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Abstract

We prove uniform �2-valued maximal inequalities for polynomial ergodic averages

and truncated singular operators of Cotlar type modeled over multidimensional subsets

of primes. In the averages case, we combine this with earlier one-parameter oscillation

estimates (Mehlhop and Słomian in Math Ann, 2023, https://doi.org/10.1007/s00208-

023-02597-8) to prove corresponding multiparameter oscillation estimates. This pro-

vides a fuller quantitative description of the pointwise convergence of the mentioned

averages and is a generalization of the polynomial Dunford–Zygmund ergodic theorem

attributed to Bourgain (Mirek et al. in Rev Mat Iberoam 38:2249–2284, 2022).

Keywords Oscillation seminorm · Vector-valued inequality · Ergodic average along

primes · Multiparameter average

Mathematics Subject Classification 37A30 (Primary) · 37A46 · 42B20

1 Introduction

1.1 Statement of Results

Let (X ,B, μ) be a σ -finite measure space endowed with a family of invertible com-

muting and measure preserving transformations S1, . . . , Sd : X → X . Let � be

a bounded convex open subset of Rk such that B(0, c�) ⊆ � ⊆ B(0, 1) for some

c� ∈ (0, 1), where B(0, u) is the open Euclidean ball in Rk with radius u > 0 centered

Communicated by Stefan Steinerberger.

B Nathan Mehlhop

nmehlhop@lsu.edu

1 Department of Mathematics, Louisiana State University, Baton Rouge, LA 07802, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-024-10119-6&domain=pdf
http://orcid.org/0009-0003-8078-6436
https://doi.org/10.1007/s00208-023-02597-8
https://doi.org/10.1007/s00208-023-02597-8


61 Page 2 of 30 Journal of Fourier Analysis and Applications (2024) 30 :61

at 0 ∈ Rk . For any t > 0, we set

�t :={x ∈ Rk : t−1x ∈ �}.

We consider a polynomial mapping

P = (P1, . . . ,Pd) : Zk → Zd (1.1)

where each P j : Zk → Z is a polynomial of k variables with integer coefficients such

that P j (0) = 0. Let k′, k′′ ∈ {0, 1, . . . , k} with k = k′ + k′′. For f ∈ L∞(X , μ), we

define the associated ergodic averages by

A
P,k′,k′′
t f (x) := 1

ϑ�(t)

∑

(n,p)∈Zk′×(±P)k
′′

f
(

S
P1(n,p)
1 · · · S

Pd (n,p)
d x

)

1�t (n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠ , x ∈ X , (1.2)

where ±P denotes the set of positive and negative prime numbers and

ϑ�(t):=
∑

(n,p)∈Zk′×(±P)k
′′
1�t (n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠

is the Chebyshev function. We also consider the Cotlar type ergodic averages (discrete

singular integrals) given by

H
P,k′,k′′
t f (x) :=

∑

(n,p)∈Zk′×(±P)k
′′

f
(

S
P1(n,p)
1 · · · S

Pd (n,p)
d x

)

K (n, p)1�t (n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠ , x ∈ X , (1.3)

where K : Rk \ {0} → C is a Calderón–Zygmund kernel satisfying the following

conditions:

(1) The size condition: For every x ∈ Rk \ {0}, we have

|K (x)| � |x |−k . (1.4)

(2) The cancellation condition: For every 0 < r < R <∞, we have

∫

�R\�r

K (y)dy = 0. (1.5)
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(3) The Lipschitz continuity condition: For every x, y ∈ Rk \ {0} with 2|y| ≤ |x |, we

have

|K (x)− K (x + y)| � |y||x |−(k+1). (1.6)

In the case where k′ = k and k′′ = 0, one may instead consider the Hölder continuity

condition generalizing (1.6) (see Proposition 11 for discussion of this issue): For some

σ ∈ (0, 1] and for every x, y ∈ Rk \ {0} with 2|y| ≤ |x |, we have

|K (x)− K (x + y)| � |y|σ |x |−(k+σ). (1.7)

For a sequence of functions ( fi)i∈N with each fi ∈ L p(X , μ), we define the

L p(X; �2) norm by

‖ fi‖L p(X;�2) =

∥
∥
∥
∥
∥
∥

(

∑

i∈N

| fi|2
)1/2

∥
∥
∥
∥
∥
∥

L p(X)

(1.8)

and we say that ( fi)i∈N ∈ L p(X; �2) if ‖ fi‖L p(X;�2) <∞.

We can now state the main result of this paper.

Theorem 1 Let d, k ∈ N and let P be a polynomial mapping as in (1.1). Let k′, k′′ ∈
{0, 1, . . . , k} with k′ + k′′ = k and let M

P,k′,k′′
t be either A

P,k′,k′′
t or H

P,k′,k′′
t . Then,

for any p ∈ (1,∞), there is a constant C p,d,k,deg P > 0 such that

∥
∥
∥
∥

sup
t>0

∣
∣
∣
∣
M

P,k′,k′′
t fi

∣
∣
∣
∣

∥
∥
∥
∥

L p(X;�2)

≤ C p,d,k,deg P‖ fi‖L p(X;�2) (1.9)

for any ( fi)i∈N ∈ L p(X; �2). The constant C p,d,k,deg P is independent of the

coefficients of the polynomial mapping P .

In the proof of the above theorem, we use methods developed in [23, 27, 38] and

very recently in [20, 21, 35]. We follow Bourgain’s approach [5] to use the Calderón

transference principle [7] which reduces the problem to the integer shift system (see

Sect. 2.4) and then exploit the Hardy–Littlewood circle method to analyze the appropri-

ate Fourier multipliers. The main tools used to handle the estimates for the multiplier

operators are: an appropriate generalization of Weyl’s inequality (Proposition 10);

the Ionescu–Wainger multiplier theorem (see [13, 27] and [37]) combined with the

Rademacher–Menshov inequality (see [23]) and standard multiplier approximations

(Lemma 12); the Magyar–Stein–Wainger sampling principle [19] and [25]. Through-

out, we also use the Marcinkiewicz-Zygmund inequality (Proposition 7) to extend

scalar inequalities to their vector-valued analogues.

We recall the λ-jump counting function and the variation and oscillation semi-

norms, which give quantitative measures for pointwise convergence. We use the

convention that a supremum taken over the empty set is zero. Let I ⊆ R with #I ≥ 2

and f : I → C. For any N ∈ N ∪ {∞}, we write SN (I) to denote the family of all

strictly increasing sequences (I0, . . . , IN ) of length N + 1 contained in I.
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Given λ > 0,the λ-jump counting function of f is defined by

Nλ( f (t) : t ∈ I):= sup
{

N ∈ N | ∃t0<···<tN
t j ∈I

: min
0≤ j≤N−1

| f (t j+1)− f (t j )| ≥ λ
}

.

Given r ∈ [1,∞), the r -variation seminorm V r of a f is defined by

V r ( f (t) : t ∈ I) := sup
t0<···<tN

t j ∈I

⎛

⎝

N−1
∑

j=0

| f (t j+1)− f (t j )|r
⎞

⎠

1/r

.

Given r ∈ [1,∞), N ∈ N ∪ {∞}, I ∈ SN (I), and J ⊆ I, the N-truncated

r-oscillation seminorm of f is defined by

Or
I ,N ( f (t) : t ∈ J):=

⎛

⎜
⎝

N−1
∑

j=0

sup
I j ≤t<I j+1

t∈J

| f (t)− f (I j )|r
⎞

⎟
⎠

1/r

.

There is no ambiguity if we instead take I ∈ S∞(I) since only the first N + 1 terms

of I are used.

Because of their preeminent role in multiparameter pointwise convergence prob-

lems, we also consider multiparameter analogues of the oscillation seminorms. Let

I ⊆ RM with #I ≥ 2 and f : I → C. We now write SN (I) to denote the family of all

sequences (I0, . . . , IN ) of length N + 1 contained in I that are strictly increasing in

every coordinate.

Given r ∈ [1,∞), N ∈ N ∪ {∞}, I ∈ SN (I) (or even I ∈ S∞(I)), and J ⊆ I, the

M-parameter N-truncated r-oscillation seminorm of f is defined by

Or
I ,N ( f (t) : t ∈ J):=

⎛

⎝

N−1
∑

j=0

sup
t∈B[I j ]∩J

| f (t)− f (I j )|r
⎞

⎠

1/r

,

where B[I j ]:=[I 1
j , I 1

j+1) × . . . × [I M
j , I M

j+1) is a box determined by the element

I j = (I 1
j , . . . , I M

j ) of the sequence I .

For more information about these quantitative tools in the study of pointwise

convergence problems, we refer to [24], see also [5, 17, 21, 24, 25, 34].

We now recall an abstract multiparameter oscillation result. For a linear operator

T : L0(X) → L0(X), we denote by |T | the sublinear maximal operator taken in the

lattice sense defined by

|T | f (x) = sup
|g|≤| f |

|T g(x)|, x ∈ X , f ∈ L p(X).
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Proposition 2 [24, Proposition 4.1] Let (X ,B(X), μ) be a σ -finite measure space and

let I ⊆ R be such that #I ≥ 2. Let k ∈ N≥2 and p, r ∈ (1,∞) be fixed. Let (Tt )t∈Ik

be a family of linear operators of the form

Tt :=T 1
t1

· · · T k
tk
, t = (t1, . . . , tk) ∈ Ik,

where {T i
ti

: i ∈ [k], ti ∈ I} is a family of commuting linear operators that are

bounded on L p(X). If the set I is uncountable, then we also assume that I 
 t �→ T i
t f

is continuous μ-almost everywhere on X for every f ∈ L0(X) and i ∈ [k]. Further

assume that, for every i ∈ [k], we have

sup
J∈N

sup
I∈SJ (I)

∥
∥
∥Or

I ,J (T
i
t f : t ∈ I)

∥
∥
∥

L p(X)
�p,r ‖ f ‖L p(X) , f ∈ L p(X), (1.10)

and

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∑

j∈Z

(

sup
t∈I

|T i
t | f j

)r
⎞

⎠

1/r
∥
∥
∥
∥
∥
∥
∥

L p(X)

�p,r

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∑

j∈Z

| f j |r
⎞

⎠

1/r
∥
∥
∥
∥
∥
∥
∥

L p(X)

,

( f j ) j∈Z ∈ L p(X; �r (Z)). (1.11)

Then we have the following multiparameter r-oscillation estimate:

sup
J∈N

sup
I∈SJ (I

k )

∥
∥
∥Or

I ,J (Tt f : t ∈ Ik)

∥
∥
∥

L p(X)
� ‖ f ‖L p(X) , f ∈ L p(X).

In the M
P,k′,k′′
t = A

P,k′,k′′
t case, (1.9) gives us

∥
∥
∥
∥

sup
t>0

∣
∣A

P,k′,k′′
t

∣
∣ fi

∥
∥
∥
∥

L p(X;�2)

=
∥
∥
∥
∥

sup
t>0

A
P,k′,k′′
t | fi|

∥
∥
∥
∥

L p(X;�2)

� ‖| fi|‖L p(X;�2)

= ‖ fi‖L p(X;�2) (1.12)

which corresponds to condition (1.11) in the r = 2 case. We also recall the variation,

jump, and one-parameter oscillation inequalities for A
P,k′,k′′
t and H

P,k′,k′′
t .

Proposition 3 [38, Theorem C] [20, Theorem 1] Let d, k ≥ 1, r ∈ (2,∞), and let

P be a polynomial mapping as in (1.1). Let k′, k′′ ∈ {0, 1, . . . , k} with k′ + k′′ = k

and let M
P,k′,k′′
t be either A

P,k′,k′′
t or H

P,k′,k′′
t . Then, for any p ∈ (1,∞), there is a

constant C p,d,k,deg P > 0 such that

∥
∥
∥V r

(

M
P,k′,k′′
t f : t > 0

)
∥
∥
∥

L p(X ,μ)
≤ r

r − 2
C p,d,k,deg P‖ f ‖L p(X ,μ),

(1.13)
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sup
λ>0

∥
∥
∥λNλ

(

M
P,k′,k′′
t f : t > 0

)1/2
∥
∥
∥

L p(X ,μ)
≤ C p,d,k,deg P‖ f ‖L p(X ,μ),

(1.14)

sup
N∈N

sup
I∈SN (R+)

∥
∥
∥O2

I ,N

(

M
P,k′,k′′
t f : t > 0

)
∥
∥
∥

L p(X ,μ)
≤ C p,d,k,deg P ‖ f ‖L p(X ,μ) ,

(1.15)

for any f ∈ L p(X , μ). The constant C p,d,k,deg P is independent of the coefficients of

the polynomial mapping P .

In particular, (1.15) corresponds to condition (1.10). As such, we have the following

applications.

Corollary 4 Let M ∈ N and let (X ,B, μ) be a σ -finite measure space endowed

with a family of invertible commuting and measure preserving transformations

S1
1 , . . . , S1

d1
, . . . , SM

1 , . . . , SM
dM

: X → X. For each j ∈ {1, . . . ,M}, let � j be a

bounded convex open subset of Rk j such that B(0, c) ⊆ � j ⊆ B(0, 1) for some

c ∈ (0, 1), let P j be a polynomial mapping

P j =
(

P
j

1 , . . . ,P
j

d j

)

: Zk j → Zd j

where each P
j

i : Zk j → Z is a polynomial of k j variables with integer coefficients such

that P
j

i (0) = 0, and let k′
j , k

′′
j ∈ {0, . . . , k j } with k j = k′

j + k′′
j . For f ∈ L∞(X , μ),

we define the associated ergodic averages by

A
P j ,k′

j ,k
′′
j

t f (x) := 1

ϑ� j (t)

∑

(n,p)∈Z
k′

j ×(±P)
k′′

j

f
(
(

S
j
1

)P
j

1 (n,p) · · ·
(

S
j
d j

)P
j

d j
(n,p)

x
)

1
�

j
t
(n, p)

⎛

⎜
⎝

k′′
j

∏

i=1

log |pi |

⎞

⎟
⎠ , x ∈ X ,

where

ϑ� j (t):=
∑

(n,p)∈Z
k′

j ×(±P)
k′′

j

1
�

j
t
(n, p)

⎛

⎜
⎝

k′′
j

∏

i=1

log |pi |

⎞

⎟
⎠ .

Letting k = k1 + . . . + kM , k′ = k′
1 + . . . + k′

M , and k′′ = k′′
1 + . . . + k′′

M , we let

(n, p) ∈ Zk′ × (±P)k
′′

denote (n1, p1, . . . , nM , pM ) ∈ Zk′
1 × (±P)k

′′
1 × . . .× Zk′

M ×
(±P)k

′′
M ∼= Zk′ × (±P)k

′′
. For f ∈ L∞(X , μ) and �t = (t1, . . . , tM ) ∈ RM

+ , we define

the associated multiparameter ergodic averages by

A�t f (x):=A
P1,...,P M ,k′

1,k
′′
1 ,...,k

′
M ,k

′′
M

t1,...,tM
f (x):=A

P1,k′
1,k

′′
1

t1
◦ · · · ◦ A

P M ,k′
M ,k

′′
M

tM
f (x)

= 1

ϑ(�t)
∑

(n,p)∈Zk′×(±P)k
′′

f
(
(

S1
1

)P1
1 (n1,p1) · · ·

(

S1
d1

)P1
d1
(n1,p1) · · ·

(

SM
1

)P M
1 (nM ,pM ) · · ·
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(

SM
dM

)P M
dM
(nM ,pM )x

)

× 1�1
t1

×...×�M
tM

(n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠ , x ∈ X ,

where

ϑ(�t):=
∑

(n,p)∈Zk′×(±P)k
′′
1�1

t1
×...×�M

tM

(n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠ .

Let p ∈ (1,∞) and f ∈ L p(X , μ). Then we have:

(i) (Mean ergodic theorem) the averages A�t f converge in L p(X , μ) norm as

min{t1, . . . , tM } → ∞;

(ii) (Pointwise ergodic theorem) the averages A�t f converge pointwise μ-almost

everywhere on X as min{t1, . . . , tM } → ∞;

(iii) (Maximal ergodic theorem) the following maximal estimate holds, including with

p = ∞:

∥
∥
∥
∥
∥
∥

sup
�t∈RM

+

|A�t f |

∥
∥
∥
∥
∥
∥

L p(X ,μ)

�d,k,p,M,deg P ‖ f ‖L p(X ,μ); (1.16)

(iv) (Oscillation ergodic theorem) the following uniform oscillation inequality holds:

sup
N∈N

sup
I∈SN (R

M
+ )

∥
∥
∥O2

I ,N

(

A�t f : �t ∈ RM
+
)
∥
∥
∥

L p(X)
�d,k,p,M,deg P ‖ f ‖L p(X) ,

f ∈ L p(X). (1.17)

The implicit constants in (1.16) and (1.17) are independent of the coefficients of the

polynomial mapping P .

This generalizes the polynomial Dunford–Zygmund ergodic theorem due to Bourgain

as we shall see in Sect. 1.3. We note that (i) follows from the dominated convergence

theorem together with (ii) and (iii), and these each follow from (iv). Although Corol-

lary 4 only requires the M
P,k′,k′′
t = A

P,k′,k′′
t case of Theorem 1, we also prove the

M
P,k′,k′′
t = H

P,k′,k′′
t case for the sake of independent interest and to exhibit a unified

approach that illustrates what common features of the operators are needed in the

proof.

1.2 Historical Background: One Parameter Problems

In 1931, Birkhoff [2] and von Neumann [30] proved that the averages

MN f (x):= 1

N

N
∑

n=1

f (Sn x) (1.18)
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converge pointwise μ-almost everywhere on X and in L p(X , μ) norm respectively

for any f ∈ L p(X , μ), p ∈ [1,∞), as N → ∞. In 1955, Cotlar [10] established the

pointwise μ-almost everywhere convergence on X as N → ∞ of the ergodic Hilbert

transform given by

HN f (x):=
∑

1≤|n|≤N

f (Sn x)

n

for any f ∈ L p(X , μ). In 1968, Calderón [7] made an important observation (now

called the Calderón transference principle) that some results in ergodic theory can be

easily deduced from known results in harmonic analysis. Namely, the convergence

of the Birkhoff averages MN can be deduced from the boundedness of the Hardy–

Littlewood maximal function, and the convergence of Cotlar’s averages HN follows

from the boundedness of the maximal function for the truncated discrete Hilbert trans-

form. As we will see ahead, this observation has had a huge impact in the study of

convergence problems in ergodic theory.

We briefly sketch the classical approach of handling the problem of pointwise

convergence. It consists of two steps:

(a) Establish L p-boundedness for the corresponding maximal function.

(b) Find a dense class of functions in L p(X , μ) for which the pointwise convergence

holds.

In the case of Birkhoff’s averages MN , the Calderón transference principle allows one

to deduce the estimate

∥
∥
∥
∥

sup
N∈N

|MN f |
∥
∥
∥
∥

L p(X ,μ)

�p ‖ f ‖L p(X ,μ)

for p ∈ (1,∞] from the estimate for the discrete Hardy–Littlewood maximal function

(and we have a weak-type estimate for p = 1). In turn, estimates for the discrete

Hardy–Littlewood maximal function follow easily from those for the continuous one.

This establishes the first step (a). For the second step, one can use the idea of Riesz

decomposition [32] to analyze the space IS ⊕ TS ⊆ L2(X , μ), where

IS :={ f ∈ L2(X , μ) : f ◦ S = f } and TS :={h ◦ S − h : h ∈ L2(X , μ)

∩ L∞(X , μ)}.

We see that MN f = f for f ∈ IS and, for g = h ◦ S − h ∈ TS , we have

MN g(x) = 1

N

(

h
(

SN+1x
)

− h(Sx)
)

by telescoping. Consequently, we see that MN g → 0 as N → ∞. This establishes

μ-almost everywhere pointwise convergence of MN on IS ⊕ TS , which is dense in

L2(X , μ). Since L2(X , μ) is dense in L p(X , μ) for every p ∈ [1,∞), this establishes

(b).
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At the beginning of the 1980’s, Bellow [1] and independently Furstenberg [12]

posed the problem of the pointwise convergence of the averages along squares given

by

TN f (x):= 1

N

N
∑

n=1

f
(

Sn2

x
)

.

Despite its similarity to Birkhoff’s theorem, the problem of pointwise convergence of

the TN averages has a totally different nature from that of its linear counterpart, and

the standard approach is insufficient in this case. For the first step, by the Calderón

transference principle, it is enough to establish �p bounds for the maximal function

given by

sup
N∈N

1

N

N
∑

n=1

f
(

x − n2
)

, f ∈ �p(Z). (1.19)

The �p estimate for the above maximal function does not follow directly from the con-

tinuous counterpart and requires completely new methods. However, a more serious

problem arises in connection with the second step. The telescoping idea fails in the

case of the averages TN g since the gap sizes (n + 1)2 − n2 = 2n + 1 are unbounded.

At the end of the 1980’s, Bourgain established the pointwise convergence of

the averages TN in a series of groundbreaking articles [3–5]. By using the Hardy–

Littlewood circle method from analytic number theory, he established �p-bounds for

the maximal function (1.19), which establishes step (a). He then bypassed the problem

of finding the requisite dense class of functions by using the oscillation seminorm.

Bourgain [5] proved that, for any λ > 1 and any sequence of integers I = (I j : j ∈ N)

with I j+1 > 2I j for all j ∈ N, we have

∥
∥
∥O2

I ,N (Tλn f : n ∈ N)

∥
∥
∥

L2(X ,μ)
≤ C I ,λ(N ) ‖ f ‖L2(X ,μ) , N ∈ N, (1.20)

for any f ∈ L2(X , μ) with limN→∞ N−1/2C I ,λ(N ) = 0. Inequality (1.20) suf-

fices to establish the pointwise convergence of the averaging operators TN f for any

f ∈ L2(X , μ) (see [24, Proposition 2.8] for why oscillation estimates give pointwise

convergence and [6, Section 3.2] for proving convergence of TN f from that of Tλn f ).

Indeed, it can be thought of as the weakest possible quantitative form of pointwise

convergence since one can derive (1.20) with C I ,λ(N ) at most N 1/2 from the �2 bound

for the maximal function (1.19).

In the same series of papers, by similar methods, Bourgain established the pointwise

convergence of the averages along primes

1

|PN |

N
∑

n=1

f (Sn x)1P(n)

for f ∈ L p(X , μ) with p > 1
2
(1 +

√
3). In the same year, Wierdl [39] extended

Bourgain’s result to p ∈ (1,∞).
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The groundbreaking work of Bourgain led to work by many others in discrete

harmonic analysis that proved various special cases of Proposition 3: [8, 13, 14, 16, 21–

23, 27–29, 33, 35, 38, 40], see the historical background in [20] for a discussion of these

papers and the techniques introduced along the way. One result we highlight here is

that, in 2019, Trojan [38] proved the variation case of Proposition 3. A straightforward

consequence is the μ-almost everywhere convergence of the averages A
P,k′,k′′
t f and

H
P,k′,k′′
t f . In this paper, we consider the same averages, but for a different purpose: by

proving estimates in the vector-valued setting, we prove oscillation estimates for the

multiparameter averages A�t f , and this again induces pointwise convergence results.

1.3 Historical Background: Multiparameter Problems

In 1951, Dunford [11] and independently Zygmund [41] showed that the two-step pro-

cedure can be applied in a multiparameter setting. Even for S1, . . . , Sd not necessarily

commuting, the Dunford–Zygmund ergodic theorem states that the averages

A
n1,...,nd

M1,...,Md ;S1,...,Sd
f (x):= 1

M1 · · · Md

M1∑

n1=1

. . .

Md∑

nd=1

f
(

S
n1

1 · · · S
nd

d x
)

, x ∈ X ,

converge almost everywhere on X and in L p(X) norm as min{M1, . . . ,Md} → ∞
for every f ∈ L p(X), p ∈ (1,∞). Using the identity

A
n1,...,nd

M1,...,Md ;S1,...,Sd
f = A

n1

M1;S1
◦ · · · ◦ A

nd

Md ;Sd
f ,

the L p(X), p ∈ (1,∞], bounds for the strong maximal function

supM∈Nd |An1,...,nd

M1,...,Md ;S1,...,Sd
f | follow by applying d times the corresponding L p(X)

bounds for supM∈N |An
M;S

f |. This establishes (a), and (b) can be established by a

suitable adaptation of the telescoping argument to the multiparameter setting and an

application of the classical Birkhoff ergodic theorem, see [31] for more details. We

note that the operator f �→ supM∈Nd |An1,...,nd

M1,...,Md ;S1,...,Sd
f | is not of weak type (1, 1)

in general, so the pointwise convergence may fail if p = 1. A model example is

X = Zd with S j x = x − e j , 1 ≤ j ≤ d, where e j is the j th coordinate vector. It

is well known that the weak type (1, 1) estimate does not hold for the corresponding

strong maximal operator, see [36, Section X.2.3].

After completing [3–5], Bourgain observed that the Dunford–Zygmund ergodic

theorem can be extended to the polynomial setting at the expense of imposing that the

measure-preserving transformations commute. Bourgain’s result can be formulated as

follows.

Proposition 5 (Polynomial Dunford–Zygmund ergodic theorem) [24, Theorem 1.25]

Let M ∈ N, let (X ,B, μ) be a σ -finite measure space endowed with a family of

invertible commuting and measure preserving transformations S1, . . . , SM : X → X,

and consider a polynomial mapping

P = (P1, . . . ,PM ) : ZM → ZM
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where each P j : Z → Z is a polynomial of one variable with integer coefficients such

that P j (0) = 0. For f ∈ L∞(X , μ) and t, t1, . . . , tM ∈ N, we define the associated

ergodic averages by

A
P j

t f (x):=1

t

t
∑

n=1

f
(

S
P j (n)

1 x
)

, x ∈ X ,

and

A
P1,...,PM
t1,...,tM

f (x):=AP1

t1
◦ · · · ◦ A

PM ,
tM

f (x)

= 1

t1 · · · tM

t1∑

n1=1

. . .

tM∑

nM =1

f
(

S
P1(n1)
1 · · · S

PM (nM )
M x

)

, x ∈ X .

Let p ∈ (1,∞) and f ∈ L p(X , μ). Then we have:

(i) (Mean ergodic theorem) the averages A
P1,...,PM
t1,...,tM

f converge in L p(X , μ) norm as

min{t1, . . . , tM } → ∞;

(ii) (Pointwise ergodic theorem) the averages A
P1,...,PM
t1,...,tM

f converge pointwise μ-

almost everywhere on X as min{t1, . . . , tM } → ∞;

(iii) (Maximal ergodic theorem) the following maximal estimate holds, including with

p = ∞:

∥
∥
∥
∥

sup
t∈NM

∣
∣
∣A

P1,...,PM
t1,...,tM

f

∣
∣
∣

∥
∥
∥
∥

L p(X ,μ)

�p,M,deg P ‖ f ‖L p(X ,μ);

(iv) (Oscillation ergodic theorem) the following uniform oscillation inequality holds:

sup
N∈N

sup
I∈SN (R

M
+ )

∥
∥
∥O2

I ,N

(

A
P1,...,PM
t1,...,tM

f : t ∈ NM
)
∥
∥
∥

L p(X)
�p,M,deg P ‖ f ‖L p(X) ,

f ∈ L p(X),

with implicit constants independent of the coefficients of the polynomial mapping

P .

Proposition 5(i)–(iii) is attributed to Bourgain, though it was never published (see

[24] for a proof and additional historical notes), and Proposition 5(iv) with linear poly-

nomials P1(t) = . . . = PM (t) = t was established in [15]. Corollary 4 is a significant

generalization of Proposition 5 (one may check that the proof is easily adaptable to

sums taken over N instead of Z) in that it allows for averages taken over primes and

over more general polynomial orbits. Indeed, from the point of view of the permit-

ted polynomial orbits, Corollary 4 is the most one can extend Proposition 5 without

having to go beyond averaging operators that can be written as the composition of one-

parameter averaging operators. For comparison, proving the analogue of Proposition
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5 for averages of the form

1

t1 · · · tM

t1∑

n1=1

. . .

tM∑

nM =1

f
(

S
P1(n1,...,nM )
1 · · · S

PM (n1,...,nM )
M x

)

is a central open problem in modern ergodic theory that can be seen as a multiparameter

variant of the Bellow and Furstenberg problem (cf. [24, Conjecture 1.29], and see [6]

for some recent progress).

2 Notation and Necessary Tools

2.1 Basic Notation

We denote N:={1, 2, . . .}, N0:={0, 1, 2, . . .}, and R+:=(0,∞). For d ∈ N, the sets

Zd , Rd , Cd , and Td = (R/Z)d ≡ [−1/2, 1/2)d have the standard meanings. For each

N ∈ N, we set

NN :={1, . . . , N }, PN :=P ∩ {1, . . . , N }.

For any x ∈ R, we set

�x� := max{n ∈ Z : n ≤ x}.

For u ∈ N, we define the set

2uN:={2un : n ∈ N}.

For two non-negative numbers A and B, we write A � B to indicate that A ≤ C B

for some C > 0 that may change from line to line, and we may write �δ if the implicit

constant depends on δ.

We denote the standard inner product on Rd by x · ξ . Moreover, for any x ∈ Rd ,

we denote the �2-norm and the maximum norm respectively by

|x |:=|x |2:=
√

x · x and |x |∞:= max
1≤k≤d

|xk |.

For a multi-index γ = (γ1, . . . , γk) ∈ Nk
0, we abuse the notation to write |γ |:=γ1 +

· · · + γk . No confusion should arise since all multi-indices will be denoted by γ .

2.2 Rademacher–Menshov Inequality

We recall a basic numerical inequality. A variational version of this inequality was

proven by Lewko–Lewko [18, Lemma 13], see also [26, Lemma 2.5, p. 534].
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Proposition 6 For any k,m ∈ N with k < 2m and any sequence of complex numbers

(an : n ∈ N), we have

sup
k≤n≤2m

|an| ≤ |ak | +
√

2

s
∑

i=1

⎛

⎝

∑

j

∣
∣
∣aui

j+1
− aui

j

∣
∣
∣

2

⎞

⎠

1/2

, (2.1)

where each [ui
j , u

i
j+1) is a dyadic interval contained in [k, 2m] of the form [ j2i , ( j +

1)2i ) for some 0 ≤ i ≤ m and 0 ≤ j ≤ 2m−i − 1.

2.3 Marcinkiewicz–Zygmund Inequality

We recall a result extending the Marcinkiewicz–Zygmund inequality to the Hilbert

space setting. Let (Tm : m ∈ N0) be a family of bounded linear operators, Tm :
L p(X)→ L p(X). For each ω ∈ [0, 1], we define

T ω =
∑

m∈N0

εm(ω)Tm

where (εm : m ∈ N0) is the sequence of Rademacher functions on [0, 1].

Proposition 7 [22, Lemma 2.1] Let p ∈ (0,∞). Suppose there is a constant C p > 0

such that, for all ω ∈ [0, 1] and f ∈ L p(X), we have

‖T ω f ‖L p(X) ≤ C p‖ f ‖L p(X),

then there is a constant C such that

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∑

m∈N0

|Tm fi|2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

L p(X;�2)

≤ CC p‖ fi‖L p(X;�2) (2.2)

for every sequence of functions ( fi)i∈N in L p(X; �2). Moreover, if Tm ≡ 0 for all

m ∈ N, then (2.2) recovers the Marcinkiewicz–Zygmund inequality

‖T0 fi‖L p(X;�2) ≤ CC p‖ fi‖L p(X;�2). (2.3)

2.4 Reductions: Calderón Transference and Lifting

By the Calderón transference principle [7], we may restrict attention to the model

dynamical system of Zd equipped with the counting measure and the shift operators

S j : Zd → Zd given by S j (x1, . . . , xd):=(x1, . . . , x j − 1, . . . , xd). We denote the
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corresponding averaging operators by

A
P,k′,k′′
t f (x) = 1

ϑ�(t)

∑

(n,p)∈Zk′×(±P)k
′′

f
(

x − P(n, p)
)

1�t (n, p)

⎛

⎝

k′′
∏

j=1

log |p j |

⎞

⎠

and

H
P,k′,k′′
t f (x) =

∑

(n,p)∈Zk′×(±P)k
′′

f
(

x − P(n, p)
)

K (n, p)1�t (n, p)

⎛

⎝

k′′
∏

j=1

log|p j |

⎞

⎠ .

Moreover, by a standard lifting argument, it suffices to prove Theorem 1 for a canonical

case of the polynomial mapping P . Let P be a polynomial mapping as in (1.1). We

define

deg P:= max{deg P j : 1 ≤ j ≤ d}
and consider the set of multi-indices

�:=
{

γ ∈ Nk
0 \ {0} : 0 < |γ | ≤ deg P

}

equipped with the lexicographic order. We define the canonical polynomial mapping

by

Rk 
 x = (x1, . . . , xk) �→ Q(x):=(xγ : γ ∈ �) ∈ R�, (2.4)

where xγ = x
γ1

1 x
γ2

2 · · · x
γk

k . By invoking the lifting procedure described in [22, Lemma

2.2] (see also [36, Chapter XI]), the following implies Theorem 1.

Theorem 8 Let k ∈ N, and let k′, k′′ ∈ {0, 1, . . . , k} with k′ + k′′ = k. Let M
k′,k′′
t be

either A
Q,k′,k′′
t or H

Q,k′,k′′
t . For any p ∈ (1,∞), there is a constant C p,k,|�| > 0 such

that ∥
∥
∥
∥

sup
t>0

∣
∣
∣M

k′,k′′
t fi

∣
∣
∣

∥
∥
∥
∥

�p(Z�;�2)

≤ C p,k,|�|‖ fi‖�p(Z�;�2). (2.5)

2.5 Fourier Transform and Ionescu–Wainger Multiplier Theorem

Let G = Rd or G = Zd and let G∗ denote the dual group of G. For every z ∈ C, we

set e(z):=e2π iz , where i2 = −1. Let FG denote the Fourier transform on G defined

for any f ∈ L1(G) by

FG f (ξ):=
∫

G

f (x)e(x · ξ)dμ(x), ξ ∈ G∗,

where μ is the usual Haar measure on G. For any bounded function m : G∗ → C, we

define the corresponding Fourier multiplier operator by

TG[m] f (x):=
∫

G∗
e(−ξ · x)m(ξ)FG f (ξ)dξ, x ∈ G. (2.6)
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Here, we assume that f : G → C is a compactly supported function on G (and smooth

if G = Rd ) or any other function for which (2.6) makes sense.

An indispensable tool in the proof of Theorem 8 is the vector-valued Ionescu–

Wainger multiplier theorem from [27, Section 2] with an improvement by Tao [37].

Theorem 9 For every � > 0, there exists a family (P≤N )N∈N of subsets of N such

that:

(i) NN ⊆ P≤N ⊆ Nmax{N ,eN� }.
(ii) If N1 ≤ N2, then P≤N1 ⊆ P≤N2 .

(iii) If q ∈ P≤N , then all factors of q also lie in P≤N .

(iv) lcm(PN ) ≤ 3N .

Furthermore, for every p ∈ (1,∞), there exists 0 < C p,�,|�| < ∞ such that, for

every N ∈ N, the following holds:

Let 0 < εN ≤ e−N 2�
and let Q:=[−1/2, 1/2)� be a unit cube. Let m : R� →

L(H0, H1) be a measurable function supported on εN Q taking values in L(H0, H1),

the space of bounded linear operators between separable Hilbert spaces H0 and H1.

Let 0 ≤ Ap ≤ ∞ denote the smallest constant such that

∥
∥TR� [m] f

∥
∥

L p(R�;H1)
≤ Ap‖ f ‖L p(R�;H0)

for every function f ∈ L2(R�; H0) ∩ L p(R�; H0). Then, the multiplier

�N (ξ):=
∑

b∈�≤N

m(ξ − b),

where �≤N is defined by

�≤N :=
{

a

q
∈ Q� ∩ T� : q ∈ P≤N and gcd(a, q) = 1

}

,

satisfies
∥
∥TZ� [�N ] f

∥
∥
�p(Z�;H1)

≤ C p,�,|�|(log N )Ap‖ f ‖�p(Z�;H0)
(2.7)

for every f ∈ �p(Z�; H0), (cf. [37, Theorem 1.4] which removes the factor of log N

in the inequality (2.7)).

2.6 Exponential Sums

In this section, we present some general results concerning the behavior of exponential

sums. The following proposition is an enhancement of the variant of Weyl’s inequality

due to Trojan [38, Theorem 2] that allows us to estimate exponential sums related to

a possibly non-differentiable function φ, (cf. [27, Theorem A.1]).
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Proposition 10 (Weyl’s inequality) [20, Proposition 6] Let ³ > 0, k ∈ N, and let

� ⊂ Nk \ {0} be a nonempty finite set. Let �′ ⊆ � ⊆ B(0, N ) ⊂ Rk be convex sets

and let φ : � ∩ Zk → C. There is ´³ > 0 such that, for any ´ > ´³ , if there is a

multi-index γ0 ∈ � with

∣
∣
∣
∣
ξγ0 − a

q

∣
∣
∣
∣
≤ 1

q2

for some coprime integers a and q with 1 ≤ a ≤ q and (log N )´ ≤ q ≤
N |γ0|(log N )−´ , then

∣
∣
∣
∣
∣
∣

∑

(n,p)∈Zk′×(±P)k
′′

e(ξ · Q(n, p))φ(n, p)1�\�′(n, p)

∣
∣
∣
∣
∣
∣

� N k log(N )−³ ‖φ‖L∞(�\�′)

+ N k sup
|x−y|≤N (log N )−³

x,y∈�\�′

|φ(x)− φ(y)|.

The implicit constant is independent of the function φ, the variable ξ , the sets �,�′,
and the numbers a, q, and N.

The next result is a generalization of [38, Proposition 4.1] and [38, Proposition 4.2]

in the spirit of [27, Proposition 4.18]. For q ∈ N and a ∈ N�q with gcd(a, q) = 1, the

Gaussian sum related to the polynomial mapping Q is given by

G(a/q):= 1

qk′
1

ϕ(q)k
′′

∑

x∈Nk′
q

∑

y∈Ak′′
q

e((a/q) · Q(x, y)), (2.8)

where Aq :={a ∈ Nq : gcd(a, q) = 1} and ϕ is Euler’s totient function. There is δ > 0

such that
∣
∣G(a/q)

∣
∣ � q−δ, (2.9)

according to [38, Theorem 3].

Proposition 11 [20, Lemma 7] Let N ∈ N and let � ⊆ B(0, N ) ⊂ Rk be a convex

set or a Boolean combination of finitely many convex sets. Let K : Rk → C be a

function supported in � with K|� continuous. Then, for each ´ > 0, there is a

constant c = c´ > 0 such that, for any q ∈ N with 1 ≤ q ≤ (log N )´ , a ∈ Aq , and

ξ = a/q + θ ∈ R� , we have

∣
∣
∣
∣
∣
∣

∑

(n,p)∈Zk′×(±P)k
′′

e
(

ξ · Q(n, p)
)

K(n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠

−G(a/q)

∫

�

e
(

(ξ − a/q) · Q(t)
)

K(t)dt

∣
∣
∣
∣
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�
[

N k−1‖K‖L∞(�)

(

1 +
∑

γ∈�
|θγ |N |γ |

)

+ N k sup
x,y∈�

|x−y|≤q
√

k

|K(x)− K(y)|
]

N

exp
(

− c
√

log N
)

.

The implied constant is independent of N , a, q, ξ and the kernel K.

We remark that, in the case where k′ = k and k′′ = 0, the factor of N exp
(

−
c
√

log N
)

can be omitted because the proof will no longer apply the Siegel–Walfisz

theorem (cf. [27, Proposition 4.18]). Then the weaker kernel condition (1.7) suffices

to apply this proposition for Property 3 ahead.

2.7 Multipliers for the Averaging Operators

For a function f : Z� → C with finite support, we have

A
Q,k′,k′′
t f (x) = TZ� [mt ] f (x) and H

Q,k′,k′′
t f (x) = TZ� [nt ] f (x)

for the discrete Fourier multipliers

mt (ξ):=
1

ϑ�(t)

∑

(n,p)∈Zk′×(±P)k
′′

e
(

ξ · Q(n, p)
)

1�t (n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠ , ξ ∈ T�,

and

nt (ξ):=
∑

(n,p)∈Zk′×(±P)k
′′

e(ξ · Q(n, p))K (n, p)1�t (n, p)

⎛

⎝

k′′
∏

i=1

log |pi |

⎞

⎠ , ξ ∈ T�.

Their continuous counterparts are given by

�t (ξ):=
1

|�t |

∫

�t

e(ξ · Q(t))dt and �t (ξ):=p.v.

∫

�t

e(ξ · Q(t))K (t)dt

respectively. To present a unified approach, we write M
k′,k′′
t , yt , and �t to represent

either A
Q,k′,k′′
t , mt , and �t or H

Q,k′,k′′
t , nt , and �t respectively. We now present the

key properties of our multiplier operators that will be used in the proof of Theorem 8.

Let Nn :=�2nτ � for n ∈ N and some τ ∈ (0, 1] adjusted later.

Property 1 For each ³ > 0, there is ´³ > 0 such that, for any ´ > ´³ and n ∈ N, if

there is a multi-index γ0 ∈ � with

∣
∣
∣
∣
ξγ0 − a

q

∣
∣
∣
∣
≤ 1

q2



61 Page 18 of 30 Journal of Fourier Analysis and Applications (2024) 30 :61

for some coprime integers a and q with 1 ≤ a ≤ q and (log Nn)
´ ≤ q ≤

N
|γ0|
n (log Nn)

−´ , then

|(yNn − yNn−1)(ξ)| � C(log Nn)
−³.

This follows from Proposition 10 with φ(x) ≡ (ϑ�(Nn))
−1 for the yt = mt case

and with φ(x) = K (x) for the yt = nt case, noting the size condition (1.4) and the

continuity condition (1.6).

Property 2 Let A be the |�| × |�| diagonal matrix with

(Av)γ = |γ |vγ . (2.10)

For any t > 0, we set t Av :=
(

t |γ |vγ : γ ∈ �
)

. Then

∣
∣�Nn (ξ)−�Nn−1(ξ)

∣
∣ � min

{

|N A
n ξ |∞, |N A

n ξ |
−1/|�|
∞

}

, for each n ∈ N.

In the �t = �t case, this follows from the mean value theorem and the standard van

der Corput lemma. In the �t = �t case, this follows from the cancellation condition

(1.5) and [26, Proposition B.2] (see [26, p. 21] for details).

Property 3 For each ³ > 0, n ∈ N, and ξ ∈ T� satisfying

∣
∣
∣
∣
ξγ − aγ

q

∣
∣
∣
∣
≤ N

−|γ |
n L for all γ ∈ �

with 1 ≤ q ≤ L , a ∈ A�q , and 1 ≤ L ≤ exp
(

c
√

log Nn

)

(log Nn)
−³ , we have

yNn (ξ)− yNn−1(ξ) = G(a/q)
(

�Nn (ξ − a/q)−�Nn−1(ξ − a/q)
)

+ O
(

(log Nn)
−³),

for some constant c > 0 which is independent of n, ξ, a and q.

In the yt = mt , �t = �t case, this is [38, Property 6]. In the yt = nt , �t = �t

case, this follows from Property 1 alongside Proposition 11 with�:=�Nn \�Nn−1 and

K(n, p):=K (n, p)1�, noting the size condition (1.4) and the continuity condition

(1.6). For details see [38, Lemmas 3 and 5].

2.8 Parameters Discussion

Let p ∈ (1,∞) be fixed and let χ ∈ (0, 1/10). Fix τ with 0 < τ < 1 − min(2, p)−1

and let Nn :=�2nτ � for n ∈ N. If p ∈ (1, 2), fix p0 such that 1 < p0 < p. If instead

p ∈ (2,∞), fix p0 > p. If p = 2, the discussion is moot since all the interpolation

arguments in the article become unnecessary. We choose ρ with

ρ >
1

τ

pp0 − 2p

2p0 − 2p
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so that interpolation of the estimates

‖T ‖�2 � n−ρτ and ‖T ‖�p0 � 1

yields

‖T ‖�p � n−(1+ε) for some ε > 0.

Property 1 gives us a corresponding ´ρ . We fix a choice of ´ > ´ρ and then fix a

choice of u ∈ N with u > |�|´. We also have the value of δ coming from the Gaussian

sum estimate (2.9). With these fixed, we choose the value of � in Theorem 9 to be

�:= min

(
χ

10u
,
δ

8τ

)

.

3 Proof of Theorem 8

By the monotone convergence theorem and standard density arguments, it is enough

to prove that

∥
∥
∥
∥

sup
t∈I

∣
∣M

k′,k′′
t fi

∣
∣

∥
∥
∥
∥

�p(Z�;�2)

�p,k,|�| ‖ fi‖�p(Z�;�2)

holds for every finite subset I ⊂ R+ with the implicit constant independent of the set

I. For any t0 ∈ I, we have

sup
t∈I

∣
∣M

k′,k′′
t fi

∣
∣ ≤ sup

t∈I

∣
∣
(

M
k′,k′′
t − M

k′,k′′
t0

)

fi
∣
∣ +

∣
∣M

k′,k′′
t0

fi
∣
∣,

so,

∥
∥
∥
∥

sup
t∈I

∣
∣M

k′,k′′
t fi

∣
∣

∥
∥
∥
∥

�p(Z�;�2)

� S
p

Z�

(

M
k′,k′′
t fi : t ∈ I

)

+
∥
∥M

k′,k′′
min I

fi
∥
∥
�p(Z�;�2)

.

Let I ⊂ R+ with #I <∞, let E be either of Rd or Zd with the usual measures, and

let ( fi,t : i ∈ N) ∈ L p(E, �2) for all t ∈ I. We define

S
p
E
( fi,t : t ∈ I):=

∥
∥
∥
∥

sup
t∈I

| fi,t − fi,min I|
∥
∥
∥
∥

L p(E;�2)

=

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∞
∑

i=1

sup
t∈I

| fi,t − fi,min I|2
⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥

L p(E)

.

As we shall see, working with this rather than the usual maximal function is just a

technical adaptation to be more similar to the variation, jump, and oscillation quantities
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that have been studied before. With this notation established, it suffices to show that

S
p

Z�
(M

k′,k′′
t fi : t ∈ I) � ‖ fi‖�p(Z�;�2).

We start by splitting (cf. [17, Lemma 1.3], [23, Lemma 8.1]) into long and short

suprema along the subexponential sequence Nn . Letting In :=[Nn, Nn+1)∩I, we have

S
p

Z�

(

M
k′,k′′
t fi : t ∈ I

)

� S
p

Z�
(TZ� [yNn ] fi : n ∈ N0)

+

∥
∥
∥
∥
∥
∥
∥

⎛

⎝

∑

n∈N0

sup
t∈In

∣
∣
(

M
k′,k′′
t − M

k′,k′′
min In

)

fi
∣
∣
2

⎞

⎠

1/2
∥
∥
∥
∥
∥
∥
∥
�p(Z�;�2)

.

3.1 Short Suprema

Let sn,0 < sn,1 < . . . < ss,J (n) be the increasing enumeration of [Nn, Nn+1] ∩ I

and let r = min(2, p). Monotonicity of �p norms, Minkowski’s inequality, and the

triangle inequality give

∥
∥
∥
∥

(
∑

n∈N0
supt∈In

∣
∣
(

M
k′,k′′
t − M

k′,k′′
min In

)

fi
∣
∣
2
)1/2

∥
∥
∥
∥
�p(Z�;�2)

≤
(
∑

n∈N0

(
∑J (n)

j=1

∥
∥
∥

(

M
k′,k′′
sn, j

− M
k′,k′′
sn, j−1

)

fi

∥
∥
∥
�p(Z�;�2)

)r)1/r

. (3.1)

Since

∥
∥
∥

(

Mk′,k′′
sn, j

− Mk′,k′′
sn, j−1

)

f

∥
∥
∥
�p(Z�)

≤
∥
∥y̌sn, j

− y̌sn, j−1

∥
∥
�1(Z�)

∥
∥ f

∥
∥
�p(Z�)

by Young’s convolution inequality, (2.3) gives

∥
∥
∥

(

Mk′,k′′
sn, j

− Mk′,k′′
sn, j−1

)

fi

∥
∥
∥
�p(Z�;�2)

≤
∥
∥y̌sn, j

− y̌sn, j−1

∥
∥
�1(Z�)

∥
∥ fi

∥
∥
�p(Z�;�2)

.

Therefore, we control the right hand side of (3.1) by

⎛

⎝

∑

n∈N0

⎛

⎝

∥
∥
∥
∥
∥
∥

J (n)
∑

j=1

|y̌sn, j
− y̌sn, j−1

|

∥
∥
∥
∥
∥
∥
�1(Z�)

⎞

⎠

r⎞

⎠

1/r

∥
∥ fi

∥
∥
�p(Z�;�2)

�

⎛

⎝

∑

n∈N0

(n−r(1−τ)

⎞

⎠

1/r

∥
∥ fi

∥
∥
�p(Z�;�2)

�
∥
∥ fi

∥
∥
�p(Z�;�2)

.

The last estimates follow from [20, Eq. 4.2] with f = δ0 and the discussion thereafter.
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3.2 Long Suprema and the Circle Method

Let η : R� → [0, 1] be a smooth function with

η(x) =
{

1 if |x |∞ ≤ 1
32|�| ,

0 if |x |∞ ≥ 1
16|�| .

For N ∈ R+, we define the scaling notation

ηN (ξ):=η
(

2N ·A−Nχ ·Idξ
)

where A is the matrix given in (2.10) and Id is the |�|×|�| identity matrix. For dyadic

integers s ∈ 2uN, we define the annuli sets of fractions by

�s :=
{

�≤s if s = 2u,

�≤s \�≤s/2u if s > 2u,
(3.2)

where the�≤· are the sets of Ionescu–Wainger fractions as in Theorem 9. For t ≥ 2u ,

we set F(t):= max{s ∈ 2uN : s ≤ t}. We define

�≤ jτu (ξ):=
∑

a/q∈�≤F( jτu )

η jτ (ξ − a/q)

and, for s ∈ 2uN, we define the annuli functions

�s
j (ξ):=

∑

a/q∈�s

η jτ (ξ − a/q). (3.3)

By (3.2), we have the telescoping property

�≤ jτu =
∑

s∈2uN

s≤ jτu

�s
j .

Note that η jτ (ξ) satisfies the hypothesis about the support for m in Theorem 9 since
1

8|�|2
− jτ+ jτχ ≤ e− j2τu�

provided that � ≤ χ/(10u). Using the �≤ jτu functions, we

bound the long suprema by

S
p

Z�

⎛

⎝

n
∑

j=1

TZ� [(yN j
− yN j−1

)�≤ jτu ] fi : n ∈ N

⎞

⎠

+ S
p

Z�

⎛

⎝

n
∑

j=1

TZ� [(yN j
− yN j−1

)(1 −�≤ jτu )] fi : n ∈ N

⎞

⎠ .
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These terms correspond to major and minor arcs respectively.

3.3 Minor Arcs

Monotonicity of �p norms, telescoping, and the triangle inequality give

S
p

Z�

⎛

⎝

n
∑

j=1

TZ� [(yN j
− yN j−1

)(1 −�≤ jτu )] fi : n ∈ N

⎞

⎠

≤
∞
∑

n=1

∥
∥TZ� [(yNn − yNn−1)(1 −�≤nτu )] fi

∥
∥
�p(Z�;�2)

.

It then suffices to show that

∥
∥TZ� [(yNn − yNn−1)(1 −�≤nτu )] fi

∥
∥
�p(Z�;�2)

� n−(1+ε)‖ fi‖�p(Z�;�2)

for some ε > 0. This follows from

∥
∥TZ� [(yNn − yNn−1)(1 −�≤nτu )] f

∥
∥
�p(Z�)

� n−(1+ε)‖ f ‖�p(Z�)

by (2.3). This uses Property 1 and follows from the proof of [38, Eqs. (5.8), (5.9)]

with only small changes due to our differing scaling in the definition of ηN (ξ). We

omit the details.

3.4 Introduction to Major Arcs

Using the annuli multipliers (3.3) and the triangle inequality, we bound the major arcs

term by

S
p

Z�

⎛

⎜
⎜
⎝

n
∑

j=1

∑

s∈2uN

s≤ jτu

TZ� [(yN j
− yN j−1

)�s
j ] fi : n ∈ N

⎞

⎟
⎟
⎠

≤
∑

s∈2uN

S
p

Z�

⎛

⎜
⎜
⎜
⎝

∑

1≤ j≤n

j≥s1/(τu)

TZ� [(yN j
− yN j−1

)�s
j ] fi : n ≥ s1/τu

⎞

⎟
⎟
⎟
⎠
.
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It then suffices to show for large s ∈ 2uN that

S
p

Z�

⎛

⎜
⎜
⎜
⎝

∑

1≤ j≤n

j≥s1/(τu)

TZ� [(yN j
− yN j−1

)�s
j ] fi : n ≥ s1/τu

⎞

⎟
⎟
⎟
⎠

� s−ε‖ fi‖�p(Z�;�2) (3.4)

for some ε > 0 since
∑

s∈2uN s−ε <∞. Let κs :=s2���. By splitting the left hand side

of (3.4) at n ≈ 2κs into small and large scales, it suffices to prove that

S
p

Z�

⎛

⎜
⎜
⎜
⎝

∑

1≤ j≤n

j≥s1/(τu)

TZ� [(yN j
− yN j−1

)�s
j ] fi : nτ ∈

[

s1/u, 2κs+1
]

⎞

⎟
⎟
⎟
⎠

� s−ε‖ fi‖�p(Z�;�2)

(3.5)

and

S
p

Z�

⎛

⎜
⎜
⎜
⎝

∑

1≤ j≤n

j≥2κs /τ

TZ� [(yN j
− yN j−1

)�s
j ] fi : nτ > 2κs

⎞

⎟
⎟
⎟
⎠

� s−ε‖ fi‖�p(Z�;�2). (3.6)

For the small scales (3.5), we will use the Rademacher–Menshov inequality (2.1)

and Theorem 9. For the large scales (3.6), we will use the Magyar–Stein–Wainger sam-

pling principle from [19, Proposition 2.1] and its counterpart for the jump inequality

from [25, Theorem 1.7]. We first recall an approximation lemma to replace our discrete

multipliers with continuous counterparts. Let

vs
j (ξ):=

∑

a/q∈�s

G(a/q)
(

�N j
−�N j−1

)

(ξ − a/q)η jτ (ξ − a/q) (3.7)

and

 s
j (ξ):=

∑

a/q∈�s

(

�N j
−�N j−1

)

(ξ − a/q)η jτ (ξ − a/q). (3.8)

Lemma 12 [20, Lemma 8] Let M ∈ N, ³′ > 0, and SM :=�2Mτ−3Mτχ �. For j ∈ N

with s1/(τu) ≤ j and M ≤ j ≤ 2M, we have

‖(yN j
− yN j−1

)�s
j − vs

j‖�∞(T�) � j−³
′τ (3.9)

and

‖(yN j
− yN j−1

)�s
j − s

jmSM
‖�∞(T�) � j−³

′τ . (3.10)
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3.5 Small Scales

Splitting [s1/u, 2κs+1] into dyadic intervals and preparing via the triangle inequality

to use (3.10), we bound the left hand side of (3.5) by

Main Term 1
︷ ︸︸ ︷

∑

M∈2N∩[s1/u ,2κs ]
S

p

Z�

⎛

⎜
⎜
⎜
⎝

∑

1≤ j≤n

j≥s1/(τu)

T
Z�

[ s
j mSM

] fi : nτ ∈ [M, 2M]

⎞

⎟
⎟
⎟
⎠

+
∑

M∈2N∩[s1/u ,2κs ]
S

p

Z�

⎛

⎜
⎜
⎜
⎝

∑

1≤ j≤n

j≥s1/(τu)

T
Z�

[(yN j
− yN j−1

)�s
j − s

j mSM
] fi : nτ ∈ [M, 2M]

⎞

⎟
⎟
⎟
⎠

︸ ︷︷ ︸

Error Term 1

.

For Error Term 1, it will suffice to show that

∥
∥TZ� [(yNn − yNn−1)�

s
n − s

nmSM
] fi

∥
∥
�p(Z�;�2)

� n−(1+ε′)‖ fi‖�p(Z�;�2)

for some ε′ > 0 since we would then bound it by

∑

n≥s1/(τu)

n−(1+ε′)‖ fi‖�p(Z�;�2) � s−ε′/(τu)‖ fi‖�p(Z�;�2) � s−ε‖ fi‖�p(Z�;�2).

This follows from

∥
∥TZ� [(yNn − yNn−1)�

s
n − s

nmSM
] f

∥
∥
�p(Z�)

� n−(1+ε′)‖ f ‖�p(Z�)

by (2.3), and that is [20, Eq. 4.12].

For Main Term 1, we apply the Rademacher–Menshov inequality (2.1) to bound it

by

∑

M∈2N∩[s1/u ,2κs ]

log2(2M)
∑

i=0

∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

∑

j

∣
∣
∣
∣
∣
∣
∣

∑

k∈I M
i, j

TZ� [ s
kmSM

] fi

∣
∣
∣
∣
∣
∣
∣

2⎞

⎟
⎠

1/2
∥
∥
∥
∥
∥
∥
∥
∥
�p(Z�;�2)

,

where j is taken over j ≥ 0 such that I M
i, j :=[ j2i , ( j + 1)2i ] ∩ [M1/τ , (2M)1/τ ] �= ∅.

Let η̃N (ξ):=ηN (ξ/2). Then η̃Nηkτ = ηkτ for kτ ≥ N due to the nesting supports.

This lets us write

 s
kmSM

=  s
kmSM

∑

a/q∈�s

η̃M (ξ − a/q)=: s
kmSM

�̃s
M1/τ
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for k ∈ I M
i, j since then k ≥ M1/τ .

By (2.2), it suffices to get an appropriate estimate for

∥
∥
∥
∥
∥
∥
∥

∑

j

∑

k∈I M
i, j

ε j (ω)TZ� [ s
kmSM

] f

∥
∥
∥
∥
∥
∥
∥
�p(Z�)

for any Rademacher sequence ε = (ε j (ω)) with ε j (ω) ∈ {−1, 1} and for every

ω ∈ [0, 1].
We get the appropriate bound on �p(Z�) by the Ionescu–Wainger theorem and the

bound for the continuous analogue

∥
∥
∥
∥
∥
∥
∥

∑

j

∑

k∈I M
i, j

ε j (ω)TZ� [(�Nk
−�Nk−1

)ητk ]g

∥
∥
∥
∥
∥
∥
∥

L p(R�)

� ‖g‖L p(R�)

with a bound independent of the Rademacher sequence ε, see [36, Chapter XI] or [9].

Therefore,

∥
∥
∥
∥
∥
∥
∥

∑

j

∑

k∈I M
i, j

ε j (ω)TZ� [ s
kmSM

] f

∥
∥
∥
∥
∥
∥
∥
�p0 (Z�)

�
∥
∥TZ� [mSM

] f
∥
∥
�p0 (Z�)

� ‖ f ‖�p0 (Z�)

(3.11)

using the uniform �p-boundedness of the averaging operators.

We get an improved bound on �2. To do this, we use that

∥
∥mSM

�̃s
M1/τ

∥
∥
�∞(T�) � s−δ

for M ∈ 2N ∩ [s1/u, 2κs ], see [20, Section 4.5]. Then

∥
∥
∥
∥
∥
∥
∥

∑

j

∑

k∈I M
i, j

ε j (ω)TZ� [ s
kmSM

] f

∥
∥
∥
∥
∥
∥
∥
�2(Z�)

�
∥
∥TZ�

[

mSM
�̃s

M1/τ

]

f
∥
∥
�2(Z�)

� s−δ‖ f ‖�2(Z�). (3.12)

Interpolation of (3.11) with (3.12) then gives that

∥
∥
∥
∥
∥
∥
∥

∑

j

∑

k∈I M
i, j

ε j (ω)TZ� [ s
kmSM

] f

∥
∥
∥
∥
∥
∥
∥
�p(Z�)

� s−8�‖ f ‖�p(Z�)
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since 8� ≤ δ/(ρτ). We then apply (2.2)

∥
∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

∑

j

∣
∣
∣
∣
∣
∣
∣

∑

k∈I M
i, j

TZ� [ s
kmSM

] fi

∣
∣
∣
∣
∣
∣
∣

2⎞

⎟
⎠

1/2
∥
∥
∥
∥
∥
∥
∥
∥
�p(Z�;�2)

� ‖ fi‖�p(Z�;�2)

Thus, we may dominate Main Term 1 by

∑

M∈2N∩[s1/u ,2κs ]

log2(2M)
∑

i=0

s−8�‖ fi‖�p(Z�;�2) � κ2
s s−8�‖ fi‖�p(Z�;�2)

� s−4�‖ fi‖�p(Z�;�2)

since κs ≤ s2�, concluding the proof of (3.5).

3.6 Large Scales

We bound the left hand side of (3.6) by

Main Term 2
︷ ︸︸ ︷

S
p

Z�

⎛

⎜
⎜
⎜
⎝

∑

1≤ j≤n

j≥2κs /τ

TZ� [vs
j ] fi : nτ > 2κs

⎞

⎟
⎟
⎟
⎠

+
Error Term 2

︷ ︸︸ ︷
∑

n≥2κs /τ

∥
∥TZ� [(yNn − yNn−1)�

s
n − vs

n] fi
∥
∥
�p(Z�;�2)

.

For Error Term 2, it will suffice to show that

∥
∥TZ� [(yNn − yNn−1)�

s
n − vs

n] fi
∥
∥
�p(Z�;�2)

� e(|�|+1)s�n−(1+ε′)‖ fi‖�p(Z�;�2)

for some ε′ > 0 since we would then bound it by

e(|�|+1)s�
∑

n≥2κs /τ

n−(1+ε′)‖ fi‖�p(Z�;�2) � e(|�|+1)s�2−s2�ε′/τ‖ fi‖�p(Z�;�2)

� s−ε‖ fi‖�p(Z�;�2).

This follows from

∥
∥TZ� [(yNn − yNn−1)�

s
n − vs

n] f
∥
∥
�p(Z�)

� e(|�|+1)s�n−(1+ε′)‖ f ‖�p(Z�),
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by (2.3), and that is [20, Eq. 4.15].

For Main Term 2, we define

ws(ξ):=
∑

a/q∈�s

G(a/q)η̃2κs (ξ − a/q), !s(ξ):=
∑

a/q∈�s

η̃2κs (ξ − a/q),

and

ωs
n(ξ):=

∑

2κs /τ≤ j≤n

(�N j
−�N j−1

)(ξ)η jτ (ξ).

Let Qs :=lcm(q : a/q ∈ �s). By property (iv) from Theorem 9, we have Qs ≤ 3s .

The function ωs
n is supported on [− 1

4Qs
, 1

4Qs
] for large s ∈ 2uN since, on the support

of η2κs , we have |ξγ | ≤ 2−2−κs +2κsχ ≤ (4Qs)
−1 for all γ ∈ � and large s. We also

have

∑

2κs /τ≤ j≤n

vs
j (ξ) = ws(ξ)

∑

b∈Z�

ωs
n(ξ − b/Qs).

Therefore, it suffices to prove

S
p

Z�

⎛

⎝TZ�

⎡

£

∑

b∈Z�

ωs
n(· − b/Qs)

¤

⎦ fi : nτ > 2κs

⎞

⎠ � ‖ fi‖�p(Z�;�2) (3.13)

and
∥
∥TZ� [ws] fi‖�p(Z�;�2) � s−ε‖ fi‖�p(Z�;�2) (3.14)

for some ε > 0. (3.14) follows from

∥
∥TZ� [ws] f ‖�p(Z�) � s−ε‖ f ‖�p(Z�)

by (2.3), and that is [20, Eq. 4.17].

By the Magyar–Stein–Wainger sampling principle [19, Proposition 2.1] for the

supremum seminorm, (3.13) follows from

S
p

R�

(

TR� [ωs
n] fi : nτ > 2κs

)

� ‖ fi‖L p(R�;�2). (3.15)

To prove (3.15), we use that the ωs
n functions are almost telescoping. We define

�s
n(ξ):=

∑

2κs /τ≤ j≤n

(�N j
−�N j−1

)(ξ) = (�Nn −�N
2κs /τ−1

)(ξ).

Then (3.15) follows from

S
p

R�
(TR� [�s

n] fi : nτ > 2κs ) � ‖ fi‖L p(R�;�2) (3.16)
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since the error term is bounded by

∑

n>2κs /τ

∥
∥TR� [(�Nn −�Nn−1)(ηnτ − 1)] fi

∥
∥

L p(R�;�2)
� ‖ fi‖L p(R�;�2).

This last estimate follows from

∑

n>2κs /τ

∥
∥TR� [(�Nn −�Nn−1)(ηnτ − 1)] f

∥
∥

L p(R�)
� ‖ f ‖L p(R�)

by (2.3), and this follows from Property 2 and interpolation. (3.16) itself follows from

S
p

R�
(TR� [�t ] fi : t > 0) � ‖ fi‖L p(R�;�2),

and this follows from [22, Appendix A].
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