) and then back again,

M7AZS Mgy fou fia s fnet)

‘NZ/

ke[L] ¥ ExxE

m—1 n
Ma i) [ ] its =P, (e(EoPm(y) + Z €105 () )duin) (¥)du(x)

= Ny /f fi gk = Pi(y) ﬂf (x=P; (y))e(soPm(w+Zs,Qj(y>)du[N](y>du(x)

ke[[L]

1
=M Z AP’NIk(fO’g s fonet)s

ke[ L]
where ff := Mg, fol g, f5 = folp,.... f5 | = fuo1ly, and g% = filpg,.

By the pigeonhole principle, there exists Lo C [[L] such that #Lq > 697D M, and for every k € Lo,
we have

A 1 g5 e SR 2 697
By the inductive hypothesis, we have
(NO) ™ [l (fl]lEk)HL'(K) 2 97
for every k € Lo and for every N; = §€ N9 Pt with C > C,(P’). Note that
(No) Nl * (fi(Le, = L))y < Ni(Ng) ™" < 6€ (6.65)
and hence for C > 1 large enough,

(Né)_l||p[Nl] * (fllle)HL,(K) > 697 for every k € Ly.

Now, we can sum over k € Lo, using the bound #Lo > 69" M and the pairwise disjoint supports of
(1) * (/11F))kefr)> We obtain
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N61||M[N1]*( Z fl]le)
|

ke[L

-1
o 2 NG % [TEARNCEEN] s

> M! Z (N(l))_l”/l[NlJ s (fllle)“Ll(K) > §0P(
keLy

which by (6.65) yields

No'luiwiy # fill i 2 697,

as desired.

We now state two auxiliary technical lemmas which will be needed in the proof of Theorem 6.57.
For w = (wi,...,w,) € {0,1}* and h = (hy,...,h,) € K", we write w - h = 3} | w;h; and
l-w=(1-wi,...,1 —w,).

Lemma 6.66. Let N > 1 be a scale, and let 0 < § < 1, m € Z, with m > 2, n € N and scales
Hy,...,H, with each H; < N be given. Assume that ¢ : X — R is a measurable function defined on
a measurable set X € H := [[;_,[H;]. Let P := {Py,..., Py} and Q := {Q1,...,Qn} be collections
of polynomials. For & € K", let Ffl be the dual function defined in Equation (6.45) that corresponds to
the form (6.42) and 1-bounded functions fy, fi,. .., fm-1 € L°(K) supported on an interval I c K of
measure Ny := N%€Pm_Syppose that

— n

/X NG AL (o () @ Vi ) () 2 6. (6.67)
Then
/ o /K Funx: W) (—0 (1)) dia () 2d( i) ) 2800, (668
o, par
where
0, (X) = {(h,h’) €H:w-h+(1-w) - €X forevery w € {0, 1}"},
and

m—1

Fu(x;h,h') = /KAZ,_hfo(x +Pn(y)) l_[ A p fi(x = Pi(y) + P (¥))dun (3),
i=1

y(hy= > (—1)"“|¢(w T+ (1 - w) h)

we{0,1}"

Proof. We shall write v,, = ®?=1 v(m;)- Using Equations (4.2), (6.45) and (6.46), we see that the
left-hand side of Equation (6.67) can be written as

1

W/Kz"” /Kz/ Go(x, 2, hs y)dvy (h)du(x)du(2)dutey” (),
0 n

where for ¥ = (¥(w,0)s ¥ (w,1))we{0,1}n € Kznﬂ,x,z € Kand h € K". We have set

Go(x,z, h;y) := Ly (h)e(—¢(h)(x — 2)) ]_[ CllFy o @+l W) Foy (24 hw).
we{0,1}"
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Write elements in X as (%1, h) with iy € K, and apply the Cauchy—Schwarz inequality in all but the £,
variable (noting that (x, z) — Go(x, z, h;y) is supported in a product of intervals of measure ~ Ng) to

conclude
1 n
= [ [ oz v, duodu@daf ) 2 60V 669
NO k2" JR2 JERN-1
where
2
Ho(x,z,h;y) :='/Gé(x,z, (h1, h);y)dvig,(h)|
K
and

G(l)(x7 2 (hls h),’y) = ]lX(hls h)e(—¢(h1, h)(x - Z))

x [ CFRy g G+ () - (L) Fy, o 2+ (1, h) - (1,w))
we{0,1}7!

for y = (¥(1.w.0)s V(L)) G.wefo.1n € K and x,z,hy € K, h € K""!. Expanding the square and
changing variables x — x — i and z — z — h|, we may rewrite Equation (6.69) as

1 ’ . ®2 ’ ®2"
W Lo [ 6otz b b, b ()i o)) ()
> §9W), (6.70)
where

Gi(x,2, i, b, hyy) = 1x (hy, h)Lx (h, h)e(=(¢(h, h) = ¢(h}, b)) (x = 2))

X ]_[ Cl Ay By B ) Ap i By (24 h - w).
we{0,1}7!

Iteratively, for eachi € {2, ..., n}, we apply the Cauchy—Schwarz inequality in all but the 4; variable to
conclude that

1
L L Gtz ey ) ) d) ) (3.3 2 67,
Ny Jr2 Jr2 Jo,(x)
where
Gl 2 b 1y, Y') = Ay By (AT, FE L (@)e(=y (1)) (x - 2).
We have arrived at Equation (6.68), completing the proof of the lemma O

The following lemma is a slight variant of a result found in [38].

Lemma 6.71. Given a scale N > 1,0 < 8§ <1, m € Z, withm > 2, n € N and scales Hy, . .., H,1
with each H; < N. We assume for everyi € [n] that ¢; : K" — K is a measurable function independent
of the variable h; in a vector h = (hy,...,h,) € K". Let P :={Py,..., Py} and Q := {Q1,...,0n}
be collections of polynomials. For ¢ € K", let F,ﬁ be the dual function defined in Equation (6.45) that
corresponds to the form (6.42) and 1-bounded functions fy, fi, ..., fm-1 € L°(K) supported on an
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interval I C K of measure Ny = N%¢Fm_ Suppose that

L

N(;IA/ZF\i(Zn:(pi(h))’zd(@vmi])(h) > 6. 6.72)
i=1

i=1
Then

f > OP(I)
||Fm||DT!I;11] ’’’’’ |H,,+1|<1) =P 0 .

Proof. We shall write as before v,, := ®1'.'=1 vim;) and also let p, := ®?=1 H(H;]- Expanding the Fejér
kernel, we may write the left-hand side of Equation (6.72) as

r-f
=/Kzn

/K A FiCOAL L Fh(2e( = ) @ilh = 1) (x = 2) ) dpg? (h, ) dpa(x)dp(2).
i=1

Ny (3 )
i=1

n SE(N 2@
NG A;‘lfh,Fm(Z‘p,-(h— h/))) Ap2(h, 1)
i=1

1
T a2
Ny

We apply the Cauchy—Schwarz inequality in the x, z and 4’ variables and Corollary 4.7 to deduce that

w1 ——

s [T €0 FE0IA,  FE @) d BB. Wda(2) )
0 we{0,1}

1 ’ ’ ’ ’ ’

=V | A(x,z, 1 B O h Y 1) B(x, 2, O R Y 1) du(x)du(2)dp®? (B0 R Y 1Y dugw, (B),),

0 n

where

Ax,z, b O D ) :=/ [] c [AZ;;,)_h, (F,i(x +10 1)
K2
we{0, 1)1

X Ff (= W)l (2 W, = W) Ff 24l = i) | da s (), ),

Berzh®n V= [T cl|ar,  (1F RIS R |
w’e{0,1 }n,—l

Since A > 0, we see that

n

T <N | A2y B R 1) du(x)du(2)dpd (B B D, 1) dugn, ) (k)

K3n

1 , ) -
A2 / 1_[ ¢l [AZ(:}’)_W (Fri (x + B0V Ff (x + hb)
Ny Jrent welo)

X Fi (24 W)l (2 1)) | du () dpa( ) d (0, D)1 ()

1

Y /K 1C(X,z,h(o),h(l),h')dﬂ(X)dﬂ(Z)duff’z(h(O),h(l))dun—l(h'),
O 3n+
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where

Clezh® h Oy = [T cllantl, Ay (FrFs @)
wle{o’ 1 }nfl

In the penultimate equality, we made the change of variables x — x — h% + h/, and z — z — K0 + K.
Now, proceeding inductively we see that

n 1 —— ,
¥ < v /K A W Fn A F () dp(x)du()d s (h. ).
0 n+!

Inserting an extra average in the x variable and using the pigeonhole principle to fix z, it follows that

7 < [ ML) [ 8 FE Gt 061 W ),

To conclude, we apply the Cauchy—Schwarz inequality to double the w variable and so

2n+l on+l i ntl & ®2 ’ _gé
6 S I S NO a3 Ah—h’Fm(x)dun"'l(h’h )d/’l(x) - ||Fm|||:|’["1‘;ll] ----- [Hn”](I)-
This completes the proof of the lemma. O

Proof of Theorem 6.57. The proof is by induction on m € Z,. The proof will consist of several steps.
We begin by establishing the following claim.

Claim 6.73. Let N > 1 be a scale, 0 < 6 < 1, m € Z, withm > 2 and n € N be given. Let
P :={Py,...,Pyp}tand Q :={0Q1,...,0Qn} be collections of polynomials such that

1 <degP; <...<degP, <degQ; <...<degQ,.

For & € K", let F,’E be the dual function defined in Equation (6.45) that corresponds to the form
(6.42) and 1-bounded functions fy, fi,. .., fn_1 € L°(K) supported on an interval I C K of measure
Ny := NP Suppose that

N FL (] = 6. (6.74)
Then for any sufficiently large constant C 2p o 1 one has
£ < 67CEN"9ePm) - and (&, < ENTEEL)  forall  j e [n]. (6.75)

The proof of Claim 6.73 for each integer m > 2 is itself part of the inductive proof of Theorem 6.57.
In the first step, we prove Claim 6.73 for m = 2. In the second step, we show that Claim 6.73 for all
integers m > 2 implies Theorem 6.57, this in particular will establish Theorem 6.57 for m = 2. In the
third step, we finally show that Claim 6.73 for all integers m > 3 follows from Claim 6.73 and Theorem
6.57 for m — 1. Taken together, this shows that Claim 6.73 and Theorem 6.57 hold for each integer

m > 2, completing the proof of Theorem 6.57. O
Step 1.

We now prove Claim 6.73 for m = 2. Here, Ng = N%2P2 For {{,, € K and ¢ € K", we define the
multiplier

mn ({1, 02, &) 3=/ )e(—§1P1(CW)+§2P2(CVJ’)+Z§A;'QJ'(CVY))d#(J’),
=}

B (0 =

https://doi.org/10.1017/fms.2024.104 Published online by Cambridge University Press



30 B. Krause et al.

where a € K satisfies |@| = N. By definitions (6.45) and (6.46) and making the change of variables
x — x — P(y), we may write

N(}l;;f(é“z)=No—l/K/KF;fy(x)e(—gzx)dﬂm](y)du(x)
:Nal‘/K]?o@z—51)ﬁ(§1)mN(§1,§2,§)d§1.

By the Cauchy—Schwarz inequality and Plancherel’s theorem, we obtain
5 < Ny'1F5 ()] < Ny foll a1 fillza ey sup [y (¢1.2.€)1,
4YS

which gives for some {; € K that

0% |mN({1’ §27§)|

since || foll.2xys 1f1ll2x) S N(;/z. Applying Lemma 6.49 with P = {~Py, P,}and Q = {Q1,...,0n},
we deduce that for every sufficiently large C > 1 one has

IZil < 6 CN"4eP)  forall je[2], and €] < 6 CN4@) forall ;e [n].
This completes the proof of Claim 6.73 for m = 2.

Step 2.

In this step, we show that Claim 6.73 for all integers m > 2 implies Theorem 6.57. In view of Step 1,
this will in particular establish Theorem 6.57 for m = 2, which is the base case of our double induction.
As before, we shall write v; := ®f:1 vim;) forany j € Z,. Recall that Ny = N9e(Pm) and note

&128 s—2 &4
F; |z = A}°F, _ .
” m”DlH]I _____ |Hs|(I) ‘/Ks-z ” h m”D%Hs_ﬂ.[Hs](l)dVS Z(h)

By Equation (6.58) and the pigeonhole principle, there exists a measurable set X C H‘i:lz [H;] so that
vs_»(X) 2 62, and for all & € X one has

> 600,

AS—2F§
12 m”D%Hs_l]‘[Hs] n

Here, we used that supp Ffl is a subset of an interval whose measure is at most O (Ny). By Lemma 5.1,
we have

—

0 Y

(K) ~
Next, we claim that there is a countable set F C K, depending on N and ¢ such that

—

sup Ny'|AS2F5 ()] 2 6€ (6.76)
PeF

for some absolute constant Cy € Z, and for all # € X. When K is non-Archimedean, we take

L-1

F = U {ZZ Z Zjﬂ'jGK:ZjeoK/mK}’

M>1 j=
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where Ny = gL Let x € I = By, (xo). Forany £ € K, we have ¢ € BN0_1 (o) for some ¢y € F. Note that

e(=4x) = e(=xdo) e(=(x = x0)({ = do)) e(=x0({ = o)) = e(=x4o) e(=x0 (4 = £o))

— —
since |(x —x0) (£ — {o)| < NON(;l =1 and e = 1 on og. Therefore, |Ai‘2Fn":({)| = |AZ‘2F£(§O)| since
AZ_ZFm is supported in / whenever & € X. This shows that Equation (6.76) holds for non-Archimedean
fields.
When K = R, we take F := TyZ, where

To := 69 (CNy) ™!

for a sufficiently large constant C 2 1. When K = C, we take F := T;Z?, where T} := 6°°(C+/Ny)~!. By
the Lipschitz nature of characters on R or C, we again see that Equation (6.76) holds in the Archimedean
cases. In particular, there exists a measurable function ¢ : X — F so that

—

NG AS2ES (¢ (h))| 2 6 6.77)

for all 4 € X. If necessary, we may additionally assume that the range of ¢ is finite.
By Lemma 6.66, it follows that

'/DxZ (X)

2

dv® (') 2 §°0,

N;! /K Fon s o WY e (=g (s W) 0) e ()

where

m—1

Pt )= [ 832,005+ P o) | | 852,50 = PA) + POt 0,

i=1

pby= Y (—1)"“|¢(w e (1-w)- h’)).

we{0,1}5°2

Thus, by the pigeonhole principle, there exists a measurable set Xo C O, (X) with v®2 (Xo) 2 69V
such that for every (h, h’) € X one has

el [ b e ()] 2 600
K

By Claim 6.73, there is a ¢ := ¢, = 1 such that for each (h, h") € Xp, one has
| ((hy B)| Sy 67N EEm),
By the pigeonhole principle, there exists h’ € Hf;lz [H;] and a measurable set
Xo(h') :={heX:(hh')eXo and |y((h,}'))| s 6 N~ ePm}
satisfying vs_» (Xo(h’)) 2 6°M. Since ¢ ((h, h')) € F, we see that

Xo(h'y < | ) x5 (),

keK

where K = [0(67°(V)] N Z when K = R. In this case, Xé‘(h’) ={h e X :y((h,h")) =Tok}. When
K = C, we have K = [0(67°M)] N Z? and X} (h’) = {h € X : y((h, ")) = Ty k}. Finally when K is
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non-Archimedean,

-1
K=[06M]n{k= > kil eK:k; e ox/mg}
j=—M

and X5 (h') :={h € X : y((h, h")) = xlk}.

Thus, by the pigeonhole principle there is k¢ € K such that us,z(Xg”(h’))) > 69 When K =R,
this shows that y(h, h’) = Toko =: ¢, for all h € X(];”(h'). When K = C, we have ¢(h, h’) = Ty k¢ for
all h € Xgo(h’) and when K is non-Archimedean, ¢(h, ') = nlkq forall h € X(];O(h’). We will denote

these values by ¢,,, in all cases.
Set

i) = (D7 (D@ (1= ) B) + (<1

wef{0,1}52
w1:0

and, fori = [[s — 2] \ {1}, set

il )= (=D Dl ((@ b+ (1= w) - 1)),

we{0,1} 7\ {0}
wlz.,.:wi_lzl
u),-=0

Note that ¢; does not depend on /; and we can write

s—2

$(h) = wi(hI).
i=1

Averaging Equation (6.77) over X := Xg °(h’) and using positivity, we obtain

.

T 2
> [ N5 ag 2 o] dva() 2 60

NG A2 ( 3 wih ) )| dvsa(h)
i=1

Invoking Lemma 6.71, we conclude that

15 5 2 800,

Oty o1
Step 3.
Gathering together the conclusions of Step 1 and Step 2 (for m = 2), we see that the base step of a
double induction has been established. In this step, we shall illustrate how to establish the inductive
step. We assume that Claim 6.73 and Theorem 6.57 hold for m — 1 in place m for some integer m > 3.
Then we will prove that Claim 6.73 holds for m > 3, which in view of Step 2 will allow us to deduce
that Theorem 6.57 also holds for m > 3. This will complete the proof of Theorem 6.57.

Recall that Ny = N9e&(Pm) By definitions (6.45) and (6.46) and making the change of variables
x - x — P, (y), we may write
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N F @) = 85" [ (-G )i ()
m—1 n
= Ny /K Mg, fo0) [ ] fix = Pie(nPrn(3) + Y €050 ) duin (1)
i=1 Jj=1

= M‘IA%;’,%, (Mg, fos fis -+ fm-1)s

where My, fo(x) = e(={mx) fo(2), P" := P\ {Pm}, Q := QU{Pu}, & = ({m, &1y ..., &) € K™
and M = NON(’)*I, where N/ is the scale Ndeg(Pm-1)
Thus, Equation (6.74) implies

M7AZ S Mg, fo. five o fmeD)] 2 690,

As in the proof of Theorem 6.1, by the pigeonhole principle, we can find an interval I’ c K of measure
about N such that

Q¢ O(1
AN g f s ) 2 690,

where f :=Myg, folp, f{ = filp,....f, | = fm1lp.
Consequently, by Proposition 6.47, there exists an s € Z, such that

s

where Fj,_l is the dual function respect the form Ag;’l‘f,:l, (fo- fi»---s fr_y) and H; =~ 507 (D) ydeg(Prm-1)

for i € [[s]. By the induction hypothesis (for Theorem 6.57), we deduce that

> 600,

é‘/
”Fm—l ||D%H1]’[H2] (N) =

which in turn by Lemma 5.1 implies

(NS (Gn-1)] 2 690
for some ¢;,,—1 € K. By the induction hypothesis (for Claim 6.73), we deduce that

;] < 67CN~deelPi) forall je[m]\[m-2], and
€] < 67 C N~ dee(@D) forall j € [n],

which in particular implies Equation (6.75), and we are done.

7. Sobolev estimates

As a consequence of the L™-inverse theorem from the previous section, we establish some Sobolev
estimates, which will be critical in the proof of Theorem 1.3.

We begin with a smooth variant of Theorem 6.1. When K is Archimedean, we fix a Schwartz function
¢ on K so that

1y(€) < p(é) <1 (¢), €K

When K = R, we set oy (x) = N lo(N~'x) for any N > 0 and when K = C, we set ¢y (2)
N~'o(N=12z) for any N > 0. When K is non-Archimedean, we set ¢(x) = 1p,(0)(x) so that $(£)
15,0 (£) and we set pn (x) = N‘lll[N] (x) for any scale N.
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Theorem 7.1 (A smooth variant of the inverse theorem). Let N > 1 be a scale, 0 < 6 < 1, m € Z, be
given. Let P := {P1,..., Py} be a collection of polynomials such that 1 < degP; < ... < deg P,,.
Let fo, fi,..., fm € LYK) be 1-bounded functions supported on an interval I < K of measure
No = NP Suppose that the (m + 1)-linear form defined in Equation (6.2) satisfies

|A73;N (fOs e »fm)| > 0. (72)

Then for any j € [m] there exists an absolute constant Cj 2p 1 so that
No'llew; * fill sy 2P 6770 (7.3)

where N; ~ 5Ci Ndeg(P)) provided N = 5~ 0r (),

Proof. By translation invariance, we can assume that f; is supported on [No] for every j € [m]. The
proof will consist of two steps. In the first step, we will invoke Theorem 6.1 to prove Equation (7.3) for
Jj = 1. In the second step, we will use Equation (7.3) for j = 1 to establish Equation (7.3) for j = 2, and
continuing inductively we will obtain Equation (7.3) for all j € [m]). O

Step 1.
We first establish Equation (7.3) for j = 1. When K is non-Archimedean, this is an immediate conse-
quence of Theorem 6.1 since ¢, = u|n,) in this case. Nevertheless, we make the observation that

|AP;N(fO,<PN| *flv--~’fm)| 20 (74)

holds. In fact, we will see that Equation (7.4) holds for any K, non-Archimedean or Archimedean. First,
let us see Equation (7.4) when K is non-Archimedean. Suppose that |Ap.n (fo, N, * fis---s fm)| < 6
for some small ¢ > 0. Then, since

0 < |Ap.n (fo, fis o os S| S IAp.N (fos ony * flo oo )| + [Apnv (fo, f1 = oy * 1o s fn)ls

we conclude that |Ap,n (fo, fi —¢n, * fi,- .., fm)| = 6. Therefore, Theorem 6.1 implies that Nal llon, *
(fi = en * DLl 2 690, but this is a contradiction since ¢y, * ¢y, = @n, when K is non-
Archimedean (in which case ¢n, = Nl‘lll[N]]) and so on, * (fi — ¢n, * f1) =0.

We now turn to establish (7.3) for j = 1 when K is Archimedean (when K = R or K = C). Let
n : K — [0, ) be a Schwartz function so that fKn = 1,7 = 1near 0 and supp 7 C [2]. For ¢ > 0,
we write 7,(x) := t~'n(+"'x) when K = R and 7, (x) := t>n(+"'x) when K = C. We will also need a
Schwartz function p : K — [0, o) such that

T i-sm)(x) < p(x) < Tpp(x),  x €K

for some large absolute constant M > 1, which will be specified later. We shall also write p(;)(x) :=
p(t7'x) fort > 0 and x € K.

Let N(') =~ No when K = R and N(’) ~ y/Ng when K = C. Observe that Equation (7.2) implies that at
least one of the following lower bounds holds:

|Ap.N (fos ony * fis s f)| 26, (7.5)
|Ap:N (fo, oy (fi = oy % f1)s oo fm) 26, (7.6)
|Ap:N (fo, (1= pny) (fi = ony * f1)- s fm)| 2 6. (7.7)
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By Theorem 6.1, it is easy to see that Equation (7.5) yields that

N51|’90N1 *f1||L1(R) 2 0,

which in turn will imply Equation (7.3) for j = 1 provided that the remaining two alternatives (7.6) and
(7.7) do not hold. If this is the case, then Equation (7.4) also holds when K = R, C is Archimedean.
If the second alternative holds we, let f := p( N) (fi — ¢n, * f1) and then Theorem 6.1 implies that

Ny ewiwyy # £l ) 22 6,

with N{ ~ 6CiNdee(P1) By the Cauchy—Schwarz inequality (the support of Hn;1, * ] is contained in a
fixed dilate of [Ny]), we have
-1 1112 2C/
Ny llkengy * filly2 ) 2P 620

1

Let NJ’ := §4*CIN9e(P1) /A for some A > 1 to be determined later. We now show that
2 " ’
leinyy = sy nng ey S AN ING < V6ATA. (7.8)
We note that for x| > CN/,
Ly () = gy # oy (0] = | / g (= 3y () da ()|
K
and so
/ 1Ly (x) = Lyngy * vy () dp(x) < Ny
[x|=CN/
When |x| < CNy is small, we use the Cauchy—Schwarz inequality
[ Tt = Ly < g Olda(a) 5 V] 8w+ o = )l
Ix|<CN;{
and then Plancherel’s theorem,
L) * (0 = N 12 iy = /KU =Ny (OP TNy () Pdp(€) s (N{NT.
Here, we use the facts that 77 = 1 near 0 and the Fourier decay bound for Euclidean balls,
|]l[le](§)|2 < €7 when K =R and |]l[Nl»](§-‘)|2 < 1/N{Ié—‘|_3 when K = C.
This establishes Equation (7.8) and so

N ICupny = gy = ) = ff“iz(K) < [y = ming + vl ()
< NV/N! 5 64/ A.

Consequently,

1

5% <p N61||ﬂlN’J * fll“i?(K) S N61||ﬂlN{J AN fl,Hiz(K) +V64/A,
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which for sufficiently large A > C yields

NO_IHUNI” * f1,|‘iz(K) 2P 52

Taking N := %N ;" and using support properties of ¢ and 7, by the Plancherel theorem we may write
(when K =R)

Ny = £z ey = N vy (B * (1= Ex) ) 72s)

N 2
= /(/(1+N’|§ §|)zoo|f1(§)(1 PINIO)NT(NTE | du(€)

< N8 DN £, -

A similar bound holds when K = C. Therefore,

2C, 100(A+C]

6% <p Ny Hwy *f1“L2(K) < §100(A+C))

which is impossible if A > 1 is large enough. Thus, the second alternative (7.6) is impossible. To see
that the third alternative (7.7) is also impossible observe that

5 < [Ap.y (fo, (1= pnp) (i = @y % f1)s s fin) | S Ny /[N,J(l - pny) (V)du(x) s 6™,
0

which is also impossible if M > 1 is sufficiently large. Hence, Equation (7.5) must necessarily hold,
and we are done.

Step 2.
Let M > 1 be a large constant to be determined later, and define N” ~ SM N and N(’) ~ 6M N,. The main
idea is to partition the intervals [N] and [No] into K ~ §~M disjoint intervals of measure ~ N’ and
=~ N{, respectively. Such partitions are straightforward when K = R. When K is non-Archimedean, we
only need to partition [N] and not [ Np]. Finally, when K = C, intervals are discs and it is not possible
to partition a disc into subdiscs and so we will need to be careful with this technical issue.

We first concentrate on the case when K is non-Archimedean. In this case, we only need to partition
[N] and not [Np]. Such a partition was given in the proof of Theorem 6.41. In fact, choosing ¢ > 1
such that g=¢ ~ 6™ and setting N = ¢" so that N’ = ¢"~¢, we have

[N] = Bgn(0) = | ) Bye (),

yeF

which gives a partition of [N] where F = {y = Zf 0 YT n" 1y, € og/mx}. Note #F = g" so that
#F ~ 6 M Hence, Ap.n (fo, on, * flo- s fm) =

ww o L L hew s A= POD | ] A= POt
=2

)’() eF gn—t (o)

We observe that oy, = fi(x — P1(y)) = ¢n, * fi(x — P1(yo)) for any y € Bgn-¢(yo) by the non-
Archimedean nature of K, if M is chosen large enough depending on P;. Hence, by the pigeonhole
principle, we can find a yo € F such that

)NON, /K/Bq” o fo(x)en, = filx = P1(yo)) !:2[ Jitx = Pi(y))dp(y)du(x)| 2 6.
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Changing variables y — yo + y allows us to write the above as

[Ap o (fos fose s o)l 2 6 where

1 m
Ao e B ) = 37 /K R [ ] 6= Py gy (),
j=2

with P/ (y) = P;(yo+) P (30). f{(x) = fo(x)en * fi(x=P1(yo)) and £](x) = f;(x+P;(y0)). Note
that each f]f is supported in a fix dilate of 1. In order to apply Theorem 6.1, we require N’ ~ ¢ N > 1

and here is where the condition N > 6707 ig needed. Therefore, Theorem 6.1 implies that
N linn = Pl = No'lli = Al 2 §oW.

The equality of L' norms follows from the change of variables x — x + P(yo). This completes the
proof of Equation (6.4) for j = 2 when K is non-Archimedean since u[n,] = ¢n,.

We now turn to the Archimedian case, when K = R or when K = C. Here, we argue as in Step 1 and
establish the version of Equation (7.4) for the function f,. More precisely, writing

Ap.N(fos -5 fin) = Ap.n (fo, f1 0Ny * fos oo s fin) + Ao (fo, fis o= On, * for s fin)s

the argument in Step 1 shows that Equation (7.2) implies

|A'P;N(f0’f17§0N2*f2"~"le)| 2 0. (79)

This inequality allows us to reduce matters to showing that Equation (7.2) implies N, | V12l 2
62U since then (7.9) would imply

SO < Ny i na) * o, * Pliog < Nen, = Hlio),

establishing (7.3) for j = 2.

We give the details when K = C since there are additional technical difficulties alluded to above.
The case R is easier. Given a large, general interval Z in C (that is, Z is a disc with large radius R), we
can clearly find a mesh of K = 6~ disjoint squares (Sk)iefx] of side length 6*/2R which sit inside
7 such that 4(Z \ Ugegxy Sk) S 6*R*. We fix such a mesh of squares (St)icpx] for [N] and a mesh
of squares (7)), for [No] so that

Ap N (fo,on, * fiso s fn) =

iSO A [ alsen, = fite= PN s = PO dudt) + 06,

N Jel] kelK] “7/
Since |Ap.n (fo, N, * fi,..., fm)| = ¢ by Equation (7.4) and since the number of terms in each sum
above is about 6™ | the pigeonhole principle gives us a square Ty in [No] and a square Sq in [N] such
that

1 m
)N(,)N, /TO N Jo(x) fo(x)en, * filx = Pr(y)) ]:2[ filx = Pi(y))du(x)du(y)| 2 6.

Write [N']sq = {z € C : |z]eo £ VN'}, where |z|o = max(|x], |y]) for z = x+iy. Hence, So = yo+[N']sq
for some yg € [N]. For z € So, we have z = yo + y for some y € [N’]s,; and so by the mean value
theorem and the 1-boundedness of fi,
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len, * filx = P1(yo+Y)) — en, * filx = P1(y0))|

N’ DegP;
< 0 [ 1o @llduta) 5, sanenr,
1 C

where N = §¢1 NDPegP1 Ensuring that M deg P — C; > 4, we see that

1 = t ’
| N /T | /[ . fo@en *fl(x—Pl(yo))L_z[f}(x—Pl-(y))du(X)du(y) 2 6,

where P/(y) = P;(yo+y)—Pi(yo) and f} (x) = fi(x+P;(yo)). For an appropriate interval I’ containing
Ty with measure ~ N, we can write the above inequality as [Ap.n/(fy, f5s- - -» fn)| 2 6, where P’ =

{Py,.... PR} fo(0) = fo(¥)en, = fi(x = Pi(yo)) g (x) and £ (x) = f{ (X)L (x) fori € [m] \ [1].

Here,
’ ’ l ’ - ’ ’
Aty = g [[L a5 T 6= iy, 1o

Again, in order to apply Theorem 6.1, we need N’ = 6 N > 1 which holds provided N x 6§97,
Therefore, by Theorem 6.1 (see the remark following the statement of Theorem 6.1), we conclude that

(N lkinvatsg * i ) 2P 67

for some N, = §C2+M deg(P2) deg(P2) The function H[N,] * [, is supported on an interval I”” 2 I” such
that u(I”” \ I’) < N,. Furthermore, we can find an interval I’”” C I’ so that u(I’ \ I’’) < N, and for
x eI, wehave 15 (x —u) =1 for all u € [N>]s,. Hence,

1 e
6% < 7 [ | [ A+ Pats0) = i, @]du) + 0045),
0 I///
where N, /Nj < 6™ (@eF2=1) and deg P, — 1 > 1. Hence, for M >> 1 sufficiently large, we conclude that

1 _
s [ | /C fale+ Pa(30) = 00y, (0]d(x) < Ng i, = Al (1.10)
7y

In the final inequality, we promoted the integration in x to all of C and changed variables x — x+P;(yy)-
Hence, we have shown that Equation (7.2) implies Ny'llu(n,1,, * fllLic) 2 69V, Since Equation
(7.2) holds with f> replaced by ¢n, * f> (this is Equation (7.9)), we see that

6% < Ny liwan,, = on, * ol < Ny'llen, * lloic).

establishing Equation (7.3) for j = 2. Now, we can proceed inductively and obtain Equation (7.3) for all
j€m].

7.1. Multilinear functions and their duals

Recall the multilinear form

Apy U fiveo ) = 32 [ 560 [ T = Pt i ).
i=1
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We define the multilinear function
MG Giveoesfu )= [ ] = Py )
i=1

so that Ap.n can be written as a pairing of AE with fo,

(Aﬁ(fl» v ’fm)7 f0> = NOA'P;N,[NQJ(fO7 fl’ v 7fm),
where (f, g) = fK f(x)g(x)du(x). By duality, we have

<A7]\D](f17 v ’fm)’ f0> = <(Aﬁ)*](f1» v afj—l? f()’ fj+la v ’fm)9fj>a

where

m
AR i oo S0 = [ [ ] il = Pes) + PLOD ol + Py )i ).
7
Lemma 7.11 (Application of Hahn—-Banach). Let A, B > 0, let I C K be an interval, and let G be an
element of L*(I). Let ® be a family of vectors in L*(I), and assume the following inverse theorem.:

Whenever f € L*(I) is such that | flleery < 1and [{f,G)| > A, then |{f, ¢)| > B for some ¢ € ®.
Then G lies in the closed convex hull of

V={lpeL*(I):¢€®, |A| <A/BYU{heL*(I): ||kl <A} (7.12)

Proof. By way of contradiction, suppose that G does not lie in W = conVV”'HLZ(’ ). From the Hahn—
Banach theorem, we can find a continuous linear functional A of L2 (I) which separates G from W; that
is, there is a C € R such that Re A(h) < C < Re A(G) for all 1 € W. Scaling A allows us to change the
constant C, so we can choose A such that C = A is in the statement of the lemma. Since W is balanced,
we see that |[A(h)| < A < Re A(G) for all h € W. By the Riesz representation theorem, there is an
f € L>(I) which represents A so that |(f, h)| < A < Re(f, G) for all h € V. This implies that

IKf. ) < B

for all ¢ € ® and that

I flleey = sup  Kf.ml <1,

h ”Ll () <1
contradicting the hypothesis of the lemma. This completes the proof of the lemma. )

Corollary 7.13 (Structure of dual functions). Let N > 1 be a scale, m € Z, and 0 < § < 1 be given.
Let P := {Py,..., Py} be a collection of polynomials such that 1 < degP; < ... < degPy,. Let
for fis- s fm € LY(K) be 1-bounded functions supported on an interval of measure Ny = N9&(Pm),
Then for every j € [m]), provided N 2 6=97 ), there exist a decomposition

(AR (fiseeos forevos f)(x) = Hj(x) + Ej(x), (7.14)

where H; € L*(K) has Fourier transform supported in [(Nj)‘l], where N; ~ 5CiN<ePi and Cjisas
in Theorem 7.1, and obeys the bounds

|HjllLe®) Sm 1,  and ||Hjllpiz Sm No. (7.15)
(K)
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The error term E; € L' (K) obeys the bound
IE;llL1x) < ONo. (7.16)

Proof. Fix j € [m], let Iy := supp (AX)*(fi,.... fo.-- .. fn) and recall that Ny = N4&(Fm) By
translation invariance we may assume supp f; € [No] for all j € [m]), and that Iy := [O(No)]. If there
exists f € L*(lp) with || f]|z~(g) < 1 such that

|<f’(A,]’\D])*j(fla’f0”fm)>| >6NO’ (717)
then proceeding as in the proof of Theorem 7.1 we may conclude that
[Kon; * f- (AR (0N, * fis o @Nyy * Sfimts Sos fist - fn))] 2 cm 6N,

where N; ~ §Ci N%&(F) for i € [j]. This implies that there exists a 1-bounded F € L?(K) with
l1FllL1 k) < No such that supp F' C [NJTI] and

I(fs F)| 2 cm 6Np. (7.18)
If fact, we can take
F(x) = @n; * (AN (on, # floee s ongy * fimts Jos S ooy fm) (X)),

where @(x) = ¢(—x). Let ¥ denote the collection of all 1-bounded F € L?(K) with supp Fc [NJTI] and
lF 1l k) < No.InvokingLemma7.11 withA = 6No/4and B = ¢,,6Np and the set® = {F1, : F' € ¥},
we obtain a decomposition

0

AR (fiae s oo for Fists oo fo) = > 1y + E(1) + E(2), (7.19)

I=1
with the following properties:

(i) for each ! € Z,, we have that ¢; = 4;F;1,, F; € ¥ and A; € C such that |1;] <, 15

(ii) the coeflicients c; are nonnegative with Z;’il c; < 1, and all but finitely ¢; vanish;
(iii) the error term E(1) € L'(Iy) satisfies ||E(1)]|,. (1y) < ONo/2;
(iv) the error term E(2) € L2(I) satisfies NE) 2 sy) < 0-
The latter error term arises as a consequence of the fact that one is working with the closed convex hull
instead of the convex hull. In fact, its L?(Iy) norm can be made arbitrarily small, but § will suffice for
our purposes.

Grouping together terms in the decomposition (7.19), we have

(AR (fis - oo fimts fos fists - oo fon) = Hj + EJ,

where

(o] (e8]

Hj =Y ctiFi|1y, satisfies |Hjlii < D cilulllFrllig Sm No and
=1 =1

(o)

|H|lLe ) < sup | Fille=ax) ) cill Sm 1.
[eN =1
Also, Ej’ = E(1) + E(2) satisfies ||Ej’. It (zy) < 6No by (iii) and (iv) above since by the Cauchy—Schwarz
inequality, we have ||E(2)[|.1(4,) < 6Né/2.
We note that the function F(x) = 3,7, ¢;4;F;(x) is Fourier supported in the interval [N]TI].
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When K is non-Archimedean, supp(]’l;,) c [Ny 11 and so the Fourier transform of H J’ is supported in
[N]T] ]. This verifies Equation (7.15) in this case and completes the proof when K is non-Archimedean
since the decomposition H ; +E ; of (AE)*J' satisfies Equations (7.15) and (7.16).

Now, suppose K is Archimedean. Let i be a Schwartz function such that szp(x)d,u(x) = 1 and
supp¥ C [2]. Let M =~ 69 Ny and as usual, set ypy (x) = M~y (M~'x) when K = R and /5 (x) =
M~y (M~'2x) when K = C. From the proof of Equation (7.8), we have

”110 - ILI(J * lpM“L‘(K) S M1/4NO3/4~ (7.20)
We set Hj(x) = F(x)1p, *ypm(x)and E; = E(1) + E(2) + (15, — 1, * Y ;) F so that

(AR (fis v os Fimts foo Fiwts oo os fin) (X) = Hj(x) + E;(x).

From Equation (7.20), we see that E; satisfies Equation (7.16). The properties ||H;||r~x) <m 1 and
l1H ;|1 (x) Sm No are still preserved. Moreover, supp H i C [O(NJTI)] since

H; = (1;,6m) + F.
The shows that Equation (7.15) holds for H; and this completes the proof of the corollary. O

We will combine Corollary 7.13 and the following L? improving bound for polynomial averages to
establish the key Sobolev inequality.

Lemma 7.21 (LP-improving for polynomial averages). Let Q € K[y] withdeg(Q) = d, and let N >¢ 1
be a large scale. Consider the averaging operator

MGe() = [ gl = QO dury )
K
For any parameters 1 < r < s < oo satisfying 1/s = 1/r — 1/d, the following inequality holds:

1_1
IMZglls ) so NYSllgller ey for g € LT (K). (7.22)

Proof. As our bounds are allowed to depend on Q, we may assume that Q is monic. Let @ € K be such
that |@| = N, and change variables y — ay to write

s = [ | B Qe duty) = [ galams= 0000 dut

B (0)

where g, (x) = g(@%x) and Q,(y) = a 4Q(ay) = y¢ + a lay_ 1y ' + ... + a~?ay. Hence, the right-

hand side above can be written as M) g, (a™x). Since ||gallLr ) = N~4"||gllL- (), we see that
matters are reduced to proving Equation (7.22) for N = 1 and Q = Q, with uniform bounds in a.

The mapping y — Q,(y) is d-to-1, and we can use a generalised change of variables formula to see
that

ML ()] < / 12— )15~V )

[s|<2

when N >o 1. Hence M ! is controlled by fractional integration, uniformly in . When K is
Archimedean, such a change of variables formula is well known. Recall that when K = C, |s| = 57 is
the square of the usual absolute value.

When K = Q,, is the p-adic field, such a formula is given in [12]. The argument in [12] generalises
to general non-Archimedean fields (when the characteristic, if positive, is larger than d). Alternatively,
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one can use a construction in [46], valid in any local field and valid for any polynomial Q where Q’(x)
does not equal to zero mod my for any nonzero x (we need the condition on the characteristic of the
field for this), in which the unit group U = U ¢ U; is partitioned into J = ged(d, g — 1) open sets
and analytic isomorphisms ¢; : D; — ¢;(D;) are constructed such that y = ¢;(x) precisely when
Q(y) = x. For us, O, (x) # 0 mod mx for any nonzero x if || = N >¢ 1 is sufficiently large.

By the Hardy—Littlewood—Sobolev inequality (easily seen to be valid over general locally compact
topological fields), we have

1My, glls @) < llgller )

uniformly in @ whenever 1/s = 1/r — 1/d, completing the proof of the lemma. O

We now come to the proof of Theorem 1.6.
As in the set up for Theorem 7.1, we fix a smooth function ¢ with compact Fourier support. When
K is Archimedean, let ¢ be a Schwartz function on K so that

L111(é) < @(¢) < 1p(8), ek

When K = R, we set oy (x) = N 'o(N~'x) for any N > 0 and when K = C, we set ¢ (2)
N~'@(N~12z) for any N > 0. When K is non-Archimedean, we set ¢(x) = 15, (0) (x) so that p(&)
15, (0)(£) and we set o (x) = N1 [nv](x) for any scale N. We restate Theorem 1.6 in a more formal,
precise way.

Theorem 7.23 (A Sobolev inequality for Aﬁ). Let P := {P1,..., Py} be a collection of polynomials
such that 1 < degP; < ... < degP,,. Let N >p 1 be a scale, m € Z, and 0 < 6 < 1 be given.
Let 1 < p1,...,pm < oo satisfying Ll +...+ me = 1 be given. Suppose N 2 6 97 Then for all
fi € LP(K),..., fin € LPm(K) we have

AR (Fis s fim1 G0 = @n)) % fis fier oo Sy S 5 [IlLr e, (7.24)
i=1

where N ~ 6CiNeePi and C ; is the parameter from Theorem 7.1. Here, 5o = 1.

Remark. The proof of Theorem 7.23 (and its statement) implicitly assumes that m > 2, but there is a
version when m = 1, which will be given in Section 8 where it is needed.

Proof. We fix j € [m - 1] and recall N; = §9(V N%e(P)) We first prove that for every functions
fl, e fj_l, fj+1, ey fm—l [S LOO(K) and fj, fm (S LZ(K), we have

NAR (fis- .o fim1: (80 = o) * fis fist - oo Sl )

m—1
7.25
= 6'/8( [1 ||ﬁ||LM(K>)||m|Lz(K>||fm||Lz<K). (7:2)
7
Choose fy € L*(K) so that || follz~x) = 1 and
IAR (fis o fim1 (00 = @) * fis fiet - oo S ot )

= |<Aﬁ(f1’ . ~7fj—1’ (60 - QDNJ) *fj’fj+1 .. "fm)7f0>|
= (G0 = o)+ AT (fro- s oo oo o S
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By the Cauchy—Schwarz inequality, it will suffice to prove

160 = on;) * (AR (fis- s fos s S 2y
m—1

7.26
< 8ol | [ ] Wil Iz (126)
i
By multilinear interpolation, the bounds (7.25) imply Equation (7.24) and so the proof of Theorem 7.23
is reduced to establishing Equation (7.26) which will be divided into three steps. In the first two steps,

we will assume that f,, is supported in some interval of measure Ny where Ny ~ N’ deg(Prm) ]

Step 1
In this step, we will establish the bound

1660 = @) * (AR (fro o os fo oo S 2y
m—1

0 7.27
s 82Ny ||fo||Lm<K>(]_[ ||ﬁ||Lm<K>)IIfmIIL°°<K> o
i=1
i#]

under the assumption that f;, is supported in an interval of measure Ny (when K = C, this implies in

particular that f,,, is supported in a square with measure about Ny, which in Step 3 will be a helpful
observation). When f,,, has this support condition,

(AT (frses foreoes fin) = CARYT(fLs oo S oo fon)s

where f/(x) = fi(x)1z,(x) for some interval Iy of measure O (Ny). To prove Equation (7.27), it suffices
to assume || fi|lp~x) = 1 fori =0,1,...,j—1,j+1,...,m and so Equation (7.27) takes the form

160 = on,) * (AR (fiu- e fou e fud Iz gy < 612N, (7.28)
We apply the decomposition (7.14) to (AR (f/,.... f§+- ... f;) to write
(AE)*J(fl’ ce ’fo’ ce ’fWL)(x) = H](X) +Ej(x)’

where H satisfies Equation (7.15) and E satisfies Equation (7.16). Using the fact that ﬁj c[(N)™,
we conclude that (6o — ¢n;) * H; = 0. Thus,

(60— on,) * (AN (fis oo s for oo fin) = (60— on,) * E;.
From Equation (7.16) and the 1-boundedness of (AE)*f (fiseees for---»fm), we have
160 = @n;) * Ejllpix) S 0No, and  [[(60 — ¢n;) * EjllLex) S 1,
respectively. Therefore,
1660 = @) * Ejlliz iy < 67Ny,
establishing (7.28) and hence Equation (7.27). This completes Step 1.
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Step 2.
We continue with our assumption that f,, is supported in an interval of measure Ny, but now we relax
the L (K) control on f;, to L>(K) control and show that

160 — @n,) * (AR (s os for oo S 2
m—1

7.2
< 61/4||fo||Lm(K>( [] ||ﬁ||Lm(K>)||fm||Lz<K). (7.29)
i=1

i#j

The main tool for this will be the L?-improving estimate (7.22) for the polynomial average M%. We
have a pointwise bound

A (fis- s for e os i) @] < M7 fnl (),

which combined with Equation (7.22) (for Q = P,,,— P, d = deg(Py,), s = 2and r = (d+2)/2d) yields
”(60 - ‘PN,) * (AE)*](fla e 9f07 e 9fm)||L2(K)

m—1
-1/d 7.30
<NV ||fo||Lm<K>(l_]||ﬁ||Lm<K>)||fm||mK>. (7:30)
i=1
i#]

Interpolating Equations (7.27) and (7.30), we obtain Equation (7.29) as desired.

Step 3.

In this final step, we remove the support condition on f;,, and establish (7.26). To prove Equation (7.26),
we may assume that || fillpox) = 1fori =0,1,...,j=1,j+1,...,m—1. Wesplit f;, = 3;c7 fmls,
where I ranges over a partition Z of K into intervals I of measure Ny. We have seen this is possible when
K is non-Archimedean or when K = R. This is not possible when K = C, but in this case, we can find a
partition Z of squares. By Step 1 and Step 2, the local dual function Dy := (AZ)*j (fiseeesforeves fndy)
obeys the bound

(60 = on;) * Dillc2y S 8" fimllzz(r) (7.31)

for each interval I, and we wish to establish

| > 0= om0
1€

1/8
2 SO ol -

We will square out the sum. To handle the off-diagonal terms, we observe that for finite intervals I, J ¢ K
(squares when K = C) of measure Ny and M > 0 and 1 < p < oo, we have

len, * (FLDlLe oy Sarp (1+ Ny dist(2 D) ™11 £l 1)- (7.32)

By squaring and applying Schur’s test, it suffices to obtain the decay bound

1 )
(60 - en;) =D, (1 —pp;) = Dy s S+ Ny dist(1, 7)) I fmllz2 oyl fomll 22y

for all intervals /, J of measure Ny. By Cauchy—Schwarz and Equation (7.31), we know

(60— @n,) * D1, (1= on,) D) < 82 fullzeny | finlli2 sy -
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On the other hand, Dy is supported in a O (Np)-neighborhood of 7, and similarly for D ;. From Equation
(7.32) and Cauchy—Schwarz, we thus have

. -10

(60— @n;) * D1, (1 —@n,) * Dy) < (14 Ng'dist(1,) " ID 1l 20 1D s ll 2z
. -10

< (1+Ny'dist(Z,0)) I foll2 oyl fmll2 -

Taking the geometric mean of the two estimates, we obtain the claim in Equation (7.26). This completes
the proof of Theorem 7.23.

8. The implication Theorem 1.6 — Theorem 1.3

Here, we give the details of Bourgain’s argument in [3] which allow us to pass from Theorem 1.6 to
Theorem 1.3 on polynomial progressions. Let P = {P1, ..., P,,} be a sequence of polynomials in K[y]
with distinct degrees and no constant terms. Without loss of generality, we may assume

deg P} <degPp < --- <degP,,

and we set dy,—; :==deg P; and d := dyp = deg P, sothat dy, < -+ < d) <d.

Since the argument showing how Theorem 1.6 implies Theorem 1.3 has been given in [3], [11] and
[8] in the Euclidean setting (albeit for shorter polynomial progressions), we will only give the details
for non-Archimedean fields K where uniform notation can be employed.

We will proceed in several steps.

Step 1
When K is non-Archimedean, the family (Q;),~¢ of convolution operators defined by

O:f(x) = frupx) = % N f(x —u)du(u) forscales ¢ >0
yl<t

gives us a natural approximation of the identity and form the analogue of the Poisson semigroup in the
non-Archimedean setting. They also give us Fourier localization since

01 f (&) = Qi(O)F (&) = 1,1 (&) F(£). 3.1)
We will need the following bound for (Q;);~0 (see Lemma 6 in [3] or Lemma 2.1 in [11]): For f > 0
and scales 0 < t1,...,t, <1,
m+l1
PO F ()0, f ) > ([ poduto)™ 82)
B (0) B (0)

The proof in the euclidean setting given in [11] established Equation (8.2) for general approximations
of the identity, but the first step is to show Equation (8.2) for martingales (Ey )k e defined with respect

to dyadic intervals. However, a small scale 7 in a non-Archimedean field K is the form 7 = q‘k and
0. f(x) =q* /I et flx=y)du(y) = Z Akxf 1B, (x), where
yisgq~ £€Ck

Ce = {x=x0 Fx A X! 1xj € ox/mg} and Ak,ifzqk/ fu)du(u).

a7k (x)

Hence, (Q;);>0 is a martingale with respect to the dyadic structure of non-Archimedean fields and so
the argument in [1 1] extends without change to establish Equation(8.2).
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Step 2
Fix £ > 0. Our goal is to find a 6(g,P) > 0 and N(g, P) > 1 such that for any scale N > N(&,P) and
f € L°(K) with 0 < f < 1 satisfying [, fdu > eN“, we have

1
1= 57 L F@F G+ PO ft P ()da(a) > 6. 83)

Taking f = 1g with § € K in Theorem 1.3 implies Equation (1.4), the desired conclusion. We may
assume the f is supported in the interval [N¢].
Let o, 8 € K satisfy |a| = N? and |8] = N, and write

I= _//Kzg(x)g(x-"R‘(y))"'8(x+Rm(y))dy[1](y)d#(x),

where g(x) = f(ax) and R;(y) = a‘le(ﬁy). In particular, we have ng > &. We note that g is
supported in [1] = B (0). Fix three small scales 0 < 1y < t; < t < 1 and decompose

o //Kzg(X)g(X+R1(y))---g(x+Rm(y))dﬂ[z1](y)dﬂ(y) = L+h+1, (8.4)

where

m—1
- ] t m d f d, s
L .//KZ g(x) gg(x+Rj(y))Q g(x + R (y))dus ) (y)du(x)
m—1
L= // g(x) l_[g(x"'Rj(Y)) [Qs — Qr1g(x + R (»))dpys,) (y)du(x) and
K2 el

m—1
I; = ‘//Kz g(x) l_[ gx+R;(y) [1d - Qlg(x + R (y))duys, 1 (v)du(x).
j=1
For I, we note that for t; <p,, t,

0usCx+RuO) = [ e Ru) = = 7 [ g =) = 015

whenever |y| < t;. For the final equality, we made the change of variables u — u — R,;,(y), noting that
when |y| < #;, then |R,(y)| < Cp,, 11 < t. Hence,

m—1
= //Kz 8t B 8(x+R;()) Qrg(x) dpjr) (y)du ().

For I,, we use the Cauchy—Schwarz inequality to see that

I < 11018 — Q18llL2(x)- (8.5

For I5, we will use the more precise formulation of Theorem 1.6 given in Theorem 7.23. We rescale I3,
moving from g, R; back to f, P; and write

1 m—1
Bz [l 1 [ 176+ 1) 1= Qo5 P bt 94,
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where the function i(x) = [Id — Q, y«]f(x) has the property that Z(f) = 0 whenever |£| < (topN9)~!;
See (8.1). Hence,

LN YA G (f. fo o fo 11 = Qo nal Ol )
and we will want to apply Theorem 7.23 to the expression on the right with N replaced by #{N and

0 < 6 < 1 defined by 6 (Nt;)? = Ny or 6 = (to/tf)l/c"‘. In order to apply Theorem 7.23, we will
need to ensure

N > '@ 1) > 2 7 1 ) (8.6)

for some appropriate large C’ = C7,. If Equation (8.6) holds, then Theorem 7.23 implies there exists a
constant b = bp > 0 such that

m

AR N (Fo foeos £ Wiy < (t0/68)" | [ NLrs ) < (2o0/2)” N

J=1

since 1/py +++++1/py = 1 and || f||lri x) < N¥/Pi for i € [m] (which follows since f is 1-bounded
and supported in [N¢]). Hence,

I sp (t0/19)” if  (8.6) holds.

Step 3
Next we decompose I = 1] + 1} + I;, where

m—2
I = //Kzg(X)gg(X+Rj(y)) Q,yna-a 8 (x + Ryn—1 () Q18 (x) dpaysy1 (y)du(x),

m-2

I = //K2 g(x) ]_[ g+ R;(y) [Qyna-a1 — Qpyna-ar18(x + Rim—1(¥)) Qrg(x)dus ) (y)dp(x) and
j=1

m-2
= [0 [ Tots R 18- 0y T 5+ Rt ()01 (W)t ().
j=1
For Ill, we set s = t/N‘l‘d1 and note that for t; <p f,

Ouelx+ Ry (30 = [

lu|<s

8+ Ryt () =) = § [ gl = () = 0,

lu|<s

whenever |y| < t;. For the final equality we made the change of variables u — u — R,,;,—1(y), noting that
when |y| < 1, then |R,,—1(y)| < Cp, N~(4~4)¢; < ssince t; <p t. Hence,

m-2
Iy = //K2 g(x) l:[ g+ R;(y)) Q;na-a;8(x)Q:8(x) dpt () (y)dp(x).

As in Equation (8.5), we have
12] < ”QtO/Nd’dlg - Q[/Nd*dlg”Lz(K)'
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For 131, we will use Theorem 7.23. We rescale 131, moving from g, R; back to f, P; and write
1 m=2
— //K PO [P0 [1d = Qe 1G5+ Prnct (0)Qs v £ ()t (3)la (),
J=1
where the function A’(x) = [Id—Q, y«, ] f(x) has the property that h'(£€) = 0 whenever |¢] < (1pN¥1)~!.

Hence, for P’ = {Py,..., Pm-1},

B < NNAT N (FQunaf o feees o[l = Qa1 )i i)

and so, as long as Equation (8.6) holds, Theorem 7.23 implies there exists a constant b” = bpr > 0 such
that

AT N (FQinafs foeos WLy S (t0/1]) ]—[ufnm w < (t0/t])"'N

since 1/py + -+ 1/ppm_y = 1 and || fllLrix) < N4Pi for i € [[m - 1] (which follows since f is
1-bounded and supported in [N“]). Hence,

I sp (00/t9)” it (8.6) holds.
Step 4

We iterate, decomposing 1] = I7 + I5 + I3, followed by decomposing I{ = I3 + I + I3 and so on. For
each(0 < j <m — 1, we have

m—j—1 J
= [ TT st ron) ([ [Quweas) duniaut, @2
i=1 i=0
Ié. <11Q,/ni-4;8 = @, ya-a;8llr2x) and I; <p (to/tf)b forsome b =bp >0, (8.8)

again if Equation (8.6) holds. Strictly speaking, the estimate (8.8) for I; does not follow from Theorem
7.23 when j = m — 1 since the proof of Theorem 7.23 assumed that the collection P of polynomials
consisted of at least two polynomials. Nevertheless, the bound (8.8) holds when j = m — 1. To see this,
we apply the Cauchy—Schwarz inequality and Plancherel’s theorem to see that

1
51 < Nd /K|/K[Id—Qtozvqu]f(x+Pl(y))d#mNJ(Y)|2d#(x)
1

= Nd |f(§)|2|m1v,t](§)|2d/l(§)7 where  mpy 4, (€) :=/ e(P1(t1Ny)é) du(y).
[€]2 (N Dm-119)~! B1(0)

The oscillatory integral bound (3.1) implies that |mN 4 (&) $p (to/t1)? whenever |¢] > (N9m-115)7!,

and so Equation (8.8) for I3 follows when j = m — 1 since ||f||L2(K) < N4,

Step 5
From Equation (8.4) and the iterated decomposition of /|, we see that t]_II > A+ B+ C, where

m—1
= [ e ] Qs = o
K i=0
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by Equation (8.2), and for some Cp > 0, we have

m—1

b
|B| < Cp Z ||Qt0/Nd—djg - Qt/Nd—djg”LZ(K) and |C| <Cp (to/tf) < 8m+1/4
7=0

if 1o < co ™D/ ¢ and 5 Cp < 1/4 and Equation (8.6) holds.
Finally, we claim that we can find a triple 7y < t; < t of small scales such that |B| < &+ /4. If we

are able to do this, then I > £™*!¢; /2 and the proof is complete.
Define v := —Cy logq(coa(’"“)/ b) for some large constant Cy > d. Choose a sequence of small

scales o = ¢ and 1) = g% and t = g™ satisfying

O<uy<dki+v<li<uy<dkr+v<b<...<up,<dk,+v<?¥,<...

(8.9)
and Cos1 < 6, — Co logq(cos('"”)/b).
Taking L € N such that L = [ 16Cpm?s2"*D | + 1 we claim that there exists j € [ L] such that
m—1
Cp Z ||Qq’[jN—(ci—zln)g - Qq-ujN—m—dmglle(K) < gmty4, (8.10)
n=0

Indeed, suppose for a contradiction that Equation (8.10) does not hold. Then for all j € [L] by the
Cauchy—-Schwarz inequality, we have

m—1
2 1 2 2
g2m+l) < 16C5rm Z ”Qq—ij—(d—dn)g - Qq‘“jN—(d—dn)g”Lz(K)‘
n=0

Then

L m-1

Lemh < 16C%m Z Z ||Qq-tﬁ;N-((1—a,,)g - Qq‘“jN—(d—dn)g”iz(K)
Jj=1 n=0

m=1 L
—~ 2
= 16CHm ) /K BOP ) 11t wa-an) (€)= Lygs va-an) () da(€) < 16CEm g7,
n=0 Jj=1

and this implies L < 16C%m?e2"*1 since ||g|z2 () < 1, which is impossible by our choice of L.

Therefore, there exists j € [L] and a corresponding triple of scales ) = ¢ < t; = ¢7% <t =
g% satisfying the desired properties for which Equation (8.10) is true. In particular, |B| < &™*!/4
holds.

Step 6
Furthermore, with these scales by Equation (8.9), we have 7o = ¢~% 2 (coe™*1)O» (m* &™) 1n order
to ensure that Equation (8.6) holds for every iteration in the decomposition, we set

N(e,P) = (Cosm+1)—07>(m2s‘2(mﬂ))

so that for every N > N(g, P) condition (8.6) holds. Hence,

2 —2(m+1)
I 8m+1f] > 8m+1t0 > 8m+l(C08m+l)Op(m g—omn ),

establishing the desired bound (8.3) with § = £ £ for some C 1 > 0 depending only on P.
This completes the proof of Theorem 1.3.
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