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Abstract

We prove uniform ¢2-valued maximal inequalities for polynomial ergodic averages
and truncated singular operators of Cotlar type modeled over multidimensional subsets
of primes. In the averages case, we combine this with earlier one-parameter oscillation
estimates (Mehlhop and Stomian in Math Ann, 2023, https://doi.org/10.1007/s00208-
023-02597-8) to prove corresponding multiparameter oscillation estimates. This pro-
vides a fuller quantitative description of the pointwise convergence of the mentioned
averages and is a generalization of the polynomial Dunford—Zygmund ergodic theorem
attributed to Bourgain (Mirek et al. in Rev Mat Iberoam 38:2249-2284, 2022).

Keywords Oscillation seminorm - Vector-valued inequality - Ergodic average along
primes - Multiparameter average
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1 Introduction
1.1 Statement of Results

Let (X, B, u) be a o-finite measure space endowed with a family of invertible com-
muting and measure preserving transformations Sy, ..., Sz : X — X. Let Q be
a bounded convex open subset of R¥ such that B(0, cq) € $ € B(0, 1) for some
cq € (0, 1), where B(0, u) is the open Euclidean ball in R* with radius u > 0 centered
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at 0 € R*. For any ¢t > 0, we set

Q={x € RF: 1 1x e Q}.
We consider a polynomial mapping

P=(P,....,Ps): ZF - 7¢ (1.1)
where each P; : 7k — 7. is a polynomial of k variables with integer coefficients such

that P;(0) = 0. Let k', k” € {0, 1, ..., k} withk = k" + k”. For f € L (X, ), we
define the associated ergodic averages by

AP f ) =

S (ST ST Y g, o, p)

va(r) , )
(n,p)eZK x (£P)k
k//
[Jroglpil | . x € X, (1.2)
i=1

where £P denotes the set of positive and negative prime numbers and

1%

da@):= > g p) |[]loglpil

(n,p)eZF x (£P)K" =1

is the Chebyshev function. We also consider the Cotlar type ergodic averages (discrete
singular integrals) given by

HP K pw= Y (P ST P K, pyi, (n, p)
(n,p)eZK x (£P)*”
P
[Jloglpil | .x € X, (1.3)
i=1

where K : R¥ \ {0} — C is a Calder6n—Zygmund kernel satisfying the following
conditions:

(1) The size condition: For every x € R* \ {0}, we have
Kl S Ixl 7. (14)

(2) The cancellation condition: For every 0 < r < R < oo, we have

f K(y)dy = 0. (1.5)
Qr\Dr
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(3) The Lipschitz continuity condition: For every x, y € R¥\ {0} with 2|y| < |x|, we
have
IK(x) = K(x + )| S Iyl ¢+, (1.6)

In the case where k¢’ = k and k" = 0, one may instead consider the Hélder continuity
condition generalizing (1.6) (see Proposition 11 for discussion of this issue): For some
o € (0, 1] and for every x, y € R¥\ {0} with 2|y| < |x|, we have

1K (x) — K(x + )| S [y]° x|~ ®F). (1.7)

For a sequence of functions (fi)ieny With each f; € LP(X, ), we define the
LP(X; £%) norm by

1/2
1fillrcxie2) = (Z |fi|2) (1.8)

ieN LP(X)

and we say that (fi)ien € LP(X; €2) if || fill o (x.¢2) < 0.
We can now state the main result of this paper.

Theorem 1 Letd, k € N and let P be a polynomial mapping as in (1.1). Let k', k" €
{0, 1,..., kY withk' + k" =k and let /\/llp’k *" be either AZ)’k * or Hz)’k . Then,
Jorany p € (1, 00), there is a constant C, 4 i deg P > 0 such that

P,k,,k”
Ml fi

sup

p = Cp,d,k,degP||fi||Lp(X;e2) (1.9)
r>

LP(X;02)

for any (fi)ieNn € Lp(X;EZ). The constant C, gk degP Is independent of the
coefficients of the polynomial mapping P.

In the proof of the above theorem, we use methods developed in [23, 27, 38] and
very recently in [20, 21, 35]. We follow Bourgain’s approach [5] to use the Calder6n
transference principle [7] which reduces the problem to the integer shift system (see
Sect.2.4) and then exploit the Hardy-Littlewood circle method to analyze the appropri-
ate Fourier multipliers. The main tools used to handle the estimates for the multiplier
operators are: an appropriate generalization of Weyl’s inequality (Proposition 10);
the Ionescu—Wainger multiplier theorem (see [13, 27] and [37]) combined with the
Rademacher—Menshov inequality (see [23]) and standard multiplier approximations
(Lemma 12); the Magyar—Stein—Wainger sampling principle [19] and [25]. Through-
out, we also use the Marcinkiewicz-Zygmund inequality (Proposition 7) to extend
scalar inequalities to their vector-valued analogues.

We recall the A-jump counting function and the variation and oscillation semi-
norms, which give quantitative measures for pointwise convergence. We use the
convention that a supremum taken over the empty set is zero. Let I € R with #I > 2
and f : I — C. For any N € N U {oo}, we write Sy (I) to denote the family of all
strictly increasing sequences (lo, ..., Iy) of length N 4 1 contained in I.
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Given A > 0,the A-jump counting function of f is defined by

Ny(f(@):t e):=sup N € N| <<ty : 0<§n<i]1\1/_1|f(tj+1) - f@pl = A}.

tjE]I

Given r € [1, 00), the r-variation seminorm V' of a f is defined by

Nl 1/r
VI(f@) iteD = sup | D Iftir) — fE)I
fh<---<IN .
l‘_/E]I JZO

Given r € [1,00), N € NU{ox}, I € 6Gy(), and J C I, the N-truncated
r-oscillation seminorm of f is defined by

1/r
N—1

O n(ft):tel)= Z sup | f(6) — FUNI"

. Ii<t<lI;
=0 /= j+1
J te]

There is no ambiguity if we instead take I € S, (1) since only the first N 4 1 terms
of I are used.

Because of their preeminent role in multiparameter pointwise convergence prob-
lems, we also consider multiparameter analogues of the oscillation seminorms. Let
I € RM with #1 > 2 and f : 1T — C. We now write Gy (I) to denote the family of all
sequences (lp, ..., Iy) of length N 4 1 contained in I that are strictly increasing in
every coordinate.

Givenr € [1,00), N e NU{o0}, I € Gx(I) (oreven I € S (I)), and J C I, the
M-parameter N -truncated r-oscillation seminorm of f is defined by

N_l 1/r
Ofn(f@W:te=[Y" sup [f@&)—fUpI| .
=0 1<BILINT
where B[Ij]:z[l}, I}+1) X ... X [I/M, I;‘il) is a box determined by the element

I = (I}, ...,I]M) of the sequence 1.

For more information about these quantitative tools in the study of pointwise
convergence problems, we refer to [24], see also [5, 17, 21, 24, 25, 34].

We now recall an abstract multiparameter oscillation result. For a linear operator
T : L%(X) — L%(X), we denote by |T| the sublinear maximal operator taken in the
lattice sense defined by

IT|f(x) = | S|UI|)f| ITg()l, xeX, felLlX).
gl<
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Proposition 2 [24, Proposition 4.1] Let (X, B(X), i) be a o -finite measure space and
let T € R be such that #1 > 2. Let k € N>, and p,r € (1, 00) be fixed. Let (T;);cx
be a family of linear operators of the form

7l k k
T,.:TllmT,k, t=(t,..., 1) €I,

where {th 21 € [kl, t; € I} is a family of commuting linear operators that are
bounded on L (X). If the set Il is uncountable, then we also assume that1 > t +— Tti f
is continuous -almost everywhere on X for every f € L(X) and i € [k]. Further
assume that, for every i € [k], we have

sip sup |07, (TifireD| S ifla.  fELPXO, (1L10)
JeN 1€ () LP(X)

and
P 1/r 1/r
> (sup|T;|f,-) Sor || D151 :
jez M€ jez
LP(X) LP(X)
(f)jez € LP(X; " (Z)). (1.11)

Then we have the following multiparameter r-oscillation estimate:

sup sup

07, ie®|  SUfle.  feLPO0.
JeNTe&, (IF) LP(X)

o o
In the M?’k K= Azj’k K case, (1.9) gives us

P,k’,k” P,k!,k!/
sup [ A0 | fi = | sup A" | fil S Al )
t>0 LP(X;02) t>0 LP(X;02)
= ||fi||Lp(x;z2) (1.12)

which corresponds to condition (1.11) in the r = 2 case. We also recall the variation,
jump, and one-parameter oscillation inequalities for Atp’k " and Hz)’k &

Proposition 3 [38, Theorem C] [20, Theorem 1] Letd,k > 1, r € (2, 00), and let
P be a polynomial mapping as in (1.1). Let k', k" € {0, 1, ..., k} withk' + k" =k
and let M,P’k/’kﬁ be either A,P’k/’k// or H?’k/’k”. Then, for any p € (1, 00), there is a
constant Cp, 4 k,degP > 0 such that

<
LP(X,n) — r—2

[V (MPEH f e 0)

Cp.dkdeg Pl fllLrx. )

(1.13)
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sup
>0

‘ANA(MZ)’k/’k//f r> 0)1/2‘

Lrt < CpandegPll fllLrx.
(1.14)

=< Cp,d,k,degP ||f||Lp(X,,L) s

Pk K"
sup  sup ” O%’N(M, fit> 0)‘ Lt S

NeNTeGy®R,)

(1.15)

forany f € LP(X, ). The constant C, 4 i deg P is independent of the coefficients of
the polynomial mapping P.

In particular, (1.15) corresponds to condition (1.10). As such, we have the following
applications.

Corollary4 Let M € N and let (X, B, ) be a o-finite measure space endowed
with a family of invertible commuting and measure preserving transformations
Stooes Syveon SYL L SH 0 X — X Foreach j € {1,..., M), let Q/ be a
bounded convex open subset of RXi such that B,c) C Q/ C B 0, 1) for some
c € (0, 1), let P/ be a polynomial mapping

J_ (pJ J. 7k; dj
P/ = (Pl,...,de). 78 — 7%
where each Pij : ZKi — Zis a polynomial of k j variables with integer coefficients such

that Pij(O) =0, and let k;-, k;-' €{0,....kj}withk; = k} —i—k;-/. For f € L®(X, ),
we define the associated ergodic averages by

Pi KK 1 P i \PJ (n.p)
'At T f(x) = 50 Z f((sf) 1 (n,p) (Séj) dj x)lg{(n’ D)
QJ ’ ”
(n,p)eZk-f X(:i:P)k/
5

[Troglpil |, xex,
i=1

where
4
oi= ) dgi.p)[[Tloglpil
(0. p)eZl x (P i=l1

Letting k = ky + ...+ ky, k' =k} + ... + k), and k" = ki + ... + k}j;, we let
(n, p) € 7+ x (:I:IF’)]‘” denote (n1, p1,..., 1M, PM) € /R (:I:IP)k;/ X ... x Tku x
(EP)v = ZF x (P For f € L®(X, p) and t = (t1, ..., ty) € RY, we define
the associated multiparameter ergodic averages by

PLLLPM KKK K Py K PM kK
Arf)=A, o, T )= A, T oo A, MY f()
1 P} (n1.p1) 1\P) (1.p1) M\PY (g, pur)
=@ 3 f((Sl) 1 o (54T e (sM)P

(n,p)eZF x (£P)¥"
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(S(%I)Pglj\l (”MsPM)x>

k//
X ]19[11 X-~~XQ1A1/|I,1 (ny P) Hlog |Pz| , X € X’
i=1
where
k//
piy= DT Mgy ) | [Tlogln
(n,p)eZK x (£P)¥" i=1

Let p € (1,00) and f € LP(X, ). Then we have:

(i) (Mean ergodic theorem) the averages A;f converge in LP(X, ) norm as

min{ty, ..., ty} — o0;
(ii) (Pointwise ergodic theorem) the averages A;f converge pointwise p-almost
everywhere on X as min{t{, ..., ty} — oo;
(iii) (Maximal ergodic theorem) the following maximal estimate holds, including with
p = oo:
sup |A; f] SakpM.degP 1 fllLex ;s (1.16)
feRYM

LP(X. 1)

(iv) (Oscillation ergodic theorem) the following uniform oscillation inequality holds:

sup  sup HOIZ’N(.A;f:?eRf)‘
NeNjeay®RY)

f e LP(X). (L.17)

<
Loy ok M deg P I fllLrcxy s

The implicit constants in (1.16) and (1.17) are independent of the coefficients of the
polynomial mapping P.

This generalizes the polynomial Dunford—Zygmund ergodic theorem due to Bourgain
as we shall see in Sect. 1.3. We note that (i) follows from the dominated convergence
theorem together with (ii) and (iii), and these each follow from (iv). Although Corol-

/ "
— APK

lary 4 only requires the /\/lzj’k/’k” case of Theorem 1, we also prove the

1o g
./\/lzp’k K = ’Htp’k k" case for the sake of independent interest and to exhibit a unified
approach that illustrates what common features of the operators are needed in the
proof.

1.2 Historical Background: One Parameter Problems

In 1931, Birkhoff [2] and von Neumann [30] proved that the averages
N
My fQo=5 3 F(S"x) (1.18)
n=1
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converge pointwise p-almost everywhere on X and in L? (X, i) norm respectively
forany f € LP(X, ), p € [1,00),as N — o00. In 1955, Cotlar [10] established the
pointwise p-almost everywhere convergence on X as N — oo of the ergodic Hilbert
transform given by

J(8"x)

n

Hyf(o= )

I<|n|<N

for any f € LP(X, u). In 1968, Calderdén [7] made an important observation (now
called the Calderdn transference principle) that some results in ergodic theory can be
easily deduced from known results in harmonic analysis. Namely, the convergence
of the Birkhoff averages My can be deduced from the boundedness of the Hardy—
Littlewood maximal function, and the convergence of Cotlar’s averages Hy follows
from the boundedness of the maximal function for the truncated discrete Hilbert trans-
form. As we will see ahead, this observation has had a huge impact in the study of
convergence problems in ergodic theory.

We briefly sketch the classical approach of handling the problem of pointwise
convergence. It consists of two steps:

(a) Establish L?-boundedness for the corresponding maximal function.
(b) Find a dense class of functions in L” (X, u) for which the pointwise convergence
holds.

In the case of Birkhoff’s averages M, the Calderén transference principle allows one
to deduce the estimate

sup [My f|
NeN

Sp Iflleeex
LP(X,pn)

for p € (1, oo] from the estimate for the discrete Hardy—Littlewood maximal function
(and we have a weak-type estimate for p = 1). In turn, estimates for the discrete
Hardy-Littlewood maximal function follow easily from those for the continuous one.
This establishes the first step (a). For the second step, one can use the idea of Riesz
decomposition [32] to analyze the space [ & Tg C L2(X, ), where

Is:={f € L>(X,u): foS=f} and Ts:={hoS—h:heL*X,
N L (X, w).

Weseethat My f = f for f € Igand,forg=ho S —h € Tg, we have

Myg(x) = %(h(SN“x) — h(Sx))

by telescoping. Consequently, we see that My g — 0 as N — oo. This establishes
n-almost everywhere pointwise convergence of My on Is @ Tg, which is dense in
L%(X, w). Since L2(X, p) is dense in L? (X, u) forevery p € [1, 00), this establishes
(b).
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At the beginning of the 1980’s, Bellow [1] and independently Furstenberg [12]
posed the problem of the pointwise convergence of the averages along squares given
by

1 N
T f ()= > F(STx
n=1

Despite its similarity to Birkhoff’s theorem, the problem of pointwise convergence of
the T averages has a totally different nature from that of its linear counterpart, and
the standard approach is insufficient in this case. For the first step, by the Calder6n
transference principle, it is enough to establish 7 bounds for the maximal function
given by

sup—fo—n2 f e tP(Z). (1.19)

NeNN

The £? estimate for the above maximal function does not follow directly from the con-
tinuous counterpart and requires completely new methods. However, a more serious
problem arises in connection with the second step. The telescoping idea fails in the
case of the averages Ty g since the gap sizes (n + 1)> — n> = 2n + 1 are unbounded.

At the end of the 1980’s, Bourgain established the pointwise convergence of
the averages T in a series of groundbreaking articles [3—5]. By using the Hardy—
Littlewood circle method from analytic number theory, he established £7-bounds for
the maximal function (1.19), which establishes step (a). He then bypassed the problem
of finding the requisite dense class of functions by using the oscillation seminorm.
Bourgain [5] proved that, for any A > 1 and any sequence of integers I = (/; : j € N)
with I > 21; forall j € N, we have

|02 v (T

5= CraN) Ifll2x .y N €N, (1.20)

for any f € L3(X, u) with limy_ o N_I/ZCI,A(N) = 0. Inequality (1.20) suf-
fices to establish the pointwise convergence of the averaging operators Ty f for any
f e L*(X, ) (see [24, Proposition 2.8] for why oscillation estimates give pointwise
convergence and [6, Section 3.2] for proving convergence of Ty f from that of Tj» f).
Indeed, it can be thought of as the weakest possible quantitative form of pointwise
convergence since one can derive (1.20) with Cy , (N) at most N 172 from the ¢2 bound
for the maximal function (1.19).

In the same series of papers, by similar methods, Bourgain established the pointwise
convergence of the averages along primes

|P | Zf(S"x)ﬂp(n)

for f € LP(X, ) with p > %(1 + ﬁ), In the same year, Wierdl [39] extended
Bourgain’s result to p € (1, 00).
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The groundbreaking work of Bourgain led to work by many others in discrete
harmonic analysis that proved various special cases of Proposition 3: [8, 13, 14, 16, 21—
23,27-29, 33,35, 38, 40], see the historical background in [20] for a discussion of these
papers and the techniques introduced along the way. One result we highlight here is
that, in 2019, Trojan [38] proved the variation case of Proposition 3. A straightforward
consequence is the p-almost everywhere convergence of the averages A,P’k/’kﬁ f and
H,P’k/’k// f. Inthis paper, we consider the same averages, but for a different purpose: by
proving estimates in the vector-valued setting, we prove oscillation estimates for the
multiparameter averages Az f, and this again induces pointwise convergence results.

1.3 Historical Background: Multiparameter Problems

In 1951, Dunford [11] and independently Zygmund [4 1] showed that the two-step pro-
cedure can be applied in a multiparameter setting. Even for Sy, ..., S; not necessarily
commuting, the Dunford—Zygmund ergodic theorem states that the averages

M,
N1y.enllg nl nd
AMl-,-»-,Md:Sl ,,,,, Sdf(x) Z Z f o )’ xeX,

n1—1 ng=1

converge almost everywhere on X and in L?(X) norm as min{My, ..., My} — oo
forevery f € LP(X), p € (1, 00). Using the identity
nq
My,...My; 51, ..., Sdf AM1 Sl "o AMd Sdf

the LP(X ), p € (l,00], bounds for the strong maximal function
SUP 37 cNd |A """ My: Sy S f| follow by applying d times the corresponding L” (X)
bounds for sup men |A" WS f1. This establishes (a), and (b) can be established by a
suitable adaptation of the telescoping argument to the multiparameter setting and an
application of the classical Birkhoff ergodic theorem, see [31] for more details. We
note that the operator f > sup ;e |A . Md Spo Sdf| is not of weak type (1, 1)
in general, so the pointwise convergence may fail if p = 1. A model example is
X = 79 with Six =x —ej,1 < j < d, where ¢; is the jth coordinate vector. It
is well known that the weak type (1, 1) estimate does not hold for the corresponding
strong maximal operator, see [36, Section X.2.3].

After completing [3-5], Bourgain observed that the Dunford—Zygmund ergodic
theorem can be extended to the polynomial setting at the expense of imposing that the
measure-preserving transformations commute. Bourgain’s result can be formulated as
follows.

Proposition 5 (Polynomial Dunford—Zygmund ergodic theorem) [24, Theorem 1.25]
Let M € N, let (X, B, ) be a o-finite measure space endowed with a family of
invertible commuting and measure preserving transformations S1, ..., Sy : X — X,

and consider a polynomial mapping

=P, ..., Py): ZM - 7M
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where each P : 7. — Z is a polynomial of one variable with integer coefficients such
that P;(0) = 0. For f € L(X, p) and t, 1y, ..., ty € N, we define the associated
ergodic averages by

, 1< .
Az)"f(x)::; Zf(sff(")x), xeXx,
n=1

and
AP P py:=AP oo .APM’f(x)
Z Z f( gPi@mn PM("M) )7 xeXx.
1—1 ny= 1

Let p € (1,00) and f € LP (X, p). Then we have:

(i) (Mean ergodic theorem) the averages AP}_’_’ - Pu f converge in LP (X, ) norm as
min{ty, ..., ty} — o0;
(ii) (Pointwise ergodic theorem) the averages AZID}“.'_"',’; M £ converge pointwise yi-
almost everywhere on X as min{ty, ..., ty} — 00,
(iii) (Maximal ergodic theorem) the following maximal estimate holds, including with
p = oo
P, ..
sup |A; 7" Pu g SomdegP 1 fllLrx
teNM LP(X,u)

(iv) (Oscillation ergodic theorem) the following uniform oscillation inequality holds:

Pl
sup  sup H OIZ’N (An 10y Mf ‘te NM)‘ Lk SpmdegP 1 fllLrix)
NeN [e6 y (RY) )
f e LP(X),

with implicit constants independent of the coefficients of the polynomial mapping

P.

Proposition 5(i)—(iii) is attributed to Bourgain, though it was never published (see
[24] for a proof and additional historical notes), and Proposition 5(iv) with linear poly-
nomials P1(t) = ... = Py (t) = t was established in [15]. Corollary 4 is a significant
generalization of Proposition 5 (one may check that the proof is easily adaptable to
sums taken over N instead of Z) in that it allows for averages taken over primes and
over more general polynomial orbits. Indeed, from the point of view of the permit-
ted polynomial orbits, Corollary 4 is the most one can extend Proposition 5 without
having to go beyond averaging operators that can be written as the composition of one-
parameter averaging operators. For comparison, proving the analogue of Proposition

Birkhauser
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5 for averages of the form

M
1
D DI D C I ALty

t
M ni=1 ny=1

is acentral open problem in modern ergodic theory that can be seen as a multiparameter
variant of the Bellow and Furstenberg problem (cf. [24, Conjecture 1.29], and see [6]
for some recent progress).

2 Notation and Necessary Tools

2.1 Basic Notation

We denote N:={1, 2, ...}, No:={0, 1,2, ...}, and R;:=(0, 00). For d € N, the sets

74, R4, C4, and T? = (R/Z)¢ = [—1/2, 1/2)? have the standard meanings. For each
N € N, we set

Ny:={1,..., N}, Py:=Pn{l,...,N}
For any x € R, we set
x| :=max{n € Z :n < x}.

For u € N, we define the set
2/N.—un . e N}.

For two non-negative numbers A and B, we write A < B to indicate that A < CB
for some C > 0 that may change from line to line, and we may write < if the implicit
constant depends on §.

We denote the standard inner product on R¢ by x - &. Moreover, for any x € R¢,
we denote the £2-norm and the maximum norm respectively by

|x]:=|x]2:=+/x - x and |x|oo:= max |xg|.
1<k<d

For amulti-index y = (y1, ..., %) € N’é, we abuse the notation to write |y |:=y1 +
- -+ 4+ yx. No confusion should arise since all multi-indices will be denoted by y.

2.2 Rademacher-Menshov Inequality

We recall a basic numerical inequality. A variational version of this inequality was
proven by Lewko-Lewko [18, Lemma 13], see also [26, Lemma 2.5, p. 534].
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Proposition 6 For any k,m € N with k < 2™ and any sequence of complex numbers
(an : n € N), we have

1/2
2

, 2.1)

aui —da,i

1
. u'.
k<n<2m Jj+l1 J

S
sup an| < lal +vV2) [ Y
i=1 \ j

where each [u;, u;H) is a dyadic interval contained in [k, 2™] of the form [j2i, G+

1)2)) for some 0 <i <mand0 < j < 2™~ — 1.

2.3 Marcinkiewicz-Zygmund Inequality

We recall a result extending the Marcinkiewicz—Zygmund inequality to the Hilbert
space setting. Let (7, : m € Np) be a family of bounded linear operators, 7, :
L?(X) — LP?(X). Foreach w € [0, 1], we define

T® = Z em (@) T

meNy

where (€, : m € Np) is the sequence of Rademacher functions on [0, 1].

Proposition 7 [22, Lemma 2.1] Let p € (0, 00). Suppose there is a constant Cp, > 0
such that, for all w € [0, 1] and f € L?(X), we have

1T fllrcxy < Cpll fllLrxy,

then there is a constant C such that

1/2
AT fil? < CCpll fill Lo x:e2) 22)

eN
et LP(X:02)

for every sequence of functions (fi)ien in LP(X; €2). Moreover, if T, = 0 for all
m € N, then (2.2) recovers the Marcinkiewicz—Zygmund inequality

170 fillLrx:e2) < CCHIl fill Lr(x:e2)- (2.3)
2.4 Reductions: Calderén Transference and Lifting
By the Calderén transference principle [7], we may restrict attention to the model
dynamical system of Z¢ equipped with the counting measure and the shift operators

S;: 74 — 7% given by S;(x1, ..., xa):=(x1,...,x; — 1,...,x4). We denote the
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corresponding averaging operators by

k//
i 1
AT F @) = 5 o > fx=Po p)ig,@. p) | []loglp;l
& (n,p)eZK x (£P)¥" j=l1
and
’ " k//
HPY Y foo= Y fx =P p)K@ ple (. p) | []loglp;]
(n, p)€ZK x (£P)K’ j=I

Moreover, by a standard lifting argument, it suffices to prove Theorem 1 for a canonical
case of the polynomial mapping P. Let P be a polynomial mapping as in (1.1). We
define

deg P:=max{degP; : 1 < j <d}

and consider the set of multi-indices
Ii={y e Nj\ {0}:0 < |y| < degP}

equipped with the lexicographic order. We define the canonical polynomial mapping
by

R 5 x=(x1,...,x0) > Qx):=(x":y eT) e RF, (2.4)
wherex? = x]'x}? .- - x]*. By invoking the lifting procedure described in [22, Lemma
2.2] (see also [36, Chapter XI]), the following implies Theorem 1.

Theorem8 Letk € N, and let k', k" € {0, 1, ..., k} withk' + k" = k. Let M* ¥ be

her AQK K o QKK p 1 here i c 0 such
either A, or H, . Forany p € (1, 00), there is a constant Cp i 1| > 0 suc
that
MEF <C 2.5
sup |M; " fi = p,k,\l“|||fi||ep(ZF;e2)- (2.5)
t>0 eP(ZF:62)

2.5 Fourier Transform and lonescu-Wainger Multiplier Theorem

Let G = R? orG = 7@ and let G* denote the dual group of G. For every z € C, we
set e(z):=e*™%, where i> = —1. Let Fg denote the Fourier transform on G defined
forany f € L'(G) by

Fof(€)= f@ Fex - E)du(x), & e G,

where p is the usual Haar measure on G. For any bounded function m: G* — C, we
define the corresponding Fourier multiplier operator by

TG[m]f(x):Z/G* e(—§ - x)m@E)Fcf(6)dE, xeG. (2.6)

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:61 Page 150f30 61

Here, we assume that f: G — Cis a compactly supported function on G (and smooth
if G = RY) or any other function for which (2.6) makes sense.

An indispensable tool in the proof of Theorem 8 is the vector-valued Ionescu—
Wainger multiplier theorem from [27, Section 2] with an improvement by Tao [37].

Theorem 9 For every o > 0, there exists a family (P<y)neN of subsets of N such
that:

(i) Ny © P<n S Ny eney

(ii)) If Ni < Ny, then P<y, € P<n,.
(iii) If ¢ € P<n, then all factors of q also lie in P<y.
(iv) lem(Py) < 3V.

Furthermore, for every p € (1, 00), there exists 0 < Cp o | < 00 such that, for
every N € N, the following holds:

Let 0 < ey < N and let Q:=[-1/2,1/2)" be a unit cube. Let m: R —
L(Hy, Hy) be a measurable function supported on €yQ taking values in L(Hy, Hy),
the space of bounded linear operators between separable Hilbert spaces Hy and H,.
Let 0 < A, < oo denote the smallest constant such that

” T]Rr [m]f ||Ll’(RF;H1) SA]J”f“LI’(RF;Ho)

for every function f € L>(R"; Hy) N LP(RT; Hy). Then, the multiplier

AnE):= ) m(E—b),

beZSN
where X<y is defined by
_]é I ~ml . _
ESN.—{— eQ NT :q € P<yandgcd(a,q) = 1},
q
satisfies

| T2r LANTF | o o1y < Crror1 002 AR Fllenczr o) 2.7

for every f € £P(ZY; Hy), (cf. [37, Theorem 1.4] which removes the factor of log N
in the inequality (2.7)).

2.6 Exponential Sums

In this section, we present some general results concerning the behavior of exponential
sums. The following proposition is an enhancement of the variant of Weyl’s inequality
due to Trojan [38, Theorem 2] that allows us to estimate exponential sums related to
a possibly non-differentiable function ¢, (cf. [27, Theorem A.1]).
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Proposition 10 (Weyl’s inequality) [20, Proposition 6] Let @ > 0, k € N, and let
I' ¢ N\ {0} be a nonempty finite set. Let @' € Q@ € B(0, N) C R¥ be convex sets
and let ¢p: QN 7ZK — C. There is By > 0 such that, for any B > Ba, if there is a
multi-index yy € T" with

1
< =
- 2

é: —
Yo q

for some coprime integers a and q with 1 < a < q and (logN)? < g <
N'vol(log N)=B, then

Y e Q. p)g (. pYlava(n. p)| S N¥log(N) ™ 1]l 1o e
(n,p)eZK x (£P)*"
+NC sup o) — o)

[x—y|<N(log N)™*
x,yeQ\Q'

The implicit constant is independent of the function ¢, the variable &, the sets 2, 2/,
and the numbers a, q, and N.

The next result is a generalization of [38, Proposition 4.1] and [38, Proposition 4.2]
in the spirit of [27, Proposition 4.18]. Forg € Nand a € Ng with ged(a, g) = 1, the
Gaussian sum related to the polynomial mapping Q is given by

Gla/q)= 7 )k,, Yo D ela/g)- Qx, y), (2.8)

xeNk yeal”

where A,:={a € N, : gcd(a, g) = 1} and ¢ is Euler’s totient function. Thereis § > 0
such that

|Ga/g)] Sq7°, 2.9)

according to [38, Theorem 3].

Proposition 11 [20, Lemma 7] Let N € N and let Q2 € B(0, N) C R¥ be a convex
set or a Boolean combination of finitely many convex sets. Let K: R — C be a
Sfunction supported in Q2 with K|q continuous. Then, for each B > 0, there is a
constant ¢ = cg > 0 such that, for any g € Nwith 1 < q < (log N)ﬂ, ae Ay and
£§=ua/q+6 R, we have

k//
Yo el Q. p)Ka. p) [ [[logpil

(n,p)eZK x (P)*” i=1

—G(a/q)fge((é —a/q)- Q0)K(r)dr
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< [N"‘lulcnmom)(l +) lele'V') N s K@) - KON
X, Y€
ver v—yl<qVE

exp ( — c\/@).

The implied constant is independent of N, a, q, & and the kernel IC.

We remark that, in the case where ¥’ = k and k” = 0, the factor of N exp( —
cy/log N ) can be omitted because the proof will no longer apply the Siegel-Walfisz
theorem (cf. [27, Proposition 4.18]). Then the weaker kernel condition (1.7) suffices
to apply this proposition for Property 3 ahead.

2.7 Multipliers for the Averaging Operators
For a function f: Z'' — C with finite support, we have

ASKHR £y = Tyrlm 1 f(x) and HEXH f(x) = TprIng £ (x)
for the discrete Fourier multipliers

k"

1
()= Y. e Qm,p)ig,m p) [ [Jloglpil |, &eT,
@ (n,p)eZK x (£P)*” i=1
and
k//
n@E:= Y e Qn, p)Kn, p)lon,p) | [[loglpil ], £eT".
(n,p)eZK x (+P)¥" i=1

Their continuous counterparts are given by
1
¢t(§):=—/ e(§ - Q(t))dr and ‘Pz(é):=P~V-/ e(§ - Q) K (r)dt
12| Jo, Q

respectively. To present a unified approach, we write M,k /’k”, s, and ®; to represent
either A,Q’k,’k”, m;, and &, or H,Q’k,’k”, n;, and W; respectively. We now present the
key properties of our multiplier operators that will be used in the proof of Theorem 8.
Let N,,:=|2"" | for n € N and some 7 € (0, 1] adjusted later.

Property 1 For each o > 0, there is 8, > 0 such that, for any 8 > B, and n € N, if
there is a multi-index yy € I" with

1
=2
q

a
;;: - —
Yo q
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for some coprime integers a and ¢ with 1 < a < ¢ and (log Nn)ﬁ < qg <
N log N,)) =, then

N, — N, E)] S Clog Ny) ™.

This follows from Proposition 10 with ¢(x) = (z?g(Nn))’1 for the ; = m; case
and with ¢ (x) = K (x) for the y; = n; case, noting the size condition (1.4) and the
continuity condition (1.6).

Property 2 Let A be the |I'| x |I"| diagonal matrix with
(Av)y, = |y|vy,. (2.10)
For any t > 0, we set t4v := (tI"lv), : y € T). Then

O, (&) — O, ,(©)] < min [N/ €|, INAEILM), foreachn € N.

In the ®; = &, case, this follows from the mean value theorem and the standard van
der Corput lemma. In the ®, = W, case, this follows from the cancellation condition
(1.5) and [26, Proposition B.2] (see [26, p. 21] for details).

Property 3 Foreacha > 0,7 € N, and & € T' satisfying

g, — Ll <N7”IL forally eT

q

with1 <g <L,a € Al,and 1 < L < exp (cy/IogN,)(log N,)~*, we have

N, (&) — tw,_, (&) = G(a/q)(On,(E —a/q) — On,_, (¢ —a/q)) + O((log N,) ™),
for some constant ¢ > 0 which is independent of n, £, a and g.

In the y; = m;, ©; = P, case, this is [38, Property 6]. In the y; = n;, ®;, = ¥,
case, this follows from Property 1 alongside Proposition 11 with €:=Qy, \Qy, , and
K(n, p):=K (n, p)1g, noting the size condition (1.4) and the continuity condition
(1.6). For details see [38, Lemmas 3 and 5].

2.8 Parameters Discussion

Let p € (1, 00) be fixed and let x € (0, 1/10). Fix r with0 < 7 < 1 —min(2, p)~!
and let N,:=|2"" | forn € N.If p € (1,2), fix po such that 1 < py < p. If instead
p € (2,00), fix po > p.If p = 2, the discussion is moot since all the interpolation
arguments in the article become unnecessary. We choose p with

1 ppo—2p

>
P T2po—2p
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so that interpolation of the estimates

ITlle2 Sn™"F and [IT]lero <1
yields

IT]ler < n~U% for some e > 0.

Property 1 gives us a corresponding B,. We fix a choice of 8 > B, and then fix a
choice of u € Nwithu > |I'| 8. We also have the value of § coming from the Gaussian
sum estimate (2.9). With these fixed, we choose the value of o in Theorem 9 to be

. ( x 9
o:=min [ —, — ).
10u " 87

3 Proof of Theorem 8

By the monotone convergence theorem and standard density arguments, it is enough
to prove that

sup [ M |

tel

Spory ILfi ”(p(Zl“;(z)
£P(ZT %)

holds for every finite subset I C R with the implicit constant independent of the set
L. For any 1y € I, we have

Sup |Mtk,’k”fi‘ S Sup |(Mtk/’k” )f1| + |Mk/ k// ‘
tel tel
SO,

sup |Mtk/’k//fi|

tel

S Sh (M,k/"k//fi rel)+ | Mr]:nrll{]l/f‘ ||zp(zr;z2)'
Z]:(ZF;ez)

Let] C Ry with#I < oo, let E be either of R or Z¢ with the usual measures, and
let (fi,:ieN)e LP(E, £2) for all t € I. We define

172

= Zsup|f1t fi,min]I|2

SE(fip:tel:=
LP(E;£2) = tel

Sug |fi,t - fi,min]l|
te
LP(E)

As we shall see, working with this rather than the usual maximal function is just a
technical adaptation to be more similar to the variation, jump, and oscillation quantities
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that have been studied before. With this notation established, it suffices to show that
k/,k// .
Sgr M; " fiiteD) S fillerzr.e)-

We start by splitting (cf. [17, Lemma 1.3], [23, Lemma 8.1]) into long and short
suprema along the subexponential sequence N, . Letting I,:=[N,,, N,,4+1) N1, we have

P (M,"”"” fiite H) < 8P (Tyrlow, 1fi :n € No)

1/2
k' k" kK k" 2
+ Z sup‘(Mt _Mmin]l,,)fi|
neNy tel,
LP(Z1;02)
3.1 Short Suprema
Let 5,0 < Sp,1 < ... < S5,J(n) be the increasing enumeration of [N,, Ny11]1 N1

and let » = min(2, p). Monotonicity of £” norms, Minkowski’s inequality, and the
triangle inequality give

K k" KoK 2 1/2
H (ZneNo SUP;e, |(Mt - Mmin ]I,,)fi| )
P(ZT02)

r l/r
fi U(Zr;ez))) . @D

‘ ( k/,k// k/,k// )

Sn,j Sn,j—1

1

J(n)
< (Soe (25
Since

< |95 = Bsnses ”zl(zr)“f”zp(zr)

Sn,j Sn, j—1

H (Mk/’k” _ Mk/’k” )f

Pzl

by Young’s convolution inequality, (2.3) gives

H (Mk/’k// _ Mk/'k// )fl

Sn, j Sn,j—1

I 2) = ”6%,_1 - 63/1,./—1 ”zl(ZF)” fi ”w(ZF;eZ)'

Therefore, we control the right hand side of (3.1) by

) r\ l/r
Z Z |6Sn'j - fjs,,_j_l | || fi ||[p(ZF;£2)
neNy j=1 EI(ZF)
1/r
N Z (=170 | fi “EP(ZF;EZ)
neNo

< ” fi ”EP(ZF;EZ)'

The last estimates follow from [20, Eq. 4.2] with f = §p and the discussion thereafter.
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3.2 Long Suprema and the Circle Method

Let n: R — [0, 1] be a smooth function with

1 if [X]oo
nx) = :
0 if [x]oo

IV IA
— (5]
(=) [
RSN NS
E‘ E‘

For N € R, we define the scaling notation

nn (§):=n (2N AN Tdg)

where A is the matrix given in (2.10) and Id is the |I"| x |I"| identity matrix. For dyadic
integers s € 2", we define the annuli sets of fractions by

= ifs =24,

= 3.2
ESS \ ESA‘/zu ifs > 2”, ( )

S

where the X <. are the sets of lonescu—Wainger fractions as in Theorem 9. For ¢ > 2%,
we set F(1):=max{s € 2“N : s < r}. We define

E<ju)r= Y i —alq)

a/qest(jru)

and, for s € 2N, we define the annuli functions

25€)= Y ni—alq. (3.3)

a/qexs
By (3.2), we have the telescoping property

Bejmu = cy
LAS‘] _— u/.

SezuN
s<j™

Note that 7= (§) satisfies the hypothesis about the support for m in Theorem 9 since
ﬁZ‘ju‘jIX < e‘jzmg provided that o < x/(10u). Using the E< ;= functions, we
bound the long suprema by

n
SP DY Turlon, —on, ) E<julfiin €N
j=1
+ 8P D Tyrlon, — v, )(1 = B<ju)lfiin €N
j=1
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These terms correspond to major and minor arcs respectively.

3.3 Minor Arcs
Monotonicity of £7 norms, telescoping, and the triangle inequality give
n
ZTzr[(UNj _UNjfl)(l E 'ru)]fl :neN
o
=< Z HTZF[(UN,, UN,, 1)(1 - E T”)]fl”(p(zr‘ 102)
n=1

It then suffices to show that

| Tzr Low, — 9w, (A — E<um)1 fi] <=9 £

eP (L e2) ~ llerzr;e2)

for some ¢ > 0. This follows from

| T2r 1w, = 98,0 = E<ar) 1| o zry S0 fllgncary

by (2.3). This uses Property 1 and follows from the proof of [38, Egs. (5.8), (5.9)]
with only small changes due to our differing scaling in the definition of ny(§). We
omit the details.

3.4 Introduction to Major Arcs

Using the annuli multipliers (3.3) and the triangle inequality, we bound the major arcs
term by

Z Z Tyrl(n; — 9N, DEfitn €N

Jj=1gepuN
SS‘/'TM

p — . 1
< >SN DD Tyl — 9w, )ESIfiin = s
se2uN I<j<n
J'Zsl/(fu)
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It then suffices to show for large s € 2"V that

Sl D Tyl —on DB i = sV SsTE N fillppariey B4
I<j=n
st/

for some & > 0since ) un s~° < 00. Let ky:=s2lel By splitting the left hand side
of (3.4) at n &~ 2% into small and large scales, it suffices to prove that

ST g 1 1 -
Shr E Tyrl(n; — 9N, DEJLfiin® € s M2 S s™8 N fillerzr e
I<j<n
jzsl/(ru)

3.5)
and

Sl D Turlew, — o, DESIfi 0" > 29 | S50 fillnzry. (3.6)
1<j<n
jz2el

For the small scales (3.5), we will use the Rademacher—Menshov inequality (2.1)
and Theorem 9. For the large scales (3.6), we will use the Magyar—Stein—Wainger sam-
pling principle from [19, Proposition 2.1] and its counterpart for the jump inequality
from [25, Theorem 1.7]. We first recall an approximation lemma to replace our discrete
multipliers with continuous counterparts. Let

V€)= Y Ga/q)(On, —On, )E —a/gmjE —al/g)  (3.7)

a/qex
and
A= Y (On; —On,_,)E —a/g)nj & —a/q). (3.8)
a/qeXy

Lemma 12 [20, Lemma 8] Ler M € N, o' > 0, and Sy:=[2M 3" | For j e N
with s/ < jand M < j < 2M, we have

”(UN_/' - UNj_l)ES' - vs: ”EOO(TF) fS j_a ' (39)
J J

and )
I, — o8y ES — Amsy llgcrry S 5 (3.10)
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3.5 Small Scales

Splitting [s'/%, 2%s+1] into dyadic intervals and preparing via the triangle inequality
to use (3.10), we bound the left hand side of (3.5) by

Main Term 1

2 Shel Do TurlAimgy,lfiin® € [M.2M)

MeaNn[sl/u 2xs] I<j=n
j=sl/@o
+ > Shel Do Turlow, —vn;_DES — Ajmgy, 1 fi 0" € [M,2M]
Me2NN[sl/u 25 1<j<n
jzsl/w

Error Term 1

For Error Term 1, it will suffice to show that

—(1+¢’
P (ZT02) Sn ( 8)||fi||zp(ZF;z2)

| T2r Low, = on, ) E) — Agms, 1 i

for some ¢’ > 0 since we would then bound it by

(14 - -
S N ey S 5T filler ey S 5T N fillerare)-

nZsl/(”‘)

This follows from

| T2 Ton, =9, DB, = Amsy 1 | gy S 0”0 fllencary

by (2.3), and that is [20, Eq. 4.12].
For Main Term 1, we apply the Rademacher—Menshov inequality (2.1) to bound it
by

2 172
log, (2M)
2 | 2| X Terlaimslf »
MeNn[sl/u 2] i=0 I ket

eP(ZT;02)
where j is taken over j > 0 such that I%:z[j?, G+ D2 MV eMm)lT) £ 0.

Let nn (§):=nn(£/2). Then fynir = ne for k¥ > N due to the nesting supports.
This lets us write

Ajms,, = Ajmg,, Z in (& —a/g)=:Ajms, €10
a/qeXy
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fork € Ii’}”. since then k > M1/7.
By (2.2), it suffices to get an appropriate estimate for

Y €@ Tyr[Ajms, 1 f
i M
J ket @
for any Rademacher sequence € = (¢;(w)) with €;(w) € {—1, 1} and for every
w € [0, 1].
We get the appropriate bound on £ (Z") by the Ionescu—Wainger theorem and the
bound for the continuous analogue

D) €@ Tor (O, — Oy, )ufle < llgllzrgry
i M
J kel LP(RT)
with a bound independent of the Rademacher sequence ¢, see [36, Chapter XI] or [9].
Therefore,

0 € (@) Tyr[Ajmg, 1 f S Tzr sy 1f oo zry S 1 Fllerozr)
J kelf_{/‘ £P0 (Zl") (3 11)
using the uniform £7-boundedness of the averaging operators.

We get an improved bound on £2. To do this, we use that

-3

||mSM éAjt,[l/r £0°(TT) S} s

for M € 2N N [s1/4, 2%¢], see [20, Section 4.5]. Then

YD €j@Tyr[Ajms,1f S | Tor[msy &3, 1 2 ary
J kel
i,j ZZ(ZF)

<5l (3.12)

Interpolation of (3.11) with (3.12) then gives that

Y0 €@ Tyr[Ajms, 1f ST f llerzr)
i M
Joker @
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since 8o < §/(pt). We then apply (2.2)

2\ 1/2
DU TyriAjmg,1fi S fillerczrsen
7 |kerM
N eP(ZT;e2)
Thus, we may dominate Main Term 1 by

log, (2M)
2.-8
> > TRl fillrare S wls T fillerzrse

MeaNn[s!/u 2657 i=0
—4
S Q”fi”gp(zr;ﬂ)

since kg < 528, concluding the proof of (3.5).

3.6 Large Scales

We bound the left hand side of (3.6) by

Main Term 2

She |l Y. Tprlifiiat > 29
1<j<n
j=26s/T

Error Term 2

+ Z ” TZF [(UNH - UNn—l)Ei - UZ]fi ||U’(Zr;l2) .

n>2ks /7

For Error Term 2, it will suffice to show that

— K r+1 Q —(1
” Tyr[(N, — 9N, ) E) — vyl fi ”ep(Zr;gz S el Ds® ), = +£)||f1||zp(zr;52)

for some ¢’ > 0 since we would then bound it by

2
UMD S =) filyy ey S MDD £l e
n>2Ks/7
S 5T filler zr ey
This follows from

— K I|+1)se  —(1+¢
| 720 ln, = on, D8 = 031 oy S €T RN F .
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by (2.3), and that is [20, Eq. 4.15].
For Main Term 2, we define

w' @)= Y Gla/q)insE —a/q), TE):= Y i —a/q),

a/qeXs a/qeXs

and

oy €)= > (On, —On,_)E)njr ().

2Ks/T§j§n

Let Qs:=lem(q : a/q € Xy). By property (iv) from Theorem 9, we have Q; < 3°.
The function @ is supported on [—ﬁ, ﬁ] for large s € 2“N since, on the support

of 7ok, we have |&,] < 272" F2%" < 4 Q) forall y € T and large s. We also

have

Y v®=w'® Y i€ —b/0y).

24s/T<j<n beZl

Therefore, it suffices to prove

Sh | Tar | D2 o3 =b/00) | fiin® =29 | SHfillrzrse
beZl

and
| T2r [w* ) fillp zroezy S s8N fillerzr.e2)
for some & > 0. (3.14) follows from

” TZF[wS]f”zp(ZF) S S_€||f||ep(ZF)

by (2.3), and that is [20, Eq. 4.17].

(3.13)

(3.14)

By the Magyar—Stein—Wainger sampling principle [19, Proposition 2.1] for the

supremum seminorm, (3.13) follows from

SEr(Tarlplfi :n™ > 29) SN fill Loere2)-

(3.15)

To prove (3.15), we use that the o functions are almost telescoping. We define

A=Y (On, —On,_)E) = Oy, — Oy, . )E).

26s/T<j<n
Then (3.15) follows from

S]R{r (Tgr[Ay)fiin® >2%) S I fill Lrrr:e2)

(3.16)
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since the error term is bounded by

Z | Trr [(©N, — On,_ ) (1ar — D1 fi ||Lp(Rl";gZ) S fillr e, e2y-

n>2ks /T

This last estimate follows from

Y I Terl@©n, = On, )@ = DI | pgry S I or)

n>2ks/t

by (2.3), and this follows from Property 2 and interpolation. (3.16) itself follows from
Sﬁr (Trr[©fi 1 > 0) S| fillLpwr:e2),

and this follows from [22, Appendix A].
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