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Abstract

Let ÿ1, . . . , ÿÿ ∈ K[y] be polynomials with distinct degrees, no constant terms and coefficients in a general local

field K. We give a quantitative count of the number of polynomial progressions ý, ý + ÿ1 (ÿ), . . . , ý + ÿÿ (ÿ) lying

in a set ÿ ⊆ K of positive density. The proof relies on a general ÿ∞ inverse theorem which is of independent

interest. This inverse theorem implies a Sobolev improving estimate for multilinear polynomial averaging operators

which in turn implies our quantitative estimate for polynomial progressions. This general Sobolev inequality has

the potential to be applied in a number of problems in real, complex and p-adic analysis.

1. Introduction

Szemerédi’s famous theorem [43] states that any set S of integers with positive (upper) density must

necessarily contain arbitrarily long arithmetic progressions. Quantitative versions have been obtained by

several authors, first by Roth [40] for three-term arithmetic progressions and by Gowers [18] in general,

with the current best bounds due to Bloom and Sisask [7], Kelley and Meke [21] in the three-term case

and Leng, Sah and Sawhney [26] for longer progressions (see also Green and Tao [17] and Gowers [18]).

More generally, one can consider polynomial progressions ý, ý +ÿ1 (ÿ), . . . , ý +ÿÿ (ÿ) for ý, ÿ ∈ Z with

ÿ ≠ 0, where ÿ ÿ ∈ Z[y] is a sequence of polynomials with integer coefficients and no constant terms

(the case of arithmetic progressions corresponding to linear polynomials). Bergelson and Leibman [6],

extending earlier work of Bergelson, Furstenberg and Weiss [5], generalised Szemerédi’s theorem to

polynomial progressions. Obtaining quantitative versions of Bergelson and Leibman’s result has been

a challenging problem and no progress (outside a few results on two-term progressions) has been made

until very recently.

Inspired by the earlier work of Bergelson, Furstenberg and Weiss, Bourgain obtained a quantitative

lower bound on the count of three-term polynomial progressions in the setting of the real field R. He

accomplished this by coupling a technique he developed in his work on arithmetic progressions [2],

together with Fourier-analytic methods.

Theorem 1.1 (Bourgain [3]). Given ÿ > 0, there exists a ÿ(ÿ) > 0 such that for any ý ≥ 1 and

measurable set ÿ ⊆ [0, ý] satisfying |ÿ ∩ [0, ý] | ≥ ÿý , we have

��{(ý, ÿ) ∈ [0, ý] × [0, ý1/ý] : ý, ý + ÿ, ý + ÿý ∈ ÿ}
�� ≥ ÿý1+1/ý . (1.2)
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In particular, we have the existence of a triple ý, ý + ÿ and ý + ÿý belonging to S with y satisfying the

gap condition ÿ ≥ ÿý1/ý .

The bound (1.2) implies a quantitative multiple recurrence result. Only recently have there been

extensions to more general three-term progressions ý, ý +ÿ1 (ÿ), ý +ÿ2 (ÿ); see the work of Durcik, Guo

and Roos [11] when ÿ1 (ÿ) = ÿ and general ÿ2 and of Chen, Guo and Li [8] for general ÿ1, ÿ2 ∈ R[y]
with distinct degrees. The methods in these papers, using delicate oscillatory integral operator bounds,

seem limited to three-term progressions.

In another direction, Bourgain and Chang [4] gave quantitative bounds for three-term progressions

of the form ý, ý + ÿ, ý + ÿ2 in the setting of finite fields Fÿ . This result was extended to more general

three-term polynomial progressions by Peluse [36] and Dong, Li and Sawin [10]. The techinques in

these papers, using a Fourier-analytic approach which relies on sophisticated exponential sum bounds

over finite fields, also seem limited to three-term progressions.

By using new ideas in additive combinatorics, by-passing the need of inverse theorems for Gowers’

uniformity norms of degree greater than 2, Peluse [37] recently made a significant advance, giving

quantitative bounds for general polynomial progressions ý, ý + ÿ1(ÿ), . . . , ý + ÿÿ (ÿ) in Fÿ , where

{ÿ1, . . . , ÿÿ} ⊆ Z[y] are linearly independent over Q.

Inspired by this work, Peluse and Prendiville [39] obtained the first quantitative bounds for three-

term polynomal progressions in the setting of the integers Z. This has been extended recently to general

polynomial progressions ý, ý + ÿ1 (ÿ), . . . , ý + ÿÿ (ÿ) with ÿ ÿ ∈ Z[y] having distinct degrees by Peluse

[38]. So although the first quantitative bounds for polynomial progressions were made in the setting

of the real field R, we have seen major advances in both the finite field Fÿ and integer Z settings by

employing new ideas in additive combinatorics.

One purpose of this paper is to rectify this situation for the continuous setting by establishing

quantitative bounds for general polynomial progressions in the real field R, bringing it in line with the

recent advances in the finite field and integer settings. Another purpose is to illustrate how one can marry

these new ideas in additive combinatorics with other ideas, notably from the work of Krause, Mirek and

Tao [23] to obtain compactness results for general multilinear polynomial averaging operators which

have implications for problems in euclidean harmonic analysis. These ideas and arguments are robust

enough to allow us to obtain quantitative bounds for polynomial progressions in a general local field.

Theorem 1.3. Let K be a local field with Haar measure ÿ. Let P = {ÿ1, . . . , ÿÿ} be a sequence of

polynomials in K[y] with distinct degrees and no constant terms, and let d denote the largest degree

among the polynomials in P . When K has positive characteristic, we assume the characteristic is larger

than d.

For any ÿ > 0, there exists a ÿ(ÿ,P) > 0 and ý (ÿ,P) ≥ 1 such that for any ý ≥ ý (ÿ,P) and

measurable set ÿ ⊆ K satisfying ÿ(ÿ ∩ ýý ) ≥ ÿý , we have

ÿ
(
{(ý, ÿ) ∈ ýý × ýý 1/ý : ý, ý + ÿ1 (ÿ), . . . ý + ÿÿ(ÿ) ∈ ÿ}

)
≥ ÿý1+1/ý . (1.4)

In particular, we have the existence of a progression ý, ý + ÿ1 (ÿ), . . . , ý + ÿÿ (ÿ) belonging to S with y

satisfying the gap condition |ÿ | ≥ ÿý1/ý . The proof will show that we can take ÿ = ÿÿÿ−2ÿ−2

for some

ÿ = ÿP > 0 and ý (ÿ,P) = ÿ−ÿ′ÿ−2ÿ−2

for a slightly larger ÿ ′ > ÿP .

When K = R is the real field, Theorem 1.3 extends the work in [3], [11] and [8] from three-term

polynomial progressions to general polynomial progressions albeit for large N, depending on ÿ.

When K = C, Theorem 1.3 represents the first known results for complex polynomial progressions.

The absolute value | · | used in the statement of Theorem 1.3 is normalised so that we can express the

result in this generality (see Section 3). For any sequence of complex polynomials {ÿ1, . . . , ÿÿ} ⊆ C[z]
with distinct degrees and ÿ ÿ (0) = 0, Theorem 1.3 has the following consequence: Given ÿ > 0, there is

a ÿ > 0 such that for sufficiently large N and any set S in the complex plane satisfying |ÿ ∩Dý | ≥ ÿý2,

we can find a progression of the form ý, ý + ÿ1 (ÿ), . . . , ý + ÿÿ (ÿ) lying in S such that |ÿ | ≥ ÿý2/ý .
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Important in our analysis are certain properties for ÿ+1 linear forms formed from our collection P =

{ÿ1, . . . , ÿÿ} ⊆ K[y] of m polynomials with distinct degrees, say 1 ≤ deg(ÿ1) < . . . < deg(ÿÿ) =: ý.

Let ý ≥ 1 and consider the form

ΛP;ý ( ÿ0, . . . , ÿÿ) :=
1

ýý

∫

K2

ÿ0(ý)
ÿ∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý).

Here, ýÿ [ý ] (ÿ) = ý−1
1ýý (0) (ÿ)ýÿ(ÿ) is normalised measure on the ball ýý (0) (we will describe

notation used in the paper in Section 4). The key result in the proof of Theorem 1.3 is the following ÿ∞

inverse theorem for ΛP;ý which is of independent interest.

Theorem 1.5 (Inverse theorem for (ÿ + 1)-linear forms). With the setup above, let ÿ0, ÿ1, . . . , ÿÿ be

1-bounded functions supported on a ball ý ⊂ K of measure ýý . Suppose that

|ΛP;ý ( ÿ0, . . . , ÿÿ) | ≥ ÿ.

Then there exists ý1 
 ÿÿP (1)ýdeg(ÿ1) such that

ý−ý��ÿ [ý1 ] ∗ ÿ1
��
ÿ1 (K) �P ÿÿP (1) .

The main application of Theorem 1.5 for us will be to prove a precise structural result for multilinear

polynomial operators of the form

ýP
ý ( ÿ1, . . . , ÿÿ) (ý) =

∫

K

ÿ1(ý + ÿ1 (ÿ)) · · · ÿÿ(ý + ÿÿ (ÿ)) ýÿ [ý ] (ÿ).

We will use ideas in the recent work of Krause, Mirek and Tao [23] to accomplish this, and consequently,

we will be able to establish the following important Sobolev estimate.

Theorem 1.6 (A Sobolev inequality for ýP
ý

). Let 1 < ý1, . . . , ýÿ < ∞ satisfying 1
ý1

+ . . . + 1
ýÿ

= 1 be

given. Then for ý ÿ 
 ÿÿP (1)ýdeg(ÿÿ ) , we have

‖ýP
ý ( ÿ1, . . . , ÿ ÿ−1, (ÿ0 − ÿý ÿ

) ∗ ÿ ÿ , ÿ ÿ+1 . . . , ÿÿ)‖ÿ1 (K) � ÿ1/8
ÿ∏

ÿ=1

‖ ÿÿ ‖ÿýÿ (K) ,

provided ý � ÿ−ÿP (1) . Here, ÿý ÿ
is a smooth cut-off function such that ÿ̂ý ÿ

(ÿ) ≡ 1 for ÿ ∈ ýý ÿ
−1 (0).

Following an argument of Bourgain in [3], we will show how Theorem 1.6 implies Theorem 1.3.

Versions of Theorem 1.6 for two real polynomials {ÿ1, ÿ2} ⊆ R[y] were established in [3], [11] and [8]

using delicate oscillatory integral operator bounds. Our arguments are much more elementary in nature

and do not require deep oscillatory integral/exponential sum/character sum bounds outside a standard

application of van der Corput bounds (see [41]) whenK = R or Hua’s exponential sum bound [13] when

K = Qý (which extends Mordell’s classical bound from the finite field setting to complete exponenial

sums over Z/ýÿZ) – these bounds extend readily to any local field K; see Section 3. Furthermore, the

Sobolev inequalities in [11] and [8] were only established for certain sparse sequences of scales N. The

bound in Theorem 1.6 holds for all sufficiently large scales N.

The Sobolev bound in Theorem 1.6 potentially has many other applications. See [3] for a discussion

on the implications of Theorem 1.6 to compactness properties of the multilinear operator ýP
ý

. Pointwise

convergence results for multilinear polynomial averages are common applications of such Sobolev

bounds. See [8] where the Sobolev inequality is used to prove the existence of polynomial progressions

in sets of sufficiently large Hausdorff dimension. See also [22], [24], [19], [20] and [9].

Our results require the scales N to be large. It would be interesting, for various applications, to

establish these results for small scales as well.
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2. Structure of the paper

After a review of analysis in the setting of local fields, including some essential but basic oscillatory

integral bounds, we set up some notation and detail some tools involving the Gowers uniformity norms.

In Section 5, we give some preliminary results necessary to carry out the core arguments. In Section 6,

we give the proof of Theorem 1.5 which is based on a polynomial ergodic theorem (PET) induction

scheme and a degree lowering argument developed by the third author in earlier work. In Section 7, we

will prove Theorem 1.6. Finally, in Section 8, we show how Theorem 1.3 follows as a consequence of

Theorem 1.6.

3. Review of basic analysis on local fields

A basic reference for the material reviewed in this section is [35].

Let K be a locally compact topological field with a nondiscrete topology. Such fields are called local

fields and have a unique (up to a positive multiple) Haar measure ÿ. They also carry a nontrivial absolute

value | · | such that the corresponding balls ýÿ (ý) = {ÿ ∈ K : |ÿ − ý | ≤ ÿ} generate the topology.

Recall that an absolute value on a field K is a map | · | : K→ R+ satisfying

(ÿ) |ý | = 0 ⇔ ý = 0, (ÿ) |ýÿ | = |ý | |ÿ | and (ý) |ý + ÿ | ≤ ÿ (|ý | + |ÿ |)

for some ÿ ≥ 1. It is nontrivial if there is an ý ≠ 0 such that |ý | ≠ 1. Two absolute values | · |1 and | · |2
are said to be equivalent if there is a ÿ > 0 such that |ý |2 = |ý |ÿ

1
for all ý ∈ K. Equivalent absolute values

give the same topology. There is always an equivalent absolute value such that the triangle inequality

(ý) holds with ÿ = 1. If | · | satisfies the stronger triangle inequality (ý′) |ý + ÿ | ≤ max(|ý |, |ÿ |), we say

that | · | is non-Archimedean. Note that if | · | is non-Archimedean, then all equivalent absolute values

are non-Archimedean. The field K is said to be non-Archimedean if the underlying absolute value (and

hence all equivalent ones) is non-Archimedean. Otherwise, we say K is Archimedean.

When K is Archimedean, then it is isomorphic to the real R or complex C field with the usual

topology. In this case, Haar measure is a multiple of Lebesgue measure. When K is non-Archimedean,

then it is a finite extension of a p-adic field Qý in the characteristic zero case and a function field of

Laurent series over a finite field in the positive characteristic case. Furthermore, the ring of integers

ýK := {ý ∈ K : |ý | ≤ 1} and the unique maximal ideal ÿK := {ý ∈ K : |ý | < 1} do not depend on the

choice of absolute value (it is invariant when we pass to an equivalent absolute value). For any K, we

normalise Haar measure so that ÿ(ý1 (0)) = 1.

When K is non-Archimedean, the unique maximal ideal ÿK = (ÿ) is principal and we call any

generating element ÿ a uniformizer. Furthermore, the residue field ý := ýK/ÿK is finite, say with q

elements. For ý ∈ K, there is a unique ÿ ∈ Z such that ý = ÿÿÿ where u is a unit. We can go further and

expand any ý ∈ K as a Laurent series in ÿ; ý =
∑

ÿ≥−ÿ ý ÿÿ
ÿ , where each ý ÿ belongs to the residue field

k. If ý−ÿ ≠ 0, then ý = ÿ−ÿÿ, where ÿ =
∑

ÿ≥−ÿ ý ÿÿ
ÿ+ÿ is a unit.

There is a choice of (equivalent) absolute value | · | such that ÿ(ýÿ (ý)) 
 ÿ for all ÿ > 0 and ý ∈ K.

When K = R, we have |ý | = ý sgn(ý) and when K = C, we have |ÿ | = ÿÿ. When K is non-Archimedean,

then the absolute value |ý | := ÿ−ÿ, where ý = ÿÿÿ and u a unit has the property that its balls satisfy

ÿ(ýÿ (ý)) = ÿÿ, where ÿÿ ≤ ÿ < ÿÿ+1 and so ÿ(ýÿ (ý)) 
 ÿ . We choose the absolute value with this

normalisation.

We will need a couple simple change of variable formulae which we will use again and again:

∫

K

ÿ (ý + ÿ) ýÿ(ý) =

∫

K

ÿ (ý) ýÿ(ý) and

∫

K

ÿ (ÿ−1ý) ýÿ(ý) = |ÿ |
∫

K

ÿ (ý) ýÿ(ý).

The first follows from the translation invariance of the Haar measure ÿ. For the second formula, the

measure ý → ÿ(ÿý) defined by an element ÿ ∈ K is translation-invariant and so by the uniqueness

of Haar measure, we have ÿ(ÿý) = modÿ (ÿ)ÿ(ý) for some nonnegative number modÿ (ÿ), the so-

called modulus of the measure ÿ. In fact |ÿ | := modÿ (ÿ) defines the absolute value with the desired
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normalisation whose balls ýÿ (ý) satisfy ÿ(ýÿ (ý)) 
 ÿ . This proves the second change of variables

formula. There is one additional, more sophisticated, nonlinear change of variable formula which we

will need at one point, but we will justify this change of variables at the time.

The (additive) character group of K is isomorphic to itself. Starting with any nonprincipal character

e on K, all other characters ÿ can be identified with an element ÿ ∈ K via ÿ(ý) = e(ÿý). We fix a

convenient choice for e; when K = R, we take e(ý) = ÿ2ÿÿý . When K is non-Archimedean, we choose

e so that e ≡ 1 on ýK and nontrivial on ýÿ (0); that is, there is a ý0 with |ý0 | = ÿ such that e(ý0) ≠ 1.

The choice of e on C does not really matter but a convenient choice is e(ÿ) = ÿ2ÿÿ Re ÿ . We define the

Fourier transform

ÿ̂ (ÿ) =

∫

K

ÿ (ý)e(−ÿý) ýÿ(ý).

Plancherel’s theorem and the Fourier inversion formula hold as in the real setting.

3.1. An oscillatory integral estimate

For ÿ(ý) = ÿýý
ý + · · · + ÿ1ý ∈ K[x], we will use the following oscillatory integral bound:

|ý (ÿ) | ≤ ÿý [max
ÿ

|ÿ ÿ |]−1/ý where ý (ÿ) =

∫

ý1 (0)
e(ÿ(ý)) ýÿ(ý). (3.1)

When K = R, it is a simple matter to deduce the bound (3.1) from general oscillatory bounds due to van

der Corput (see [41]). When K = Qý is the p-adic field, then

ý (ÿ) = ý−ý
ýý−1∑

ý=0

ÿ2ÿÿý (ý)/ýý

where ýý = max
ÿ

|ÿ ÿ | and ý(ý) = ÿýý
ý + · · · + ÿ1ý ∈ Z[x]

satisfies gcd(ÿý , . . . , ÿ1, ý) = 1; hence, a classical result of Hua [13] implies |ý (ÿ) | ≤ ÿý ý
−ý/ý which

is Equation (3.1) in this case. It is natural to extend Hua’s bound to other non-Archimedean fields; see,

for example, [45] where character sums are treated over general Dedekind domains which in particular

establishes Equation (3.1) for any non-Archimedean field K when the characteristic of K (if positive) is

larger than d, a basic assumption appearing in our main result Theorem 1.3.

It is not straightforward to apply van der Corput bounds whenK = C. However, we can see the bound

(3.1) for both K = R and K = C as a consequence of the following general bound due to Arkhipov,

Chubarikov and Karatsuba [1]: Let ÿ ∈ R[ÿ1, . . . , ÿÿ] be a real polynomial of degree d in n variables.

If Bÿ denotes the unit ball in Rÿ, then

���
∫

Bÿ
ÿ2ÿÿÿ (ý) ýý

��� ≤ ÿý,ÿ ÿ (ÿ)−1 where ÿ (ÿ) = min
ý∈Bÿ

max
ÿ

|ÿÿÿ(ý) |1/ |ÿ | . (3.2)

A simple equivalence of norms argument shows that ÿ (ÿ) ≥ ýý [maxÿ |ÿÿ |]1/ý , where ÿ(ý) =∑
ÿ ÿÿý

ÿ and d is the degree of P. Hence, Equation (3.2) implies Equation (3.1) when K = R. When

K = C and ÿ (ÿ) = ÿýÿ
ý + · · · + ÿ1ÿ ∈ C[z], write ÿ (ý + ÿÿ) = ÿ(ý, ÿ) + ÿý(ý, ÿ) and note that

∫

ý1 (0)
e( ÿ (ÿ)) ýÿ =

∫

B2

ÿ2ÿÿÿ (ý,ÿ) ýýýÿ

for the choice of character e(ÿ) = ÿ2ÿÿ Re ÿ . From the Cauchy–Riemann equations, we have ÿ (ÿ) 
ý

min |ÿ | ≤1 maxý | ÿ (ý) (ÿ) |1/2ý ≥ ýý [max ÿ |ÿ ÿ |]1/2ý (recall we are using the absolute value |ÿ | = ÿÿ on C),

and so Equation (3.2) implies Equation (3.1) with exponent 1/2ý in this case. There is an alternative

argument which establishes Equation (3.1) with the exponent 1/ý when K = C but this is unimportant

for our purposes.
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4. Some notation and basic tools

By a scale N, we mean a positive number when K is Archimedean and when K is non-Archimedean,

it denotes a discrete value ý = ÿý , ý ∈ Z, a power of the cardinality of the residue field k. When

N is a scale, we denote by [ý] := ýý (0) the ball with centre 0 and radius N. In this case, we have

ÿ([ý]) 
 ý (equality in the non-Archimedean case) by our normalisations of the absolute value | · |
and Haar measure ÿ. An interval I is a ball ý = ýÿý (ýý ) with some centre ýý ∈ K and radius ÿý > 0. For

an interval I, we associate the measure

ýÿý (ý) =
1

ÿ(ý)1ý (ý) ýÿ(ý).

For an interval I, we define the Fejér kernel ÿý (ý) = ÿ(ý)−2
1ý ∗ 1−ý (ý) and the corresponding measure

ýÿý (ý) = ÿý (ý)ýÿ(ý). When ý = [ý] for some scale N, we have −ý = ý and so ÿ [ý ] (ý) = ý−2
1[ý ] ∗

1[ý ] (ý). Furthermore, whenK is non-Archimedean, we have ÿ [ý ] (ý) = ý−1
1[ý ] (ý) and so ýÿý = ýÿý

in this case. When K = R and ý = [0, ý], we have ÿý (ý) = ý−1 (1 − |ý |/ý) when |ý | ≤ ý and zero

otherwise.

We now give precise notation which we will use throughout the paper.

4.1. Basic notation

As usual, Z will denote the ring of rational integers.

1. We use Z+ := {1, 2, . . .} and N := Z+ ∪ {0} to denote the sets of positive integers and nonnegative

integers, respectively.

2. For any ÿ ∈ R+, we will use the notation

�ÿ�0 := {ℓ ∈ N : ℓ ≤ ÿ} and �ÿ� := {ℓ ∈ Z+ : ℓ ≤ ÿ}.

3. We use 1ý to denote the indicator function of a set A. If S is a statement, we write 1ÿ to denote its

indicator, equal to 1 if S is true and 0 if S is false. For instance, 1ý(ý) = 1ý∈ý.

4.2. Asymptotic notation and magnitudes

The letters ÿ, ý, ÿ0, ÿ1, . . . > 0 will always denote absolute constants; however, their values may vary

from occurrence to occurrence.

1. For two nonnegative quantities ý, ý, we write ý �ÿ ý (ý �ÿ ý) if there is an absolute constant

ÿÿ > 0 (which possibly depends on ÿ > 0) such that ý ≤ ÿÿý (ý ≥ ÿÿý). We will write ý 
ÿ ý

when ý �ÿ ý and ý �ÿ ý hold simultaneously. We will omit the subscript ÿ if irrelevant.

2. For a function ÿ : ÿ → C and positive-valued function ý : ÿ → (0,∞), write ÿ = ÿ (ý) if there

exists a constant ÿ > 0 such that | ÿ (ý) | ≤ ÿý(ý) for all ý ∈ ÿ . We will also write ÿ = ÿ ÿ (ý) if the

implicit constant depends on ÿ. For two functions ÿ , ý : ÿ → C such that ý(ý) ≠ 0 for all ý ∈ ÿ we

write ÿ = ý(ý) if limý→∞ ÿ (ý)/ý(ý) = 0.

4.3. Polynomials

Let K[t] denote the space of all polynomials in one indeterminate t with coefficients in K. Every

polynomial ÿ ∈ K[t] can be written as a formal power series

ÿ(ý) =
∞∑

ÿ=0

ý ÿ ý
ÿ , (4.1)

where all but finitely many coefficients ý ÿ ∈ K vanish.
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1. We define the degree of ÿ ∈ K[t] by

deg(ÿ) :=max{ ÿ ∈ Z+ : ý ÿ ≠ 0}.

2. A finite collection P ⊂ K[t] has degree ý ∈ N, if ý = max{deg(ÿ) : ÿ ∈ P}.
3. For a polynomial ÿ ∈ K[t] and ÿ ∈ N, let c ÿ (ÿ) denote j-th coefficient of P. We also let ℓ(ÿ) denote

the leading coefficient of P; that is, for P as in Equation (4.1) we have c ÿ (ÿ) = ý ÿ for ÿ ∈ N and

ℓ(ÿ) = ýý where ý = deg ÿ.

4.4. ÿý spaces

(ÿ,B(ÿ), ÿ) denotes a measure space X with ÿ-algebra B(ÿ) and ÿ-finite measure ÿ.

1. The set of ÿ-measurable complex-valued functions defined on X will be denoted by ÿ0 (ÿ).
2. The set of functions in ÿ0 (ÿ) whose modulus is integrable with p-th power is denoted by ÿý (ÿ) for

ý ∈ (0,∞), whereas ÿ∞ (ÿ) denotes the space of all essentially bounded functions in ÿ0 (ÿ).
3. We will say that a function ÿ ∈ ÿ0 (ÿ) is 1-bounded if ÿ ∈ ÿ∞ (ÿ) and ‖ ÿ ‖ÿ∞ (ÿ ) ≤ 1.

4. For any ÿ ∈ Z+ the measure ÿ⊗ÿ will denote the product measure ÿ ⊗ . . . ⊗ ÿ on the product space

ÿÿ with the product ÿ-algebra B(ÿ) ⊗ . . . ⊗ B(ÿ).

4.5. Gowers box and uniformity norms

We will use the Gowers norm and Gowers box norm of a function f which is defined in terms of the

multiplicative discrete derivatives Δℎ1....,ℎý ÿ (ý): for ý, ℎ ∈ K, we set Δℎ ÿ (ý) = ÿ (ý) ÿ (ý + ℎ), and

iteratively, we define

Δℎ1 ,...,ℎý ÿ (ý) = Δℎ1
(Δℎ2

(· · · (Δℎý ÿ (ý)) · · · )) where ý, ℎ1, . . . , ℎý ∈ K.

When ℎ = (ℎ1, . . . , ℎý) ∈ Ký , we often write Δℎ1 ,...,ℎý ÿ (ý) as Δℎ ÿ (ý) or Δý
ℎ
ÿ (ý). For ÿ =

(ÿ1, . . . , ÿý) ∈ {0, 1}ý , we write ÿ · ℎ :=
∑ý
ÿ=1 ÿÿℎÿ and |ÿ| := ÿ1 + · · · + ÿý . If Cÿ = ÿ denotes

the conjugation operator, we observe that

Δℎ ÿ (ý) =
∏

ÿ∈{0,1}ý
C |ÿ | ÿ (ý + ÿ · ℎ). (4.2)

For any integer ý ≥ 1, we define the Gowers ýý norm of f by

‖ ÿ ‖2ý

ý ý =

∫

Ký+1

Δℎ1 ,...,ℎý ÿ (ý) ýÿ(ℎ1) · · · ýÿ(ℎý)ýÿ(ý).

We note that ‖ ÿ ‖ý2 = ‖ ÿ̂ ‖ÿ4 .

For intervals ý, ý1, . . . , ýý , we define the Gowers box norm as

‖ ÿ ‖2ý

�
ý
ý1 ,...,ýý

(ý ) =
1

ÿ(ý)

∫

Ký+1

Δℎ1 ,...,ℎý ÿ (ý) ýÿý1 (ℎ1) · · · ýÿýý (ℎý)ýÿ(ý).

From Equation (4.2), we see that

‖ ÿ ‖2ý+1

�
ý+1
ý1 ,...,ýý+1

(ý ) =

∫

K

‖Δℎ ÿ ‖2ý

�
ý
ý1 ,...,ýý

(ý )ýÿýý+1
(ℎ). (4.3)

A similar formula relates the Gowers ýý+1 norm to the Gowers ýý norm.
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4.6. The Gowers–Cauchy–Schwarz inequality

When ý ≥ 2, both the Gowers uniformity norm and the Gowers box norm are in fact norms. In particular,

the triangle inequality holds. The triangle inequality also holds when ý = 1 and so we have that

‖ ÿ + ý‖ý ý ≤ ‖ ÿ ‖ý ý + ‖ý‖ý ý and ‖ ÿ + ý‖�ý
ý1 ,...,ýý

(ý ) ≤ ‖ ÿ ‖�ý
ý1 ,...,ýý

(ý ) + ‖ý‖�ý
ý1 ,...,ýý

(ý ) (4.4)

holds for every ý ≥ 1. These inequalities follow from a more general inequality which we will find useful.

Let A be a finite set and for each ÿ ∈ ý; let (ÿÿ, ýÿÿ) be a probability space. Set ÿ =
∏

ÿ∈ý ÿÿ,

and let ÿ : ÿ → C be a complex-valued function. For any ý (0) = (ý (0)
ÿ )ÿ∈ý and ý (1) = (ý (1)

ÿ )ÿ∈ý in X

and ÿ = (ÿÿ)ÿ∈ý ∈ {0, 1}ý, we write ý (ÿ) = (ý (ÿÿ)
ÿ )ÿ∈ý. We define the generalised Gowers box norm

of f on X as

‖ ÿ ‖2|ý|
�(ÿ ) =

.

ÿ2

∏

ÿ∈{0,1}ý
C |ÿ | ÿ (ý (ÿ) ) ýÿ(ý (0) ) ýÿ(ý (1) ),

where ýÿ denotes the product measure ⊗ÿ∈ýýÿÿ. The following lemma is established in [16].

Lemma 4.5 (Gowers–Cauchy–Schwarz inequality). With the setup above, let ÿÿ : ÿ → C for every

ÿ ∈ {0, 1}ý. We have

���
.

ÿ2

∏

ÿ∈{0,1}ý
C |ÿ | ÿÿ (ý (ÿ) ) ýÿ(ý (0) ) ýÿ(ý (1) )

��� ≤
∏

ÿ∈{0,1}ý
‖ ÿÿ ‖�(ÿ ) . (4.6)

We will need the following consequence.

Corollary 4.7. Let ÿ : ÿ → C and for each ÿ ∈ ý, suppose ýÿ : ÿ → C is a 1-bounded function that

is independent of the ýÿ variable. Then

���
∫

ÿ

ÿ (ý)
∏

ÿ∈ý
ýÿ (ý)ýÿ(ý)

���
2|ý|

≤
∫

ÿ2

∏

ÿ∈{0,1}ý
C |ÿ | ÿ (ý (ÿ) ) ýÿ(ý (0) )ýÿ(ý (1) ). (4.8)

Proof. For ÿ0 = (0, . . . , 0), set ÿÿ0 = ÿ and for ÿÿ = (ÿÿ)ÿ∈ý with ÿÿ = 0 when ÿ ≠ ÿ and ÿÿ = 1,

set ÿÿÿ = ýÿ . For all other choices of ÿ ∈ {0, 1}ý, set ÿÿ = 1. Hence,

∏

ÿ∈{0,1}ý
C |ÿ | ÿÿ (ý (ÿ) ) = ÿ (ý (0) )

∏

ÿ∈ý
ýÿ (ý (0) )

since ýÿ is independent of the ÿ variable. Therefore, the inequality (4.6) implies

���
∫

ÿ

ÿ (ý)
∏

ÿ∈ý
ýÿ (ý)ýÿ(ý)

��� ≤
∏

ÿ∈{0,1}ý
‖ ÿÿ ‖�(ÿ ) ≤ ‖ ÿ ‖�(ÿ )

by the 1-boundedness of each ýÿ. This proves Equation (4.8). �

5. Some preliminaries

In this section, we establish a few useful results which we will need in our arguments.

5.1. ý2-inverse theorem

We will use the following inverse theorem for the Gowers box norms.
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Lemma 5.1 (ý2-inverse theorem). Let ÿ1 and ÿ2 be two scales, and let f be a 1-bounded function

supported in an interval I. Then

‖ ÿ ‖4

�
2
[ÿ1 ], [ÿ2 ] (ý )

≤ (ÿ1ÿ2)−1 ‖ ÿ̂ ‖2
ÿ∞ (K) . (5.2)

Proof. We have

‖ ÿ ‖4

�
2
[ÿ1 ], [ÿ2 ] (ý )

=
1

ÿ(ý)

/

K3

Δℎ1 ,ℎ2
ÿ (ý)ýÿ [ÿ1 ] (ℎ1)ýÿ [ÿ2 ] (ℎ2)ýÿ(ý)

=

.

K2

ý(ℎ1, ℎ2) ýÿ [ÿ1 ] (ℎ1)ýÿ [ÿ2 ] (ℎ2) =

.

K2

ý̂(ÿ1, ÿ2) �ÿ [ÿ1 ] (ÿ1)�ÿ [ÿ2 ] (ÿ2) ýÿ(ÿ1)ýÿ(ÿ2),

where

ý(ℎ1, ℎ2) =
1

ÿ(ý)

∫

K

Δℎ1 ,ℎ2
ÿ (ý) ýÿ(ý).

Hence,

‖ ÿ ‖4

�
2
[ÿ1 ], [ÿ2 ] (ý )

≤ ‖�ÿ [ÿ1 ] ‖ÿ1 ‖�ÿ [ÿ2 ] ‖ÿ1 sup
ÿ ∈K2

|ý̂(ÿ1, ÿ2) |

=
ÿ−1

1
ÿ−1

2

ÿ(ý) sup
ÿ ∈K2

���
/

K3

ÿ00(ý) ÿ10(ý + ℎ1) ÿ01(ý + ℎ2) ÿ11(ý + ℎ1 + ℎ2) ýÿ(ý)ýÿ(ℎ1)ýÿ(ℎ2),
���

where ÿ00(ý) = ÿ (ý)e(−ÿ1ý − ÿ2ý),

ÿ10(ý) = ÿ (ý)e(−ÿ1ý), ÿ01(ý) = ÿ (ý)e(−ÿ2ý) and ÿ11 (ý) = ÿ (ý).

The final equality follows since |ÿ̂ [ÿ ÿ ] (ÿ) | = | ÿ̂ [ÿ ÿ ] (ÿ) |2, and so

‖ ÿ̂ [ÿ ÿ ] ‖ÿ1 (K) = ‖ ÿ̂ [ÿ ÿ ] ‖2
ÿ2 (K) = ‖ÿ−1

ÿ 1[ÿ ÿ ] ‖2
2 = ÿ−1

ÿ for ÿ ∈ {1, 2}

by Plancherel’s theorem. Furthermore,

ý̂(ÿ1, ÿ2) =
1

ÿ(ý)

/

K3

Δℎ1 ,ℎ2
ÿ (ý) e(ÿ1ℎ1 + ÿ2ℎ2) ýÿ(ℎ1)ýÿ(ℎ2)ýÿ(ý).

Appealing to the Gowers–Cauchy–Schwarz inequality (4.6), we see that

‖ ÿ ‖4

�
2
[ÿ1 ], [ÿ2 ] (ý )

≤ (ÿ(ý)ÿ1ÿ2)−1‖ ÿ ‖4
ý2 = (ÿ(ý)ÿ1ÿ2)−1‖ ÿ̂ ‖4

ÿ4 ≤ (ÿ1ÿ2)−1‖ ÿ̂ ‖2
ÿ∞

as desired. The last inequality follows from Plancherel’s theorem, the 1-boundedness of f and supp( ÿ ) ⊂
ý which implies

‖ ÿ̂ ‖4
ÿ4 ≤ ‖ ÿ̂ ‖2

ÿ∞ ‖ ÿ̂ ‖2
ÿ2 = ‖ ÿ̂ ‖2

ÿ∞ ‖ ÿ ‖2
ÿ2 ≤ ÿ(ý)‖ ÿ̂ ‖2

ÿ∞ .
�

5.2. van der Corput’s inequality

We will need the following useful inequality.

https://doi.org/10.1017/fms.2024.104 Published online by Cambridge University Press



10 B. Krause et al.

Lemma 5.3 (van der Corput’s inequality). Let ý ∈ ÿ1 (K), and let ý = ýÿý (ýý ) be an interval. Then for

any scale H, 0 < ÿ ≤ ÿ(ý), we have

����
∫

K

ý(ÿ)ýÿý (ÿ)
����
2

≤ ÿ

ÿ(ý)

∫

K

∫

ý∩(ý−ℎ)
Δℎý(ÿ)ýÿ(ÿ)ýÿ [ÿ ] (ℎ). (5.4)

We can take ÿ = 4 when K is Archimedean. When K is non-Archimedean, we can take ÿ = 1 and

furthermore, 1ý (ÿ)1ý (ÿ + ℎ) = 1ý∩(ý−ℎ) (ÿ) = 1ý (ÿ) for any ℎ ∈ [ÿ] so that the above inequality can

be expressed as

����
∫

K

ý(ÿ)ýÿý (ÿ)
����
2

≤
.

K2

Δℎý(ÿ)ýÿ [ÿ ] (ℎ)ýÿý (ÿ) (5.5)

since ýÿ [ÿ ] = ýÿ [ÿ ] in this case.

Proof. We define ýý (ÿ) := ý(ÿ)1ý (ÿ). By a change of variables and Fubini’s theorem, we note

∫

K

ý(ÿ)ýÿý (ÿ) =
1

ÿ(ý)

.

K2

ýý (ÿ + ℎ)ýÿ [ÿ ] (ℎ)ýÿ(ÿ).

The function ÿ ↦→
∫
K
ýý (ÿ+ℎ)ýÿ [ÿ ] (ℎ) is supported on the set ý−[ÿ] which in turn lies in ý2(ÿý+ÿ ) (ýý )

(in the non-Archimedean case, ý − [ÿ] = ý). Hence, by the Cauchy–Schwarz inequality and a change

of variables, we conclude that

����
∫

K

ý(ÿ)ýÿý (ÿ)
����
2

=
1

ÿ(ý)2

����
.

K2

ýý (ÿ + ℎ)ýÿ [ÿ ] (ℎ)ýÿ(ÿ)
����
2

≤ 2
ÿ(ý) + ÿ

ÿ(ý)2

/

K3

ýý (ÿ + ℎ1)ýý (ÿ + ℎ2)ýÿ [ÿ ] (ℎ1)ýÿ [ÿ ] (ℎ2)ýÿ(ÿ)

= 2
ÿ(ý) + ÿ

ÿ(ý)2

.

K2

ÿ [ÿ ] (ℎ)ýý (ÿ)ýý (ÿ + ℎ)ýÿ(ℎ)ýÿ(ÿ)

≤ 4ÿ(ý)−1

∫

K

∫

ý∩(ý−ℎ)
ý(ÿ)ý(ÿ + ℎ)ýÿ(ÿ)ýÿ [ÿ ] (ℎ),

since ÿ [ÿ ] (ℎ) = ÿ−2
∫
K
1[ÿ ] (ℎ1)1[ÿ ] (ℎ + ℎ1)ýÿ(ℎ1). This gives the desired conclusion. �

5.3. Preparation for the PET induction scheme

We now give a simple application of van der Corput’s inequality which will be repeatedly applied in the

PET induction scheme.

Lemma 5.6. Let ý ≥ 1, and let ý, ý ⊂ K be two intervals with ÿ(ý) = ý0. Assume that ý1 ∈ ÿ∞ (K) and

ý2 ∈ ÿ∞ (K2) are 1-bounded functions such that

‖ý1‖ÿ1 (K) ≤ ý0, and sup
ÿ∈K

‖ý2 (·, ÿ)‖ÿ1 (K) ≤ ýý0. (5.7)

Suppose H is a scale such that 0 < ÿ ≤ ÿ(ý). When K is Archimedean, we have

����
1

ý0

.

K2

ý1(ý)ý2 (ý, ÿ)ýÿý (ÿ)ýÿ(ý)
����
2

≤ 4

����
1

ý0

/

K3

ý2(ý, ÿ)ý2(ý, ÿ + ℎ)ýÿý (ÿ)ýÿ [ÿ ] (ℎ)ýÿ(ý)
���� + 8ý

[
ÿ([ÿ])
ÿ(ý)

] ÿ
,
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where ÿ = 1 when K = R and ÿ = 1/2 when K = C. When K is non-Archimedean, this improves to

����
1

ý0

.

K2

ý1(ý)ý2 (ý, ÿ)ýÿý (ÿ)ýÿ(ý)
����
2

≤ 1

ý0

/

K3

ý2(ý, ÿ)ý2(ý, ÿ + ℎ)ýÿý (ÿ)ýÿ [ÿ ] (ℎ)ýÿ(ý).

Proof. Applying the Cauchy–Schwarz inequality in the x variable, it follows that

����
1

ý0

.

K2

ý1(ý)ý2 (ý, ÿ)ýÿý (ÿ)ýÿ(ý)
����
2

≤ 1

ý0

∫

K

����
∫

K

ý2(ý, ÿ)ýÿý (ÿ)
����
2

ýÿ(ý)

since by Equation (5.7) and the 1-boundedness of ý1, we have ‖ý1‖2
ÿ2 (K) ≤ ý0. By van der Corput’s

inequality in Lemma 5.3, we obtain

∫

K

����
∫

K

ý2(ý, ÿ)ýÿý (ÿ)
����
2

ýÿ(ý)

≤ 4

∫

K

∫

K

ÿ [ÿ ] (ℎ)
1

ÿ(ý)

∫

ý∩(ý−ℎ)
ý2(ý, ÿ)ý2(ý, ÿ + ℎ)ýÿ(ÿ)ýÿ(ℎ)ýÿ(ý)

when K is Archimedean. In this case, we have ÿ(ý \ [ý ∩ (ý − ℎ)]) ≤ 2ÿ([ÿ]) when K = R and

ÿ(ý \ [ý ∩ (ý − ℎ)]) ≤ 2
√
ÿ([ÿ])ÿ(ý) when K = C. Hence,

4

ý0

∫

K

ÿ [ÿ ] (ℎ)
1

ÿ(ý)

∫

ý\(ý∩(ý−ℎ))

∫

K

|ý2 (ý, ÿ) |ýÿ(ý)ýÿ(ÿ)ýÿ(ℎ) ≤ 8ý

[
ÿ([ÿ])
ÿ(ý)

] ÿ
.

In the last line, we used Fubini’s theorem and Equation (5.7) for ý2. This gives the desired bound when

K is Archimedean.

When K is non-Archimedean, the bound (5.5) in Lemma 5.3 gives

1

ý0

∫

K

����
∫

K

ý2 (ý, ÿ)ýÿý (ÿ)
����
2

ýÿ(ý)

≤ 1

ý0

/

K3

ý2 (ý, ÿ)ý2(ý, ÿ + ℎ)ýÿý (ÿ)ýÿ [ÿ ] (ℎ)ýÿ(ý)

which is the desired bound in this case. �

The next result is an essential building block of the PET induction scheme, which will be employed

in Section 6.

Proposition 5.8. Let ý, ý0 > 0 be two scales, I an interval such that ÿ(ý) = ý0, ÿ ∈ N, ÿ0 ∈ �ÿ�,

and let P := {ÿ1, . . . , ÿÿ} be a collection of polynomials. Suppose that ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) are

1-bounded functions such that ‖ÿÿ ‖ÿ1 (K) ≤ ý0 for every ÿ ∈ �ÿ�0.

Let 0 < ÿ ≤ 1, and suppose that

����
1

ý0

.

K2

ÿ0(ý)
ÿ∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý)
���� ≥ ÿ. (5.9)

Then there exists an absolute constant ÿ �P 1 such that for all ÿ′ ≤ ÿ4/ÿ we have

����
1

ý0

.

K2

ÿ′0(ý)
ÿ′∏

ÿ=1

ÿ′ÿ (ý − ÿ′
ÿ (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý)

���� �ÿ ÿ2, (5.10)
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where ÿ′ < 2ÿ and P ′ := {ÿ′
1
, . . . , ÿ′

ÿ′} is a new collection of polynomials such that

P ′ = {ÿ1(ÿ) − ÿÿ0 (ÿ), ÿ1 (ÿ + ℎ) − ÿÿ0 (ÿ), . . . , ÿÿ (ÿ) − ÿÿ0 (ÿ), ÿÿ (ÿ + ℎ) − ÿÿ0 (ÿ)},

for some ÿ′ÿ2ý/ÿ2 ≤ |ℎ| ≤ ÿ′ý ≤ ÿ4ý/ÿ, where ÿ′
ÿ′ (ÿ) := ÿÿ (ÿ) − ÿÿ0 (ÿ), and {ÿ′

0
, . . . , ÿ′ÿ′} :=

{ÿ1, ÿ1, . . . , ÿÿ, ÿÿ} with ÿ′ÿ′ := ÿÿ.

Proof. Let I := �ÿ� and ÿ ≥ 1 be a large constant to be determined later. We shall apply Lemma 5.6

with ý = [ý], the functions ý1(ý) = ÿ0(ý) and ý2 (ý, ÿ) =
∏

ÿ∈I ÿÿ (ý−ÿÿ (ÿ)), and the parameter ÿ = ÿ′ý .

Note that ‖ý1‖ÿ∞ (K) ≤ 1 and ‖ý2‖ÿ∞ (K2) ≤ 1 since ‖ÿÿ ‖ÿ∞ (K) ≤ 1 for all ÿ ∈ I. Moreover, ý1 and ý2

satisfy Equation (5.7). If ÿ′ ≤ ÿ4/ÿ and ÿ ≥ 1 is sufficiently large, using Lemma 5.6, we conclude

����
1

ý0

/

K3

ý2(ý, ÿ)ý2(ý, ÿ + ℎ)ýÿ [ý ] (ÿ)ýÿ [ÿ ] (ℎ)ýÿ(ý)
���� � ÿ2.

By the pigeonhole principle, there exists |ℎ| ≥ ÿ2ÿ/ÿ2 so that

����
1

ý0

.

K2

ý2(ý, ÿ)ý2(ý, ÿ + ℎ)ýÿ [ý ] (ÿ)ýÿ(ý)
���� � ÿ2.

We make the change of variables ý ↦→ ý + ÿÿ0 (ÿ) to conclude

����
1

ý0

.

K2

∏

ÿ∈I
ÿÿ (ý − ÿÿ (ÿ) + ÿÿ0 (ÿ))ÿÿ (ý − ÿÿ (ÿ + ℎ) + ÿÿ0 (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý)

���� � ÿ2.

This completes the proof. �

6. The ÿ∞-inverse theorem

The goal of this section is to present the proof of Theorem 1.5, the key ÿ∞-inverse theorem for general

polynomials with distinct degrees, which we now restate in a more formal, precise way.

Theorem 6.1 (Inverse theorem for (ÿ + 1)-linear forms). Let ý ≥ 1 be a scale, ÿ ∈ Z+ and 0 < ÿ ≤ 1

be given. Let P := {ÿ1, . . . , ÿÿ} be a collection of polynomials such that 1 ≤ deg ÿ1 < . . . < deg ÿÿ.

Set ý0 = ýdeg(ÿÿ) , and let ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be 1-bounded functions supported on an interval

ý ⊂ K of measure ý0. Define an (ÿ + 1)-linear form corresponding to the pair (P; ý) by

ΛP;ý ( ÿ0, . . . , ÿÿ) :=
1

ý0

∫

K2

ÿ0 (ý)
ÿ∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý). (6.2)

Suppose that

|ΛP;ý ( ÿ0, . . . , ÿÿ) | ≥ ÿ. (6.3)

Then there exists ý1 
 ÿÿP (1)ýdeg(ÿ1) so that

ý−1
0

��ÿ [ý1 ] ∗ ÿ1
��
ÿ1 (K) �P ÿÿP (1) . (6.4)

If necessary, we will also write ΛP;ý ( ÿ0, . . . , ÿÿ) = ΛP;ý ,ý ( ÿ0, . . . , ÿÿ) in order to emphasize that

the functions ÿ0, ÿ1, . . . , ÿÿ are supported on I.
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Remark

When K = C is the complex field, the proof of Theorem 6.1 will also hold if the form ΛP;ý is defined

with the disc [ý] = D√
ý

replaced by the square

[ý]ýÿ := {ý + ÿÿ ∈ C : |ý | ≤
√
ý, |ÿ | ≤

√
ý}.

In this case, the conlusion is ý−1
0

‖ÿ [ý1 ]ýÿ ∗ ÿ1‖ÿ1 (C) � ÿÿP (1) . This observation will be needed at one

point in the proof of Theorem 1.6.

The proof of Theorem 6.1 breaks into two main steps: First, an application of PET induction to show

that whenever

|ΛP;ý ( ÿ0, ÿ1, . . . , ÿÿ) | ≥ ÿ

is large, then necessarily ÿÿ has a fairly large ýý norm for an appropriately large ý = ýP . Second,

an inductive ‘degree-lowering’ step to reduce ýý control to ý2 control. We accordingly subdivide the

argument into two subsections.

6.1. PET induction

Our first goal is to show that whenever the multilinear form ΛP;ý is large, necessarily ÿÿ has some fairly

large (sufficiently high degree) Gowers box norm. We begin with the definition of (ý, ÿ)-admissible

polynomials. Recall that for a polynomial ÿ ∈ K[y], the leading coefficient is denoted by ℓ(ÿ).

Definition 6.5 (The class of (ý, ÿ)-admissible polynomials). Let ý ≥ 1 be a scale, 0 < ÿ ≤ 1, ý ∈ Z+,

ÿ ∈ �ý� and parameters ý0 ≥ 1 and ý ≥ 0 be given. Assume that a finite collection of polynomials

P has degree j, and define P ÿ := {ÿ ∈ P : deg(ÿ) = ÿ}. We will say that P is (ý, ÿ)-admissible with

tolerance (ý0, ý) if the following properties are satisfied:

1. For every ÿ ∈ P ÿ , we have

ý−1
0 ÿýýý− ÿ ≤ |ℓ(ÿ) | ≤ ý0ÿ

−ýýý− ÿ . (6.6)

2. Whenever ÿ,ý ∈ P ÿ and ℓ(ÿ) ≠ ℓ(ý), we have

ý−1
0 ÿýýý− ÿ ≤ |ℓ(ÿ) − ℓ(ý) | ≤ ý0ÿ

−ýýý− ÿ . (6.7)

3. Whenever ÿ,ý ∈ P ÿ and ÿ ≠ ý and ℓ(ÿ) = ℓ(ý), we have

ý−1
0 ÿýýý− ÿ+1 ≤ |ℓ(ÿ −ý) | ≤ ý0ÿ

−ýýý− ÿ+1, (6.8)

and deg(ÿ −ý) = ÿ − 1.

In the special case where the polynomials inP are linear, we require that ℓ(ÿ) ≠ ℓ(ý) for each ÿ,ý ∈ P .

The constants ý0, ý will be always independent of ÿ and N but may depend on P . In our applications,

the exact values of ý0, ý will be unimportant, and then we will simply say that the collection P is

(ý, ÿ)-admissible.

Remark 6.9. Under the hypotheses of Theorem 6.1, it is not difficult to see that the collection of

polynomials P = {ÿ1, . . . , ÿÿ} such that 1 ≤ deg ÿ1 < . . . < deg ÿÿ = ý is (ý, ý)-admissible with the

tolerance (max{|ℓ(ÿÿ) |−1, |ℓ(ÿÿ) |}, 0). Indeed, condition (6.6) can be easily verified and conditions

(6.7) and (6.8) are vacuous as Pý = {ÿÿ}.

The main result of this subsection is the following theorem.
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Theorem 6.10 (Gowers box norms control (ÿ+1)-linear forms). LetP := {ÿ1, . . . , ÿÿ} be a collection

of (ý, ý)-admissible polynomials such that 1 ≤ deg ÿ1 ≤ . . . ≤ deg ÿÿ = ý. Let ý, ý0 ≥ 1 be two

scales, I an interval with measure ý0 and 0 < ÿ ≤ 1 be given, and let ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be 1-

bounded functions such that ‖ ÿÿ ‖ÿ1 (K) ≤ ý0 for all ÿ ∈ �ÿ�0. If Equation (6.3) is satisfied, then there

exists ý := ýP ∈ Z+ such that

‖ ÿÿ‖�ý[ÿ1 ],..., [ÿý ] (ý ) �P ÿÿP (1) , (6.11)

where ÿÿ 
 ÿÿP (1)ýdeg(ÿÿ) for ÿ ∈ �ý�.

The proof of Theorem 6.10 requires a subtle downwards induction based on a repetitive application

of Proposition 5.8 on the class of (ý, ÿ)-admissible polynomials. To make our induction rigorous, we

will assign a weight vector to each collection P ⊂ K[t] of polynomials.

Definition 6.12 (Weight vector). For any finite P ⊂ K[t], define the weight vector

ÿ(P) := (ÿ1, ÿ2, . . . ) ∈ NZ+ ,

where

ÿ ÿ := ÿ ÿ (P) := #{ℓ(ÿ) : ÿ ∈ P and deg(ÿ) = ÿ},

is the number of distinct leading coefficients of P of degree ÿ ∈ Z+.

For example, the weight vector for the familyP = {ý, 5ý, ý2, ý2+ý, ý4} is ÿ(P) = (2, 1, 0, 1, 0, 0, . . .).
There is a natural ordering on the set of weight vectors.

Definition 6.13 (Well-ordering on the set of weight vectors). For any two weight vectors ÿ(P) =

(ÿ1 (P), ÿ2(P), . . . ) and ÿ(Q) = (ÿ ÿ (Q), ÿ ÿ (Q), . . . ) corresponding to finite collections P ,Q ⊂ K[t]
we define an ordering ≺ on the set of weight vectors by declaring that

ÿ(P) ≺ ÿ(Q)

if there is a degree ÿ ∈ Z+ such that ÿ ÿ (P) < ÿ ÿ (Q) and ÿý (P) = ÿý (Q) for all ý > ÿ .

It is a standard fact that ≺ is a well ordering, we omit the details.

Proof of Theorem 6.10. We begin by stating the following claim:

Claim 6.14. Let ý, ý0 ≥ 1 be two scales, 0 < ÿ ≤ 1, ý, ÿ ∈ Z+ and ÿ ∈ �ý� be given, and let

P := {ÿ1, . . . , ÿÿ} be a collection of (ý, ÿ)-admissible polynomials with tolerance (ý0, ý) such that

deg ÿ1 ≤ . . . ≤ deg ÿÿ = ÿ . Let I be an interval with ÿ(ý) = ý0, and let ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be

1-bounded functions such that ‖ ÿÿ ‖ÿ1 (K) ≤ ý0 for all ÿ ∈ �ÿ�0. Suppose that

|ΛP;ý ( ÿ0, . . . , ÿÿ) | ≥ ÿ. (6.15)

Then there exists a collection P ′ := {ÿ′
1
, . . . , ÿ′

ÿ′} of (ý, ÿ − 1)-admissible polynomials with tolerance

(ý′
0
, ý′) and ÿ′ := #P ′ so that deg(ÿ′

1
) ≤ . . . ≤ deg(ÿ′

ÿ′) = ÿ − 1, and 1-bounded functions

ÿ ′
0
, ÿ ′

1
, . . . , ÿ ′

ÿ′ ∈ ÿ0 (K) such that ‖ ÿ ′
ÿ ‖ÿ1 (K) ≤ ý0 for all ÿ ∈ �ÿ′�0 with ÿ ′

ÿ′ := ÿÿ and satisfying

|ΛP′;ý ( ÿ ′
0 , . . . , ÿ

′
ÿ′) | �P ÿÿP (1) . (6.16)

The proof of Claim 6.14 will use the polynomial exhaustion technique based on an iterative application

of the PET induction scheme from Proposition 5.8. The key steps of this method are gathered in

Proposition 6.20. Assuming momentarily that Claim 6.14 is true, we can easily close the argument to
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prove Theorem 6.10. We begin with a collection of (ý, ý)-admissible polynomials such that deg ÿ1 ≤
. . . ≤ deg ÿÿ = ý and apply our claim ý − 1 times until we reach a collection of (ý, 1)-admissible

linear polynomials L with distinct leading terms, which satisfies Equation (6.16) with P ′ = L. In the

special case where all polynomials are linear matters simplify and can be handled using the next result,

Proposition 6.17, which in turn implies Equation (6.11) from Theorem 6.10 as desired. �

Proposition 6.17. Let ý, ý0 ≥ 1 be two scales, I an interval with ÿ(ý) = ý0, 0 < ÿ ≤ 1, ý, ÿ ∈ Z+
be given and let L := {ÿ1, . . . , ÿÿ} be a collection of (ý, 1)-admissible linear polynomials. Let

ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be 1-bounded functions such that ‖ ÿÿ ‖ÿ1 (K) ≤ ý0 for all ÿ ∈ �ÿ�0. Suppose

that

|ΛL;ý ( ÿ0, . . . , ÿÿ) | ≥ ÿ. (6.18)

Then we have

‖ ÿÿ‖�ÿ[ÿ1 ],..., [ÿÿ ] (ý ) �L ÿ2ÿ−1

, (6.19)

where ÿÿ 
 ÿÿL (1)ýý for ÿ ∈ �ý�.

In fact Proposition 6.17 is a special case of Theorem 6.10 with the collection of linear polynomials

L in place of P .

Proof of Proposition 6.17. Defining L′ = {ÿ ′
ÿ := ÿÿ − ÿÿ (0) : ÿ ∈ �ÿ�} we see that each ÿ ′ ∈ L′ is

linear with vanishing constant term and

ΛL;ý ( ÿ0, . . . , ÿÿ) = ΛL′;ý (ý0, . . . , ýÿ),

where ýÿ (ý) = T−ÿÿ (0) ÿÿ (ý) = ÿÿ (ý + ÿÿ (0)) for each ÿ ∈ �ÿ�. We now apply Lemma 5.6 with functions

ý1 (ý) = ý0 (ý) and ý2(ý, ÿ) =
∏ÿ

ÿ=1 ýÿ (ý − ÿ ′
ÿ (ÿ)) and intervals ý = [ý], and a parameter ÿ = ÿýý/ý

for some large absolute constant ý ≥ 1, which will be specified later. Using Lemma 5.6 and changing

the variables ý ↦→ ý − ÿ1 (ÿ) we obtain

����
1

ý0

/

K3

Δℓ (ÿ1)ℎý1 (ý)
ÿ∏

ÿ=2

Δℓ (ÿÿ )ℎýÿ (ý − (ÿÿ − ÿ1) (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý)ýÿ [ÿ ] (ℎ)
���� �ý ÿ2.

Applying Lemma 5.6 ÿ − 2 more times and changing the variables ý ↦→ ý − ÿÿ (0), we obtain

����
1

ý0

∫

Kÿ+1

Δÿ1ℎ1
· · ·Δÿÿ−1ℎÿ−1

Δℓ (ÿÿ)ℎÿ ÿÿ(ý)ýÿ⊗ÿ
[ÿ ] (ℎ1, . . . , ℎÿ)ýÿ(ý)

���� �ý ÿ2ÿ−1

,

where ÿÿ := ℓ(ÿÿ) − ℓ(ÿÿ) for ÿ ∈ �ÿ − 1�. By another change of variables we obtain Equation (6.19)

with

ÿÿ = |ℓ(ÿÿ) |ÿýý/ý, and ÿÿ = |ℓ(ÿÿ) − ℓ(ÿÿ) |ÿýý/ý

for ÿ ∈ �ÿ − 1�. Using Equation (6.6) with ÿ = ÿÿ, and Equation (6.7) with ÿ = ÿÿ and ý = ÿÿ we

obtain that ÿÿ 
 ÿÿL (1)ýý for ÿ ∈ �ý� provided that ý ≥ 1 is sufficiently large. This completes the

proof of Proposition 6.17. �

Proposition 6.20. Let ý, ý0 > 0 be two scales, 0 < ÿ ≤ 1, ý, ÿ ∈ Z+ and ÿ, ÿ ∈ �ý� be given, and let

P := {ÿ1, . . . , ÿÿ} be a collection of (ý, ÿ)-admissible polynomials with tolerance (ý0, ý) such that

ÿ = deg ÿ1 ≤ . . . ≤ deg ÿÿ = ÿ . Let I be an interval with ÿ(ý) = ý0, and let ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be

1-bounded functions such that ‖ ÿÿ ‖ÿ1 (K) ≤ ý0 for all ÿ ∈ �ÿ�0. Suppose that

|ΛP;ý ( ÿ0, . . . , ÿÿ) | ≥ ÿ. (6.21)
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Then there exists a collection of polynomials P ′ := {ÿ′
1
, . . . , ÿ′

ÿ′} with ÿ′ := #P ′ < 2#P satisfying

ÿ′
ÿ′ := ÿÿ − ÿ1 and deg(ÿ′

1
) ≤ . . . ≤ deg(ÿ′

ÿ′), and 1-bounded functions ÿ ′
0
, ÿ ′

1
, . . . , ÿ ′

ÿ′ ∈ ÿ0 (K)
such that ‖ ÿ ′

ÿ ‖ÿ1 (K) ≤ ý0 for all ÿ ∈ �ÿ′�0 and satisfying

|ΛP′;ý ( ÿ ′
0 , . . . , ÿ

′
ÿ′) | �P ÿ2. (6.22)

We also know that { ÿ ′
0
, ÿ ′

1
, . . . , ÿ ′

ÿ′} = { ÿ1, ÿ1, . . . , ÿÿ, ÿÿ} with ÿ ′
ÿ′ = ÿÿ.

Moreover, ÿ(P ′) ≺ ÿ(P), and one of the following three scenarios occurs.

(i) The collection P is of type I; that is, P ≠ P ÿ . In this case, P ′ is a (ý, ÿ)-admissible collection of

polynomials with tolerance (ý′
0
, ý′) and for some 1 ≤ ÿ ≤ ÿ − 1,

ÿ(P ′) = (ÿ1 (P ′), . . . , ÿÿ−1(P ′), ÿÿ (P) − 1, ÿÿ+1(P), . . . , ÿ ÿ (P), 0, 0, . . .). (6.23)

(ii) The collection P is of type II; that is, P = P ÿ and ÿ ÿ (P) > 1. In this case, P ′ is a (ý, ÿ)-admissible

collection of polynomials with tolerance (ý′
0
, ý′) and

ÿ(P ′) = (ÿ1 (P ′), . . . , ÿ ÿ−1 (P ′), ÿ ÿ (P) − 1, 0, 0, . . .). (6.24)

(iii) The collection P is of type III; that is, P = P ÿ and ÿ ÿ (P) = 1. In this case, P ′ is a (ý, ÿ − 1)-
admissible collection of polynomials with tolerance (ý′

0
, ý′) and

ÿ(P ′) = (0, . . . , 0, ÿ ÿ−1 (P ′), 0, 0, . . .). (6.25)

Moreover, the leading coefficients of the polynomials in P ′ are pairwise distinct.

The tolerance (ý′
0
, ý′) of the collection P ′ only depends on the tolerance (ý0, ý) of the collection P

and is independent of ÿ and N.

Using Proposition 6.20, we now prove Claim 6.14.

Proof of Claim 6.14. We may assume, without loss of generality, that the collection P from Claim 6.14

is of type I or type II. Then we apply Proposition 6.20 until we reach a collection of polynomials of

type III with weight vector ÿ(P) = (0, . . . , 0, ÿ ÿ (P), 0, 0, . . .), where ÿ ÿ (P) = 1 and such that Equation

(6.16) holds. We apply Proposition 6.20 once more to reach a collection of (ý, ÿ − 1)-admissible

polynomials satisfying Equation (6.16). This completes the proof of the claim. �

Proof of Proposition 6.20. Appealing to Proposition 5.8 with ÿ0 = 1, we may conclude that there exists

a collection of polynomials P ′ := {ÿ′
1
, . . . , ÿ′

ÿ′} with ÿ′ = #P ′ < 2#P and ÿ′
ÿ′ = ÿÿ − ÿ1 such that

P ′ = {ÿ1(ÿ) − ÿ1 (ÿ), ÿ1 (ÿ + ℎ) − ÿ1 (ÿ), . . . , ÿÿ (ÿ) − ÿ1 (ÿ), ÿÿ (ÿ + ℎ) − ÿ1(ÿ)},

for some ÿ′ÿ2ý/ÿ2 ≤ |ℎ| ≤ ÿ′ý ≤ ÿ4ý/ÿ. Proposition 5.8 also ensures that bound (6.22) holds for

certain 1-bounded functions ÿ ′
0
, ÿ ′

1
, . . . , ÿ ′

ÿ′ ∈ ÿ0 (K) such that ‖ ÿ ′
ÿ ‖ÿ1 (K) ≤ ý0 for all ÿ ∈ �ÿ′�0 and

satisfying { ÿ ′
0
, ÿ ′

1
, . . . , ÿ ′

ÿ′} = { ÿ1, ÿ1, . . . , ÿÿ, ÿÿ} with ÿ ′
ÿ′ = ÿÿ. Now, it remains to verify conclusions

from (i), (ii) and (iii). For this purpose, we will have to adjust ÿ′ ≤ ÿ4/ÿ, which can be made as small

as necessary. �

Proof of the conclusion from (i)

Suppose that the collection P is of type I. Then ÿ = deg(ÿ1) < deg(ÿÿ) = ÿ and ÿ(P) =

(0, . . . , 0, ÿÿ (P), . . . , ÿ ÿ (P), 0, 0, . . .). To establish Equation (6.23), we consider three cases. Let ÿ ∈ P .
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If deg(ÿ) > ÿ, then

deg(ÿ − ÿ1) = deg(ÿ(· + ℎ) − ÿ1) = deg(ÿ),
ℓ(ÿ − ÿ1) = ℓ(ÿ(· + ℎ) − ÿ1) = ℓ(ÿ), (6.26)

which yields that ÿý (P ′) = ÿý (P) for all ý > ÿ. If deg(ÿ) = ÿ and ℓ(ÿ) ≠ ℓ(ÿ1), then

deg(ÿ − ÿ1) = deg(ÿ(· + ℎ) − ÿ1) = ÿ,

ℓ(ÿ − ÿ1) = ℓ(ÿ(· + ℎ) − ÿ1) = ℓ(ÿ) − ℓ(ÿ1).
(6.27)

If deg(ÿ) = ÿ and ℓ(ÿ) = ℓ(ÿ1), then

deg(ÿ − ÿ1) < ÿ, and deg(ÿ(· + ℎ) − ÿ1) < ÿ.

The latter two cases show that ÿý (P ′) ≥ 0 for all ý ∈ �ÿ − 1� and ÿÿ (P ′) = ÿÿ (P) − 1. Hence, Equation

(6.23) holds. We now show that P ′ is (ý, ÿ)-admissible.

We begin with verifying Equation (6.6) for ÿ′ ∈ P ′
ÿ . We may write ÿ′ = ÿ(· + ÿℎ) − ÿ1 for some

ÿ ∈ P ÿ and ÿ ∈ {0, 1}. By Equations (6.26) and (6.6) for ÿ ∈ P ÿ , we obtain

ý−1
0 ÿýýý− ÿ ≤ |ℓ(ÿ′) | ≤ ý0ÿ

−ýýý− ÿ . (6.28)

We now verify Equation (6.7) for ý ′
1
, ý ′

2
∈ P ′

ÿ with ℓ(ý ′
1
) ≠ ℓ(ý ′

2
). We may write

ý ′
1 = ý1(· + ÿ1ℎ) − ÿ1, and ý ′

2 = ý2 (· + ÿ2ℎ) − ÿ1 (6.29)

for some ý1, ý2 ∈ P ÿ and ÿ1, ÿ2 ∈ {0, 1}. By Equation (6.26), we have ℓ(ý ′
1
) = ℓ(ý1) and ℓ(ý ′

2
) =

ℓ(ý2). Then ℓ(ý1) ≠ ℓ(ý2) and by Equation (6.7) for ý1, ý2 ∈ P ÿ , we deduce

ý−1
0 ÿýýý− ÿ ≤ |ℓ(ý ′

1) − ℓ(ý ′
2) | ≤ ý0ÿ

−ýýý− ÿ . (6.30)

We finally verify Equation (6.8) for ý ′
1
, ý ′

2
∈ P ′

ÿ as in Equation (6.29) such that ý ′
1
≠ ý ′

2
and

ℓ(ý ′
1
) = ℓ(ý ′

2
) = ℓ. By Equation (6.26), we see that ℓ(ý1) = ℓ(ý2) = ℓ. Since P is (ý, ÿ)-admissible,

using Equation (6.6), we also have

ý−1
0 ÿýýý− ÿ ≤ |ℓ | ≤ ý0ÿ

−ýýý− ÿ . (6.31)

Recall that ÿ′ÿ2ý/ÿ2 ≤ |ℎ| ≤ ÿ′ý , where ÿ′ > 0 is an arbitrarily small number such that ÿ′ ≤ ÿ4/ÿ.

Set ÿ′ := ÿý (ÿý)−1 for a large number ý ≥ 1, which will be chosen later.

First, suppose ý1 = ý2. Then ÿ1 ≠ ÿ2 and deg(ý ′
1
− ý ′

2
) = ÿ − 1. Furthermore, ℓ(ý ′

1
− ý ′

2
) =

ÿℓℎ(ÿ1 − ÿ2) implying |ℓ(ý ′
1
−ý ′

2
) | = | ÿℓℎ|, and so by Equation (6.31),

| ÿ | (ý0ÿ
3ý)−1ÿý+ý+2ýý− ÿ+1 ≤ | ÿℓℎ| ≤ | ÿ |ý0 (ÿý)−1ÿý−ýýý− ÿ+1, (6.32)

and this verifies Equations (6.8) in the case ý1 = ý2.

Now, supposeý1 ≠ ý2 so that deg(ý1 −ý2) = ÿ −1 and Equation (6.8) holds for ℓ(ý1 −ý2); that is,

ý−1
0 ÿýýý− ÿ+1 ≤ |ℓ(ý1 −ý2) | ≤ ý0ÿ

−ýýý− ÿ+1. (6.33)

Taking ý := max{2ý, 2| ÿ |ý2
0
} in Equation (6.32), we see that | ÿℓℎ| ≤ 1

2
ý−1

0
ÿýýý− ÿ+1 if ÿ > 1 is large

enough.

In this case, ℓ(ý ′
1
−ý ′

2
) = ℓ(ý1 −ý2) + ÿ ℎℓ(ÿ1 − ÿ2) and so

|ℓ(ý1 −ý2) | − | ÿℓℎ| ≤ |ℓ(ý ′
1 −ý ′

2) | ≤ |ℓ(ý1 −ý2) | + | ÿℓℎ|.
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From Equation (6.33) and | ÿℓℎ| ≤ 1
2
ý−1

0
ÿýýý− ÿ+1, we conclude

1

2
ý−1

0 ÿýýý− ÿ+1 ≤ |ℓ(ý ′
1 −ý ′

2) | ≤
3

2
ý0ÿ

−ýýý− ÿ+1. (6.34)

This verifies Equation (6.8) in the case ý1 ≠ ý2.

In either case, we see that deg(ý ′
1
−ý ′

2
) = ÿ − 1 and (see Equations (6.32) and (6.34)) we can find a

tolerance pair (ý′
0
, ý′) for P ′ depending on the tolerance (ý0, ý) of P and the constants C and M such

that

(ý′
0)−1ÿý

′
ýý− ÿ+1 ≤ |ℓ(ý ′

1 −ý ′
2) | ≤ ý′

0ÿ
−ý′

ýý− ÿ+1 (6.35)

holds, establishing Equation (6.8).

Proof of the conclusion from (ii)

Suppose that the collection P is of type II. Then deg(ÿ1) = . . . = deg(ÿÿ) = ÿ and ÿ(P) =

(0, . . . , 0, ÿ ÿ (P), 0, 0, . . .) with ÿ ÿ (P) > 1. To establish Equation (6.24), we will proceed in a similar

way as in (i). If ÿ ∈ P = P ÿ and ℓ(ÿ) ≠ ℓ(ÿ1), then

deg(ÿ − ÿ1) = deg(ÿ(· + ℎ) − ÿ1) = ÿ ,

ℓ(ÿ − ÿ1) = ℓ(ÿ(· + ℎ) − ÿ1) = ℓ(ÿ) − ℓ(ÿ1).
(6.36)

If ÿ ∈ P = P ÿ and ℓ(ÿ) = ℓ(ÿ1), then by the fact that P is (ý, ÿ)-admissible, and by Equation (6.8),

we see that

deg(ÿ − ÿ1) < ÿ, and deg(ÿ(· + ℎ) − ÿ1) < ÿ . (6.37)

This shows that ÿý (P ′) ≥ 0 for all ý ∈ � ÿ − 1� and ÿ ÿ (P ′) = ÿ ÿ (P) − 1. Hence, Equation (6.24) holds.

We now show that P ′ is (ý, ÿ)-admissible.

We begin with verifying Equation (6.6) for ÿ′ ∈ P ′
ÿ . We may write ÿ′ = ÿ(· + ÿℎ) − ÿ1 for some

ÿ ∈ P ÿ such that ℓ(ÿ) ≠ ℓ(ÿ1) and ÿ ∈ {0, 1}. Since P is (ý, ÿ)-admissible, using Equations (6.36)

and (6.7) (with ℓ(ÿ) − ℓ(ÿ1) in place of ℓ(ÿ) − ℓ(ý)), we obtain Equation (6.28) which is Equation

(6.6) for ÿ′ ∈ P ′
ÿ .

We now verify Equation (6.7) for ý ′
1
, ý ′

2
∈ P ′

ÿ with ℓ(ý ′
1
) ≠ ℓ(ý ′

2
). As in Equation (6.29), we may

write ý ′
1
= ý1(· + ÿ1ℎ) − ÿ1, and ý ′

2
= ý2 (· + ÿ2ℎ) − ÿ1 for some ý1, ý2 ∈ P ÿ and ÿ1, ÿ2 ∈ {0, 1}

such that ℓ(ý1) ≠ ℓ(ÿ1) and ℓ(ý2) ≠ ℓ(ÿ1). By Equation (6.36), we have ℓ(ý ′
1
) = ℓ(ý1) − ℓ(ÿ1) and

ℓ(ý ′
2
) = ℓ(ý2) − ℓ(ÿ1). Then ℓ(ý1) ≠ ℓ(ý2) and Equation (6.30) is verified by appealing to Equation

(6.7) (with ℓ(ý1) − ℓ(ý2) in place of ℓ(ÿ) − ℓ(ý)).
We finally verify Equation (6.8) for ý ′

1
, ý ′

2
∈ P ′

ÿ as in Equation (6.29) such that ý ′
1
≠ ý ′

2
and

ℓ(ý ′
1
) = ℓ(ý ′

2
) = ℓ. By Equation (6.36), ℓ(ý1) − ℓ(ÿ1) = ℓ(ý2) − ℓ(ÿ1) = ℓ and since P is (ý, ÿ)-

admissible, we see that ℓ satisfies Equation (6.31). Now, by following the last part of the proof from (i),

we conclude that Equation (6.35) holds.

Proof of the conclusion from (iii)

Suppose that the collection P is of type III. Then deg(ÿ1) = . . . = deg(ÿÿ) = ÿ and ÿ(P) =

(0, . . . , 0, ÿ ÿ (P), 0, 0, . . .) with ÿ ÿ (P) = 1, thus ℓ(ÿ1) = . . . = ℓ(ÿÿ) := ℓ. To establish Equation

(6.25), we will proceed in a similar way as in (i) and (ii). If ÿ ∈ P ÿ and ℓ(ÿ) = ℓ, then Equation (6.31)

holds for ℓ and once again Equation (6.37) holds. This in turn implies that ÿ ÿ−1 (P ′) > 0 and ÿý (P ′) = 0

for all ý ≠ ÿ − 1. Hence, Equation (6.25) holds. We now show that P ′ is (ý, ÿ − 1)-admissible.

We begin with verifying Equation (6.6) (or equivalently Equation (6.28) with j replaced by ÿ − 1) for

ÿ′ ∈ P ′
ÿ−1

. We may write ÿ′ = ÿ(· + ÿℎ) − ÿ1 for some ÿ ∈ P ÿ such that ℓ(ÿ) = ℓ(ÿ1) and ÿ ∈ {0, 1}.
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Then

ℓ(ÿ′) = ℓ(ÿ(· + ÿℎ) − ÿ1) = ℓ(ÿ − ÿ1) + ÿ ℎℓÿ. (6.38)

As in (i) we have ÿ′ÿ2ý/ÿ2 ≤ |ℎ| ≤ ÿ′ý , where ÿ′ := ÿý (ÿý)−1 for a large number ý ≥ 1, which

will be chosen later. Furthermore if ÿ ≠ ÿ1, then ý−1
0
ÿýýý− ÿ+1 ≤ |ℓ(ÿ − ÿ1) | ≤ ý0ÿ

−ýýý− ÿ+1 since

P is (ý, ÿ)-admissible and so Equation (6.8) holds with ý = ÿ1. This takes care of the case ÿ = 0.

If ÿ = 1 and ÿ = ÿ1, then Equation (6.32) gives the desired bound for |ℓ(ÿ′) |. When ÿ ≠ ÿ1, we use

the upper bound from Equation (6.32)

| ÿ ℎℓ | ≤ | ÿ |ý0 (ÿý)−1ÿý−ýýý− ÿ+1 ≤ 1

2
ý−1

0 ÿ−ýýý− ÿ+1 (6.39)

when ý = max(2ý, 2| ÿ |ý2
0
) and ÿ > 1 chosen large enough. Thus, as before, condition (6.6) holds for

ÿ′ with some tolerance pair (ý′
0
, ý′) as desired.

For ý ′
1
≠ ý ′

2
∈ P ′

ÿ−1
, we may write ý ′

1
= ý1(· + ÿ1ℎ) − ÿ1, and ý ′

2
= ý2(· + ÿ2ℎ) − ÿ1 for some

ý1, ý2 ∈ P ÿ and ÿ1, ÿ2 ∈ {0, 1} such that ℓ(ý1) = ℓ(ý2) = ℓ(ÿ1) = ℓ. We have ℓ(ý1 − ÿ1) − ℓ(ý2 −
ÿ1) = ℓ(ý1 −ý2) and so by Equation (6.38),

ℓ(ý ′
1) − ℓ(ý ′

2) = ℓ(ý1 −ý2) + ÿ ℎℓ(ÿ1 − ÿ2). (6.40)

We consider two cases.

If ý1 = ý2, then necessarily |ÿ1 − ÿ2 | = 1 and so ℓ(ý ′
1
) ≠ ℓ(ý ′

2
), deg(ý ′

1
− ý ′

2
) = ÿ − 1, and

Equation (6.32) shows that Equation (6.7) holds for ý ′
1
, ý ′

2
∈ P ′

ÿ−1
.

If ý1 ≠ ý2, then ý−1
0
ÿýýý− ÿ+1 ≤ |ℓ(ý1 − ý2) | ≤ ý0ÿ

−ýýý− ÿ+1 since P is (ý, ÿ)-admissible, and

so Equation (6.8) holds with ÿ = ý1 and ý = ý2. From Equation (6.39), we see that ℓ(ý ′
1
) ≠ ℓ(ý ′

2
)

and Equation (6.40) implies that Equation (6.7) holds for ý ′
1
, ý ′

2
∈ P ′

ÿ−1
.

In either case, we see that Equation (6.8) is vacuously satisfied by P ′ and Equation (6.7) holds for

ý ′
1
, ý ′

2
∈ P ′

ÿ−1
with (necessarily) ℓ(ý ′

1
) ≠ ℓ(ý ′

2
).

Concluding, we are able to find a tolerance pair (ý′
0
, ý′) for P ′ depending on the tolerance (ý0, ý)

of P and the constants C and M such that the required estimates for Equations (6.38) and (6.40) hold.

This completes the proof of Proposition 6.20.

6.2. Degree-lowering

Here, we establish a modulated version of the inverse theorem, which will imply Theorem 6.1.

Theorem 6.41 (Inverse theorem for modulated (ÿ + 1)-linear forms). Let ý ≥ 1 be a scale, and let

0 < ÿ ≤ 1, ÿ ∈ Z+ and ÿ ∈ N be given. Let P := {ÿ1, . . . , ÿÿ} and Q := {ý1, . . . , ýÿ} be collections

of polynomials such that

1 ≤ deg ÿ1 < . . . < deg ÿÿ < degý1 < . . . < degýÿ.

Let ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be 1-bounded functions supported on an interval ý ⊂ K of measure

ý0 := ýdeg ÿÿ . For ÿ ∈ Z+, we define an (ÿ + 1)-linear form corresponding to the triple (P ,Q; ý) and

a frequency vector ÿ = (ÿ1, . . . , ÿÿ) ∈ Kÿ by

Λ
Q;ÿ

P;ý
( ÿ0, . . . , ÿÿ) :=

1

ý0

∫

K2

ÿ0(ý)
ÿ∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))e
( ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
ýÿ [ý ] (ÿ)ýÿ(ý). (6.42)

For ÿ = 0, we set Q = ∅ and we simply write Λ
Q;ÿ

P;ý
( ÿ0, . . . , ÿÿ) := ΛP;ý ( ÿ0, . . . , ÿÿ) as in Equation

(6.2). Suppose that
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|ΛQ;ÿ

P;ý
( ÿ0, . . . , ÿÿ) | ≥ ÿ. (6.43)

Then there exists a ÿ1 = ÿ1 (P) � 1 such that

ý−1
0

��ÿ [ý1 ] ∗ ÿ1
��
ÿ1 (K) �P ÿÿP (1) , (6.44)

for any ý1 = ÿÿýdeg ÿ1 with ÿ ≥ ÿ1.

If necessary we will also write Λ
Q;ÿ

P;ý
( ÿ0, . . . , ÿÿ) = Λ

Q;ÿ

P;ý ,ý
( ÿ0, . . . , ÿÿ) in order to emphasise that

the functions ÿ0, ÿ1, . . . , ÿÿ are supported on I.

We first show how the Gowers box norms control the dual functions. The dual function, or more

precisely the m-th dual function, corresponding to Equation (6.42) is defined as

ý
ÿ
ÿ (ý) :=

∫

K

ý
ÿ
ÿ;ÿ (ý)ýÿ [ý ] (ÿ), ý ∈ K, (6.45)

where

ý
ÿ
ÿ;ÿ (ý) := ÿ0(ý + ÿÿ (ÿ))

ÿ−1∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ) + ÿÿ(ÿ))e
( ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
. (6.46)

Proposition 6.47 (Gowers box norms control the dual functions). Let ý ≥ 1 be a scale, and let

0 < ÿ ≤ 1, ý, ÿ ∈ Z+ with ÿ ≥ 2 and ÿ ∈ N be given. Let P := {ÿ1, . . . , ÿÿ} and Q := {ý1, . . . , ýÿ}
be collections of polynomials such that P is (ý, ý)-admissible and

1 ≤ deg ÿ1 ≤ . . . ≤ deg ÿÿ ≤ degý1 ≤ . . . ≤ degýÿ.

Let ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be 1-bounded functions supported on an interval ý ⊂ K of measure

ý0 := ýdeg ÿÿ . For ÿ ∈ Kÿ, let ý
ÿ
ÿ be the dual function defined in Equation (6.45). Suppose that

Equation (6.43) is satisfied. Then for the exponent ý ∈ Z+ which appears in the conclusion of Theorem

6.10, we have

‖ý ÿ
ÿ ‖
�
ý+1
[ÿ1 ],..., [ÿý+1 ] (ý )

�P ÿÿP (1) , (6.48)

where ÿÿ 
 ÿÿP (1)ýdeg(ÿÿ) for ÿ ∈ �ý + 1�.

Proof. By changing the variables ý ↦→ ý + ÿÿ (ÿ) in Equation (6.42), we may write

Λ
Q;ÿ

P;ý
( ÿ0, . . . , ÿÿ) = 1

ý0

∫

K

( ∫

K

ý
ÿ
ÿ;ÿ (ý)ýÿ [ý ] (ÿ)

)
ÿÿ(ý)ýÿ(ý).

By the Cauchy–Schwarz inequality (observing once again that ‖ ÿÿ‖2
ÿ2 (K) ≤ ý0), we have

ÿ2 ≤ 1

ý0

∫

K

���
∫

K

ý
ÿ
ÿ;ÿ (ý)ýÿ [ý ] (ÿ)

���
2

ýÿ(ý)

=
1

ý0

����
∫

K3

ý
ÿ
ÿ;ÿ1

(ý)ý ÿ
ÿ;ÿ2

(ý)ýÿ⊗2
[ý ] (ÿ1, ÿ2)ýÿ(ý)

����

= |ΛQ;ÿ

P;ý
( ÿ0, ÿ1, . . . , ÿÿ−1, ý

ÿ
ÿ) |,

where in the last step we changed variables ý ↦→ ý − ÿÿ (ÿ1). Denote ýÿ := ý
ÿ
ÿ , and ý ÿ := ÿ ÿ for

ÿ ∈ �ÿ − 1�0. Our strategy will be to reduce the matter to Theorem 6.10 with the family P . Observe
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that ý ÿ is a 1-bounded function and ‖ý ÿ ‖ÿ1 (K) � ý0 for all ÿ ∈ �ÿ�0. Changing the variables ý ↦→ ý + ℎ

in the definition of Λ
Q;ÿ

P;ý
and averaging over ℎ ∈ [ÿý+1] where ÿý+1 = ÿÿ (1)ýdegÿÿ , we have

ÿ4 ≤ |ΛQ;ÿ

P;ý
(ý0, . . . , ýÿ) |2

�
1

ý0

∫

K2

���
∫

K

ý0(ý + ℎ)
ÿ∏

ÿ=1

ýÿ (ý + ℎ − ÿÿ (ÿ))ýÿ [ÿý+1 ] (ℎ)
���
2

ýÿ [ý ] (ÿ)ýÿ(ý),

where in the last line we have used the Cauchy–Schwarz inequality in the x and y variables, noting that

ý → ý0 (ý + ℎ) is supported a fixed dilate of I for every ℎ ∈ [ÿý+1]. By another change of variables, we

obtain

∫

K

ΛP;ý (Δℎý0, . . . ,Δℎýÿ)ýÿ [ÿý+1 ] (ℎ) � ÿ4.

Now, we may find a measurable set ÿ ⊆ [ÿý+1] such that

|ΛP;ý (Δℎý0, . . . ,Δℎýÿ) | � ÿ4

for all ℎ ∈ ÿ and ÿ [ÿý+1 ] (ÿ) � ÿ4. Since Δℎý ÿ is a 1-bounded function and ‖Δℎý ÿ ‖ÿ1 (K) � ý0 for all

ÿ ∈ �ÿ�0, we may invoke Theorem 6.10 and conclude that

‖Δℎý
ÿ
ÿ ‖�ý[ÿ1 ],..., [ÿý ] (ý ) = ‖Δℎýÿ‖�ý[ÿ1 ],..., [ÿý ] (ý ) �P ÿÿP (1)

for all ℎ ∈ ÿ , where ÿÿ 
 ÿÿP (1)ýdeg(ÿÿ) for ÿ ∈ �ý�. Averaging over ℎ ∈ ÿ and using ÿ [ÿý+1 ] (ÿ) � ÿ4,

we obtain

‖ý ÿ
ÿ ‖2ý+1

�
ý+1
[ÿ1 ],..., [ÿý+1 ] (ý )

=

∫

K

‖Δℎý
ÿ
ÿ ‖2ý

�
ý
[ÿ1 ],..., [ÿý ] (ý )

ýÿ [ÿý+1 ] (ℎ) �P ÿÿP (1) ,

which is Equation (6.48) as desired. �

We first establish a simple consequence of the oscillatory integral bound (3.1) which will be important

later.

Lemma 6.49. Let ý > 1 be a scale, ÿ ∈ Z+ and ÿ ∈ N be given. Let P := {ÿ1, . . . , ÿÿ} and

Q := {ý1, . . . , ýÿ} be collections of polynomials such that

1 ≤ deg ÿ1 < . . . < deg ÿÿ < degý1 < . . . < degýÿ. (6.50)

Define the multiplier corresponding to the families P and Q as follows:

ÿ
P ,Q
ý

(ÿ, ÿ) :=

∫

K

ÿ
( ÿ∑

ÿ=1

ÿÿÿÿ (ÿ) +
ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
ýÿ [ý ] (ÿ),

where ÿ = (ÿ1, . . . , ÿÿ) ∈ Kÿ and ÿ = (ÿ1, . . . , ÿÿ) ∈ Kÿ. Let 0 < ÿ ≤ 1 and suppose that

|ÿP ,Q
ý

(ÿ, ÿ) | ≥ ÿ. (6.51)

Then there exists a large constant ý �P ,Q 1 such that

ýdeg(ý ÿ ) |ÿ ÿ | � ÿ−ý, for ÿ ∈ �ÿ�,
ýdeg(ÿÿ ) |ÿ ÿ | � ÿ−ý, for ÿ ∈ �ÿ�.

(6.52)
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Proof. Fix an element ÿ ∈ K such that |ÿ | = ý , and make the change of variables ÿ → ÿÿ to write

ÿ
P ,Q
ý

(ÿ, ÿ) =

∫

ý1 (0)
e
( ÿ∑

ÿ=1

ÿÿÿÿ (ÿÿ) +
ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿÿ)
)
ýÿ(ÿ).

Define ý(ÿ) :=
∑ÿ
ÿ=1 ÿÿÿÿ (ÿ) + ∑ÿ

ÿ=1 ÿ ÿý ÿ (ÿ). Then ý(ÿ) may be rewritten as

ý(ÿ) =
degýÿ∑

ý=1

cý (ý)ÿý

The oscillatory integral bound (3.1) implies

|ÿP ,Q
ý

(ÿ, ÿ) | �
(
1 +

degýÿ∑

ý=1

| cý (ý) |ý ý

)−1/degýÿ

. (6.53)

Hence, Equation (6.51) implies maxý | cý (ý) |ý ý
� ÿ−ý∗ , where ý∗ = degýÿ and the maximum is taken

over all ý ∈ �deg(ýÿ)�. From this, we see that for any sufficiently large ý ≥ ý∗,

| cý (ý) |ý ý ≤ ÿ−ý/ý (6.54)

for all ý ∈ �deg(ýÿ)�.

Using Equation (6.50), we observe that

cdegý ÿ
(ý) =

ÿ∑

ý= ÿ

cdegý ÿ
(ýý )ÿý , for ÿ ∈ �ÿ�), (6.55)

cdeg ÿÿ
(ý) =

ÿ∑

ý=1

cdeg ÿÿ
(ýý )ÿý +

ÿ∑

ý= ÿ

cdeg ÿÿ
(ÿý )ÿý , for ÿ ∈ �ÿ�. (6.56)

Using Equation (6.55) for ÿ = ÿ, we see that Equation (6.54) implies Equation (6.52) for ýdegýÿ |ÿÿ |.
Inductively, we now deduce, using Equation (6.55), that Equation (6.54) implies that Equation (6.52)

holds for all ýdegý ÿ |ÿ ÿ |, ÿ ∈ �ÿ�. Similarly, using Equations (6.56) and (6.54), we see that that the

second displayed equation in Equation (6.52) holds. �

The key ingredient in the proof of Theorem 6.41 will be a degree-lowering argument, which reads

as follows.

Theorem 6.57 (Degree-lowering argument). Let ý ≥ 1 be a scale, and let 0 < ÿ ≤ 1, ÿ ∈ Z+ and

ÿ ∈ N be given. Let P := {ÿ1, . . . , ÿÿ} and Q := {ý1, . . . , ýÿ} be collections of polynomials such that

1 ≤ deg ÿ1 < . . . < deg ÿÿ < degý1 < . . . < degýÿ.

For ÿ ∈ Kÿ, let ý
ÿ
ÿ be the dual function from Equation (6.45) corresponding to the form (6.42) and

1-bounded functions ÿ0, ÿ1, . . . , ÿÿ−1 ∈ ÿ0 (K) supported on an interval ý ⊂ K of measure

ý0 := ýdeg ÿÿ . Suppose that for some integer ý ∈ Z+ one has

‖ý ÿ
ÿ ‖�ý[ÿ1 ],..., [ÿý ] (ý ) ≥ ÿ, (6.58)

where ÿÿ 
 ÿÿP (1)ýdeg(ÿÿ) for ÿ ∈ �ý�. Then

‖ý ÿ
ÿ ‖
�
ý−1
[ÿ1 ],..., [ÿý−1 ] (ý )

�P ÿÿP (1) . (6.59)

Assuming momentarily Theorem 6.57, we prove Theorem 6.41.
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Proof of Theorem 6.41. Our goal is to prove Equation (6.44) when

ÿ ≤ |ΛQ;ÿ

P;ý
( ÿ0, . . . , ÿÿ) |.

The proof is by induction on ÿ ∈ Z+. We divide the proof into two steps. In the first step, we establish

the base case for ÿ = 1. In the second step, we will use Theorem 6.57 to establish the inductive step. �

Step 1.

Assume that ÿ = 1 so that ý0 = ýdeg ÿ1 . For ÿ ∈ K and ÿ = (ÿ1, . . . , ÿÿ) ∈ Kÿ, we define the multiplier

ÿý (ÿ, ÿ) :=

∫

K

ÿ
(
− ÿÿ1 (ÿ) +

ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
ýÿ [ý ] (ÿ).

We now express

Λ
Q;ÿ

P;ý
(ý0, ý1) = ý−1

0

∫

K

ý̂0 (−ÿ)ý̂1(ÿ)ÿý (ÿ, ÿ)ýÿ(ÿ).

Using the Cauchy–Schwarz inequality and Plancherel’s theorem, we see

|ΛQ;ÿ

P;ý
(ý0, ý1) | ≤ ý−1

0 ‖ý0‖ÿ2 (K) ‖ý1‖ÿ2 (K) sup
ÿ ∈supp (ý̂0ý̂1)

|ÿý (ÿ, ÿ) |. (6.60)

When K is non-Archimedean, let ÿ(ý) = 1[1] (ý) = 1ý1 (0) (ý) so that ÿ̂(ÿ) = 1[1] (ÿ). When K is

Archimedean, choose a Schwartz function ÿ : K→ K such that

1[1] (ÿ) ≤ ÿ̂(ÿ) ≤ 1[2] (ÿ), ÿ ∈ K.

For a scale M, we set ÿý (ý) = ý−1ÿ(ý−1ý) when K = R and when K = C, we set ÿý (ÿ) =

ý−1ÿ(ý−1/2ÿ). When K is non-Archimedean, we set ÿý (ý) = ý−1
1[ý ] (ý).

Consider two scales ý1 
 ÿÿýdeg ÿ1 and ý1 
 ÿ2ÿýdeg ÿ1/ÿ. Then we obtain

ÿ ≤ |ΛQ;ÿ

P;ý
( ÿ0, ÿ1) | ≤ |ΛQ;ÿ

P;ý
( ÿ0, ÿý1

∗ ÿ1) | + |ΛQ;ÿ

P;ý
( ÿ0, ÿ1 − ÿý1

∗ ÿ1) |.

Note that

|ΛQ;ÿ

P;ý
( ÿ0, ÿý1

∗ ÿ1) | ≤ ý−1
0 ‖ ÿ0‖ÿ∞ (K) ‖ÿý1

∗ ÿ1‖ÿ1 (K) ≤ ý−1
0 ‖ÿý1

∗ ÿ1‖ÿ1 (K) ,

and

‖ÿý1
∗ ÿ1‖ÿ1 (K) ≤ ‖ÿý1

∗ ÿ [ý1 ] ∗ ÿ1‖ÿ1 (K) + ‖(ÿý1
− ÿý1

∗ ÿ [ý1 ]) ∗ ÿ1‖ÿ1 (K)

� ‖ÿ [ý1 ] ∗ ÿ1‖ÿ1 (K) + ÿ−1ÿÿý0

since ÿý1
− ÿý1

∗ ÿ [ý1 ] = 0 when K is non-Archimedean and when K is Archimedean, we have the

pointwise bound

|ÿý1
(ý) − ÿý1

∗ ÿ [ý1 ] (ý) | � ÿ−1ÿÿ ý−1
1

(
1 + ý−1

1 |ý |
)−10

.

If ÿ ≥ 1 is sufficiently large, then we may write

ÿ � |ΛQ;ÿ

P;ý
( ÿ0, ÿ1) | ≤ ý−1

0 ‖ÿ [ý1 ] ∗ ÿ1‖ÿ1 (K) + |ΛQ;ÿ

P;ý
( ÿ0, ÿ1 − ÿý1

∗ ÿ1) |. (6.61)
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By Equation (6.60), we have that

|ΛQ;ÿ

P;ý
( ÿ0, ÿ1 − ÿý1

∗ ÿ1) | � sup
ÿ ∈K: |ÿ | ≥ý−1

1

|ÿý (ÿ, ÿ) | (6.62)

since ‖ ÿ0‖ÿ2 (K) ≤ ý
1/2

0
and ‖ ÿ1‖ÿ2 (K) ≤ ý

1/2

0
. We now prove that

sup
ÿ ∈K: |ÿ | ≥ý−1

1

|ÿý (ÿ, ÿ) | � ÿ2. (6.63)

Suppose that inequality (6.63) does not hold, then one has

|ÿý (ÿ, ÿ) | � ÿ2

for some ÿ ∈ K so that |ÿ | ≥ ý−1
1

. Then Lemma 6.49 implies ýdeg ÿ1 |ÿ | � ÿ−ý for some large, fixed

ý � 1 by Equation (6.52). Since ý1 = ÿÿýdeg ÿ1 , we have ÿ−ÿ
� ÿ−ý which is a contradiction if

ÿ � ý. Thus, Equation (6.63) holds.

Hence, by Equations (6.63), (6.62) and (6.61), we see that

ÿ � ý−1
0 ‖ÿ [ý1 ] ∗ ÿ1‖ÿ1 (K)

which establishes Theorem 6.41 when ÿ = 1.

Step 2.

We now assume that Theorem 6.41 is true forÿ−1 in place of m for some integerÿ ≥ 2. Using Theorem

6.57, we show that this implies Theorem 6.41 for ÿ ≥ 2. Note that bound (6.43) implies inequality

(6.48) from Proposition 6.47. Now, by Theorem 6.57 applied ý − 2 times we may conclude that

‖ý ÿ
ÿ ‖
�

2
[ÿ1 ], [ÿ2 ] (ý )

�P ÿÿP (1) ,

where ÿ1, ÿ2 
 ÿÿP (1)ýdeg ÿÿ . By Lemma 5.1, we can find a ÿ0 ∈ K such that

ý−1
0

��ý̂ ÿ
ÿ (ÿ0)

�� �P ÿÿP (1) (6.64)

since ý0 = ýdeg ÿÿ . By definitions (6.45) and (6.46) and making the change of variables ý ↦→ ý−ÿÿ (ÿ),
we may write

ý−1
0 ý̂

ÿ
ÿ (ÿ0) = ý−1

0

.

K2

ý
ÿ
ÿ;ÿ (ý)ÿ(−ÿ0ý)ýÿ [ý ] (ÿ)ýÿ(ý)

= ý−1
0

.

K2

Mÿ0
ÿ0(ý)

ÿ−1∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))ÿ
(
ÿ0ÿÿ(ÿ) +

ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
ýÿ [ý ] (ÿ)ýÿ(ý)

= ý−1Λ
Q′, ÿ ′

P′;ý (Mÿ0
ÿ0, ÿ1, . . . , ÿÿ−1),

where Mÿ0
ÿ0 (ý) := e(−ÿ0ý) ÿ0(ý), P ′ := P \ {ÿÿ}, Q′ := Q ∪ {ÿÿ}, ÿ ′ := (ÿ0, ÿ1, . . . , ÿÿ) ∈ Kÿ+1

and ý := ýdeg(ÿÿ)−deg(ÿÿ−1) . The parameter ý ′
0

:= ý0ý
−1 is what appears in the m-linear form Λ

Q′, ÿ ′

P′;ý .

We note that ý ′
0
= ýdeg ÿÿ−1 .

Thus, Equation (6.64) implies

ý−1 |ΛQ′, ÿ ′

P′;ý ,ý
(Mÿ0

ÿ0, ÿ1, . . . , ÿÿ−1) | � ÿÿ (1) .
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By translation invariance, we may assume that all functions ÿ0, ÿ1, . . . , ÿÿ−1 are supported in [ý0]. We

can partition [ý0] =
⋃

ý∈�ÿ� ýý into ÿ 
 ý sets, each with measure 
 ý ′
0

contained in an interval

ýý lying in an ÿ (ý ′
0
) neighbourhood of ýý . Furthermore, ýý is an ÿ (ý1) neighbourhood of a set ýý

such that ÿ(ýý \ ýý ) � ý1 and supp(1ýý
∗ ÿ [ý1 ]) ⊆ ýý . Here, ý1 
 ÿÿP (1)ýdeg(ÿ1) . In the non-

Archimedean setting, this decomposition is straightforward; in this case, we can take ýý = ýý = ýý . If

fact if ý0 = ÿÿ0 and ý ′
0
= ÿÿ0−ℓ so that ý = ÿℓ , then

[ý0] = ýÿÿ0 (0) =
⋃

ý∈F
ýÿÿ0−ℓ (ý)

gives our partition of [ý0], where F = {ý =
∑ℓ−1

ÿ=0 ý ÿÿ
−ÿ0+ ÿ : ý ÿ ∈ ýK/ÿK}. Note #F = ÿℓ = ý . When

K = R, one simply decomposes the interval [ý0] = [−ý0, ý0] into M subintervals (ýý )ý∈�ÿ� of equal

length and then extend and shrink to obtain intervals ýý and ýý with the desired properties.

When K = C, the set [ý0] is a disc and the decomposition is not as straightforward but not difficult

to construct by starting with a mesh of squares of side length
√
ý ′

0
which cover [ý0]. It is important that

for this case (whenK = C) that we allow the sets ýý and ýý to be general sets (not necessarily intervals)

with the above properties. The picture should be clear.

Hence, by changing variables ý → ý + ÿ1 (ÿ) and then back again,

ý−1Λ
Q′, ÿ ′

P′;ý ,ý
(Mÿ0

ÿ0, ÿ1, . . . , ÿÿ−1)

= ý−1
0

∑

ý∈�ÿ�

.

ýý×K
Mÿ0

ÿ0(ý)
ÿ−1∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))ÿ
(
ÿ0ÿÿ (ÿ) +

ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
ýÿ [ý ] (ÿ)ýÿ(ý)

= ý−1
0

∑

ý∈�ÿ�

.

K2

ÿ ý0 (ý)ýý (ý − ÿ1 (ÿ))
ÿ−1∏

ÿ=2

ÿ ýÿ (ý − ÿÿ (ÿ))ÿ
(
ÿ0ÿÿ (ÿ) +

ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
ýÿ [ý ] (ÿ)ýÿ(ý)

= ý−1
∑

ý∈�ÿ�
Λ

Q′, ÿ ′

P′;ý ,ýý
( ÿ ý0 , ýý , ÿ ý2 , . . . , ÿ ýÿ−1),

where ÿ ý
0

:= Mÿ0
ÿ01ýý , ÿ

ý
2

:= ÿ21ýý , . . . , ÿ
ý
ÿ−1

:= ÿÿ−11ýý and ýý = ÿ11ýý
.

By the pigeonhole principle, there exists ÿ0 ⊆ �ÿ� such that #ÿ0 � ÿÿP′ (1)ý , and for every ý ∈ ÿ0,

we have

|ΛQ′, ÿ ′

P′;ý ,ýý
( ÿ ý0 , ýý , ÿ ý2 , . . . , ÿ ýÿ−1) | � ÿÿP′ (1) .

By the inductive hypothesis, we have

(ý ′
0)−1

��ÿ [ý1 ] ∗ ( ÿ11ýý
)
��
ÿ1 (K) � ÿÿP′ (1)

for every ý ∈ ÿ0 and for every ý1 = ÿÿýdeg ÿ1 with ÿ ≥ ÿ1 (P ′). Note that

(ý ′
0)−1‖ÿ [ý1 ] ∗ ( ÿ1(1ýý

− 1ýý
))‖ÿ1 (K) � ý1 (ý ′

0)−1
� ÿÿ (6.65)

and hence for ÿ � 1 large enough,

(ý ′
0)−1

��ÿ [ý1 ] ∗ ( ÿ11ýý
)
��
ÿ1 (K) � ÿÿP (1) for every ý ∈ ÿ0.

Now, we can sum over ý ∈ ÿ0, using the bound #ÿ0 � ÿÿ (1)ý and the pairwise disjoint supports of

(ÿ [ý1 ] ∗ ( ÿ11ýý
))ý∈�ÿ�, we obtain
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ý−1
0

���ÿ [ý1 ] ∗
( ∑

ý∈�ÿ�
ÿ11ýý

)���
ÿ1 (K)

≥ ý−1
0

∑

ý∈�ÿ�

��ÿ [ý1 ] ∗ ( ÿ11ýý
)
��
ÿ1 (K)

≥ ý−1
∑

ý∈ÿ0

(ý ′
0)−1

��ÿ [ý1 ] ∗ ( ÿ11ýý
)
��
ÿ1 (K) � ÿÿP (1) ,

which by (6.65) yields

ý−1
0

��ÿ [ý1 ] ∗ ÿ1
��
ÿ1 (K) � ÿÿP (1) ,

as desired.

We now state two auxiliary technical lemmas which will be needed in the proof of Theorem 6.57.

For ÿ = (ÿ1, . . . , ÿÿ) ∈ {0, 1}ÿ and ℎ = (ℎ1, . . . , ℎÿ) ∈ Kÿ, we write ÿ · ℎ =
∑ÿ
ÿ=1 ÿÿℎÿ and

1 − ÿ = (1 − ÿ1, . . . , 1 − ÿÿ).

Lemma 6.66. Let ý ≥ 1 be a scale, and let 0 < ÿ ≤ 1, ÿ ∈ Z+ with ÿ ≥ 2, ÿ ∈ N and scales

ÿ1, . . . , ÿÿ with each ÿÿ ≤ ý be given. Assume that ÿ : ÿ → R is a measurable function defined on

a measurable set ÿ ⊆ ÿ :=
∏ÿ

ÿ=1 [ÿÿ]. Let P := {ÿ1, . . . , ÿÿ} and Q := {ý1, . . . , ýÿ} be collections

of polynomials. For ÿ ∈ Kÿ, let ý
ÿ
ÿ be the dual function defined in Equation (6.45) that corresponds to

the form (6.42) and 1-bounded functions ÿ0, ÿ1, . . . , ÿÿ−1 ∈ ÿ0 (K) supported on an interval ý ⊂ K of

measure ý0 := ýdeg ÿÿ . Suppose that

∫

ÿ

��ý−1
0 Δÿ

ℎ
ý
ÿ
ÿ

∧

(ÿ(ℎ))
��2ý

( ÿ⊗

ÿ=1

ÿ [ÿÿ ]
)
(ℎ) ≥ ÿ. (6.67)

Then

∫

�ÿ (ÿ )

����ý
−1
0

∫

K

ýÿ (ý; ℎ, ℎ′)ÿ(−ÿ(ℎ, ℎ′)ý)ýÿ(ý)
����
2

ý
( ÿ⊗

ÿ=1

ÿ [ÿÿ ]
) ⊗2

(ℎ, ℎ′) � ÿÿ (1) , (6.68)

where

�ÿ (ÿ) :=
{
(ℎ, ℎ′) ∈ ÿ2 : ÿ · ℎ + (1 − ÿ) · ℎ′ ∈ ÿ for every ÿ ∈ {0, 1}ÿ

}
,

and

ýÿ(ý; ℎ, ℎ′) :=

∫

K

Δÿ
ℎ′−ℎ ÿ0(ý + ÿÿ(ÿ))

ÿ−1∏

ÿ=1

Δÿ
ℎ′−ℎ ÿÿ (ý − ÿÿ (ÿ) + ÿÿ (ÿ))ýÿ [ý ] (ÿ),

ÿ(ℎ, ℎ′) :=
∑

ÿ∈{0,1}ÿ
(−1) |ÿ |ÿ

(
ÿ · ℎ + (1 − ÿ) · ℎ′

)
.

Proof. We shall write νÿ :=
⊗ÿ

ÿ=1 ÿ [ÿÿ ] . Using Equations (4.2), (6.45) and (6.46), we see that the

left-hand side of Equation (6.67) can be written as

1

ý2
0

∫

K2ÿ+1

∫

K2

∫

Kÿ

ÿ0(ý, ÿ, ℎ;y)ýνÿ (ℎ)ýÿ(ý)ýÿ(ÿ)ýÿ⊗2ÿ+1

[ý ] (y),

where for y = (ÿ (ÿ,0) , ÿ (ÿ,1) )ÿ∈{0,1}ÿ ∈ K2ÿ+1

, ý, ÿ ∈ K and ℎ ∈ Kÿ. We have set

ÿ0 (ý, ÿ, ℎ;y) := 1ÿ (ℎ)e(−ÿ(ℎ) (ý − ÿ))
∏

ÿ∈{0,1}ÿ
C |ÿ |ý ÿ

ÿ;ÿ(ÿ,0) (ý + ℎ · ÿ)ý ÿ
ÿ;ÿ(ÿ,1) (ÿ + ℎ · ÿ).
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Write elements in X as (ℎ1, ℎ) with ℎ1 ∈ K, and apply the Cauchy–Schwarz inequality in all but the ℎ1

variable (noting that (ý, ÿ) → ÿ0(ý, ÿ, ℎ;y) is supported in a product of intervals of measure 
 ý2
0
) to

conclude

1

ý2
0

∫

K2ÿ

∫

K2

∫

Kÿ−1

ÿ0 (ý, ÿ, ℎ;y)ýνÿ−1(ℎ)ýÿ(ý)ýÿ(ÿ)ýÿ⊗2ÿ

[ý ] (y) � ÿÿ (1) , (6.69)

where

ÿ0(ý, ÿ, ℎ;y) :=

����
∫

K

ÿ1
0(ý, ÿ, (ℎ1, ℎ);y)ýÿ [ÿ1 ] (ℎ1)

����
2

,

and

ÿ1
0 (ý, ÿ, (ℎ1, ℎ);y) := 1ÿ (ℎ1, ℎ)e(−ÿ(ℎ1, ℎ) (ý − ÿ))

×
∏

ÿ∈{0,1}ÿ−1

C |ÿ |ý ÿ
ÿ;ÿ(1,ÿ,0) (ý + (ℎ1, ℎ) · (1, ÿ))ý ÿ

ÿ;ÿ(1,ÿ,1) (ÿ + (ℎ1, ℎ) · (1, ÿ))

for y = (ÿ (1,ÿ,0) , ÿ (1,ÿ,1) )( ÿ ,ÿ) ∈{0,1}ÿ ∈ K2ÿ and ý, ÿ, ℎ1 ∈ K, ℎ ∈ Kÿ−1. Expanding the square and

changing variables ý ↦→ ý − ℎ1 and ÿ ↦→ ÿ − ℎ1, we may rewrite Equation (6.69) as

1

ý2
0

∫

K2ÿ

∫

K2

∫

Kÿ+1

ÿ1(ý, ÿ, ℎ1, ℎ
′
1, ℎ;y)ýÿ⊗2

[ÿ1 ] (ℎ1, ℎ
′
1)ýνÿ−1(ℎ)ýÿ(ý)ýÿ(ÿ)ýÿ⊗2ÿ

[ý ] (y)

� ÿÿ (1) , (6.70)

where

ÿ1 (ý, ÿ, ℎ1, ℎ
′
1, ℎ;y) := 1ÿ (ℎ1, ℎ)1ÿ (ℎ′

1, ℎ)e(−(ÿ(ℎ1, ℎ) − ÿ(ℎ′
1, ℎ)) (ý − ÿ))

×
∏

ÿ∈{0,1}ÿ−1

C |ÿ |Δℎ′
1
−ℎ1

ý
ÿ
ÿ;ÿ(1,ÿ,0) (ý + ℎ · ÿ)Δℎ′

1
−ℎ1

ý
ÿ
ÿ;ÿ(1,ÿ,1) (ÿ + ℎ · ÿ).

Iteratively, for each ÿ ∈ {2, . . . , ÿ}, we apply the Cauchy–Schwarz inequality in all but the ℎÿ variable to

conclude that

1

ý2
0

∫

K2

∫

K2

∫

�ÿ (ÿ )
ÿÿ (ý, ÿ, ℎ, ℎ′; ÿ, ÿ′)ýν⊗2

ÿ (ℎ, ℎ′)ýÿ(ý)ýÿ(ÿ)ýÿ⊗2
[ý ] (ÿ, ÿ

′) � ÿÿ (1) ,

where

ÿÿ (ý, ÿ, ℎ, ℎ′; ÿ, ÿ′) := Δÿ
ℎ′−ℎý

ÿ
ÿ;ÿ (ý)Δÿ

ℎ′−ℎý
ÿ

ÿ;ÿ′ (ÿ)e(−ÿ((ℎ, ℎ′)) (ý − ÿ)).

We have arrived at Equation (6.68), completing the proof of the lemma �

The following lemma is a slight variant of a result found in [38].

Lemma 6.71. Given a scale ý ≥ 1, 0 < ÿ ≤ 1, ÿ ∈ Z+ with ÿ ≥ 2, ÿ ∈ N and scales ÿ1, . . . , ÿÿ+1

with each ÿÿ ≤ ý . We assume for every ÿ ∈ �ÿ� that ÿÿ : Kÿ → K is a measurable function independent

of the variable ℎÿ in a vector ℎ = (ℎ1, . . . , ℎÿ) ∈ Kÿ. Let P := {ÿ1, . . . , ÿÿ} and Q := {ý1, . . . , ýÿ}
be collections of polynomials. For ÿ ∈ Kÿ, let ý

ÿ
ÿ be the dual function defined in Equation (6.45) that

corresponds to the form (6.42) and 1-bounded functions ÿ0, ÿ1, . . . , ÿÿ−1 ∈ ÿ0 (K) supported on an
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interval ý ⊂ K of measure ý0 = ýdeg ÿÿ . Suppose that

∫

Kÿ

���ý−1
0 Δÿ

ℎ
ý
ÿ
ÿ

∧( ÿ∑

ÿ=1

ÿÿ (ℎ)
)���

2

ý
( ÿ⊗

ÿ=1

ÿ [ÿÿ ]
)
(ℎ) ≥ ÿ. (6.72)

Then

‖ý ÿ
ÿ ‖
�
ÿ+1
[ÿ1 ],..., [ÿÿ+1 ] (ý )

�P ÿÿP (1) .

Proof. We shall write as before νÿ :=
⊗ÿ

ÿ=1 ÿ [ÿÿ ] and also let µÿ :=
⊗ÿ

ÿ=1 ÿ [ÿÿ ] . Expanding the Fejér

kernel, we may write the left-hand side of Equation (6.72) as

I :=

∫

Kÿ

���ý−1
0 Δÿ

ℎ
ý
ÿ
ÿ

∧( ÿ∑

ÿ=1

ÿÿ (ℎ)
)���

2

ýνÿ (ℎ)

=

∫

K2ÿ

���ý−1
0 Δÿ

ℎ−ℎ′ý
ÿ
ÿ

∧( ÿ∑

ÿ=1

ÿÿ (ℎ − ℎ′)
)���

2

ýµ⊗2
ÿ (ℎ, ℎ′)

=
1

ý2
0

∫

K2ÿ+2

Δÿ
ℎ−ℎ′ý

ÿ
ÿ (ý)Δÿ

ℎ−ℎ′ý
ÿ
ÿ (ÿ)ÿ

(
−

ÿ∑

ÿ=1

ÿÿ (ℎ − ℎ′) (ý − ÿ)
)
ýµ⊗2

ÿ (ℎ, ℎ′)ýÿ(ý)ýÿ(ÿ).

We apply the Cauchy–Schwarz inequality in the ý, ÿ and ℎ′ variables and Corollary 4.7 to deduce that

I2ÿ ≤ 1

ý2
0

∫

K3ÿ+2

∏

ÿ∈{0,1}ÿ
C |ÿ | (Δÿ

ℎ (ÿ)−ℎý
ÿ
ÿ (ý)Δÿ

ℎ (ÿ)−ℎý
ÿ
ÿ (ÿ)

)
ýµ⊗3

ÿ (ℎ (0) , ℎ (1) , ℎ)ýÿ(ý)ýÿ(ÿ)

=
1

ý2
0

∫

K3ÿ

A(ý, ÿ, ℎ′
ÿ, ℎ

(0) , ℎ (1) , ℎ′)B(ý, ÿ, ℎ (0) , ℎ (1) , ℎ′)ýÿ(ý)ýÿ(ÿ)ýµ⊗3
ÿ−1

(ℎ (0) , ℎ (1) , ℎ′)ýÿ [ÿÿ ] (ℎ′
ÿ),

where

A(ý, ÿ, ℎ′
ÿ, ℎ

(0) , ℎ (1) , ℎ′) :=

∫

K2

∏

ÿ′∈{0,1}ÿ−1

C |ÿ′ |
[
Δÿ−1

ℎ (ÿ′)−ℎ′

(
ý
ÿ
ÿ (ý + ℎ0

ÿ − ℎ′
ÿ)

× ý
ÿ
ÿ (ý + ℎ1

ÿ − ℎ′
ÿ)ý ÿ

ÿ (ÿ + ℎ0
ÿ − ℎ′

ÿ)ý ÿ
ÿ (ÿ + ℎ1

ÿ − ℎ′
ÿ)

)]
ýÿ⊗2

[ÿÿ ] (ℎ
0
ÿ, ℎ

1
ÿ),

B(ý, ÿ, ℎ (0) , ℎ (1) , ℎ′) :=
∏

ÿ′∈{0,1}ÿ−1

C |ÿ′ |
[
Δÿ−1

ℎ (ÿ′)−ℎ′

(
|ý ÿ

ÿ (ý) |2 |ý ÿ
ÿ (ÿ) |2

)]
.

Since A ≥ 0, we see that

I2ÿ ≤ý−2
0

∫

K3ÿ

A(ý, ÿ, ℎ′
ÿ, ℎ

(0) , ℎ (1) , ℎ′)ýÿ(ý)ýÿ(ÿ)ýµ⊗3
ÿ−1

(ℎ (0) , ℎ (1) , ℎ′)ýÿ [ÿÿ ] (ℎ′
ÿ)

=
1

ý2
0

∫

K3ÿ+1

∏

ÿ′∈{0,1}ÿ−1

C |ÿ′ |
[
Δÿ−1

ℎ (ÿ′)−ℎ′

(
ý
ÿ
ÿ (ý + ℎ0

ÿ)ý ÿ
ÿ (ý + ℎ1

ÿ)

× ý
ÿ
ÿ (ÿ + ℎ0

ÿ)ý ÿ
ÿ (ÿ + ℎ1

ÿ)
)]
ýÿ(ý)ýÿ(ÿ)ýµ⊗2

ÿ (ℎ (0) , ℎ (1) )ýµÿ−1(ℎ′)

=
1

ý2
0

∫

K3ÿ+1

C (ý, ÿ, ℎ (0) , ℎ (1) , ℎ′)ýÿ(ý)ýÿ(ÿ)ýµ⊗2
ÿ (ℎ (0) , ℎ (1) )ýµÿ−1(ℎ′),
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where

C (ý, ÿ, ℎ (0) , ℎ (1) , ℎ′) :=
∏

ÿ′∈{0,1}ÿ−1

C |ÿ′ |
[
Δÿ−1

ℎ (ÿ′)−ℎ′Δℎ1
ÿ−ℎ0

ÿ

(
ý
ÿ
ÿ (ý)ý ÿ

ÿ (ÿ)
)]
.

In the penultimate equality, we made the change of variables ý → ý − ℎ0
ÿ + ℎ′

ÿ and ÿ → ÿ − ℎ0
ÿ + ℎ′

ÿ.

Now, proceeding inductively we see that

I2ÿ ≤ 1

ý2
0

∫

K2ÿ+2

Δÿ
ℎ−ℎ′ý

ÿ
ÿ (ý)Δÿ

ℎ−ℎ′ý
ÿ
ÿ (ÿ)ýÿ(ý)ýÿ(ÿ)ýµ⊗2

ÿ (ℎ, ℎ′).

Inserting an extra average in the x variable and using the pigeonhole principle to fix z, it follows that

I2ÿ ≤ 1

ý0

∫

K2ÿ+1

Δÿ
ℎ−ℎ′ý

ÿ
ÿ (ÿ)

∫

K

Δÿ
ℎ−ℎ′ý

ÿ
ÿ (ý + ý)ýÿ [ÿÿ+1 ] (ý)ýµ⊗2

ÿ (ℎ, ℎ′)ýÿ(ý).

To conclude, we apply the Cauchy–Schwarz inequality to double the w variable and so

ÿ2ÿ+1 ≤ I2ÿ+1 ≤ 1

ý0

∫

K2ÿ+3

Δÿ+1
ℎ−ℎ′ý

ÿ
ÿ (ý)ýµ⊗2

ÿ+1
(ℎ, ℎ′)ýÿ(ý) = ‖ý ÿ

ÿ ‖
�
ÿ+1
[ÿ1 ],..., [ÿÿ+1 ] (ý )

.

This completes the proof of the lemma. �

Proof of Theorem 6.57. The proof is by induction on ÿ ∈ Z+. The proof will consist of several steps.

We begin by establishing the following claim.

Claim 6.73. Let ý ≥ 1 be a scale, 0 < ÿ ≤ 1, ÿ ∈ Z+ with ÿ ≥ 2 and ÿ ∈ N be given. Let

P := {ÿ1, . . . , ÿÿ} and Q := {ý1, . . . , ýÿ} be collections of polynomials such that

1 ≤ deg ÿ1 < . . . < deg ÿÿ < degý1 < . . . < degýÿ.

For ÿ ∈ Kÿ, let ý
ÿ
ÿ be the dual function defined in Equation (6.45) that corresponds to the form

(6.42) and 1-bounded functions ÿ0, ÿ1, . . . , ÿÿ−1 ∈ ÿ0 (K) supported on an interval ý ⊂ K of measure

ý0 := ýdeg ÿÿ . Suppose that

ý−1
0

��ý̂ ÿ
ÿ (ÿ)

�� ≥ ÿ. (6.74)

Then for any sufficiently large constant ÿ �P ,Q 1 one has

|ÿ | � ÿ−ÿý− deg(ÿÿ) , and |ÿ ÿ | � ÿ−ÿý− deg(ý ÿ ) for all ÿ ∈ �ÿ�. (6.75)

The proof of Claim 6.73 for each integer ÿ ≥ 2 is itself part of the inductive proof of Theorem 6.57.

In the first step, we prove Claim 6.73 for ÿ = 2. In the second step, we show that Claim 6.73 for all

integers ÿ ≥ 2 implies Theorem 6.57, this in particular will establish Theorem 6.57 for ÿ = 2. In the

third step, we finally show that Claim 6.73 for all integers ÿ ≥ 3 follows from Claim 6.73 and Theorem

6.57 for ÿ − 1. Taken together, this shows that Claim 6.73 and Theorem 6.57 hold for each integer

ÿ ≥ 2, completing the proof of Theorem 6.57. �

Step 1.

We now prove Claim 6.73 for ÿ = 2. Here, ý0 = ýdeg ÿ2 . For ÿ1, ÿ2 ∈ K and ÿ ∈ Kÿ, we define the

multiplier

ÿý (ÿ1, ÿ2, ÿ) :=

∫

ý1 (0)
e
(
− ÿ1ÿ1(ÿÿ) + ÿ2ÿ2 (ÿÿ) +

ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿÿ)
)
ýÿ(ÿ),
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where ÿ ∈ K satisfies |ÿ | = ý . By definitions (6.45) and (6.46) and making the change of variables

ý ↦→ ý − ÿ2 (ÿ), we may write

ý−1
0 ý̂

ÿ

2
(ÿ2) = ý−1

0

∫

K

∫

K

ý
ÿ

2;ÿ
(ý)e(−ÿ2ý)ýÿ [ý ] (ÿ)ýÿ(ý)

= ý−1
0

∫

K

ÿ̂0(ÿ2 − ÿ1) ÿ̂1(ÿ1)ÿý (ÿ1, ÿ2, ÿ)ýÿ1.

By the Cauchy–Schwarz inequality and Plancherel’s theorem, we obtain

ÿ ≤ ý−1
0 |ý̂ ÿ

2
(ÿ2) | � ý−1

0 ‖ ÿ0‖ÿ2 (K) ‖ ÿ1‖ÿ2 (K) sup
ÿ1 ∈K

|ÿý (ÿ1, ÿ2, ÿ) |,

which gives for some ÿ1 ∈ K that

ÿ � |ÿý (ÿ1, ÿ2, ÿ) |

since ‖ ÿ0‖ÿ2 (K) , ‖ ÿ1‖ÿ2 (K) � ý
1/2

0
. Applying Lemma 6.49 with P = {−ÿ1, ÿ2} and Q = {ý1, . . . , ýÿ},

we deduce that for every sufficiently large ÿ � 1 one has

|ÿ ÿ | � ÿ−ÿý− deg(ÿÿ ) for all ÿ ∈ �2�, and |ÿ ÿ | � ÿ−ÿý− deg(ý ÿ ) for all ÿ ∈ �ÿ�.

This completes the proof of Claim 6.73 for ÿ = 2.

Step 2.

In this step, we show that Claim 6.73 for all integers ÿ ≥ 2 implies Theorem 6.57. In view of Step 1,

this will in particular establish Theorem 6.57 for ÿ = 2, which is the base case of our double induction.

As before, we shall write ν ÿ :=
⊗ ÿ

ÿ=1
ÿ [ÿÿ ] for any ÿ ∈ Z+. Recall that ý0 = ýdeg(ÿÿ) and note

‖ý ÿ
ÿ ‖2ý

�
ý
[ÿ1 ],..., [ÿý ] (ý )

=

∫

Ký−2

‖Δý−2
ℎ ý

ÿ
ÿ ‖4

�
2
[ÿý−1 ], [ÿý ] (ý )

ýνý−2(ℎ).

By Equation (6.58) and the pigeonhole principle, there exists a measurable set ÿ ⊆ ∏ý−2
ÿ=1 [ÿÿ] so that

νý−2(ÿ) � ÿÿ (1) , and for all ℎ ∈ ÿ one has

‖Δý−2
ℎ ý

ÿ
ÿ ‖
�

2
[ÿý−1 ], [ÿý ] (ý )

� ÿÿ (1) .

Here, we used that supp ý
ÿ
ÿ is a subset of an interval whose measure is at most ÿ (ý0). By Lemma 5.1,

we have

ý−1
0

��Δý−2
ℎ

ý
ÿ
ÿ

∧
��
ÿ∞ (K) � ÿÿ (1) .

Next, we claim that there is a countable set F ⊂ K, depending on N and ÿ such that

sup
ÿ∈F

ý−1
0

��Δý−2
ℎ

ý
ÿ
ÿ

∧

(ÿ)
�� � ÿÿ0 (6.76)

for some absolute constant ÿ0 ∈ Z+ and for all ℎ ∈ ÿ . When K is non-Archimedean, we take

F =
⋃

ý ≥1

{
ÿ =

ÿ−1∑

ÿ=−ý
ÿ ÿÿ

ÿ ∈ K : ÿ ÿ ∈ ýK/ÿK
}
,
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where ý0 = ÿÿ . Let ý ∈ ý = ýý0
(ý0). For any ÿ ∈ K, we have ÿ ∈ ýý −1

0
(ÿ0) for some ÿ0 ∈ F . Note that

e(−ÿý) = e(−ýÿ0) e(−(ý − ý0) (ÿ − ÿ0)) e(−ý0 (ÿ − ÿ0)) = e(−ýÿ0) e(−ý0 (ÿ − ÿ0))

since | (ý − ý0) (ÿ − ÿ0) | ≤ ý0ý
−1
0

= 1 and e = 1 on ýK. Therefore, |Δý−2
ℎ

ý
ÿ
ÿ

∧

(ÿ) | = |Δý−2
ℎ

ý
ÿ
ÿ

∧

(ÿ0) | since

Δý−2
ℎ

ýÿ is supported in I whenever ℎ ∈ ÿ . This shows that Equation (6.76) holds for non-Archimedean

fields.

When K = R, we take F := ÿ0Z, where

ÿ0 := ÿÿ0
(
ÿý0

)−1

for a sufficiently large constant ÿ � 1. WhenK = C, we take F := ÿ1Z
2, where ÿ1 := ÿÿ0 (ÿ√

ý0)−1. By

the Lipschitz nature of characters on R or C, we again see that Equation (6.76) holds in the Archimedean

cases. In particular, there exists a measurable function ÿ : ÿ → F so that

ý−1
0

��Δý−2
ℎ

ý
ÿ
ÿ

∧

(ÿ(ℎ))
�� � ÿÿ0 (6.77)

for all ℎ ∈ ÿ . If necessary, we may additionally assume that the range of ÿ is finite.

By Lemma 6.66, it follows that

∫

�ý−2 (ÿ )

����ý
−1
0

∫

K

ýÿ (ý; ℎ, ℎ′)ÿ(−ÿ((ℎ, ℎ′))ý)ýÿ(ý)
����
2

ýν⊗2
ý−2

(ℎ, ℎ′) � ÿÿ (1) ,

where

ýÿ (ý; ℎ, ℎ′) :=

∫

K

Δý−2
ℎ′−ℎ ÿ0(ý + ÿÿ(ÿ))

ÿ−1∏

ÿ=1

Δý−2
ℎ′−ℎ ÿÿ (ý − ÿÿ (ÿ) + ÿÿ (ÿ))ýÿ [ý ] (ÿ),

ÿ(ℎ, ℎ′) :=
∑

ÿ∈{0,1}ý−2

(−1) |ÿ |ÿ
(
ÿ · ℎ + (1 − ÿ) · ℎ′)

)
.

Thus, by the pigeonhole principle, there exists a measurable set ÿ0 ⊆ �ý−2(ÿ) withν⊗2
ý−2

(ÿ0) � ÿÿ (1)

such that for every (ℎ, ℎ′) ∈ ÿ0 one has

����ý
− deg(ÿÿ)

∫

K

ýÿ (ý; ℎ, ℎ′)ÿ(−ÿ((ℎ, ℎ′))ý)ýÿ(ý)
���� � ÿÿ (1) .

By Claim 6.73, there is a ý := ýÿ,ý ≥ 1 such that for each (ℎ, ℎ′) ∈ ÿ0, one has

|ÿ((ℎ, ℎ′)) | �ÿ,ý ÿ−ýý− deg(ÿÿ) .

By the pigeonhole principle, there exists ℎ′ ∈ ∏ý−2
ÿ=1 [ÿÿ] and a measurable set

ÿ0(ℎ′) :=
{
ℎ ∈ ÿ : (ℎ, ℎ′) ∈ ÿ0 and |ÿ((ℎ, ℎ′)) | � ÿ−ýý− deg(ÿÿ)}

satisfying νý−2(ÿ0 (ℎ′)) � ÿÿ (1) . Since ÿ((ℎ, ℎ′)) ∈ F , we see that

ÿ0(ℎ′) ⊆
⋃

ý∈K
ÿ ý

0 (ℎ′),

where K = [ÿ (ÿ−ÿ (1) )] ∩ Z when K = R. In this case, ÿ ý
0
(ℎ′) := {ℎ ∈ ÿ : ÿ((ℎ, ℎ′)) = ÿ0ý}. When

K = C, we have K = [ÿ (ÿ−ÿ (1) )] ∩ Z2 and ÿ ý
0
(ℎ′) := {ℎ ∈ ÿ : ÿ((ℎ, ℎ′)) = ÿ1ý}. Finally when K is
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non-Archimedean,

K =
[
ÿ (ÿ−ÿ (1) )

]
∩

{
ý =

−1∑

ÿ=−ý
ý ÿÿ

ÿ ∈ K : ý ÿ ∈ ýK/ÿK
}

and ÿ ý
0
(ℎ′) := {ℎ ∈ ÿ : ÿ((ℎ, ℎ′)) = ÿÿý}.

Thus, by the pigeonhole principle there is ý0 ∈ K such that νý−2(ÿ ý0

0
(ℎ′))

)
� ÿÿ (1) . When K = R,

this shows that ÿ(ℎ, ℎ′) = ÿ0ý0 =: ÿÿ for all ℎ ∈ ÿ
ý0

0
(ℎ′). When K = C, we have ÿ(ℎ, ℎ′) = ÿ1ý0 for

all ℎ ∈ ÿ
ý0

0
(ℎ′) and when K is non-Archimedean, ÿ(ℎ, ℎ′) = ÿÿý0 for all ℎ ∈ ÿ

ý0

0
(ℎ′). We will denote

these values by ÿÿ in all cases.

Set

ÿ1 (ℎ, ℎ′) := (−1)ý+1
∑

ÿ∈{0,1}ý−2

ÿ1=0

(−1) |ÿ |ÿ
(
(ÿ · ℎ + (1 − ÿ) · ℎ′)

)
+ (−1)ýÿÿ

and, for ÿ = �ý − 2� \ {1}, set

ÿÿ (ℎ, ℎ′) := (−1)ý+1
∑

ÿ∈{0,1}ý−2\{0}
ÿ1=...=ÿÿ−1=1

ÿÿ=0

(−1) |ÿ |ÿ
(
(ÿ · ℎ + (1 − ÿ) · ℎ′)

)
.

Note that ÿÿ does not depend on ℎÿ and we can write

ÿ(ℎ) =
ý−2∑

ÿ=1

ÿÿ (ℎ, ℎ′).

Averaging Equation (6.77) over X := ÿ
ý0

0
(ℎ′) and using positivity, we obtain

∫

Ký−2

���ý−1
0 Δý−2

ℎ
ý
ÿ
ÿ

∧( ý−2∑

ÿ=1

ÿÿ (ℎ, ℎ′)
)���

2

ýνý−2(ℎ)

≥
∫

X

���ý−1
0 Δý−2

ℎ
ý
ÿ
ÿ

∧

(ÿ(ℎ))
���
2

ýνý−2(ℎ) � ÿÿ (1) .

Invoking Lemma 6.71, we conclude that

‖ý ÿ
ÿ ‖
�
ý−1
[ÿ1 ],..., [ÿý−1 ] (ý )

� ÿÿ (1) .

Step 3.

Gathering together the conclusions of Step 1 and Step 2 (for ÿ = 2), we see that the base step of a

double induction has been established. In this step, we shall illustrate how to establish the inductive

step. We assume that Claim 6.73 and Theorem 6.57 hold for ÿ − 1 in place m for some integer ÿ ≥ 3.

Then we will prove that Claim 6.73 holds for ÿ ≥ 3, which in view of Step 2 will allow us to deduce

that Theorem 6.57 also holds for ÿ ≥ 3. This will complete the proof of Theorem 6.57.

Recall that ý0 = ýdeg(ÿÿ) . By definitions (6.45) and (6.46) and making the change of variables

ý ↦→ ý − ÿÿ (ÿ), we may write
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ý−1
0 ý̂

ÿ
ÿ (ÿÿ) = ý−1

0

∫

K2

ý
ÿ
ÿ;ÿ (ý)e(−ÿÿý)ýÿ(ý)ýÿ [ý ] (ÿ)

= ý−1
0

∫

K2

Mÿÿ ÿ0(ý)
ÿ−1∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))e
(
ÿÿÿÿ (ÿ) +

ÿ∑

ÿ=1

ÿ ÿý ÿ (ÿ)
)
ýÿ [ý ] (ÿ)ýÿ(ý)

=: ý−1Λ
Q′, ÿ ′

P′;ý (Mÿÿ ÿ0, ÿ1, . . . ÿÿ−1),

where Mÿÿ ÿ0 (ý) := e(−ÿÿý) ÿ0(ÿ), P ′ := P \ {ÿÿ}, Q′ := Q ∪ {ÿÿ}, ÿ ′ := (ÿÿ, ÿ1, . . . , ÿÿ) ∈ Kÿ+1

and ý = ý0ý
′
0
−1, where ý ′

0
is the scale ýdeg(ÿÿ−1) .

Thus, Equation (6.74) implies

ý−1 |ΛQ′, ÿ ′

P′;ý (Mÿÿ ÿ0, ÿ1, . . . , ÿÿ−1) | � ÿÿ (1) .

As in the proof of Theorem 6.1, by the pigeonhole principle, we can find an interval ý ′ ⊂ K of measure

about ý ′
0

such that

|ΛQ′, ÿ ′

P′;ý ,ý ′ ( ÿ ′
0 , ÿ

′
1 , . . . , ÿ

′
ÿ−1) | � ÿÿ (1) ,

where ÿ ′
0

:= Mÿÿ ÿ01ý ′ , ÿ ′
1

:= ÿ11ý ′ , . . . , ÿ ′
ÿ−1

:= ÿÿ−11ý ′ .

Consequently, by Proposition 6.47, there exists an ý ∈ Z+ such that

‖ý ÿ ′

ÿ−1
‖�ý[ÿ1 ],..., [ÿý ] (ý

′
0
) � ÿÿ (1) ,

where ý
ÿ ′

ÿ−1
is the dual function respect the formΛ

Q′, ÿ ′

P′;ý ,ý ′ ( ÿ ′
0
, ÿ ′

1
, . . . , ÿ ′

ÿ−1
) and ÿÿ 
 ÿÿP′ (1)ýdeg(ÿÿ−1)

for ÿ ∈ �ý�. By the induction hypothesis (for Theorem 6.57), we deduce that

‖ý ÿ ′

ÿ−1
‖
�

2
[ÿ1 ], [ÿ2 ] (ý ′

0
) � ÿÿ (1) ,

which in turn by Lemma 5.1 implies

(ý ′
0)−1

���ý ÿ ′

ÿ−1
(ÿÿ−1)

�� � ÿÿ (1)

for some ÿÿ−1 ∈ K. By the induction hypothesis (for Claim 6.73), we deduce that

|ÿ ÿ | � ÿ−ÿý− deg(ÿÿ ) for all ÿ ∈ �ÿ� \ �ÿ − 2�, and

|ÿ ÿ | � ÿ−ÿý− deg(ý ÿ ) for all ÿ ∈ �ÿ�,

which in particular implies Equation (6.75), and we are done.

7. Sobolev estimates

As a consequence of the ÿ∞-inverse theorem from the previous section, we establish some Sobolev

estimates, which will be critical in the proof of Theorem 1.3.

We begin with a smooth variant of Theorem 6.1. WhenK is Archimedean, we fix a Schwartz function

ÿ on K so that

1[1] (ÿ) ≤ ÿ̂(ÿ) ≤ 1[2] (ÿ), ÿ ∈ K.

When K = R, we set ÿý (ý) = ý−1ÿ(ý−1ý) for any ý > 0 and when K = C, we set ÿý (ÿ) =

ý−1ÿ(ý−1/2ÿ) for any ý > 0. When K is non-Archimedean, we set ÿ(ý) = 1ý1 (0) (ý) so that ÿ̂(ÿ) =

1ý1 (0) (ÿ) and we set ÿý (ý) = ý−1
1[ý ] (ý) for any scale N.
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Theorem 7.1 (A smooth variant of the inverse theorem). Let ý ≥ 1 be a scale, 0 < ÿ ≤ 1, ÿ ∈ Z+ be

given. Let P := {ÿ1, . . . , ÿÿ} be a collection of polynomials such that 1 ≤ deg ÿ1 < . . . < deg ÿÿ.

Let ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be 1-bounded functions supported on an interval ý ⊂ K of measure

ý0 = ýdeg ÿÿ . Suppose that the (ÿ + 1)-linear form defined in Equation (6.2) satisfies

|ΛP;ý ( ÿ0, . . . , ÿÿ) | ≥ ÿ. (7.2)

Then for any ÿ ∈ �ÿ� there exists an absolute constant ÿ ÿ �P 1 so that

ý−1
0

��ÿý ÿ
∗ ÿ ÿ

��
ÿ1 (K) �P ÿÿP (1) , (7.3)

where ý ÿ 
 ÿÿ ÿýdeg(ÿÿ ) , provided ý � ÿ−ÿP (1) .

Proof. By translation invariance, we can assume that ÿ ÿ is supported on [ý0] for every ÿ ∈ �ÿ�. The

proof will consist of two steps. In the first step, we will invoke Theorem 6.1 to prove Equation (7.3) for

ÿ = 1. In the second step, we will use Equation (7.3) for ÿ = 1 to establish Equation (7.3) for ÿ = 2, and

continuing inductively we will obtain Equation (7.3) for all ÿ ∈ �ÿ�. �

Step 1.

We first establish Equation (7.3) for ÿ = 1. When K is non-Archimedean, this is an immediate conse-

quence of Theorem 6.1 since ÿý1
= ÿ [ý1 ] in this case. Nevertheless, we make the observation that

|ΛP;ý ( ÿ0, ÿý1
∗ ÿ1, . . . , ÿÿ) | � ÿ (7.4)

holds. In fact, we will see that Equation (7.4) holds for any K, non-Archimedean or Archimedean. First,

let us see Equation (7.4) when K is non-Archimedean. Suppose that |ΛP;ý ( ÿ0, ÿý1
∗ ÿ1, . . . , ÿÿ) | ≤ ý ÿ

for some small ý > 0. Then, since

ÿ ≤ |ΛP;ý ( ÿ0, ÿ1, . . . , ÿÿ) | ≤ |ΛP;ý ( ÿ0, ÿý1
∗ ÿ1, . . . , ÿÿ) | + |ΛP;ý ( ÿ0, ÿ1 − ÿý1

∗ ÿ1, . . . , ÿÿ) |,

we conclude that |ΛP;ý ( ÿ0, ÿ1 −ÿý1
∗ ÿ1, . . . , ÿÿ) | � ÿ. Therefore, Theorem 6.1 implies that ý−1

0
‖ÿý1

∗
( ÿ1 − ÿý1

∗ ÿ1)‖ÿ1 (K) | � ÿÿ (1) , but this is a contradiction since ÿý1
∗ ÿý1

= ÿý1
when K is non-

Archimedean (in which case ÿý1
= ý−1

1
1[ý1 ]) and so ÿý1

∗ ( ÿ1 − ÿý1
∗ ÿ1) ≡ 0.

We now turn to establish (7.3) for ÿ = 1 when K is Archimedean (when K = R or K = C). Let

ÿ : K → [0,∞) be a Schwartz function so that
∫
K
ÿ = 1, ÿ̂ ≡ 1 near 0 and supp ÿ̂ ⊆ [2]. For ý > 0,

we write ÿý (ý) := ý−1ÿ(ý−1ý) when K = R and ÿý (ý) := ý−2ÿ(ý−1ý) when K = C. We will also need a

Schwartz function ÿ : K→ [0,∞) such that

1[1]\[1−ÿý ] (ý) ≤ ÿ(ý) ≤ 1[1] (ý), ý ∈ K

for some large absolute constant ý ≥ 1, which will be specified later. We shall also write ÿ (ý) (ý) :=

ÿ(ý−1ý) for ý > 0 and ý ∈ K.

Let ý ′
0

 ý0 when K = R and ý ′

0

 √

ý0 when K = C. Observe that Equation (7.2) implies that at

least one of the following lower bounds holds:

|ΛP;ý ( ÿ0, ÿý1
∗ ÿ1, . . . , ÿÿ) | � ÿ, (7.5)

|ΛP;ý ( ÿ0, ÿ (ý ′
0
) ( ÿ1 − ÿý1

∗ ÿ1), . . . , ÿÿ) | � ÿ, (7.6)

|ΛP;ý ( ÿ0, (1 − ÿ (ý ′
0
) ) ( ÿ1 − ÿý1

∗ ÿ1), . . . , ÿÿ) | � ÿ. (7.7)
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By Theorem 6.1, it is easy to see that Equation (7.5) yields that

ý−1
0

��ÿý1
∗ ÿ1

��
ÿ1 (R) � ÿ,

which in turn will imply Equation (7.3) for ÿ = 1 provided that the remaining two alternatives (7.6) and

(7.7) do not hold. If this is the case, then Equation (7.4) also holds when K = R,C is Archimedean.

If the second alternative holds we, let ÿ ′
1

:= ÿ (ý ′
0
) ( ÿ1 − ÿý1

∗ ÿ1) and then Theorem 6.1 implies that

ý−1
0

��ÿ [ý ′
1
] ∗ ÿ ′

1

��
ÿ1 (K) �P ÿÿ

′
0 ,

with ý ′
1

 ÿÿ

′
1ýdeg(ÿ1) . By the Cauchy–Schwarz inequality (the support of ÿ [ý ′

1
] , ∗ ÿ ′

1
is contained in a

fixed dilate of [ý0]), we have

ý−1
0

��ÿ [ý ′
1
] ∗ ÿ ′

1

��2

ÿ2 (K) �P ÿ2ÿ′
0 .

Let ý ′′
1

:= ÿý+ÿ′
1ýdeg(ÿ1)/ý for some ý ≥ 1 to be determined later. We now show that

��ÿ [ý ′
1
] − ÿ [ý ′

1
] ∗ ÿý ′′

1

��2

ÿ1 (K) �
√
ý ′′

1
/ý ′

1
�

√
ÿý/ý. (7.8)

We note that for |ý | ≥ ÿý ′
1
,

|1[ý ′
1
] (ý) − 1[ý ′

1
] ∗ ÿý ′′

1
(ý) | =

���
∫

K

1[ý ′
1
] (ý − ÿ))ÿý ′′

1
(ÿ)ýÿ(ÿ)

���

and so
∫

|ý | ≥ÿý ′
1

|1[ý ′
1
] (ý) − 1[ý ′

1
] ∗ ÿý ′′

1
(ý) |ýÿ(ý) � ý ′′

1 .

When |ý | ≤ ÿý ′
1

is small, we use the Cauchy–Schwarz inequality

∫

|ý | ≤ÿý ′
1

|1[ý ′
1
] (ý) − 1[ý ′

1
] ∗ ÿý ′′

1
(ý) |ýÿ(ý) �

√
ý ′

1
‖1[ý ′

1
] ∗ (ÿ0 − ÿý ′′

1
)‖ÿ2 (K)

and then Plancherel’s theorem,

‖1[ý ′
1
] ∗ (ÿ0 − ÿý ′′

1
)‖2

ÿ2 (K) =
∫

K

|1 − ÿ̂ý ′′
1
(ÿ) |2 | �1[ý ′

1
] (ÿ) |2ýÿ(ÿ) �

√
ý ′

1
ý ′′

1
.

Here, we use the facts that ÿ̂ ≡ 1 near 0 and the Fourier decay bound for Euclidean balls,

| �1[ý ′
1
] (ÿ) |2 � |ÿ |−2 when K = R and | �1[ý ′

1
] (ÿ) |2 �

√
ý ′

1
|ÿ |−3 when K = C.

This establishes Equation (7.8) and so

ý−1
0

��(ÿ [ý ′
1
] − ÿ [ý ′

1
] ∗ ÿý ′′

1
) ∗ ÿ ′

1

��2

ÿ2 (K) �
��ÿ [ý ′

1
] − ÿ [ý ′

1
] ∗ ÿý ′′

1

��2

ÿ1 (K)

�

√
ý ′′

1
/ý ′

1
�

√
ÿý/ý.

Consequently,

ÿ2ÿ′
0 �P ý−1

0

��ÿ [ý ′
1
] ∗ ÿ ′

1

��2

ÿ2 (K) � ý−1
0

��ÿ [ý ′
1
] ∗ ÿý ′′

1
∗ ÿ ′

1

��2

ÿ2 (K) +
√
ÿý/ý,
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which for sufficiently large ý ≥ ÿ ′
0

yields

ý−1
0

��ÿý ′′
1

∗ ÿ ′
1

��2

ÿ2 (K) �P ÿ2ÿ′
0 .

Taking ý1 := 1
2
ý ′′

1
and using support properties of ÿ̂ and ÿ̂, by the Plancherel theorem we may write

(when K = R)

ý−1
0

��ÿý ′′
1

∗ ÿ ′
1

��2

ÿ2 (R) = ý−1
0

��ÿ̂ý ′′
1

(
�ÿ (ý ′

0
) ∗ ((1 − ÿ̂ý1

) ÿ̂1)
)��2

ÿ2 (R)

� ý−1
0

∫

R

( ∫

R

ý ′
0

(1 + ý ′
0
|ÿ − ÿ |)200

| ÿ̂1 (ÿ) (1 − ÿ̂(ý1ÿ)) | |ÿ̂(ý ′′
1 ÿ) |

)2

ýÿ(ÿ)

� ý−1
0 ÿ100(ý+ÿ′

1
) ‖ ÿ1‖2

ÿ2 (R) .

A similar bound holds when K = C. Therefore,

ÿ2ÿ′
0 �P ý−1

0

��ÿý ′′
1

∗ ÿ ′
1

��2

ÿ2 (K) � ÿ100(ý+ÿ′
1
) ,

which is impossible if ý ≥ 1 is large enough. Thus, the second alternative (7.6) is impossible. To see

that the third alternative (7.7) is also impossible observe that

ÿ � |ΛP;ý ( ÿ0, (1 − ÿ (ý ′
0
) ) ( ÿ1 − ÿý1

∗ ÿ1), . . . , ÿÿ) | � ý−1
0

∫

[ý ′
0
]
(1 − ÿ (ý ′

0
) ) (ý)ýÿ(ý) � ÿý ,

which is also impossible if ý ≥ 1 is sufficiently large. Hence, Equation (7.5) must necessarily hold,

and we are done.

Step 2.

Let ý ≥ 1 be a large constant to be determined later, and define ý ′ 
 ÿýý and ý ′
0

 ÿýý0. The main

idea is to partition the intervals [ý] and [ý0] into K 
 ÿ−ý disjoint intervals of measure 
 ý ′ and


 ý ′
0
, respectively. Such partitions are straightforward when K = R. When K is non-Archimedean, we

only need to partition [ý] and not [ý0]. Finally, when K = C, intervals are discs and it is not possible

to partition a disc into subdiscs and so we will need to be careful with this technical issue.

We first concentrate on the case when K is non-Archimedean. In this case, we only need to partition

[ý] and not [ý0]. Such a partition was given in the proof of Theorem 6.41. In fact, choosing ℓ � 1

such that ÿ−ℓ 
 ÿý and setting ý = ÿÿ so that ý ′ = ÿÿ−ℓ , we have

[ý] = ýÿÿ (0) =
⋃

ÿ∈F
ýÿÿ−ℓ (ÿ),

which gives a partition of [ý] where F = {ÿ =
∑ℓ−1

ÿ=0 ÿ ÿÿ
−ÿ+ ÿ : ÿ ÿ ∈ ýK/ÿK}. Note #F = ÿℓ so that

#F 
 ÿ−ý . Hence, ΛP;ý ( ÿ0, ÿý1
∗ ÿ1, . . . , ÿÿ) =

1

ý0ý

∑

ÿ0 ∈F

∫

K

∫

ý
ÿÿ−ℓ (ÿ0)

ÿ0(ý)ÿý1
∗ ÿ1(ý − ÿ1 (ÿ))

ÿ∏

ÿ=2

ÿÿ (ý − ÿÿ (ÿ))ýÿ(ÿ)ýÿ(ý).

We observe that ÿý1
∗ ÿ1(ý − ÿ1(ÿ)) = ÿý1

∗ ÿ1(ý − ÿ1 (ÿ0)) for any ÿ ∈ ýÿÿ−ℓ (ÿ0) by the non-

Archimedean nature of K, if M is chosen large enough depending on ÿ1. Hence, by the pigeonhole

principle, we can find a ÿ0 ∈ F such that

��� 1

ý0ý ′

∫

K

∫

ý
ÿÿ−ℓ (ÿ0)

ÿ0(ý)ÿý1
∗ ÿ1(ý − ÿ1 (ÿ0))

ÿ∏

ÿ=2

ÿÿ (ý − ÿÿ (ÿ))ýÿ(ÿ)ýÿ(ý)
��� � ÿ.
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Changing variables ÿ → ÿ0 + ÿ allows us to write the above as

|ΛP′,ý ′ ( ÿ ′
0 , ÿ

′
2 , . . . , ÿ

′
ÿ) | � ÿ where

ΛP′,ý ′ ( ÿ ′
0 , ÿ

′
2 , . . . , ÿ

′
ÿ) =

1

ý0

∫

K2

ÿ ′
0 (ý)

ÿ∏

ÿ=2

ÿ ′
ÿ (ý − ÿ′

ÿ (ÿ))ýÿ [ý ′ ] (ÿ)ýÿ(ý),

with ÿ′
ÿ (ÿ) = ÿ ÿ (ÿ0+ÿ)−ÿ ÿ (ÿ0), ÿ ′

0
(ý) = ÿ0(ý)ÿý1

∗ ÿ1(ý−ÿ1 (ÿ0)) and ÿ ′
ÿ (ý) = ÿ ÿ (ý+ÿ ÿ (ÿ0)). Note

that each ÿ ′
ÿ is supported in a fix dilate of I. In order to apply Theorem 6.1, we require ý ′ 
 ÿýý ≥ 1

and here is where the condition ý � ÿ−ÿP (1) is needed. Therefore, Theorem 6.1 implies that

ý−1
0 ‖ÿ [ý2 ] ∗ ÿ2‖ÿ1 (K) = ý−1

0 ‖ÿ [ý2 ] ∗ ÿ ′
2 ‖ÿ1 (K) � ÿÿ (1) .

The equality of ÿ1 norms follows from the change of variables ý → ý + ÿ2 (ÿ0). This completes the

proof of Equation (6.4) for ÿ = 2 when K is non-Archimedean since ÿ [ý2 ] = ÿý2
.

We now turn to the Archimedian case, when K = R or when K = C. Here, we argue as in Step 1 and

establish the version of Equation (7.4) for the function ÿ2. More precisely, writing

ΛP;ý ( ÿ0, . . . , ÿÿ) = ΛP;ý ( ÿ0, ÿ1, ÿý2
∗ ÿ2, . . . , ÿÿ) + ΛP;ý ( ÿ0, ÿ1, ÿ2 − ÿý2

∗ ÿ2, . . . , ÿÿ),

the argument in Step 1 shows that Equation (7.2) implies

|ΛP;ý ( ÿ0, ÿ1, ÿý2
∗ ÿ2, . . . , ÿÿ) | � ÿ. (7.9)

This inequality allows us to reduce matters to showing that Equation (7.2) impliesý−1
0

‖ÿ [ý2 ]∗ ÿ2‖ÿ1 (K) �
ÿÿ (1) since then (7.9) would imply

ÿÿ (1)
� ý−1

0 ‖ÿ [ý2 ] ∗ ÿý2
∗ ÿ2‖ÿ1 (K) ≤ ý−1

0 ‖ÿý2
∗ ÿ2‖ÿ1 (K) ,

establishing (7.3) for ÿ = 2.

We give the details when K = C since there are additional technical difficulties alluded to above.

The case R is easier. Given a large, general interval I in C (that is, I is a disc with large radius R), we

can clearly find a mesh of ÿ 
 ÿ−ý disjoint squares (ÿý )ý∈�ÿ� of side length ÿý/2ý which sit inside

I such that ÿ(I \ ⋃
ý∈�ÿ� ÿý ) � ÿ2ý2. We fix such a mesh of squares (ÿý )ý∈�ÿ� for [ý] and a mesh

of squares (ÿÿ ) ÿ∈�ý� for [ý0] so that

ΛP ,ý ( ÿ0, ÿý1
∗ ÿ1, . . . , ÿÿ) =

1

ý0ý

∑

ÿ∈�ý�

∑

ý∈�ÿ�

∫

ÿÿ

∫

ÿý

ÿ0(ý) ÿ0(ý)ÿý1
∗ ÿ1(ý − ÿ1 (ÿ))

ÿ∏

ÿ=2

ÿÿ (ý − ÿÿ (ÿ))ýÿ(ý)ýÿ(ÿ) + ÿ (ÿ2).

Since |ΛP;ý ( ÿ0, ÿý1
∗ ÿ1, . . . , ÿÿ) | � ÿ by Equation (7.4) and since the number of terms in each sum

above is about ÿ−ý , the pigeonhole principle gives us a square ÿ0 in [ý0] and a square ÿ0 in [ý] such

that

��� 1

ý ′
0
ý ′

∫

ÿ0

∫

ÿ0

ÿ0(ý) ÿ0(ý)ÿý1
∗ ÿ1(ý − ÿ1 (ÿ))

ÿ∏

ÿ=2

ÿÿ (ý − ÿÿ (ÿ))ýÿ(ý)ýÿ(ÿ)
��� � ÿ.

Write [ý ′]ýÿ = {ÿ ∈ C : |ÿ |∞ ≤
√
ý ′}, where |ÿ |∞ = max(|ý |, |ÿ |) for ÿ = ý+ÿÿ. Hence, ÿ0 = ÿ0+ [ý ′]ýÿ

for some ÿ0 ∈ [ý]. For ÿ ∈ ÿ0, we have ÿ = ÿ0 + ÿ for some ÿ ∈ [ý ′]ýÿ and so by the mean value

theorem and the 1-boundedness of ÿ1,
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|ÿý1
∗ ÿ1(ý − ÿ1 (ÿ0 + ÿ)) − ÿý1

∗ ÿ1(ý − ÿ1 (ÿ0)) |

≤
√

(ý ′)Degÿ1

ý1

∫

C

‖(∇ÿ)ý1
(ÿ)‖ýÿ(ÿ) �ÿ ÿ (ýDegÿ1−ÿ1)/2,

where ý1 = ÿÿ1ýDegÿ1 . Ensuring that ý deg ÿ1 − ÿ1 ≥ 4, we see that

��� 1

ý ′
0
ý ′

∫

ÿ0

∫

[ý ′ ]ýÿ
ÿ0(ý)ÿý1

∗ ÿ1(ý − ÿ1 (ÿ0))
ÿ∏

ÿ=2

ÿ ýÿ (ý − ÿ′
ÿ (ÿ))ýÿ(ý)ýÿ(ÿ)

��� � ÿ,

where ÿ′
ÿ (ÿ) = ÿÿ (ÿ0 + ÿ) −ÿÿ (ÿ0) and ÿ ý

ÿ
(ý) = ÿÿ (ý+ÿÿ (ÿ0)). For an appropriate interval ý ′ containing

ÿ0 with measure 
 ý ′
0
, we can write the above inequality as |ΛP′;ý ′ ( ÿ ′

0
, ÿ ′

2
, . . . , ÿ ′

ÿ) | � ÿ, where P ′ =
{ÿ′

2
, . . . , ÿ′

ÿ}, ÿ ′
0
(ý) = ÿ0(ý)ÿý1

∗ ÿ1 (ý − ÿ1 (ÿ0))1ÿ0
(ý) and ÿ ′

ÿ (ý) = ÿ ý
ÿ
(ý)1ý ′ (ý) for ÿ ∈ �ÿ� \ �1�.

Here,

ΛP′;ý ′ ( ÿ ′
0 , . . . , ÿ

′
ÿ) = 1

ý ′
0

.

C2

ÿ ′
0 (ý)

ÿ∏

ÿ=2

ÿ ′
ÿ (ý − ÿ′

ÿ (ÿ))ýÿ [ý ′ ]ýÿ (ÿ)ýÿ(ý).

Again, in order to apply Theorem 6.1, we need ý ′ = ÿýý ≥ 1 which holds provided ý � ÿ−ÿP (1) .
Therefore, by Theorem 6.1 (see the remark following the statement of Theorem 6.1), we conclude that

(ý ′
0)−1

��ÿ [ý2 ]ýÿ ∗ ÿ ′
2

��
ÿ1 (C) �P ÿÿ (1)

for some ý2 
 ÿÿ2+ý deg(ÿ2)ýdeg(ÿ2) . The function ÿ [ý2 ] ∗ ÿ ′
2

is supported on an interval ý ′′ ⊇ ý ′ such

that ÿ(ý ′′ \ ý ′) � ý2. Furthermore, we can find an interval ý ′′′ ⊆ ý ′ so that ÿ(ý ′ \ ý ′′′) � ý2 and for

ý ∈ ý ′′′, we have 1ý ′ (ý − ÿ) = 1 for all ÿ ∈ [ý2]ýÿ . Hence,

ÿÿ (1)
�

1

ý ′
0

∫

ý ′′′

���
∫

C

ÿ2(ý + ÿ2 (ÿ0) − ÿ)ýÿ [ý2 ]ýÿ (ÿ)
���ýÿ(ý) + ÿ (ý2 (ý ′

0)−1),

where ý2/ý ′
0
� ÿý (deg ÿ2−1) and deg ÿ2 −1 ≥ 1. Hence, for ý � 1 sufficiently large, we conclude that

ÿÿ (1)
�

1

ý ′
0

∫

ý ′′′

���
∫

C

ÿ2 (ý + ÿ2 (ÿ0) − ÿ)ýÿ [ý2 ]ýÿ (ÿ)
���ýÿ(ý) � ý−1

0 ‖ÿ [ý2 ]ýÿ ∗ ÿ2‖ÿ1 (C) . (7.10)

In the final inequality, we promoted the integration in x to all ofC and changed variables ý → ý+ÿ2 (ÿ0).
Hence, we have shown that Equation (7.2) implies ý−1

0
‖ÿ [ý2 ]ýÿ ∗ ÿ2‖ÿ1 (C) � ÿÿ (1) . Since Equation

(7.2) holds with ÿ2 replaced by ÿý2
∗ ÿ2 (this is Equation (7.9)), we see that

ÿÿ (1)
� ý−1

0 ‖ÿ [ý2 ]ýÿ ∗ ÿý2
∗ ÿ2‖ÿ1 (C) ≤ ý−1

0 ‖ÿý2
∗ ÿ2‖ÿ1 (C) ,

establishing Equation (7.3) for ÿ = 2. Now, we can proceed inductively and obtain Equation (7.3) for all

ÿ ∈ �ÿ�.

7.1. Multilinear functions and their duals

Recall the multilinear form

ΛP;ý ( ÿ0, ÿ1, . . . , ÿÿ) = 1

ý0

.

K2

ÿ0(ý)
ÿ∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý).
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We define the multilinear function

ýP
ý ( ÿ1, . . . , ÿÿ) (ý) :=

∫

K

ÿ∏

ÿ=1

ÿÿ (ý − ÿÿ (ÿ))ýÿ [ý ] (ÿ)

so that ΛP;ý can be written as a pairing of ýP
ý

with ÿ0,

〈ýP
ý ( ÿ1, . . . , ÿÿ), ÿ0〉 = ý0 ΛP;ý , [ý0 ] ( ÿ0, ÿ1, . . . , ÿÿ),

where 〈 ÿ , ý〉 =
∫
K
ÿ (ý)ý(ý)ýÿ(ý). By duality, we have

〈ýP
ý ( ÿ1, . . . , ÿÿ), ÿ0〉 = 〈(ýP

ý )∗ ÿ ( ÿ1, . . . , ÿ ÿ−1, ÿ0, ÿ ÿ+1, . . . , ÿÿ), ÿ ÿ〉,

where

(ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ) (ý) :=

∫

K

ÿ∏

ÿ=1
ÿ≠ ÿ

ÿÿ (ý − ÿÿ (ÿ) + ÿ ÿ (ÿ)) ÿ0(ý + ÿ ÿ (ÿ))ýÿ [ý ] (ÿ).

Lemma 7.11 (Application of Hahn–Banach). Let ý, ý > 0, let ý ⊂ K be an interval, and let G be an

element of ÿ2 (ý). Let Φ be a family of vectors in ÿ2 (ý), and assume the following inverse theorem:

Whenever ÿ ∈ ÿ2 (ý) is such that ‖ ÿ ‖ÿ∞ (ý ) ≤ 1 and |〈 ÿ , ÿ〉| > ý, then |〈 ÿ , ÿ〉| > ý for some ÿ ∈ Φ.

Then G lies in the closed convex hull of

ý = {ÿÿ ∈ ÿ2 (ý) : ÿ ∈ Φ, |ÿ | ≤ ý/ý} ∪ {ℎ ∈ ÿ2 (ý) : ‖ℎ‖ÿ1 (ý ) ≤ ý}. (7.12)

Proof. By way of contradiction, suppose that G does not lie in ÿ = convý
‖ · ‖

ÿ2 (ý ) . From the Hahn–

Banach theorem, we can find a continuous linear functional Λ of ÿ2 (ý) which separates G from W; that

is, there is a ÿ ∈ R such that ReΛ(ℎ) ≤ ÿ < ReΛ(ÿ) for all ℎ ∈ ÿ . Scaling Λ allows us to change the

constant C, so we can choose Λ such that ÿ = ý is in the statement of the lemma. Since W is balanced,

we see that |Λ(ℎ) | ≤ ý < ReΛ(ÿ) for all ℎ ∈ ÿ . By the Riesz representation theorem, there is an

ÿ ∈ ÿ2 (ý) which represents Λ so that |〈 ÿ , ℎ〉| ≤ ý < Re〈 ÿ , ÿ〉 for all ℎ ∈ ý . This implies that

|〈 ÿ , ÿ〉| ≤ ý

for all ÿ ∈ Φ and that

‖ ÿ ‖ÿ∞ (ý ) = sup
‖ℎ ‖

ÿ1 (ý ) ≤1

|〈 ÿ , ℎ〉| ≤ 1,

contradicting the hypothesis of the lemma. This completes the proof of the lemma. �

Corollary 7.13 (Structure of dual functions). Let ý ≥ 1 be a scale, ÿ ∈ Z+ and 0 < ÿ ≤ 1 be given.

Let P := {ÿ1, . . . , ÿÿ} be a collection of polynomials such that 1 ≤ deg ÿ1 < . . . < deg ÿÿ. Let

ÿ0, ÿ1, . . . , ÿÿ ∈ ÿ0 (K) be 1-bounded functions supported on an interval of measure ý0 = ýdeg(ÿÿ) .
Then for every ÿ ∈ �ÿ�, provided ý � ÿ−ÿP (1) , there exist a decomposition

(ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ) (ý) = ÿ ÿ (ý) + ý ÿ (ý), (7.14)

where ÿ ÿ ∈ ÿ2 (K) has Fourier transform supported in [(ý ÿ )−1], where ý ÿ 
 ÿÿ ÿýdeg ÿÿ and ÿ ÿ is as

in Theorem 7.1, and obeys the bounds

‖ÿ ÿ ‖ÿ∞ (K) �ÿ 1, and ‖ÿ ÿ ‖ÿ1 (K) �ÿ ý0. (7.15)
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The error term ý ÿ ∈ ÿ1 (K) obeys the bound

‖ý ÿ ‖ÿ1 (K) ≤ ÿý0. (7.16)

Proof. Fix ÿ ∈ �ÿ�, let ý0 := supp (ýP
ý
)∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ) and recall that ý0 = ýdeg(ÿÿ) . By

translation invariance we may assume supp ÿ ÿ ⊆ [ý0] for all ÿ ∈ �ÿ�, and that ý0 := [ÿ (ý0)]. If there

exists ÿ ∈ ÿ∞ (ý0) with ‖ ÿ ‖ÿ∞ (ý0) ≤ 1 such that

|〈 ÿ , (ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ)〉| > ÿý0, (7.17)

then proceeding as in the proof of Theorem 7.1 we may conclude that

|〈ÿý ÿ
∗ ÿ , (ýP

ý )∗ ÿ (ÿý1
∗ ÿ1, . . . , ÿý ÿ−1

∗ ÿ ÿ−1, ÿ0, ÿ ÿ+1 . . . , ÿÿ)〉| ≥ ýÿ ÿý0,

where ýÿ 
 ÿÿÿýdeg(ÿÿ) for ÿ ∈ � ÿ�. This implies that there exists a 1-bounded ý ∈ ÿ2 (K) with

‖ý‖ÿ1 (K) ≤ ý0 such that supp ý̂ ⊆ [ý−1
ÿ ] and

|〈 ÿ , ý〉| ≥ ýÿ ÿý0. (7.18)

If fact, we can take

ý (ý) = ÿ̃ý ÿ
∗ (ýP

ý )∗ ÿ (ÿý1
∗ ÿ1, . . . , ÿý ÿ−1

∗ ÿ ÿ−1, ÿ0, ÿ ÿ+1 . . . , ÿÿ) (ý),

where ÿ̃(ý) = ÿ(−ý). Let Ψ denote the collection of all 1-bounded ý ∈ ÿ2 (K) with supp ý̂ ⊆ [ý−1
ÿ ] and

‖ý‖ÿ1 (K) ≤ ý0. Invoking Lemma 7.11 with ý = ÿý0/4 and ý = ýÿÿý0 and the setΦ = {ý1ý0 : ý ∈ Ψ},
we obtain a decomposition

(ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ ÿ−1, ÿ0, ÿ ÿ+1, . . . , ÿÿ) =

∞∑

ý=1

ýýÿý + ý (1) + ý (2), (7.19)

with the following properties:

(i) for each ý ∈ Z+, we have that ÿý = ÿýýý1ý0 , ýý ∈ Ψ and ÿý ∈ C such that |ÿý | �ÿ 1;

(ii) the coefficients ýý are nonnegative with
∑∞
ý=1 ýý ≤ 1, and all but finitely ýý vanish;

(iii) the error term ý (1) ∈ ÿ1 (ý0) satisfies ‖ý (1)‖ÿ1 (ý0) ≤ ÿý0/2;

(iv) the error term ý (2) ∈ ÿ2 (ý0) satisfies ‖ý (2)‖ÿ2 (ý0) ≤ ÿ.

The latter error term arises as a consequence of the fact that one is working with the closed convex hull

instead of the convex hull. In fact, its ÿ2 (ý0) norm can be made arbitrarily small, but ÿ will suffice for

our purposes.

Grouping together terms in the decomposition (7.19), we have

(ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ ÿ−1, ÿ0, ÿ ÿ+1, . . . , ÿÿ) = ÿ ′

ÿ + ý ′
ÿ ,

where

ÿ ′
ÿ =

[ ∞∑

ý=1

ýýÿýýý
]
1ý0 satisfies ‖ÿ ′

ÿ ‖ÿ1 (K) ≤
∞∑

ý=1

ýý |ÿý |‖ýý ‖ÿ1 (K) �ÿ ý0 and

‖ÿ ′
ÿ ‖ÿ∞ (K) ≤ sup

ý∈N
‖ýý ‖ÿ∞ (K)

∞∑

ý=1

ýý |ÿý | �ÿ 1.

Also, ý ′
ÿ = ý (1) +ý (2) satisfies ‖ý ′

ÿ ‖ÿ1 (ý0) ≤ ÿý0 by (iii) and (iv) above since by the Cauchy–Schwarz

inequality, we have ‖ý (2)‖ÿ1 (ý0) ≤ ÿý
1/2

0
.

We note that the function ý (ý) = ∑∞
ÿ=1 ýÿÿÿýÿ (ý) is Fourier supported in the interval [ý−1

ÿ ].
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When K is non-Archimedean, supp(1̂ý0 ) ⊆ [ý−1
0

] and so the Fourier transform of ÿ ′
ÿ is supported in

[ý−1
ÿ ]. This verifies Equation (7.15) in this case and completes the proof when K is non-Archimedean

since the decomposition ÿ ′
ÿ + ý ′

ÿ of (ýP
ý
)∗ ÿ satisfies Equations (7.15) and (7.16).

Now, suppose K is Archimedean. Let ÿ be a Schwartz function such that
∫
K
ÿ(ý)ýÿ(ý) = 1 and

supp ÿ̂ ⊆ [2]. Let ý 
 ÿÿ (1)ý0 and as usual, set ÿý (ý) = ý−1ÿ(ý−1ý) when K = R and ÿý (ý) =
ý−1ÿ(ý−1/2ý) when K = C. From the proof of Equation (7.8), we have

‖1ý0 − 1ý0 ∗ ÿý ‖ÿ1 (K) � ý1/4ý0
3/4. (7.20)

We set ÿ ÿ (ý) = ý (ý)1ý0 ∗ ÿý (ý) and ý ÿ = ý (1) + ý (2) + (1ý0 − 1ý0 ∗ ÿý )ý so that

(ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ ÿ−1, ÿ0, ÿ ÿ+1, . . . , ÿÿ) (ý) = ÿ ÿ (ý) + ý ÿ (ý).

From Equation (7.20), we see that ý ÿ satisfies Equation (7.16). The properties ‖ÿ ÿ ‖ÿ∞ (K) �ÿ 1 and

‖ÿ ÿ ‖ÿ1 (K) �ÿ ý0 are still preserved. Moreover, supp ÿ̂ ÿ ⊆ [ÿ (ý−1
ÿ )] since

ÿ̂ ÿ = (1̂ý0 ÿ̂ý ) ∗ ý̂.

The shows that Equation (7.15) holds for ÿ ÿ and this completes the proof of the corollary. �

We will combine Corollary 7.13 and the following ÿ ý improving bound for polynomial averages to

establish the key Sobolev inequality.

Lemma 7.21 (ÿý-improving for polynomial averages). Letý ∈ K[y] with deg(ý) = ý, and let ý �ý 1

be a large scale. Consider the averaging operator

ý
ý

ý
ý(ý) :=

∫

K

ý(ý −ý(ÿ))ýÿ [ý ] (ÿ).

For any parameters 1 < ÿ < ý < ∞ satisfying 1/ý = 1/ÿ − 1/ý, the following inequality holds:

‖ýý

ý
ý‖ÿý (K) �ý ýý ( 1

ý
− 1

ÿ
) ‖ý‖ÿÿ (K) for ý ∈ ÿÿ (K). (7.22)

Proof. As our bounds are allowed to depend on Q, we may assume that Q is monic. Let ÿ ∈ K be such

that |ÿ | = ý , and change variables ÿ → ÿÿ to write

ýý
ý ý(ý) =

∫

ý1 (0)
ý(ý −ý(ÿÿ)) ýÿ(ÿ) =

∫

ý1 (0)
ýÿ (ÿ−ýý −ýÿ (ÿ)) ýÿ(ÿ)

where ýÿ (ý) = ý(ÿýý) and ýÿ (ÿ) = ÿ−ýý(ÿÿ) = ÿý + ÿ−1ÿý−1ÿ
ý−1 + . . . + ÿ−ýÿ0. Hence, the right-

hand side above can be written as ý1
ýÿ

ýÿ (ÿ−ýý). Since ‖ýÿ‖ÿÿ (K) = ý−ý/ÿ ‖ý‖ÿÿ (K) , we see that

matters are reduced to proving Equation (7.22) for ý = 1 and ý = ýÿ with uniform bounds in ÿ.

The mapping ÿ → ýÿ (ÿ) is d-to-1, and we can use a generalised change of variables formula to see

that

|ý1
ýÿ

ý(ý) | �
∫

|ý | ≤2

|ý(ý − ý) | |ý |−(ý−1)/ýýÿ(ý)

when ý �ý 1. Hence ý1
ÿ is controlled by fractional integration, uniformly in ÿ. When K is

Archimedean, such a change of variables formula is well known. Recall that when K = C, |ý | = ýý is

the square of the usual absolute value.

When K = Qý is the p-adic field, such a formula is given in [12]. The argument in [12] generalises

to general non-Archimedean fields (when the characteristic, if positive, is larger than d). Alternatively,
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one can use a construction in [46], valid in any local field and valid for any polynomial Q where ý ′(ý)
does not equal to zero mod ÿK for any nonzero x (we need the condition on the characteristic of the

field for this), in which the unit group ý =
⋃

ÿ∈�ý�ý ÿ is partitioned into ý = gcd(ý, ÿ − 1) open sets

and analytic isomorphisms ÿ ÿ : ÿ ÿ → ÿ ÿ (ÿ ÿ ) are constructed such that ÿ = ÿ ÿ (ý) precisely when

ý(ÿ) = ý. For us, ý ′
ÿ (ý) ≠ 0 mod ÿK for any nonzero x if |ÿ | = ý �ý 1 is sufficiently large.

By the Hardy–Littlewood–Sobolev inequality (easily seen to be valid over general locally compact

topological fields), we have

‖ý1
ýÿ

ý‖ÿý (K) � ‖ý‖ÿÿ (K) ,

uniformly in ÿ whenever 1/ý = 1/ÿ − 1/ý, completing the proof of the lemma. �

We now come to the proof of Theorem 1.6.

As in the set up for Theorem 7.1, we fix a smooth function ÿ with compact Fourier support. When

K is Archimedean, let ÿ be a Schwartz function on K so that

1[1] (ÿ) ≤ ÿ̂(ÿ) ≤ 1[2] (ÿ), ÿ ∈ K.

When K = R, we set ÿý (ý) = ý−1ÿ(ý−1ý) for any ý > 0 and when K = C, we set ÿý (ÿ) =

ý−1ÿ(ý−1/2ÿ) for any ý > 0. When K is non-Archimedean, we set ÿ(ý) = 1ý1 (0) (ý) so that ÿ̂(ÿ) =

1ý1 (0) (ÿ) and we set ÿý (ý) = ý−1
1[ý ] (ý) for any scale N. We restate Theorem 1.6 in a more formal,

precise way.

Theorem 7.23 (A Sobolev inequality for ýP
ý

). Let P := {ÿ1, . . . , ÿÿ} be a collection of polynomials

such that 1 ≤ deg ÿ1 < . . . < deg ÿÿ. Let ý �P 1 be a scale, ÿ ∈ Z+ and 0 < ÿ ≤ 1 be given.

Let 1 < ý1, . . . , ýÿ < ∞ satisfying 1
ý1

+ . . . + 1
ýÿ

= 1 be given. Suppose ý � ÿ−ÿP (1) . Then for all

ÿ1 ∈ ÿ ý1 (K), . . . , ÿÿ ∈ ÿ ýÿ (K) we have

‖ýP
ý ( ÿ1, . . . , ÿ ÿ−1, (ÿ0 − ÿý ÿ

) ∗ ÿ ÿ , ÿ ÿ+1 . . . , ÿÿ)‖ÿ1 (K) � ÿ1/8
ÿ∏

ÿ=1

‖ ÿÿ ‖ÿýÿ (K) , (7.24)

where ý ÿ 
 ÿÿ ÿýdeg ÿÿ and ÿ ÿ is the parameter from Theorem 7.1. Here, ÿ̂0 ≡ 1.

Remark. The proof of Theorem 7.23 (and its statement) implicitly assumes that ÿ ≥ 2, but there is a

version when ÿ = 1, which will be given in Section 8 where it is needed.

Proof. We fix ÿ ∈ �ÿ − 1� and recall ý ÿ 
 ÿÿ (1)ýdeg(ÿÿ ) . We first prove that for every functions

ÿ1, . . . , ÿ ÿ−1, ÿ ÿ+1, . . . , ÿÿ−1 ∈ ÿ∞ (K) and ÿ ÿ , ÿÿ ∈ ÿ2 (K), we have

‖ýP
ý ( ÿ1, . . . , ÿ ÿ−1, (ÿ0 − ÿý ÿ

) ∗ ÿ ÿ , ÿ ÿ+1 . . . , ÿÿ)‖ÿ1 (K)

� ÿ1/8

( ÿ−1∏

ÿ=1
ÿ≠ ÿ

‖ ÿÿ ‖ÿ∞ (K)

)
‖ ÿ ÿ ‖ÿ2 (K) ‖ ÿÿ‖ÿ2 (K) .

(7.25)

Choose ÿ0 ∈ ÿ∞ (K) so that ‖ ÿ0‖ÿ∞ (K) = 1 and

‖ýP
ý ( ÿ1, . . . , ÿ ÿ−1, (ÿ0 − ÿý ÿ

) ∗ ÿ ÿ , ÿ ÿ+1 . . . , ÿÿ)‖ÿ1 (K)


 |〈ýP
ý ( ÿ1, . . . , ÿ ÿ−1, (ÿ0 − ÿý ÿ

) ∗ ÿ ÿ , ÿ ÿ+1 . . . , ÿÿ), ÿ0〉|
= |〈(ÿ0 − ÿý ÿ

) ∗ (ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ), ÿ ÿ〉|.

https://doi.org/10.1017/fms.2024.104 Published online by Cambridge University Press



Forum of Mathematics, Sigma 43

By the Cauchy–Schwarz inequality, it will suffice to prove

‖(ÿ0 − ÿý ÿ
) ∗ (ýP

ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ)‖ÿ2 (K)

� ÿ1/8‖ ÿ0‖ÿ∞ (K)

( ÿ−1∏

ÿ=1
ÿ≠ ÿ

‖ ÿÿ ‖ÿ∞ (K)

)
‖ ÿÿ‖ÿ2 (K) .

(7.26)

By multilinear interpolation, the bounds (7.25) imply Equation (7.24) and so the proof of Theorem 7.23

is reduced to establishing Equation (7.26) which will be divided into three steps. In the first two steps,

we will assume that ÿÿ is supported in some interval of measure ý0 where ý0 
 ýdeg(ÿÿ) . �

Step 1

In this step, we will establish the bound

‖(ÿ0 − ÿý ÿ
) ∗ (ýP

ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ)‖ÿ2 (K)

� ÿ1/2ý
1/2

0
‖ ÿ0‖ÿ∞ (K)

( ÿ−1∏

ÿ=1
ÿ≠ ÿ

‖ ÿÿ ‖ÿ∞ (K)

)
‖ ÿÿ‖ÿ∞ (K)

(7.27)

under the assumption that ÿÿ is supported in an interval of measure ý0 (when K = C, this implies in

particular that ÿÿ is supported in a square with measure about ý0, which in Step 3 will be a helpful

observation). When ÿÿ has this support condition,

(ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ) = (ýP

ý )∗ ÿ ( ÿ ′
1 , . . . , ÿ

′
0 , . . . , ÿ

′
ÿ),

where ÿ ′
ÿ (ý) = ÿÿ (ý)1ý0 (ý) for some interval ý0 of measure ÿ (ý0). To prove Equation (7.27), it suffices

to assume ‖ ÿÿ ‖ÿ∞ (K) = 1 for ÿ = 0, 1, . . . , ÿ − 1, ÿ + 1, . . . , ÿ and so Equation (7.27) takes the form

‖(ÿ0 − ÿý ÿ
) ∗ (ýP

ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ)‖ÿ2 (K) � ÿ1/2ý
1/2

0
. (7.28)

We apply the decomposition (7.14) to (ýP
ý
)∗ ÿ ( ÿ ′

1
, . . . , ÿ ′

0
, . . . , ÿ ′

ÿ) to write

(ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ) (ý) = ÿ ÿ (ý) + ý ÿ (ý),

where ÿ ÿ satisfies Equation (7.15) and ý ÿ satisfies Equation (7.16). Using the fact that ÿ̂ ÿ ⊆ [(ý ÿ )−1],
we conclude that (ÿ0 − ÿý ÿ

) ∗ ÿ ÿ = 0. Thus,

(ÿ0 − ÿý ÿ
) ∗ (ýP

ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ) = (ÿ0 − ÿý ÿ
) ∗ ý ÿ .

From Equation (7.16) and the 1-boundedness of (ýP
ý
)∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ), we have

‖(ÿ0 − ÿý ÿ
) ∗ ý ÿ ‖ÿ1 (K) � ÿý0, and ‖(ÿ0 − ÿý ÿ

) ∗ ý ÿ ‖ÿ∞ (K) � 1,

respectively. Therefore,

‖(ÿ0 − ÿý ÿ
) ∗ ý ÿ ‖ÿ2 (K) � ÿ1/2ý

1/2

0
,

establishing (7.28) and hence Equation (7.27). This completes Step 1.
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Step 2.

We continue with our assumption that ÿÿ is supported in an interval of measure ý0, but now we relax

the ÿ∞ (K) control on ÿÿ to ÿ2 (K) control and show that

‖(ÿ0 − ÿý ÿ
) ∗ (ýP

ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ)‖ÿ2 (K)

� ÿ1/4‖ ÿ0‖ÿ∞ (K)

( ÿ−1∏

ÿ=1
ÿ≠ ÿ

‖ ÿÿ ‖ÿ∞ (K)

)
‖ ÿÿ‖ÿ2 (K) .

(7.29)

The main tool for this will be the ÿý-improving estimate (7.22) for the polynomial average ý
ý

ý
. We

have a pointwise bound

| (ýP
ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ) (ý) | ≤ ý

ÿÿ−ÿÿ

ý
| ÿÿ | (ý),

which combined with Equation (7.22) (forý = ÿÿ−ÿ ÿ , ý = deg(ÿÿ), ý = 2 and ÿ = (ý+2)/2ý) yields

‖(ÿ0 − ÿý ÿ
) ∗ (ýP

ý )∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ)‖ÿ2 (K)

� ý
−1/ý
0

‖ ÿ0‖ÿ∞ (K)

( ÿ−1∏

ÿ=1
ÿ≠ ÿ

‖ ÿÿ ‖ÿ∞ (K)

)
‖ ÿÿ‖ÿÿ (K) .

(7.30)

Interpolating Equations (7.27) and (7.30), we obtain Equation (7.29) as desired.

Step 3.

In this final step, we remove the support condition on ÿÿ and establish (7.26). To prove Equation (7.26),

we may assume that ‖ ÿÿ ‖ÿ∞ (K) = 1 for ÿ = 0, 1, . . . , ÿ − 1, ÿ + 1, . . . , ÿ − 1. We split ÿÿ =
∑

ý ∈I ÿÿ1ý ,

where I ranges over a partition I ofK into intervals I of measure ý0. We have seen this is possible when

K is non-Archimedean or when K = R. This is not possible when K = C, but in this case, we can find a

partition I of squares. By Step 1 and Step 2, the local dual function ÿ ý � (ýP
ý
)∗ ÿ ( ÿ1, . . . , ÿ0, . . . , ÿÿ1ý )

obeys the bound

‖(ÿ0 − ÿý ÿ
) ∗ ÿ ý ‖ÿ2 (K) � ÿ1/4‖ ÿÿ‖ÿ2 (ý ) (7.31)

for each interval I, and we wish to establish

���
∑

ý ∈I
(ÿ0 − ÿý ÿ

) ∗ ÿ ý

���
ÿ2 (K)

� ÿ1/8‖ ÿÿ‖ÿ2 (K) .

We will square out the sum. To handle the off-diagonal terms, we observe that for finite intervals ý, ý ⊂ K
(squares when K = C) of measure ý0 and ý > 0 and 1 ≤ ý < ∞, we have

‖ÿý ÿ
∗ ( ÿ1ý )‖ÿý (ý ) �ý,ý

(
1 + ý−1

0 dist(ý, ý)
)−ý ‖ ÿ ‖ÿý (ý ) . (7.32)

By squaring and applying Schur’s test, it suffices to obtain the decay bound

��〈(ÿ0 − ÿý ÿ
) ∗ ÿ ý , (1 − ÿý ÿ

) ∗ ÿý 〉
�� � ÿ1/4

(
1 + ý−1

0 dist(ý, ý)
)−2‖ ÿÿ‖ÿ2 (ý ) ‖ ÿÿ‖ÿ2 (ý )

for all intervals ý, ý of measure ý0. By Cauchy–Schwarz and Equation (7.31), we know

〈(ÿ0 − ÿý ÿ
) ∗ ÿ ý , (1 − ÿý ÿ

) ∗ ÿý 〉 � ÿ1/2‖ ÿÿ‖ÿ2 (ý ) ‖ ÿÿ‖ÿ2 (ý ) .

https://doi.org/10.1017/fms.2024.104 Published online by Cambridge University Press



Forum of Mathematics, Sigma 45

On the other hand, ÿ ý is supported in a ÿ (ý0)-neighborhood of I, and similarly for ÿý . From Equation

(7.32) and Cauchy–Schwarz, we thus have

〈(ÿ0 − ÿý ÿ
) ∗ ÿ ý , (1 − ÿý ÿ

) ∗ ÿý 〉 �
(
1 + ý−1

0 dist(ý, ý)
)−10‖ÿ ý ‖ÿ2 (K) ‖ÿý ‖ÿ2 (K)

�
(
1 + ý−1

0 dist(ý, ý)
)−10‖ ÿÿ‖ÿ2 (ý ) ‖ ÿÿ‖ÿ2 (ý ) .

Taking the geometric mean of the two estimates, we obtain the claim in Equation (7.26). This completes

the proof of Theorem 7.23.

8. The implication Theorem 1.6 =⇒ Theorem 1.3

Here, we give the details of Bourgain’s argument in [3] which allow us to pass from Theorem 1.6 to

Theorem 1.3 on polynomial progressions. Let P = {ÿ1, . . . , ÿÿ} be a sequence of polynomials in K[y]
with distinct degrees and no constant terms. Without loss of generality, we may assume

deg ÿ1 < deg ÿ2 < · · · < deg ÿÿ,

and we set ýÿ− ÿ := deg ÿ ÿ and ý := ý0 = deg ÿÿ so that ýÿ−1 < · · · < ý1 < ý.

Since the argument showing how Theorem 1.6 implies Theorem 1.3 has been given in [3], [11] and

[8] in the Euclidean setting (albeit for shorter polynomial progressions), we will only give the details

for non-Archimedean fields K where uniform notation can be employed.

We will proceed in several steps.

Step 1

When K is non-Archimedean, the family (ýý )ý>0 of convolution operators defined by

ýý ÿ (ý) = ÿ ∗ ÿ [ý ] (ý) =
1

ý

∫

|ÿ | ≤ý
ÿ (ý − ÿ)ýÿ(ÿ) for scales ý > 0

gives us a natural approximation of the identity and form the analogue of the Poisson semigroup in the

non-Archimedean setting. They also give us Fourier localization since

ý̂ý ÿ (ÿ) = ý̂ý (ÿ) ÿ̂ (ÿ) = 1[ý−1 ] (ÿ) ÿ̂ (ÿ). (8.1)

We will need the following bound for (ýý )ý>0 (see Lemma 6 in [3] or Lemma 2.1 in [11]): For ÿ ≥ 0

and scales 0 < ý1, . . . , ýÿ ≤ 1,

∫

ý1 (0)
ÿ (ý)ýý1 ÿ (ý) · · ·ýýÿ ÿ (ý)ýÿ(ý) ≥

( ∫

ý1 (0)
ÿ (ý)ýÿ(ý)

)ÿ+1

. (8.2)

The proof in the euclidean setting given in [11] established Equation (8.2) for general approximations

of the identity, but the first step is to show Equation (8.2) for martingales (ýý )ý∈N defined with respect

to dyadic intervals. However, a small scale t in a non-Archimedean field K is the form ý = ÿ−ý and

ýý ÿ (ý) = ÿý
∫

|ÿ | ≤ÿ−ý
ÿ (ý − ÿ)ýÿ(ÿ) =

∑

ý∈Cý

ýý,ý ÿ 1ý
ÿ−ý (ý), where

Cý = {ý = ý0 + ý1ÿ + · · · + ýý−1ÿ
ý−1 : ý ÿ ∈ ýK/ÿK} and ýý,ý ÿ = ÿý

∫

ý
ÿ−ý (ý)

ÿ (ÿ)ýÿ(ÿ).

Hence, (ýý )ý>0 is a martingale with respect to the dyadic structure of non-Archimedean fields and so

the argument in [11] extends without change to establish Equation(8.2).
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Step 2

Fix ÿ > 0. Our goal is to find a ÿ(ÿ,P) > 0 and ý (ÿ,P) ≥ 1 such that for any scale ý ≥ ý (ÿ,P) and

ÿ ∈ ÿ0 (K) with 0 ≤ ÿ ≤ 1 satisfying
∫
K
ÿ ýÿ ≥ ÿýý , we have

ý :=
1

ýý

.

K2

ÿ (ý) ÿ (ý + ÿ1(ÿ)) · · · ÿ (ý + ÿÿ (ÿ))ýÿ [ý ] (ÿ)ýÿ(ý) ≥ ÿ. (8.3)

Taking ÿ = 1ÿ with ÿ ⊆ K in Theorem 1.3 implies Equation (1.4), the desired conclusion. We may

assume the f is supported in the interval [ýý].
Let ÿ, ÿ ∈ K satisfy |ÿ | = ýý and |ÿ | = ý , and write

ý =

.

K2

ý(ý)ý(ý + ý1(ÿ)) · · · ý(ý + ýÿ(ÿ))ýÿ [1] (ÿ)ýÿ(ý),

where ý(ý) = ÿ (ÿý) and ý ÿ (ÿ) = ÿ−1ÿ ÿ (ÿÿ). In particular, we have
∫
K
ý ≥ ÿ. We note that g is

supported in [1] = ý1(0). Fix three small scales 0 < ý0 � ý1 � ý � 1 and decompose

ý−1
1 ý ≥

.

K2

ý(ý)ý(ý + ý1(ÿ)) · · · ý(ý + ýÿ(ÿ))ýÿ [ý1 ] (ÿ)ýÿ(ÿ) =: ý1 + ý2 + ý3, (8.4)

where

ý1 =

.

K2

ý(ý)
ÿ−1∏

ÿ=1

ý(ý + ý ÿ (ÿ)) ýýý(ý + ýÿ(ÿ))ýÿ [ý1 ] (ÿ)ýÿ(ý),

ý2 =

.

K2

ý(ý)
ÿ−1∏

ÿ=1

ý(ý + ý ÿ (ÿ)) [ýý0 −ýý ]ý(ý + ýÿ(ÿ))ýÿ [ý1 ] (ÿ)ýÿ(ý) and

ý3 =

.

K2

ý(ý)
ÿ−1∏

ÿ=1

ý(ý + ý ÿ (ÿ)) [Id −ýý0 ]ý(ý + ýÿ (ÿ))ýÿ [ý1 ] (ÿ)ýÿ(ý).

For ý1, we note that for ý1 �ÿÿ
ý,

ýýý(ý + ýÿ(ÿ)) = 1

ý

∫

|ÿ | ≤ý
ý(ý + ýÿ(ÿ) − ÿ)ýÿ(ÿ) = 1

ý

∫

|ÿ | ≤ý
ý(ý − ÿ)ýÿ(ÿ) = ýýý(ý)

whenever |ÿ | ≤ ý1. For the final equality, we made the change of variables ÿ → ÿ − ýÿ(ÿ), noting that

when |ÿ | ≤ ý1, then |ýÿ (ÿ) | ≤ ÿÿÿ
ý1 ≤ ý. Hence,

ý1 =

.

K2

ý(ý)
ÿ−1∏

ÿ=1

ý(ý + ý ÿ (ÿ)) ýýý(ý) ýÿ [ý1 ] (ÿ)ýÿ(ý).

For ý2, we use the Cauchy–Schwarz inequality to see that

ý2 ≤ ‖ýý0ý −ýýý‖ÿ2 (K) . (8.5)

For ý3, we will use the more precise formulation of Theorem 1.6 given in Theorem 7.23. We rescale ý3,

moving from ý, ý ÿ back to ÿ , ÿ ÿ and write

ý3 =
1

ýý

.

K2

ÿ (ý)
ÿ−1∏

ÿ=1

ÿ (ý + ÿ ÿ (ÿ)) [Id −ýý0ý
ý ] ÿ (ý + ÿÿ (ÿ))ýÿ [ý1ý ] (ÿ)ýÿ(ý),
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where the function ℎ(ý) = [Id − ýý0ý
ý ] ÿ (ý) has the property that ℎ̂(ÿ) = 0 whenever |ÿ | ≤ (ý0ýý)−1;

See (8.1). Hence,

ý3 ≤ ý−ý ‖ýP
ý1ý

( ÿ , ÿ , . . . , ÿ , [Id −ýý0ý
ý ] ÿ )‖ÿ1 (K) ,

and we will want to apply Theorem 7.23 to the expression on the right with N replaced by ý1ý and

0 < ÿ ≤ 1 defined by ÿÿÿ (ýý1)ý = ýýý0 or ÿ = (ý0/ýý1 )1/ÿÿ . In order to apply Theorem 7.23, we will

need to ensure

ý ≥ ý−1
1 (ýýÿ−1

1
/ý0)ÿ

′ ≥ . . . ≥ ý−1
1 (ýý1 /ý0)ÿ

′
(8.6)

for some appropriate large ÿ ′ = ÿ ′
P

. If Equation (8.6) holds, then Theorem 7.23 implies there exists a

constant ÿ = ÿP > 0 such that

‖ýP
ý1ý

( ÿ , ÿ , . . . , ÿ , ℎ)‖ÿ1 (K) �P
(
ý0/ýý1

)ÿ ÿ∏

ÿ=1

‖ ÿ ‖ÿýÿ (K) ≤
(
ý0/ýý1

)ÿ
ýý

since 1/ý1 + · · · + 1/ýÿ = 1 and ‖ ÿ ‖ÿýÿ (K) ≤ ýý/ýÿ for ÿ ∈ �ÿ� (which follows since f is 1-bounded

and supported in [ýý]). Hence,

ý3 �P
(
ý0/ýý1

)ÿ
if (8.6) holds.

Step 3

Next we decompose ý1 = ý1
1
+ ý1

2
+ ý1

3
, where

ý1
1 =

.

K2

ý(ý)
ÿ−2∏

ÿ=1

ý(ý + ý ÿ (ÿ)) ýý/ý ý−ý1 ý(ý + ýÿ−1(ÿ))ýýý(ý) ýÿ [ý1 ] (ÿ)ýÿ(ý),

ý1
2 =

.

K2

ý(ý)
ÿ−2∏

ÿ=1

ý(ý + ý ÿ (ÿ)) [ýý0/ý ý−ý1 −ýý/ý ý−ý1 ]ý(ý + ýÿ−1(ÿ))ýýý(ý)ýÿ [ý1 ] (ÿ)ýÿ(ý) and

ý1
3 =

.

K2

ý(ý)
ÿ−2∏

ÿ=1

ý(ý + ý ÿ (ÿ)) [Id −ýý0/ý ý−ý1 ]ý(ý + ýÿ−1(ÿ))ýýý(ý)ýÿ [ý1 ] (ÿ)ýÿ(ý).

For ý1
1
, we set ý = ý/ýý−ý1 and note that for ý1 �P ý,

ýýý(ý + ýÿ−1(ÿ)) =
1

ý

∫

|ÿ | ≤ý
ý(ý + ýÿ−1(ÿ) − ÿ)ýÿ(ÿ) = 1

ý

∫

|ÿ | ≤ý
ý(ý − ÿ)ýÿ(ÿ) = ýýý(ý)

whenever |ÿ | ≤ ý1. For the final equality we made the change of variables ÿ → ÿ − ýÿ−1 (ÿ), noting that

when |ÿ | ≤ ý1, then |ýÿ−1 (ÿ) | ≤ ÿÿÿ−1
ý−(ý−ý1) ý1 ≤ ý since ý1 �P ý. Hence,

ý1
1 =

.

K2

ý(ý)
ÿ−2∏

ÿ=1

ý(ý + ý ÿ (ÿ)) ýý/ý ý−ý1 ý(ý)ýýý(ý) ýÿ [ý1 ] (ÿ)ýÿ(ý).

As in Equation (8.5), we have

ý1
2 ≤ ‖ýý0/ý ý−ý1 ý −ýý/ý ý−ý1 ý‖ÿ2 (K) .
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For ý1
3
, we will use Theorem 7.23. We rescale ý1

3
, moving from ý, ý ÿ back to ÿ , ÿ ÿ and write

ý1
3 =

1

ýý

.

K2

ÿ (ý)
ÿ−2∏

ÿ=1

ÿ (ý + ÿ ÿ (ÿ)) [Id −ýý0ý
ý1 ] ÿ (ý + ÿÿ−1(ÿ))ýýý ý ÿ (ý)ýÿ [ý1ý ] (ÿ)ýÿ(ý),

where the function ℎ′(ý) = [Id−ýý0ý
ý1 ] ÿ (ý) has the property that ℎ̂′(ÿ) = 0 whenever |ÿ | ≤ (ý0ýý1 )−1.

Hence, for P ′ = {ÿ1, . . . , ÿÿ−1},

ý1
3 ≤ ý−ý ‖ýP′

ý1ý
( ÿ ýýý ý ÿ , ÿ , . . . , ÿ , [Id −ýý0ý

ý1 ] ÿ )‖ÿ1 (K)

and so, as long as Equation (8.6) holds, Theorem 7.23 implies there exists a constant ÿ′ = ÿP′ > 0 such

that

‖ýP′
ý1ý

( ÿ ýýý ý ÿ , ÿ , . . . , ÿ , ℎ′)‖ÿ1 (K) �P′
(
ý0/ýý1

)ÿ′
ÿ∏

ÿ=1

‖ ÿ ‖ÿýÿ (K) ≤
(
ý0/ýý1

)ÿ′
ýý

since 1/ý1 + · · · + 1/ýÿ−1 = 1 and ‖ ÿ ‖ÿýÿ (K) ≤ ýý/ýÿ for ÿ ∈ �ÿ − 1� (which follows since f is

1-bounded and supported in [ýý]). Hence,

ý1
3 �P

′
(
ý0/ýý1

)ÿ′
if (8.6) holds.

Step 4

We iterate, decomposing ý1
1
= ý2

1
+ ý2

2
+ ý2

3
, followed by decomposing ý2

1
= ý3

1
+ ý3

2
+ ý3

3
and so on. For

each 0 ≤ ÿ ≤ ÿ − 1, we have

ý
ÿ

1
=

.

K2

ý(ý)
( ÿ− ÿ−1∏

ÿ=1

ý(ý + ýÿ (ÿ))
) ( ÿ∏

ÿ=0

ýý/ý ý−ýÿ ý(ý)
)
ýÿ [ý1 ] (ÿ)ýÿ(ý), (8.7)

ý
ÿ

2
≤ ‖ý

ý0/ý ý−ýÿ ý −ý
ý/ý ý−ýÿ ý‖ÿ2 (K) and ý

ÿ

3
�P

(
ý0/ýý1

)ÿ
for some ÿ = ÿP > 0, (8.8)

again if Equation (8.6) holds. Strictly speaking, the estimate (8.8) for ý
ÿ

3
does not follow from Theorem

7.23 when ÿ = ÿ − 1 since the proof of Theorem 7.23 assumed that the collection P of polynomials

consisted of at least two polynomials. Nevertheless, the bound (8.8) holds when ÿ = ÿ − 1. To see this,

we apply the Cauchy–Schwarz inequality and Plancherel’s theorem to see that

|ýÿ−1
3 |2 ≤ 1

ýý

∫

K

��
∫

K

[Id −ýý0ý
ýÿ−1 ] ÿ (ý + ÿ1 (ÿ)) ýÿ [ý1ý ] (ÿ)

��2 ýÿ(ý)

=
1

ýý

∫

|ÿ | ≥(ý ýÿ−1 ý0)−1

| ÿ̂ (ÿ) |2 |ÿý ,ý1 (ÿ) |2 ýÿ(ÿ), where ÿý ,ý1 (ÿ) :=

∫

ý1 (0)
e(ÿ1 (ý1ýÿ)ÿ) ýÿ(ÿ).

The oscillatory integral bound (3.1) implies that |ÿý ,ý1 (ÿ) | �P (ý0/ý1)ÿ whenever |ÿ | ≥ (ýýÿ−1 ý0)−1,

and so Equation (8.8) for ý
ÿ

3
follows when ÿ = ÿ − 1 since ‖ ÿ ‖2

ÿ2 (K) ≤ ýý .

Step 5

From Equation (8.4) and the iterated decomposition of ý1, we see that ý−1
1
ý ≥ ý + ý + ÿ, where

ý =

∫

K

ý(ý)
ÿ−1∏

ÿ=0

ý
ý/ý ý−ýÿ ý(ý) ýÿ(ý) ≥ ÿÿ+1
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by Equation (8.2), and for some ÿP > 0, we have

|ý | ≤ ÿP

ÿ−1∑

ÿ=0

‖ý
ý0/ý ý−ýÿ ý −ý

ý/ý ý−ýÿ ý‖ÿ2 (K) and |ÿ | ≤ ÿP

(
ý0/ýý1

)ÿ ≤ ÿÿ+1/4

if ý0 ≤ ý0 ÿ
(ÿ+1)/ÿ ýý

1
and ýÿ

0
ÿP < 1/4 and Equation (8.6) holds.

Finally, we claim that we can find a triple ý0 � ý1 � ý of small scales such that |ý | ≤ ÿÿ+1/4. If we

are able to do this, then ý ≥ ÿÿ+1ý1/2 and the proof is complete.

Define ÿ := −ÿ0 logÿ (ý0ÿ
(ÿ+1)/ÿ) for some large constant ÿ0 � ý. Choose a sequence of small

scales ý0 = ÿ−ℓ ÿ and ý1 = ÿ−ý ÿ and ý = ÿ−ÿ ÿ satisfying

0 ≤ ÿ1 < ýý1 + ÿ < ℓ1 < ÿ2 < ýý2 + ÿ < ℓ2 < . . . < ÿÿ < ýýÿ + ÿ < ℓÿ < . . .

and ℓÿ+1 ≤ ℓÿ − ÿ0 logÿ (ý0ÿ
(ÿ+1)/ÿ).

(8.9)

Taking ÿ ∈ N such that ÿ = �16ÿPÿ
2ÿ−2(ÿ+1) + 1 we claim that there exists ÿ ∈ �ÿ� such that

ÿP

ÿ−1∑

ÿ=0

‖ý
ÿ

−ℓÿ ý −(ý−ýÿ ) ý −ýÿ
−ÿÿ ý −(ý−ýÿ ) ý‖ÿ2 (K) < ÿÿ+1/4. (8.10)

Indeed, suppose for a contradiction that Equation (8.10) does not hold. Then for all ÿ ∈ �ÿ� by the

Cauchy–Schwarz inequality, we have

ÿ2(ÿ+1) ≤ 16ÿ2
Pÿ

ÿ−1∑

ÿ=0

‖ý
ÿ

−ℓÿ ý −(ý−ýÿ ) ý −ýÿ
−ÿÿ ý −(ý−ýÿ ) ý‖2

ÿ2 (K) .

Then

ÿÿ2(ÿ+1) ≤ 16ÿ2
Pÿ

ÿ∑

ÿ=1

ÿ−1∑

ÿ=0

‖ý
ÿ

−ℓÿ ý −(ý−ýÿ ) ý −ýÿ
−ÿÿ ý −(ý−ýÿ ) ý‖2

ÿ2 (K)

= 16ÿ2
Pÿ

ÿ−1∑

ÿ=0

∫

K

|ý̂(ÿ) |2
ÿ∑

ÿ=1

��1[ÿℓÿ ý ý−ýÿ ] (ÿ) − 1[ÿÿÿ ý ý−ýÿ ] (ÿ)
��2ýÿ(ÿ) ≤ 16ÿ2

Pÿ
2‖ý‖2

ÿ2 (K) ,

and this implies ÿ ≤ 16ÿ2
P
ÿ2ÿ−2(ÿ+1) since ‖ý‖ÿ2 (K) ≤ 1, which is impossible by our choice of L.

Therefore, there exists ÿ ∈ �ÿ� and a corresponding triple of scales ý0 = ÿ−ℓ ÿ � ý1 = ÿ−ý ÿ � ý =

ÿ−ÿ ÿ satisfying the desired properties for which Equation (8.10) is true. In particular, |ý | ≤ ÿÿ+1/4

holds.

Step 6

Furthermore, with these scales by Equation (8.9), we have ý0 = ÿ−ℓ ÿ � (ý0ÿ
ÿ+1)ÿP (ÿ2ÿ−2(ÿ+1) ) . In order

to ensure that Equation (8.6) holds for every iteration in the decomposition, we set

ý (ÿ,P) := (ý0ÿ
ÿ+1)−ÿP (ÿ2 ÿ−2(ÿ+1) )

so that for every ý ≥ ý (ÿ,P) condition (8.6) holds. Hence,

ý � ÿÿ+1ý1 � ÿÿ+1ý0 � ÿÿ+1(ý0ÿ
ÿ+1)ÿP (ÿ2 ÿ−2(ÿ+1) ) ,

establishing the desired bound (8.3) with ÿ = ÿÿ1ÿ
−2ÿ−2

for some ÿ1 > 0 depending only on P .

This completes the proof of Theorem 1.3.
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