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ROTH’S THEOREM AND THE HARDY-LITTLEWOOD MAJORANT PROBLEM
FOR THIN SUBSETS OF PRIMES

LEONIDAS DASKALAKIS

ABsTRACT. We introduce a wide class of deterministic subsets of primes of zero relative density and we
prove Roth’s Theorem in these sets, namely, we show that any subset of them with positive relative
upper density contains infinitely many non-trivial three-term arithmetic progressions. We also prove that
the Hardy—Littlewood majorant property holds for these subsets of primes. Notably, our considerations
recover the results for the Piatetski—-Shapiro primes for exponents close to 1, which are primes of the form
[n°] for a fixed ¢ > 1.

1. INTRODUCTION

For any arithmetical set A we call limsupy_, ., %j\lf’]\m its upper density. Also, we denote by r3(V)

the Erdos—Turan constant, namely, the density of the largest subset of {1,..., N } with no non-trivial
three-term arithmetic progressions. Before stating the main Theorems of the present work we provide
some brief historical remarks. In 1953 Roth [1] proved that any subset of the integers with positive upper
density contains a non-trivial three-term arithmetic progression. In fact, his result is quantitative since he
showed that r3(N) = O((loglog N)~!). In the last 50 years, the result has been dramatically improved
(2, 3, 4, 5, 6, 7, 8, 9]) and recently, a striking leap has been made by Bloom and Sisask [10]. They
showed that r3(N) = O(log=!7¢ N) for some ¢ > 0, breaking the logarithmic barrier and proving that any

arithmetic set A such that - _, % = oo contains non-trivial three-term arithmetic progressions.

This corollary implies that any A C P with positive relative upper density, i.e. limsupy_, ., % > 0,

contains infinitely many non-trivial three-term arithmetic progressions. This result was already proven
in 2003 in the seminal work of Green [11] but the recent work of Bloom and Sisask establishes Roth’s
Theorem in the primes using only their density and not their specific structure, which was exploited in
the paper of Green. In the introduction of Green’s paper he remarks that “it is possible, indeed probable,
that Roth’s theorem in the primes is true on grounds of density alone,” and the breakthrough of Bloom
and Sisask affirms Green’s conjecture.

The same year Roth proved his result [1], Piatetski-Shapiro introduced certain thin subsets of primes.
For v < 1 sufficiently close to 1, the Piatetski-Shapiro primes of type -y, are defined to be

P, =Pn{|n'7]: neN}
and he showed [12] that for v € (11/12,1) we have

P,N[1,z] ~ as T — 00

log x’
Loosely speaking the statement above should be understood as an independence statement, i.e. being a
prime and being of the form Lnl/VJ are independent events since the density of their intersection is the
product of their densities.

Recently, Roth’s Theorem was established in the Piatetski-Shapiro primes, see [13], for v close to 1.
In fact, the aforementioned paper proves Roth’s Theorem in primes of the form Lnl/ 74(n)| where £ is a
certain kind of slowly varying function, for example any iterate of log, see Definitions 1.1, 1.2 below.
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One of our main results is a natural extension of Roth’s Theorem in the Piatetski-Shapiro primes and
to state it, we need to introduce two important families of functions.

Definition 1.1. Fix zp > 1 and let £ denote the set of all functions £: [xg,00) — [1,00) such that

(@) = exp ( / O @dt)

where 9 € C?([wg,00)) is a real-valued function satisfying
Iz) =0, 29 (x) =0, 229" (z) - 0 as x — 00

Definition 1.2. Fix 29 > 1 and let £y denote the set of all functions ¢: [z, +00) — [1,+00) such that

(@) = exp ( / @dt)

where ¥ € C?([wg, +00)) is a positive and decreasing function satisfying
/ 2.9/
¥ (x) 0. =" (x)
() ()

and such that for all £ > 0 we have ¥(z) 2. 27¢ and lim,_, o ¢(z) = 0.

Hx) =0, —0 as z — oo,

Note that Ly C £. We may think of these families as slowly varying functions and now we define a
family of regularly varying functions.

Definition 1.3. Fix 29 > 1, ¢ € (1,00) and let R, be the set of all functions h: [zg,+00) — [1,+00)
such that h is strictly increasing, convex and of the form h(z) = x°(z) for some ¢ € L. We define R
analogously, but with the extra assumption that £ € L.

We are now ready to give the definitions of the arithmetic sets we are interested in. Let ¢1,co € [1,2)
and let us fix h; and hy in R., and R, respectively. Let ¢; and ¢y be the inverses of h; and hy. For
convenience, let y; = 1/¢; and 75 = 1/cp. Let us fix a function +: [1,4+00) — (0,1/2], ¥ € C%([1,+00))
such that

U(z) ~ pp(@) . ¥'(x) ~ h(x) , Y (@) ~ @5 () as z — oo
We can now define By = {n € N: {p1(n)} < ¢(n)} and B_ = {n € N: {—p1(n)} < ¢(n)}, where
{z} =z —|z].

Those sets have been introduced and studied in [15], where the authors proved that the Hardy—Littlewood
majorant property holds for them, see Theorem 1 and 2 in [15], page 4, as a Corollary of a restriction
theorem. Let us denote PN By by Pp, and Pp_ analogously. Note that these sets may be thought of as
generalized Piatetski-Shapiro primes. To see this note that

neB_ <= ImeN: 0<m—yi(n) <¢Yn) <= ImeN: pi(n) <m < p1(n)+p(n) <
Im e N: n < hi(m) < hi(p1(n) +¢¥(n)) < Im € N: hy(m) € [n,hi1(p1(n) + ¥ (n)))
For v € (0,1), hi(x) = ho(x) = z'/7 and ¢(z) = @1(x 4+ 1) — @1 (x) the last condition becomes m!'/7 €
[n,n+ 1) or n = [m!'/7|. Thus in that case P, = P5_ and moreover, any set { |h(m)]: m € N}, h € R,
can brought in the form B_ by similar appropriate choices. This means that Theorem 1.4 below implies
Roth’s Theorem in sets PN { |h(m)]: m € N}, h € R, for ¢ close to 1, see [13], and in particular in the

Piatetski-Shapiro primes.
One of the main results of our paper is the following.

Theorem 1.4 (Roth’s theorem in the set Pp, ). Let ¢1,co € [1,95/94). Then any A C Pp, with positive
relative upper density

i.e. lim Supw

N—too [Py N [N]]

contains infinitely many non-trivial three-term arithmetic progressions.

>0
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We note that one can also obtain with much less difficulty a Roth Theorem in B_.

Theorem 1.5 (Roth’s theorem in the set By). Let ¢1,¢co € [1,16/15). Then any A C By with positive
relative upper density,

i.e. limsup w

N—+o00 |B:|: N [N”

contains infinitely many non-trivial three-term arithmetic progressions.

> 0,

Before making some remarks about Theorem 1.4 and discussing the strategy of our proof, we would like
to comment on the sophisticated nature of sets By and B_. Let us restrict our attention to the sets B
which we call B from now on, since the results for the sets B_ are of equal difficulty. Firstly, note that

neB < ImeN: 0<pi(n)—m<yYn) < ImeN: me (p1(n) —Y(n),p1(n)]

Now assume that n € B, and m € N is such that m € (p1(n) — ¥(n), p1(n)] and assume that ng is the
smallest integer such that m € (¢1(ng) — ¥ (no), ¢1(no)]. Here, even in simple examples, we should expect
that B will have a lot of consecutive integers after ng. For example, a simple application of the Mean
Value Theorem shows that if we let (1 be an inverse of a function in R., o = C'100¢1, where C' is the
doubling constant of ¢}, namely, ¢} (z) < C¢)(2x), and 1) = ¢}, then the set B will contain infinitely
many full blocks of 100 consecutive integers. Such a set B stands in sharp contrast to the sets of the form
{|h(m)]: m e N}, h € R, since the gaps between members of such sets tend to infinity. In general, the

;p/(_(:;)) determines an important qualitative aspect of the sets B. Loosely speaking, for
1
Y(z)

big intervals of integers where the ratio @) is bigger than L, we expect that B will contain blocks of
1

constant sup,e(q,0)

length at least L/C, where C is the doubling constant of ). Even in the simpler case where @1 ~ @9, B
could contains blocks of various oscillating lengths!

We hope that the discussion above demonstrates how rich the family of sets B is and we now proceed
with some comments about Theorem 1.4.

Remark 1.6. We note that unlike Roth’s Theorem in the primes, no improvement of the bound of r3(V)
can ever imply Theorem 1.4 or Theorem 1.5 since the density of P can decay polynomially and a result
of Behrend [14] shows that there exists an absolute constant C' > 0 such that r3(N) > e~ ¢VI°e N This
means that any proof of our result cannot rely solely on density considerations and must use the underlying
structure of Pg. That is the reason why Green’s work is extremely useful here.

Remark 1.7. Our proof of Theorem 1.4 works for ¢1,co > 1 such that 16(1 — 1) + 79(1 — 1) < 1,
where 71 = 1/c; and v9 = 1/¢y, but we chose the more strict condition ¢y, co € [1,95/94) for the sake
of simplicity. One could optimize the constants of the proof and require slightly weaker assumptions but
in an effort to keep the exposition reasonable we avoided stating the sharpest result derivable by our
methods, since, unfortunately, even the sharpest result we can derive here is far from the one we believe
to be true, namely, that the result holds for the full range (1,2).

The strategy of our proof of Theorem 1.4 is the following: we will prove a restriction theorem for Pg,
see Proposition 2.7, and then we will use a transference principle in a similar manner to [11] and [13]
to conclude the proof. For the restriction theorem for the set Pp we use the estimates for exponential
sums of Lemma 1.10 together with a Tomas—Stein TT* argument to reduce the matter to the restriction
theorem for primes that can be found in the work of Green [11]. Vaughan’s identity will play a crucial
role in the proof of Lemma 1.10, and we note that a main tool for estimating exponential sums appearing
in that proof will be Van der Corput’s inequality. In section 3, we use a general transference principle
to bring the problem to Zy = Z/NZ where finite Fourier Analysis together with the restriction theorem
for Pp will be used to estimate certain trilinear forms. We conclude the proof of Theorem 1.4 by fol-
lowing an argument originally due to Varnavides 23] to obtain a lower bound for these trilinear forms.
Finally, we note that similarly to Green’s result, our proof of Theorem 1.4 is also quantitative, although
the bounds one may obtain from our methods are far from optimal (see the end of section 3). Roth’s
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Theorem in the sets B can be used as a toy model since the strategy is identical in both cases but the situ-
ation is much simpler there since the exponential estimates that lead to the restriction Theorem for those
sets are immediate corollaries of results from [15]. We only give a brief sketch for the proof of Theorem 1.5.

The second main result of the present work is proving that the sets Pp obey the so-called Hardy—
Littlewood majorant property, namely, that the following Theorem holds.

Theorem 1.8 (Hardy-Littlewood majorant property for Pg). Let ¢; € [1,16/15), co € [1,17/16) and
r> 2+ %, There exists a positive constant C = C(r, hq, ho,v) such that for any N € N and
any (an)nen sequence of complex numbers such that |ay| <1 for all n € N, we have

§ : ape27rip§ Z e27rzp§

pePBN[N] pePEN[N]

<C
Lr(T)

Lr(T)

Some brief historical remarks are in order. It was conjectured by Hardy and Littlewood [16] that for
any p > 2, there exists a positive constant C), such that for any sequence of complex numbers (a,)nen
bounded by 1 and any finite set A C N, we get

Z e27rip§

§ :ane27r2n§
neA

neA

(1.9)

<G,
Lr(T) Lr(T)
Parseval’s identity shows that one may take Cor = 1 for any k& € N, nevertheless, this conjecture fails for
any p > 2 which is not an even integer, see [17]. While the full conjecture may not be true, there has
been an effort to quantify that failure (see [19] for precise formulations and connections to the restriction
conjecture for the Fourier transform on RY, see [15] for a brief exposition on the matter, and see [18] for
multi-dimensional results). Simultaneously, some efforts have been made to find specific infinite arithmetic
sets A where either inequality 1.9 does hold for any A N [N] with C, independent of N or it fails, but
nevertheless we have sufficiently good estimates for the growth of C,(N), see [20, 11, 13, 15]. Here,
sufficiently good estimates means acceptable in the context of the connections of the Hardy—Littlewood
majorant problem and the restriction conjecture, see [19, 20]. It is worth mentioning that in contrast to the
seminal work of [20], where the behavior of Cj,(N) was studied for random sets, we concern ourselves with
the Hardy-Littlewood majorant problem for a wide class of deterministic sets, similarly to [11, 13, 15].
Finally, we note that variants of this property can play an important role in some combinatorial argu-
ments. For example, establishing Roth’s Theorem in the primes (as well as the Piatetski-Shapiro primes)
involved proving a suitable discrete variant of the majorant property.

Both Theorem 1.4 and Theorem 1.8 rely heavily on the restriction Theorem for the sets Pp, see The-
orem 2.7. The most technical part of establishing this restriction Theorem is the estimate 1.11 of the
following Lemma which we prove in the last section. Lemma 1.10 combined with Bourgain’s restriction
Theorem for the primes, see [11], page 3, will lead to the desired restriction Theorem for the sets Pp.

Lemma 1.10. Let ¢; € [1,16/15) and co € [1,17/16) and let v1 = 1/c1 and v2 = 1/ca. Let a,q € Z such
that 0 < a < q—1 and (a,q) = 1. Then for every x > 0 such that 16(1 —~v1) +17(1 — v2) + 31y < 1 there
exists X' > 0 such that:

(1.11) Z Y(p) ! log(p)e*™ P = Z log(p)eX™PE + O(N1—X~X)
pEPBN[N] pePN[N]
p=a (mod q) p=a (mod q)

where the implied constant does not depend on £, N, a,q.

The curious reader might find of independent interest the following intermediate result which implies the
counterpart of the Prime Number Theorem for the set Pg, which could be interpreted as an independence
statement in the same way the asymptotic formula of the Piatetski-Shapiro primes was understood.
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Theorem 1.12. Let ¢; € [1,16/15) and c2 € [1,17/16), such that 16(1 —~)+17(1 —~2) < 1. Let D > 0,
N,m,b € N such that b <m —1, (bym) =1 and m < logD(N), then

S eyt ( pa(N) >
1.13 N;m,b) = log(p) = 21 o (£2UY)
( ) P PE]P’%O[N] Cer) ¢(m) e 10gD(N)
p=b (mod m)
and if m < log(N) then
S (bt ( () )
) mg(N;m,b) = = (@)
. sim b= 2 1= Geoem e
p=b (mod m)

where the implied constant depends only on D, hi, hs, and .

1.1. Notation. We note that 3AP stands for non-trivial three-term arithmetic progression and any set
with no 3APs will be called 3AP-free. We denote by C' a positive constant that may change from occurrence
to occurrence. If A, B are two non-negative quantities, we write A < B or B 2 A to denote that there

exists a positive constant C' such that A < CB. Whenever A < B and A 2 B we write A ~ B. For two
f(z)
9(z)
X, we denote by C(X) the set of all complex-valued continuous functions, and for any finitely supported

f:7Z — C we define the Fourier Transform

FIAE) =D f(k)e*™ <, for all ¢ € T

keZ

complex-valued functions f,g we write f ~ g to denote that lim,_ . = 1. For any topological space

For any g: Zn = Z/N7Z — C we define the finite Fourier Transform and the inverse Fourier Transform

Fonll© = > gk~ and Filgl(€) = 3 g(k)e ™, for all € € Zy
kEZN kE€Zn

and note that the following Fourier Inversion formula holds ]:Z_Alf [Fzxl9]] () = Ng(&).

2. RESTRICTION THEOREM FOR THE SET Pp

This section is devoted to proving the restriction Theorem for the sets Pg, see Definition 2.6 and The-
orem 2.7. The restriction theorem for the primes together with the exponential estimates of Lemma 1.10
will be the key elements of our proof. Here we fix two constants c1,cy such that ¢; € [1,32/31) and
co € [1,34/33), as well as hy, hy € R, and R, respectively and ¢ as in the introduction and all the
implied constants may depend on them. The reader should compare this work with the Section 4 of [13],
Section 2 of [11] and Section 3 of [15].

Before stating Bourgain’s Restriction Theorem for the primes, which will be essential for our argument,
we introduce the following notation from [11].

Definition 2.1. For any N € N and m,b € N such that 0 < b <m — 1 and (m,b) = 1 and m < log(N),
let
Ab’m’N:{TIG {1,...,N}: mn—i—be]P’}
and (m) log( )
¢(m) log(mn—+b
N (1) = N N E Ny N
Y 0,n & Ay, N
where ¢ denotes the Euler’s totient function. Also, let’s define a function T}, n: C(Apm,n) — C(T) such
that
T, (F)(€) = FL Ao, N1(€) = D f (k) Ao, (k)e*™ for all € € T
keZ
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We will abuse notation and sometimes treat A, ,, v as a measure on Ay, y in the obvious way, namely

)\b,m,N(A) = Z )\b,m,N(n) for all A g Ab,m,N
neA

The Siegel-Walfisz Theorem allows us to think that Ay ., n is, loosely speaking, a probability measure on
Ay m n. More precisely we have the following theorem.

Theorem 2.2 (Siegel- Walfisz). Let D > 0, N,m,b € N such thatb < m—1, (m,b) = 1 and m < logP(N),

then
N N
23) amb) = 3 ) = 5550 ()
n=b (mod m)
and
N N
2.4) imd) = 3 oatn) = s+ 00 (s )
p=b (mod m)

where the implied constant depends only on D.

Proof. For the proof of 2.3, see [21], Corollary 5.29, page 124. Through standard elementary estimates we
obtain

|91 (N, m, b) — o (N, m,b)| < VN
which implies the desired result. O

Applying the result for D = 1 shows that A\, n(Apm n) = ZnEAb . Xom.N(n) = 1, as N — oo,
justifying the previous heuristic.

Theorem 2.5 (Bourgain-Green). Suppose that r > 2 is a real number. Then there exists a positive
constant C, such that for all functions f: Ay Ny — C we have

[ To,m,~ ()l pr(my < CrN_l/er\!L?(Ab,m,N,Ab,m,N)
Proof. This result can be found in [11], see Theorem 2.1, page 3. O

We now introduce the sets and measures analogous to Ay ,, v and Ay, x that will allow us to state the
restriction Theorem for the set Pp.

Definition 2.6. For any N € N and m,b € N such that 0 < b <m — 1 and (m,b) =1 and m < log(N),
let

Pb,m,N:{ne {1, ,N}Z mn+b€]P’B}

e ¢(m) log(mn+b)

-1, m) log(mn—+

pb,m,N( ) = T[)(mn T b) mN € Pb,m,N
07 n ¢ Pb,m,N
where ¢ denotes the Euler’s totient function. Also, let’s define a function thm,N3 C(Pym,n) — C(T) such
that
15, N (&) = Flfpomn1(©) = > f(k)pomv (k)e™ ¥ for all € € T
keZ

Theorem 2.7 (Restriction Theorem for Pg). Let N € N and m,b € Z such that 0 < b < m — 1,
(m,b) =1 and m <log(N). Then for any real number r > 2+ % there exists a positive constant
C = C(r, h1, ha, ) such that for all f: Py n — C we have

T (D) ey € ONTY 1 220Py 1 m)
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Proof. We will use the TT* argument and interpolation. Firstly, note that for g € L(T) and f € C(Py.m.N)
we have

1 - -
(T2 () 8) e = /O FU o (OFTEVIE = 3 (1) m v (0)5T)

nez
= Y FI0)Ip, pn (0)p6m, N (1) = (Fy 1P, ) L2 Py )
TLG'Pbym,N
We remark that (C(Pym n))* = C(Pym n) as Banach Spaces through the map h — @5, where @5 (f) =
(fs 1) L2(Py o) @0 also that any LP(T), p > 1 can be embedded into (C(T))* via the map k — ¥y,

where W (g) = (g, k)r2(m).- We have shown that \Ifg(Tfm’N(f)) =0 (f) and thus (Tfm’N)*(\Ifg) =

<1>91Ab,m,N and we will abuse notation and write (Tfmw)*(g)(n) = g(n)lp,,, y(n). Let’s notice that

glpb,m,N

Tyon N (Lo n)(9) = Ty N (1P, ) = F(G1P, o Poan,N) = G % Flb,m,N]
and we note that a similar calculation shows that T ,, NT}',, N(g) = g * F[Apm,n]. Similarly to the
previous restriction Theorem, it is enough to show that

(25) T2, T ) Wiy ey < CN7H
To see this, let f € L"(Pym,N, Pom,N) and g € LT/(’]T), then
(T (F)s ) 2oy | = [ (T ) 9D 22Pywspnmn) | < N T N D L2Py 0 nspmn) | L2 Py )

and also
||(Tlfm7N)*(g)||%2(Pb,m,N7pb,m,N) = <Tlfm7N(TIFm7N)*(g)7 g>L2(T) é

T (1) @@ 191 1y < W (T ) 2y oy 191
Thus 12
Ty (1), 9220 < T (T )2 iy Ny 1122, )

which justifies the fact that proving 2.8 suffices for concluding our proof. We note that

N N (T N ) (D ey = g% Flovm Nl ey < 19 * Fom NIz ) + 119 % Flobm,n — Ny, N 1oy <
Ty, N T N (DI (1) + 119 * FlobmN — MmNl Ly <

(2.9) ||Tb7m7NTl:m,N||LT"(’]1‘)_>LT'(’]1‘)||g||L7"’(’]1‘) + 1lg * Flovm, N — Aom, Nl (1)

By the proof of Bourgain—Green’s theorem, see (2,7) in page 4 in [11], we know that there exists a
positive constant CJ such that Tom N Ty N L Dy 1) < C!/N~2/" and thus it suffices to estimate
the second term in 2.9 which we may think of as an error term. We show that there exists a constant

C = C(r, h1,hg,) such that
(2.10) g * Flov.m,x = MomNllr(m) < ON"" gl oy
We prove this for 7 = 2, r = co and interpolate. For g € L?(T), we have
19 * Flovm.n — Mo Nl|L2(r) < NG(oom, N — Ao, 822y < |1obm, N — Ao N e @) l19]]e2(z) <
(lpo,m,Nleeo 2y + [ Xo,m,Nleeo ) 1911 L2 ()

log(N) . log(log(N)N +log(N)) — log(V N
and || Ay, v || (z) S B, since Ay, v (n) < 'BUBNIT O8N < J8N) Ny let’s estimate || pp,m, vl (2)

for all n € Py, v we have

¢(m)log(mn +b) < log(N) < log(N)
mNyp(mn+0b) ~ Neh(mn+0b) = Nph(m(N +1)) ~

< mlog(N) < log?(N) log?(N)

~ mNy(mN) ™ pa(mN) T pa(log(N)N)

|Pbm, v ()] =

<
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where we have used: ¥ (z) ~ ¢h(x), @2 is concave and b < m — 1 < log(N), Lemma 2.14 from [13] for
the form of zh(x) and @h(z) ~ ¢2(2x). By Lemma 2.6 in [13], we have that lim, o p2(2)/x = 0 which

. log(N) log?(N)
gives 25~ < gpg(lgg(N)N) and thus

log?(N)
_ < o /7
(211) Hg * -F[pb,m,N )‘b,m,N]HLQ(’]I‘) ~ QDQ(IOg(N)N) HgHL2(T)

On the other hand

g * Flpom,n — MmNl oo (1) < (| F1o0,m,N — Xom Nl Loo (1) |9 21 (1)

Since ¢; € [1,32/31) and ¢z € [1,34/33), we have that 16(1 — ;) +17(1 —y2) < 1, let x > 0 be such that
16(1 — v1) + 17(1 — v2) + 31x = 1, according to Lemma 1.10, there exists x’ > 0 such that 1.11 is valid.
Again let’s estimate; let £ € T and let & = £/m, we get

| Flpvm,N — Aom,N](€ ‘ Z Pb,m, N (1 Z Xb,m, N (1 5)‘
TLG'Pb m,N neAb m,N
LTXZ)‘ Z P(mn + b) "L log(mn + b)e(nmé’) — Z log(mn + b)e(nmé&’)| <
m nEPy m,N nEAp m, N
qb(m) -1 / Nl < qb(m) 1I-x—x' <
Sl wmTeke) - Y eke)| S SR mN 40 g
kePpN[mN+b] kePN[mN+b]
k=b (mod m) k=b (mod m)

m! XX NTXeX < XX /2
Let e = x’/2, and note that we have

1
Nx+e
By applying Riesz-Thorin Interpolation to 2.11 and 2.12 we conclude that for any r € (1,4+00) and
g € L"'(T) we have

(2.12) g * Flovm,N — MmNl Lo (my) S gl 1 (T

log>(N)  \*"
1-2/r g
9+ Fpnmar = N illircey S (VX912 (—2E L) el

Let €, be a sufficiently small positive real number which will be chosen later. We know that @o(x) 2.
278", Thus we have

19 % Flpbny = Moan ¥l () Srey X2/ 10687 (N (log(N)N) 2427 ) 27l g]| o ) =

T

4/r—2 r+2er /7 N — r r— r r/r
(log(N)) /T=2y2 /1426 [1 \p—x—e42x/r+2¢[r—272/7+2¢r HgHLr'(T)

We wish to have
(2.13)

2(1 — 2(1 —
—X—e+2x/r+2e/r—27/r+2¢, /7 < =2/, or equivalently r > Ut+x+e—mter) 2+—( Y2+ er)
X+ € X+ &
For 2.13 to hold, it suffices to have
2(1 - 62(1 — 62 — 62 62

(2.14) rogy2l-mte) o (1—12+er) oy V2 + 62¢,

1—16(1 — 1) — 17(1 — 72) 1671 + 172 — 32

62—62/co

We have that » > 2 + T6/c1F17/c2—32"

have that 2.13 is true, which in turn implies that

and thus such a choice for €, > 0 is possible and therefore we do

llg * ]:[Pb,m,N - )‘b,m,N]HLT(T) S N_z/THQHLr’(T)
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which shows 2.10 and concludes our proof. O

We obtain the Hardy—Littlewood majorant property for the sets Pp as a Corollary. To do so, we will
need some estimates for [P N [N]|, so let’s firstly prove Theorem 1.12.

Proof of Theorem 1.12. One may use Lemma 1.10 for £ = 0, summation by parts, the Siegel-Walfisz
Theorem and the basic properties of functions in R. in order to obtain these estimates. We provide some
details here. Summation by parts gives

> logp)=w(N) Y v(p) 'log(p / G ¥(p)~" log(p)dt
pEPBN[N] pEPBN[N] pE]P’Bﬁ[LtJ}
p=b (mod m) p=b (mod m) p=b (mod m)

There exists a real number x > 0 such that 16(1 —~;)+17(1 —~2) 4+ 31x < 1 and according to Proposition
1.10, there exists a real number x’ > 0 such that

/ L L
>, W) oglp)= Y log(p) + O(L'XX) = — + Op <T>
pePpN[L] peP[L] ¢(m) log™ (L)

p=a (mod q) p=a (mod q)

where we took into account 2.4. Thus we get

and we note that by the basic properties of @9 and 1, see Lemma 2.14 in [13], we get

N N N
- / G Oltde =S (n) = / b(t)dt + O(1) and Ny (N) < Ngh(N) < oa(N)
n=1

w'<t><%>\dts / ) wg<t>(@>\dts / N¢g<t)(log; (t)>dt:

N 1
A2(N)/ 108 (N) = a(2)/10EP (2) = [ pat)(=D)log P~ ()3t <

Finally, we have

&

log(N)
<,02(N)/logD(]\f)+D<,02(N)/1 o uw Py <p gpg(N)/logD(N)
og
Therefore
P2(N) >
Yp(N;m,b) = / P(t dt+OD< o (N)

and we have proved 1.13. For the second estlmate we have

N /
o) = poosvin(Nmt) = [ () o) o

We have that ¢ (t;m,b) < p2(t). Let us fix positive real numbers € € (0,1) and ~ such that ey < e <
Y. Then @o(N¢) < N&%2 < y(N)/log?(N), see Lemma 2.6 in [13], and thus

SRR R Py

Ne¢ 1 N 1 c 1 N ’ 902(N)
J @“”(m)d”/ : @2“><mg2<t>>dt S iy . A0S

Finally, we combine with the previous asymptotic for D = 1 to obtain the asymptotic 1.14. O
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We remark that ¢}, ~ ¢ implies that fl t)dt ~ po(N) and thus [P N [N]| = 7p(N;1,0) ~ f(’;fg((%))

which will be a rough estimate sufficient for our purposes.

Proof of Theorem 1.8. Let N € N and (a,)nen be a sequence of complex numbers with |a,| < 1. Apply
the restriction Theorem for m = 1, b = 0 and f(n) = %(%)1{”»}(71). There exists constant C =
C(r, hi,h2,1) such that

Gy o o Jan P (p) \ /2
H Z Npe2 8 LT(T)SCN 1 ( Z Nlog(p)>

pePBN[N] peEPEN[N]

thus

(2.15) H Z a,e’™e L) SC’N_I/T<N Z ¥(p) >1/2 §C’N‘1/T<N Z @5(1’)))”2

pePBN[N] pePBN[N] log(p) pEPBN[N] log(p

On the other hand we have that
1 1/r
2mipé 100N ‘ 2m~pg"‘ S PeNIN] o o1yr p2(N)

100N  pePpN[N]

pEPBN[N]

Lr(T)

Finally, we will estimate the sum in 2.15 using summation by parts together with our asymptotic formula
for 75(N;1,0). Let € = % > 0, then

3 wé(p):wB(N;LO)wé(N)_/N (1,0 22D ot — D)/t
2

petarin 108(P) log(N) log?(t) h
La(N)GH(N) | [ pa(t) |25 (1) log(t) — teh(D)] P3(N) AU
10g2(J2V ) +/2 log(t) T log?(t) TRy ljgz(N ) /2 Plog)

2 N¢ 2 N 2 2 2(N\E ~+o0 N
%’2(?7) _|_/ %’2(2) dt—l—/ (Pz(g) dt < %’2(?7) + (Pz(év) / ide_/ %’2(2) dt <.
Nlog“(N) Ja t?log*(t) Ne t2log?(t) Nlog“(N) elog“(N) Jo ¢t Ne t2log?(t)
PN 1 /N AU PAPRI(O))
Nlog?(N) = log?(N) Jye 2 ~ Nlog?(N)
3(V)

where we have used the fact that p3(2°) < 2(27271/2 < 2(z)/x and also that fN “02 Lat < 222 To see
this, define ®5(z) = @3(x)/z = 2*27 142 (z) and notice that one can easily show that (IJ’ h{x)r ~ Dy(x).

Therefore, we may write

/N wigwdt_/s <I>2t< ) gt < /N (1)t < Do) = so%](vm

This concludes the proof since we have shown that

H Z ape27ri§ | 5 N—l/rl(tDQ(]]\\[r) S
ST L7(T) og(N)

Z e27rz'p§

pEPN[N]

Lr(T)
U

We wish to finish this section by making some remarks about the restriction Theorem for the much
simpler case of the sets B. The rather technical Lemma 1.10 is replaced by the following.

Lemma 2.16. Let ¢; € [1,2) and ca € [1,6/5) and let v1 = 1/c1 and y2 = 1/ca. Assume we have fized
b,m € Z such that 0 < b < m — 1. Then for every x > 0 such that (1 — 1) + 3(1 — v2) + 6x < 1 there
erists X' > 0 such that
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(2.17) Z w(n)—le%rinﬁ _ Z e27rin§ + O(Nl_X_X/)
n€BN[N] n€[N]
n=b (mod m) n=b (mod m)

where the implied constant does not depend on £, N, b, m.

Proof. Use Lemma 3.2 from [15], together with the identity 1¢pcz: n=b (mod m)} (k) = % ZZ”:_OI e2mis(k=b)/m
]

The analogues for Py, nv and pp v are My v = {n € [N] :nm +b € B} and

(nm4b) 1
Lt (1) = { N " € MpmnN
07 n ¢ Mb,m,N

Finally, the restriction Theorem is the following

Theorem 2.18 (Restriction Theorem for B). Let ¢; € [1,2) and co € [1,6/5) and assume we have fized
hi, he, ¥ and B as in the introduction. Let N,b,m € 7Z be such that 0 < b < m < log(N). For each

r>2+ 1/10211%%;2_3, there exists a constant C = C(r,hy, ha,1) > 0 such that

1w (Al Erry < CN T L2 0y stsmn)
for all f € L>(Mpm. Ny fto.m.n), where Spm N : C(Mpm n) — C(T) is such that

Spum N (F)€) = Flf o )(€) =D (1) ptogm,n ()€™ for all € € T

nez

Proof. This Theorem is a generalization of Proposition 3.1 in [15]. A similar argument to the one presented
there works here as well. Essentially a T7T* argument and interpolation are the key ingredients of the
proof, similarly to the proof of Theorem 2.7, but much simpler. O

Remark 2.19. Let’s remark that in the same spirit as in the proof of Theorem 1.8, this restriction
theorem implies that the set B has the Hardy—Littlewood majorant property. For the specific formulation
and proof we point the reader to [15].

Finally, we wish to comment that the restriction Theorem for the set B together with an appropriate
Transference Principle, analogous to the one we present in the next section for the sets Pg, are sufficient
to yield Theorem 1.5.

3. TRANSFERENCE PRINCIPLE

We are now ready to prove Theorem 1.4. We fix ¢;, co € [1,95/94), hi, hg, b and B as in the
introduction. This implies that there exists x > 0 such that 16(1 — ;) + 17(1 — v2) + 31x < 1, and
therefore according to Proposition 1.10, there exists a real number x’ > 0 such that the estimate in 1.11
holds. Throughout the discussion here we have fixed such y,x’ > 0. All the implied constants in our
work in this section may depend on hi, ha, v, x, X’ and on nothing else unless we explicitly indicate it. We
transfer our problem to Zy = Z/NZ.

Lemma 3.1. Let Ay CPN B =Pg and assume that

Ag N[N log(N)|Ag N[N
limsup‘ 0 O[N] > 0 or equivalently lim sup 0g(N)|4o N [N]]

—_— >0
Nooo |PBN[N]| N—soo ©2(N)

then
. log(N)|Ap N [N, 2N]|
lim sup

>0
N—oo (102(N)
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Proof. We know that |[PgN[N]| ~ p2(N)/log(N) and thus there exists a positive constant C' and a natural

number Nj such that [Pp N [N]| < c22) for all N > Ny. We also have that there exists a positive

log(N)
real number «q for which there are infinitely many naturals numbers N such that W > ag. We

have that ¢o(x) = 2724, (x) and for all real numbers ¢ > 0 we have that £,,(tx) ~ £y, (x) as x — oo, see
Lemma 2.6 in [13], page 6. Let’s fix a real number ¢ = 27 for some k € N such that ¢ < s&- We will
have that

(’02(75]\[) — t’YzN’ngm (tN) — t'yz(’pz(N)éf((t]]VV)) — t'yz(,Dg(N) + <€Z; ((t]]\\rf)) _ 1> t’m(pQ(N)

Thus there exists a natural number Ny such that for all N > Ny we have that po(tN) < 2t72¢y(N). Let’s

notice that for all natural numbers N such that N > max{2N; /t, Na} and such that % > o we have
[Ao N[EN, N] = |Ag N [N]| = [Ag N [L,EN)[ = [Ag N [N]| — [P N [1,EN]| >
0902(]\7) _ oP2(tN) > ag p2(N) 5y P2(V) > ag p2(N) 200 pa(N) _ 3ao p2(N)
log(N) log(N) log(N) log(N) log(N) 8 log(N) 4 log(N)

We have that k& = log,(1/t) and

k k—1
D AN 2N, 21N = Y | Ag N [27 1N, 21N 4| Ag N [2F 1N, 28N = | Ag N[EN, N > —
=1 1=1

Thus there exists a natural number I € [1,k] such that |4y N [2/71¢N, 2 N]| > 3&0 {gzg(( )) Since g is

increasing, we have

log(21=1N)|Ag N [2171¢N, 21t N| - ?wﬂlog@l_ltN)(pg(N)
p2(2171N) ~ 4k log(N)pa(2i71N) —

COZ(]

We note that t = 27 is fixed, ¢o(22) < @o(x) and that the previous inequality holds for infinitely many
natural numbers. This gives that there exists af, > 0 such that

: log(N)[Ao N [N,2N]|
lim sup >«
N—oo ©2 (N) 0
which is the desired result. O

Lemma 3.2. Assume Ag C Pp has positive upper relative density and thus, according to the previous
lemma, there exists a positive real number ag such that limsup,,_, %‘W > ag. If Ag does not
contain 3APs, then there exists a small positive number o and infinitely many prime numbers N with
the property that for each such number there exists a set A = Anx C {1,2,... |[N/2|} and an integer
W =Wy € [1/8loglog N, 1/2loglog N] such that

i) A= AN has no 3APs,

it) pom,n(A) = a for some b € {0,...,m — 1}, with (b,m) =1, where m = [ cprm) P

Proof. Since limsup,, %(W

|Ap N [n/2,n]] > 3%;0;((2//22)) 2 QI%“;?T(SL). Let W = [1/4loglog(n)]| and m = [],cpnpyyp, and notice that

m= HpelP’ﬂ[W} p < AW < e2/4loglog(n) — logl/z(n). According to Bertrand’s postulate, we know that there
exists a prime number N € [2n/m,4n/m|. We have that W € [1/8loglog(NN),1/2loglog(N)] and also
that

> g, we will have infinitely many even numbers n € N such that

Z Z Laonp,,, (k) = [Ao N [n/2,n]| 2 Qo2(n) where Py, = {n € Z: n =0 (mod m)}

bc{0,...,m—1} k=n/2 log(n)
(b,m)=1
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We have ¥(x) ~ ph(x) ~ ¢a(x)/z and pa(x) ~ p2(22), and thus we get

Z Z 1AoﬂPb,m(k)¢(k)_l lOg(k) Z Z Z 1AoﬂPb,m(k)(10/2(k)_1 lOg(k) 2

be{0,....m—1} k=n/2 be{0,...,m—1} k=n/2
(b,m):l (b,m):l

log(n)gh(n)™ > > lanp,,. (k) Znlogn)ea(n)™ Y- Y 1aan,,, (k) 2 aon

be{0,...,m—1} k=n/2 be{0,...,m—1} k=n/2
(bm)=1 (bym)=1

By the pigeonhole principle there exists b € {0,...,m — 1} with (b,m) = 1 and such that

> Lagnp,,, (k)(k) ™ log(k) 2 agn/¢(m)

k=n/2
Let A=Ay = 2 (4N Py, N{n/2,...,n} — b) and notice that A C {1,...,[N/2]}. Since Ay does not
have any 3APs, neither will A, and notice that this means that it will not have such progressions even
when considered as a subset of Zy. Finally, notice that A C P, ,, y and with a change of variables we get

(3.3) Pom v (A) = ppmn() = D Lagnn,,, (k)(k)” 1olm gllj(i,g( ) > Z aomnN > ag/4

leA k=n/2

0

From now on we fix Ag C Pg with positive upper relative density and we assume for the sake of a
contradiction that it does not contain any 3APs. We see that Lemmas 3.1 and 3.2 are applicable.

Lemma 3.4. Let N € P, W € [1/8loglog N, 1/2loglog N|, m and b be the integers of the previous lemma.
Then for sufficiently large N we get

sup | Fzy[pom,n](€)] < loglog W/W
£ezZn\{0}

Proof. We will use the fact that for sufficiently large N we have that
Sup ‘]:ZN Ame](ﬁ)‘ < 2loglog W/W

§€Zn

which has been established in Green’s work, see [11], Lemma 6.2, page 17, together with our estimate

Z Y(n) "t log(n)e(né) = Z log(n)e(n€) + O(N'"X"X') where e(z) = e>™*

nePNBy n€PN[N]
n=b (mod m) n=b (mod m)
We have
sup | Fzy[pom N < sup | Fzy[opm N](€) = Fzy Pom () +  sup [ Fzy [Aomn](E)] <
¢ezZn\{0} §€Zn\{0} ¢eZn\{0}
lo mn+b —orin log(mn +b) _ TN
), S e s .
§€Fz, \{0} ne{l,...,N} ne{l,...,N}
nm~+bePp nm-—+beP
log(mn + b “2milnmib)e log(mn + b —2mi(nm tb)e
wp |3 At s 5 S LD S otegiog
gefZN\{O} ne{L ’N} TLG{I, 7]V}
nm+bePp nm+belP
sp Z qﬁ(mk);log](\f:)e?\;mks Z p(m) b(sfg(k) s laN— Log(N)+2log log W/W <
§€7zy MO kePnB,,y1p Y (k)m nePN[mN+b] m

k=b (mod m) n=b (mod m)
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(mN + b)l—x=X
N

+ 2loglogW/W < N™X 4 2loglog W/W < loglog(N)
]

We define a new measure on Zy by letting a(S) = >, cg 1sna(k)ppm,n(k) for any S C Zy, where we
are considering py,, v as a function on Zy in the obvious way. According to Lemma 3.2, we will have that
a(Zy) > a. Now, we define yet another measure on Zy. Let §,e € (0,1) be numbers that will be chosen
later and define

R={§€Zy: |Fzylal(§)] =5}
If R={&,...,&} with |R| = k, then define

B={z€Zn: sup H—H < e}, where ||z|| = min{|z — n|: n € Z}
i€[k]

We will have that |B

big N. Let B(y) = ‘—é‘

> ¢F N, see Lemma 4.20 in [22], page 166, and thus B is non-empty for sufficiently
1p(y) for all y € Zy. Finally, let a1 = a * % 3, and note that a1(Zy) > a.

Lemma 3.5. Let N € P, W € [1/8loglog N,1/2loglog N|, m and b be the integers as before and assume
that €* > loglog W/W , then

a1l zy) S 1/N

Proof. Here we use the Fourier Inversion Formula together with Lemma 3.4 to obtain

a1(2) = ax B+ (@) < phm * 8% B@) = = Fy L [Fay [y + 8 5 Al)(z) =

N
1 2 2mix
5 2 FenlpnmN(©)Fzy [B1(€)%eN
£€ELN
1 1
72 bm N O Fzy [0 + % sup [ Fay[onm N D Fax[8)(€)*
(20} £€7n\{0}
It is not difficult to see that Fz, [ppm, n](0) S 1 and Fz, [5](0) = 1. We also have
Yo Pz B < Y (FayBl) (FzyBln) = > Y D Blm)Bk)e>m /N m2mink/N =
neZn\{0} neLN n€ZN mEZy k€ZN
_ Z Z |5(m)|2+ Z Z 5(7’71,)5(]{3) Z e27r2'nm/Ne—27rink/N:]\7|B|—1
NEZLN MELN LAYANS kEZN\{m} neLnN

Putting everything together, we use the previous Lemma as well as the fact that |[B| > e*N > N loglog W/W
to obtain

a1(@) S 1/N + [B| L oglog W/W < 1/N
as desired. O

We now use the Restriction Theorem for the set Ppg, to obtain a discrete version of our Restriction
Theorem which is called discrete majorant property.

62—62/ca

T6]cy $17 /3 =337 then there exists a positive

Lemma 3.6 (Discrete majorant property). Assume thatr > 2+
constant C = C(r, hy, ho, ) such that

1 Fzylalllerzy) < C
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Proof. We will use Theorem 2.7 together with Marcinkiewicz—Zygmund theorem, see Lemma 6.5 in [11].
Let’s notice that

1Pz [l zpy = D [ Fznlal(
kEZN

N/T | Fzlal(t)|"dt = N/T | FzlLapom (O] dt = NIT5 v L)l ey Srvhaw 1Lallt2im, v S 1
O

=

r N— r

<

~T

N
Z all 2m’l%

=1

a)(k/N)

B
Il

0 k=0

We finish the proof by introducing and estimating certain trilinear forms. Let A be the following trilinear
form

A(fg,h) = Y fa)g(z + d)h(z + 2d)

z,dEZN
where f,g,h: Zny — C are arbitrary functions. By the Fourier Inversion formula the following useful
identity is holds whenever N is odd

A(f, 9. h Z Frn 1) Fzy [9](—=28) Fz [P (€)

§ €ZN

Let’s notice that since all the sets A = Ay produced by Lemma 3.2 do not contain 3APs, we have that

N 3
A(a,a,a) = Z a(z)® < Z:Pb,m,N(n)3 = Z <¢§;njzriz(gq£:@m+—2)b)> S

neELN n=1 TLG[N]
mn+bePp
log*(N'm + b) Z 1 < Nlog?(Nm + b) < m3N log®(Nm) < N log®(N)log?(N log(N)) _
mn+bePp
N log®(N)

Nl 3v2+4e1 < N— 3/2

(N log(V)P—1 ~
where we have completed the estimates by using the basic properties of ¢, see Lemma 2.6 in [13], and by
choosing a positive number &1 < ?WZT_E’/z, which is possible for vo € (94/95,1].

Lemma 3.7. For any r > 2 + #72//5;_32, there exists a positive constant C; = Cy(r, hy, ha,v) such
that
(3.8) Aar,a1,a1) < CYN“3/2 4 CuN =1 (2577 4 6277/

Proof. According to the previous estimate, we have that there exists a constant Cy = Cy(hy, ha, 1)) such
that A(a,a,a) < CoN—3/2. Therefore, we have that

A(ay,a1,a1) < A(ai,a1,a1) — A(a,a,a) + CON_3/2 =

% Y Frylai(€)Fzylaa)(—26) Fzy laa)(€) — = Z Fa a)(€) Fay [a)(—26) Fy [a)(€) + CoN /2 =
ceiy N ez

% Y Fay[al(€)* Fry [B1(6)* Fay la) (—26) Fay [8)(—26)* — % > Faylal(€)* Fayla)(=26) + CoN T2 =

§E€ELN EELN

~ > Frylal(€)* Faylal(—26) (Fay [B1(€) Fry [B1(=2€)* — 1) + CoN /2
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For every £ € R, we will have that |‘7:ZN [B1(6)4 Fz,y [8](—26)% — 1‘ < 212¢2; the proof is straightforward
and can be found in [11], see Lemma 6.7, page 19. On the one hand, Lemma 3.6 suggests that there exists
a constant C' = C(r, hy, ha, 1)) such that

1 Fzy allle= @y < 1Fzylalller@zy) < C
On the other hand, we have

(3.9) IR < Y [Fay (O < Y [Faylal(© < 07

£ER EELN
Thus

Y Fylal(€)? Fryla)(—26) (Fzy [B)(€) Fzy [B)(-26)* — 1) | <

£ER

21222 3 |y, [al() 2 Fay lal(—26)] < 2262CH | < CH2t2e2
£ER
Now we bound the sum along § ¢ R. Firstly, we note that supgcy,, | Fzn [B1(6) Fzy [8](—26)* — 1] < 2

since |Fz, [B](€)] < 1. For now, let’s assume that r € (2 + #72//5;_32,

c1 €[1,95/94), co € [1,95/94) and thus 0 < % < 1. Let ' be such that 1/r + 1/r' =1 and
note that 2 — r/r’ > 0. Thus

3), which is possible since

Y Faylal(€)? Fayla)(—26) (Foy [B)(€) Fzy [B)(-26)* — 1) | <
EER

2> | Fuy[a)(€)* Fuylal(—2€)] < 2sup | Fazy [a)()*"" > | Faxlal(€) Frylal(—28)] <
¢¢R N2t ¢¢R

2827/ (S 1 Fay @) (Y 1 Faylal(=26)1) Y = 2627 N | By lal (€] < 20762
§E€ELN E€ELN E€ELN

For Cy = max{ Cy, C3+7212 2C" } we get

Aar,a1,a1) < C’lN‘?’/2 + C’lN‘l(525—" + 52—r/r')

For r >3, let s € (2 + g 12-12/cy

T/er$3/ca—3" 3), the previous argument yields

Alay,ar,a1) < CIN 732 + CyN~H (267" + 6275/
and since 627%/5" < 6277/ we get the desired result. O

The following Lemma provides a lower bound for A(aq,a1,aq) and similarly to the work of Green [11],
we adapt Varnavides’ argument [23| in order to attain it.

Lemma 3.10. There exist positive constants Co = Ca(hy, ho, 1), C5 = Cs(hy, ha, V) such that
(3.11) A(al,al,al) > C2N—1e—6'3a*110g(1/o¢)

Proof. We know from Sanders’ result [6] that there exists a positive constant D such that if M >

Do 108’ (1/) then all subsets of [M] with density at least ;% contain a non-trivial three-term arith-
metic progression, where C' = C(hq, he,1) is the implied constant appearing in Lemma 3.5 and without
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loss of generality let us assume that C' > 2. Let A’ = {2z € Zy : a1(x) > _A‘;‘C } and note that from Le a
3.5 mim
A N — |4
a<aiZy) =) aie) + ) ai(w) < | ]\LC +! N‘C e

xcA’ g A’

which implies that [A/| > %X Let’s define Z = |{ (z,d) € Z% : z,2 + d,x + 2d € A’ }| to be the number
of arithmetic progressions of length three in A’. Note that

3

Aar,a1,a1) = Z ai(z)ay(z + d)ay (z + 2d) > ZNO;—C?’

z,d€EZN

Let us fix M = {eDafllogs(l/a)—‘. For N > M, we find a lower bound for Z. Let a,d € Zx be such that

d#0andlet P,g={a,a+d,a+2d,...,a+ (M —1)d}. For a fixed d, Sanders’ result gives that for every
a € Zy such that |A'N P, 4|/M > a/(4C) we must necessarily have that A’ N P, 4 contains a non-trivial
three-term arithmetic progression. We have

aM N
2C

> A NPyl =M|A| >

a€Z N

where we have used the fact that in the sum we count every element of A’ exactly M times. Therefore

aMN , ,
o < > A" N P,g| + > 1A' N P, 4]
a€LN:|A'NPy q|>aM/(4C) a€LN:|A'NPy q|<abM/(4C)
and we have
MN
ANP a

a€ZN:|A'NP, q|<aM/(4C)

which in turn implies that

MN
0‘40 < 3 |A'N Pyl <|{a€Zy:|A NPyl > ab/(4C) }|M
a€ZN:|A'NP, g|>aM/(4C)

Thus ¥ < [{a € Zy : |[A' N P,q| > aM/(4C)}|. There are at least 4 values of a € Zy such that

|A' N Pyq| > aM/(4C). Thus, for each d € Zy \ {0}, there are at least 2 values of a € Zy such that
A’ N P, 4 contains a non-trivial three-term arithmetic progression in Zy. Each such progression can be

in at most M? sets of the form P, 4. Thus we have that Z > 70‘%%;). Finally, we have that
3 4
«Q a N-—-1 1
A(a1,a1,a1) = Z ai(z)ar(z + d)ay(z + 2d) > ZN3C3 > OOE N>
r,dELN
044 1 a4

T o -1 —1 —Cha11og%(1
o N 2 gagiameetye N 2 CoN e e

for suitable positive constants Cy, C3 as desired. For N < M, we trivially have

3 3

o
>
N3C3 = NM?C3

Alar,a1,a1) = Z ai(z)ai(z + d)ay(z +2d) > Z
z,d€EZN

since Z must contain the trivial arithmetic progressions and A’ # () since |A’| > % We conclude with
the same calculation as before. O
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Concluding the Proof of Theorem 1.5. Remember that we have assumed for the sake of a contradiction
that there exists a 3AP-free Ay C Pp with positive upper relative density. All the previous lemmas are

applicable. Fix r € (24 %,

constants C, Co, Cs such that

3), then from Lemmas 3.7, 3.10, we have that there exist positive

CQN_16_030671 log5(of1) < A(al, ay, al) < ClN_3/2 + ClN_1(€25_T + 52_T/TJ)

We will choose ,d € (0, 1) such that the above inequality fails and such that e > loglog(W)/W, so that
Lemma 3.5 will be applicable. More specifically, we will choose two positive constants Cy, Cs such that

5= 6—0401*1 log®(1/a) e = e—C'soc’l log®(1/a)
= ,E=

We have

C2N—le—03a*110g5(o¢’1) < N3 4 ClN—1<e(—205+rc4)a*110g5(1/a) 1 6—04(2—7’/7“’)01’1log5(l/a)>

Thus
e—Cgafl log®(a™1) <C2 o Cle—(2C5—rC4—Cg)a*1 log®(a™1) Cle—(C4(2—r/r’)—Cg)a’1 logs(cfl)) < ClN—1/2

We can choose a sufficiently large Cy > 0 such that Cle_(c‘l(z_r/"/)_CS)OfI1°g5(°‘71) < (C3/4, and then
choose a sufficiently large C5 > 0 such that O1e~(2C5—rCi=Cs)a™ log?(a™!) < (7, /4. Then

02/26—03071 log®(1/a) < ClN_l/2

We will have a contradiction provided that the assumptions of Lemma 3.5 are in place. We note that
gh = glfl > ¢C€07" where C is a positive constant guaranteed by the estimate in 3.9. It suffices to show
that €“9°" > loglog W/W which is equivalent to

CerCia™ og” (/) 0y =1 10g5(1/a) < log (W/loglog W)
To show that this is the case for sufficiently large IV, it suffices to show that

% log log N >
log log (% log log(N))

. The proof of Theorem 1.4 is complete. [

CerCae™ 108(1/2)° 0a~1og%(1/a) < log (

(log log log log log N)®
log log log log N

which is true for N large enough to make o 2

4. PROOF OF MAIN LEMMA

This section is devoted to the proof of Lemma 1.10, which is the main tool that allows us to use
Bourgain—Green’s result, see Theorem 2.5, to obtain our Restriction Theorem, see Theorem 2.7. The
methods used are analogous to the ones in Sections 6 and 7 of [13] and the main difficulty here lies in
the technical complications that the sophisticated nature of the sets B bring. We fix ¢; € [1,16/15) and
¢y € [1,17/16), hq, ha, 1 and B as in the introduction and all the implied constants may depend on them.
Let us mention that if ¢; = 1 then we fix o7 as in Lemma 2.14 in [13], otherwise let o1 be the constant
function 1. We use the basic properties of the functions, described in Lemma 2.6 and Lemma 2.14 in [13]
without further mention. Before attempting to prove the main Lemma, we collect some useful intermediate
results.

Lemma 4.1. Letm € Z\{0},1 €N, j >0, X >1, a € R and s € {0,1}. Then

X
Z e2m’(o¢jkl+m(gpl(kl)—sw(kl))) S |m|1/2 log(lX)lX(a(lX)gol (lX))_1/2
k=1
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and more precisely, for all positive real numbers Y,Y' we have

Z e27ri(ajkl+m(<p1(kl)—s1/1(kl))) 5 ]m\1/2lY(01(lY)cp1(lY))_1/2
Y <k<Y'<2Y
Proof. The proof of the result for s = 0 is given in [13|, see Lemma 6.7, page 21. Let Y € [1, X] and
Y€ [Y +1,2Y] and F(t) = ajlt + m(p1(It) — (lt)). Then F"(t) = mi?(Y(It) — " (It)). If ¢; > 1, then
we have that for all ¢ € [Y,2Y]

o1 (1) (71 + 04" =1+ 00t o1 (1Y

) = 200 <(l>t>)21 0| 0

where HZ-U ) is the function 0; appearing in Lemma 2.14, [13] for ¢;. Also,
@) _ @) _ (2)
(it) (1Y)
and thus
iy < oo 2P1lY) 202(lY) o1 (lY) o pa(lY)

|F" ()| < ml GaE +ml GaE Sm Ve since S AYIY ~ 1
Also,

1Y)  opa(lY)  ppi(lY) P2(lY) e1(lY) P2(lY)
FI )] > 2#1( 2 2 1— > 72 i _
F O 2 mE= g = yys = My o (Y ) ~ gy e i Sy

Thus |F"(t)] ~ ml? go(l(l;).
If ¢; = 1, then we have that for all ¢ € [Y,2Y]

(1)
2 2P + 6 (l Dor)n ()| le(lY)Ul(lY)
and thus
F(8)] < mi? pr(Y)on (1Y) - ap2(lY) o1 (IY)ou (1Y) p2(1Y) 2 PLY )01 (V)
(1y)? (1y)3 (1Y)? p1(1Y)or (IY)IY (1v)?
since 108 < 1, because e lor (1Y) ey (V) — 0 as Y — oo. Finally,

7@1@1@;1 Ay ~ 7o, (V)

ngol(lY)al(lY) lchg(lY) lz(Pl(“”)Ul(”’)(_ p2(1Y) >> 21 (1Y)o1 (1Y)
(1Y) (1y)? (1v)? p1(IY)or (1Y )IY (1y)?

") 2

Thus |F"(t)| ~ mlzw. In both cases, we may apply Van der Corput Lemma, see Corollary 8.13,

page 208 in [21], (assume o1 (z) = 1, whenever ¢; > 1).

3 e2m'(ajkz+m(m(kz)—w(kz»)‘5 Y,m‘l/zl(ffl(lY);?(lY))W +‘m’—l/zl_l(Ul(lz;})/gjl_(llY))_lﬂ <

Y<k<Y'<2Y

1/2
\m!1/21Y<—01(l}(2£12(lY)> + lm| ™YY (01 (1Y )1 (1Y) M2 S

o1 (IY)e1 (1Y)
(1Y)?
since o1(z) <1 and ¢1(z) < 22. To conclude, let’s estimate using the dyadic pieces

215 (o 07 ) (0)) 2 1) S A (@ ) (7)) 2

X

> niesttonlentio- 00| 106 s {11 (0117 )a(17) 2}
- Ye[L,X]
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< [l log(LX)1X (o (1X) 1 (1)) 712

—-1/2 —1/20_1—1/2(

since z(o(x)p1(x)) = zp1(z) x) is increasing. O

Finally, we will need the following Lemma. Let us denote by A the von Mangoldt’s function as usual

; — ok
A(n) = { log(n), if n=p" for some p € P and k € N,

0, otherwise.
and let us define Aq 4(n) = A(n)lp, (n), where P, g = {n € N:n =a (mod q) }.
Lemma 4.2. Let P € N, £ € T and M = PYx+e=(99/100)%2 yhere v >0, 0 < € < x/100 are such that

such that 16(1 — 1) + 17(1 — v2) + 31x < 1. If we let a,q € N such that 0 < a < q and (a,q) = 1, then
for every m € Z such that 0 < |m| < M and every P; € N we have

Z A, q(k)e%i(kﬁ—mm(k)) <
P<k<P<2P

[m]*/210g(P1) P" (01 (P )1 (1)) ™72 + [0 1og® (P) P 2 (01 (Pr) o (Pr) 710

Proof. Recall that
-1

=}

1 2mix
1Pa,q (k) = 5 6(8(1{3 - a)/Q), where e(a;) = e
s=0
we may write
: 1 < .
S AagR)ezmiliema®) — § ! Z 2mi(s(-a)/a) 2milhe ~mies () _
P<k<Pi<2P P<k<P,<2P 75

q—1
lz e~2risafa 5 N (f)eRnilk(ete/)-me ()
P<k<P<2P
and therefore it suffices to show that
Z A(k)e2ni(ka—ms@1(k)) < |m|1/2 log(Pl)Pf/?’ (0.1 (P1)r (Pl)) —1/2+
P<k<P;<2P
m[*10g® (P Py (01 (P (Pr)) ~°

where the implied constant is uniform in o = £ + s/q where £ € T, 0 < s < ¢ — 1. To that end, we use
Vaughan’s identity, which we state here for the sake of clarity.

Lemma 4.3. Let v,w > 1 be real numbers and let n € N be such that n > v, then

:Zu( log(n/b) — ZZM )‘f‘ZZN(b)A(C)

bln be|n be|n
b<w b<w,c<v b>w,c>v

Or equivalently, for every n > v we have

A= Y logwu- Y Y L0+ Y ARELO

kl=n, I<w I<vw kl=n kl:n, k>v, I>w

where

> A(r)uls)

rs=l

r<v, s<w
and
=Y uld)
djl

d>w
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Proof. See Proposition 13.4, page 345 in [21]. O

We use this result for w = v so let 11, ,, = II,, for simplicity. More specifically, set v = w = Pl1 /3 Where
P < P, < 2P. For sufficiently large P, n € (P, P;| is such that n > v and thus Vaughan’s identity is
applicable. We have

Z A(n)e27ri(na—m<p1 (n) — Z Z 10g(k)u(l)e27ri("a_m‘p1 (n))

P<n<P,<2P P<n<Py<2P ki=n, [<v

_ Z Z Z Hv(l)e%ri(noc—mgpl (n))

P<n<P1<2P [<v? ki=n

DY S ARE @) -

P<n<P1<2P kl=n, k>v, [>v

Z Z log(k)u(l)e%ri(akl—mcpl(kl))

I<v P/I<k<Py/l

_Z Z 1, (1) e2miloki—me1 (k) _ Z Z 1, (1) e2mi(ekl=mep1 (kD))

I<v P/I<k<Py/l v<i<v2? P/I<k<P1/l

+ Z Z A(k)Ev(l)e%ri(akl—mgol (k) — Sy — 5271 _ 52’2 + S5

v<I<Py v P/I<k<Py/l
k>v

where we changed the order of summation, and we have named the four terms appearing in the final sum
by S1, =521, —S2.2 and S5 respectively. The proof is now reduced to estimating these four terms. For
S1, we use summation by parts (for the specific version we are using see Theorem A4, page 304 in [24]).
Let’s denote by Ui(t) = 3-p/<k< e?rilakl=mei(kl) " then

. P/l
(Sl <> DT log(k)emiermmer ) = N (1)U (Py /1) log (P /1) — / Ul<t>/tdt's
<v P/I<k<Pi/l I<v P/l
D IU(P/Dlog(Py/l) +  sup  |Ui(1)|(log(P1/1) —log(P/1)) <
1<v P/I<t<Py/l

2log(Py) Z sup  |Ui(t)]

1<y P/I<t<P1/I
For every t € (P/l, P1/l], P1/l < 2P/, we estimate the dyadic pieces of the form

Z e27ri(ajkl+m’(g01 (kl)))‘ 5 ]m’]l/zlY (Ul(ly)cpl (ZY))_1/2
Y <k<Y’'<2Y

by applying Lemma 4.1 for Y = P/l, m' = —m, j =1, s =0, and Y’ = z, to obtain

|Uy(z)] = Z p2mi(akl—mp1 (k1))
P/i<k<z

S \mfl/ZP(Ul(P)(Pl(P))_l/z < Im|'2 Py (01(P1)<P1(P1))_1/2

where we have used the fact that z(o(x)¢; (x))~1/? is increasing. Thus we get

[$1] Slog(P) Y sup  [Ui(e)] S log(P)olm|'/* Pi (o1 (P) i (Pr)) ™2 =
I<v P/l<t§P1/l

—-1/2
m|">1og(P1) P (01 (P (Pr)) ™
For S3 1, the estimates follow from similar considerations. Firstly, notice that

SO mernieRmma ) < 37, ) |0 )

I<v P/I<k<P1/l <v

|S2.1] =
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and also that

ZA =log(l) < log(Py) forlgfu:Pll/3

r|l

Z A(r)p

r,s€N,
rs=l
r<v, s<v

Thus we get

15211 < ) (LU (P1/1)] < log(Pr) sup  |U(t)]
Z; %;P/KtSPl/l

and we can conclude exactly as in the case of 5.
We now focus on Ss 2, and S3 which will be treated simultaneously. We will use the dyadic pieces of

the sums
|Sg0| = Z Z Hv(l)e2ni(akl—mgp1(kl)) <
v<I<v? P/I<k<P;/l
log(v?) log(P1/v) sup sup sup sup Z I, (1) e2milokl—mer () | <
LE[’U,’UH KG[P/UQ,Pl/U} LIE(L72L} KIE(K,QK} L<lSL,S2L K<k§K’S2K
P<EI<P
(4.4) log?(Py) sup sup sup sup Z 1, (1) e2mi(aki—mir (kD))
Le[v,w?] Ke[P/v2,P1 /v] L'e(L,2L] K'e(K,2K] LA<LI<2L K<k<K'<2K
P<KI<P,
For |S3|, we have
|S3| _ Z Z A(k)EU(l)e%ri(akl—rrum(kl)) S
v<I<P; /v P/I<k<P1/l
k>v
log?(P1/v)  sup sup sup sup Z A(k)E, (1) e2rilekl-me (kD) | <
Lelv,P1 /v] Ke[v, P /v] L'e(L,2L) K'e(K' 2K]

L<I<L/'<2L K<k<K'<2K
P<kI<Py

Z A(k)Ev(l)e2ni(akl—mgp1(kl))

L<I<L'<2L K<k<K'<2K
P<kI<Py

(4.5) log?(P1) sup sup sup sup
Lew,Py/v] Ke[v,Py/v] I’€(L,2L) K'e(K' 2K]

On the one hand, we have
Y mLOP < Y log(l) Slog*(L)L
L<I<L'<2L L<I<2L
On the other hand, if we let d(n) = [{d € N : d|n }|, we have
Z 1Z.(D* < Z d(1)* < Llog3(L), (see Theorem A.14, page 313 in [24])
L<I<L'<2L 1<I<2L

We now use the following technical Lemma.

Lemma 4.6. Let L,K € N and m € Z\ {0}. If |/m|min{L, K} < ¢1(LK)o1(LK) and ¢1(LK) <
min{L, K}*, then

Z Z AI(l)A2(k)e27ri(akl—m<p1(kl)) S

L<I<L'<2L K<k<K'<2K
P<kI<P;

im|"/% log?(L) log*(K) (01 (LK) 1 (LK)~ min{L, K}'/°K L
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for every sequence of complex numbers (Al(l))le(LgL] and (A2(k))ke(K,2K} having the property that
Y. IMOP S Llog*(L) and Y [As(k)? S K log*(K)
L<I<2L K<k<2K
Proof. For the proof of this result we refer to [13|, Lemma 6.12, page 23. O

We wish to use the above result to estimate the dyadic pieces in 4.4 and 4.5. For any K, L € N which
make the dyadic piece nonempty, there exist natural numbers k,[ such that

KL<kl§P1andKL2%>P/42P1/8

and thus P; /8 < KL < P;. For S35, notice that
K< Pjv=P'" and K > P/v> > P[/*/2, and thus K € [P}/?/2, P?/?]
and similarly
Lev,0% = [P* PY? c [P?)2, PY*]
For S35, notice that
K,L e v, P =[P3 PP C [P )2, PY?
Therefore, in either case, K, L € [P11/3/27 P12/3]. Also, since KL < Py, we must have that min{L, K} <

Pll/2 and ¢1 (LK) < ¢1(P1) < P, < min{L, K}%, since min{L, K}* > P14/3/16 > P, for sufficiently large
P;. Finally, we have

|m| min{L, K} < MP11/2 _ Pl+x+€—99’yg/100P11/2 < P13/2+X+5_99ﬁ,2/100

We claim that 3/2 + x + & — 99792/100 < 1. To show this, considering that 0 < e < x/100, it suffices to
show

3/2 4+ 101y/100 — 9945/100 — 41 < 0

which, in turn, is equivalent to

101x/49 + 99/49(1 — 742) + 100/49(1 — 1) < 1
but this is true since
101x/49 +99/49(1 — v2) + 100/49(1 — 1) < 31x +17(1 — 72) + 16(1 — 1) < 1

by our assumptions. The proof of the claim is complete. Now if we let § = —(3/2+x+e—9972/100—~;) > 0,
then
jm| min{Z, K} < P[*™° $ @1(P)o1(P1) S e1(LK)o1 (LK)

Thus we may use the Lemma 4.6 for appropriate A1, Ay depending on whether we deal with Ss 2 or S3 to

obtain
Z Z A (1) Ag(k)e2miloki=mer (k)| <

L<I<L/'<2L K <k<K'<2K
P<ki<P,

Im|Ylog?(L) log(K ) (01 (LK )1 (LK) ™Y min{L, K}/°K I <

’m\l/G log4(P1)(01(P1)901(P1))_1/6P11/12P1 = \mll/ﬁ 10g4(1731)(01(Pl)(ﬂl(F’l))_l/()’lt)llg/l2
And thus

[S2.. |S3] < m["/® log® (P1) (o1 (Pr)er (P1) /O P2
This concludes the proof of Lemma 4.2. O

We are now ready to prove the Main Lemma.
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Proof of Lemma 1.10. Let a,q € Z be such that 0 < a < ¢ —1 and (a,q) = 1, and let x > 0 be such that
16(1 —~1)+17(1 —2) +31x < 1. By Lemma 2.2 in [15], we have that |p1(n)| — |v1(n) —¢(n)] = 15(n),
and thus

> v M ogpe@d) = Y wp) M og()(Ler(p)] — [#1(p) — ¥ (p)))e(pS) =

pePpN[N] pePN[N]
p=a (mod q) p=a (mod q)
> () og(p) (v(p) + (@(1(p) — () — B(#1(p)))e(ps) =
p;fﬂ(]);lgg} q)

(where ®(z) ={z} —1/2 =2 — |z| —1/2)
> log(pe@d) + > w(p) M og(d)(B(e1(p) — (p)) — P(e1(p))e(p) =

peP[N] pePA[N]

p=a (mod q) p=a (mod q)
> loglp + D () Aag(n) (21 (n) = (1)) — 2(p1(n)))e(né)—
pEPN[N] ne[N]
p=a (mod q)
(T e e @)~ () ~ Bl ) )
ne[N]

n=p?* for some peP, s>2
The absolute value of the third term can be bounded by

N N
$(p*) ' log(p) < log(p), since $(p*) ™" < @h(p*) ' S @(N) T <
1<pZS;N p2(N) 1<pZS;N ’ ’ pa(NV)

peP,5>2 peEP,5>2

Notice that each prime p will contribute log(p) to the sum exactly s, — 1 times where s, is the integer
with the property p*» < N < p***! or equivalently s, = |log(N)/log(p)]. Thus

Z log(p) < Z {log(N)J log(p) < log(N) Z 1< M < N1/2

1<p*<N, 1<p2<N, log(p) pEP log(V'N)
peP,5s>2 peP p<VN
where we have used the fact that [PN[1,z]| < x(logz)~!. For every &’ > 0, there exists a positive constant

C.: such that
<third term> < LNl/Q < C.N3/2—m2te
©2(N)

For the choice &’ = v —3/2x —1/2, we can verify that ¢’ > 16/17—3/62—1/2 > 0 and that 3/2—~y,+&’ =
1 —3/2y, and thus we have shown

> ) Mogpled) = > log(p)e(pé)+

pePNBN[N] pEPN[N]
(47) p=a (mod q) p=a (mod q)

+Z¢ ) g () (B(p1(n) — () — B(1(n)))e(né) + O(N'3/2Y)

This concludes our ﬁrst reduction. We now bound the second term in 4.7 by looking at its dyadic pieces.
To achieve this, we will use the estimates for exponential sums we have proven in the section, together
with the Fourier Expansion of the function ®. More specifically, for M > 1, we know that
1 .
q)(l‘) _ Z : e—27r2mx +9M($)

2mim
0<|m|<M
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with gas(z) = O(min {1, M}) and min {1, m} =" ez bm €™M where |by, | S mm{log(M) LM

’ |m|7 |m|2 )

see section 2 in [25]. Let P € N, P’ € [P+ 1,2P] and M > 1, then

D )T g (k) (@1 (k) — (k) — B (R)))e(ke) =

P<k<P'<2P

3 1 S k) g (k) (2 (I mUR)HRE) _ 2mi(—mgn () +kE) |

2mim
0<|m|<M P<k<P'<2P

D k)T A (k) (gu (1 (B) — (k) — gar(1(k)))e(kE)

P<k<P/'<2P

(4.8)

We estimate the second term of the above sum using Lemma 4.1. We have

ST ) g () (g1 () — (k) — gM«ol(k)))e(ks)' <

P<k<P'<2P

p<k§g2p¢(k)“‘“’(k)<mm U s ) U man))
Note that

k)" A gk min{ , = } < log(P) b, 2mim(en (b) (k)
2 W Aag(Ryming L gpo s p S Uy 2 2 e

P<k<P'<2P ) P<k<P'<2P meZ

Using the estimate |b,,| < M/|m|?, we conclude that the function is summable and by Fubini-Tonelli we

have
Z Z b, 27r2m (p1(k)—(k)) Z |bm|

Z e2mim(e1(k)—¢(k)) | —

P<k<P'<2P m€Z meZ P<k<P'<2P
TS SIS DT RS DN I SR CC R
0<|m|<M P<k<P'<2P |m|>M P<k<P'<2P
log(M)P log(M _
oedDP L > %W”P(m( P(P) M S0 P (P (P) S
0<|m|<M \m\>M
log(M)P
PBODE | rog(M)MY2P(or (P)or (P) V2 4+ MY2P(oy (P (P)) 2 £
log(M)P
P8BDP | tog(M) M2 (o1 (Ppr(P))

where the estimates are justified by Lemma 4.1 for j = 0,1 = 1 and s = 1, together with the estimates for
|b|. Thus

-1 : L
Do k) Aag(k) mm{l’ M[1 (k) — w<k>||} &

P<k<P'<2P
log(P) <log(M)P
ey(P) N M
With similar considerations (and by applying Lemma 4.1 for s = 0), one obtains

S ) My min {1 g b < B (BT 4 hog (M)A Pl (P (P) )

+1og(M)M'/2P (a1 ()1 (P)) /2

p<k§g2pw(k)_m“’q(k)<mm R I AR (e B

and thus
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log(P) <log(M)P

pH(P)\ M
Let’s fix a number e such that 0 < & < x/100 and let M = P1=992/100+x+e  Then for all £5 > 0, we have

that

log(P) <log(M)P

pH(P)\ M
P99“/2/100—X—€ P3/2—99v2/200+x/2+€/2

log®(P)

o 2
EATO I (P)cp'z(P)(al(P)gpl(P))lﬂ Sez

10g2 (P) <P99“/2/100—X—€—’72+1+€2 + P5/2—’yg—“{1 /2—9972/200+X/2+€/2+3€2/2>

+1og<M>M1/2P<al<P>so1<P>>-1/2)

~

; 1og<M>M1/2P<al<P>¢1<P>>—1/2) <

since @h(x) = 72717°2/2 and o7 () S5 @® for all § > 0. It suffices to show that there exists a positive
number €5 such that

—2/100 = x —e+14+ea<1—x—c¢
and
5/2 —2997v5/200 — 1 /2 4+ Xx/2 4+ /2 +3e2/2 <1 —x —¢

in order to conclude that

> (k) Aag(B) (gar(e1(k) — (k) — gar (1 (k)))e(kE)| = O(PTX7F)

P<k<P'<2P

(4.9)

The first inequality is equivalent to g5 < 2/100. Remembering that e < x/100, for the second inequality
to be true, it suffices to have

3/2 — 29975/200 — 1/2 + 303)/200 + 3/2e5 < 0

or equivalently

£ < 99/300(1 —299/99(1 —2) —100/99(1 — 1) — 303x/99>
We have that
299/99(1 — ~2) + 100/99(1 — 1) + 303x/99 < 17(1 — v2) +16(1 — 1) + 31y < 1

Thus, we may choose €2 = min {72/200,99/600 1—299/99(1 — ) — 100/99(1 — 1) — 303x/99> } >0
and both inequalities are satisfied. Now notice that from 4.7 together with 4.8 and 4.9, we get

> )M logpe@e) — Y log(p)e(pg)':

pePNBN[N] peP[N]
p=a (mod q) p=a (mod q)
N
S 6(0) " g (1) (D21 (1) — () — @(sol(n)))e(ns)‘ Lo <
n=1
log(N) sup | D" 9(n) M Aag(n)(2(er(n) - d(n)) —‘I)(<,01(n)))e(n£)' s
ISPENT pp<pr<ap
1 . )
log(N k —lAa k 2mi(—mep1 (k)+ma(k)+kE) _ 2mi(—mep1(k))+kE
& )1§SEIS)N 0 Z 2mim Z b(k) a(k)(e € )|+
<|m|<M P<k<P'<2P

log(N)N1—x~¢
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We will use summation by parts, let
Om (k) = Aa,q(k)e%i(kg_mm(k)), Vin(2) = Z Om (), din(t) = w—l(t)(e%imw(t) ~1)
P<k<z
We obtain

S (R g g (R) (2RO i () k¢ ‘ _

> vm(k)dm(k:)‘ =

P<k<P'<2P P<k<P'<2P
P’ P’
‘Vm(P’)dm(P’) + / vm(t)d;ﬁ)dt‘ < Vi (P (P')] + / Vi), (1)|dt
P P
We have
|d (8)] < [0 (8)2mmap(t)] S |m
and
/ /!
(D] < W (002 (1) @Tm0 — 1)] 4 i (1) 2mme! (£)2Tm0)| < \w—“)hm < \“0?—“)'|m| < ml
P(t) ©h(t) 13
We can now estimate
P’ P’
Vi PP+ [ Va0 (0]t S mllV P+ [ sup Wonlt)mljedt Sl sup (Vo0
P P P<t<2P P<t<2P
and thus
-1 — 1 <
> d(p)  log(ple(pg) > log(p)e(pé)| S
pePNBN[N] pePN[N]
p=b (mod m) p=b (mod m)
log(N) su ———|m| sup |Vi(t)| 4 log(N)N'™x7¢ <
&l )1<PI<)N0<|mZ|:SM 277’”1\’ ‘P<t§p2P‘ ®) g(IV)
(4.10) log(N) sup Z sup |V (Py)| + log(N)N1—x—¢
ISPSN 0o P<PI<2P

This is the final reduction, making the estimate of Lemma 4.2, the only missing element in our proof.
Notice that since we have chosen M = P1Tx+e=99%2/100 where y > 0, 0 < € < x/100 and 16(1 — ;) +
17(1 — v2) + 31x < 1, Lemma 4.2 is directly applicable, and we get

Vi (P1)] =

Z Aaq(k)e%i(k&—mwl(k)) <
P<k<P1<2P
m[Y21og(P1) P (o1(Pr)er (P) ™% + m] Y0 1og® () P (01 (Pr)pr (Pr) /5
and thus for any number ¢3 > 0, we have

S sup VPSS Im[M2log(P) P (o1(Pen (P) T+
o<|m|<m P<P<2P 0<|m|<M

> [m| /% 10g8 (Py) P> (o1 (Py) 1 (P1)) 71/6 <
0<|m|<M
M3/ 1og(P)PY3 (01(P)p1(P)) ' + M"/C1ogb(P) P13/ 12 (01 (P)ip1 (P)) 716 <
P3/2H3x/2432/2-29T12/20044/3 00 P) oy (P) Y20, (P)1/2
p)—l/6 <

~E3

~1/2

| PT/6+Tx/6+7e/6-69372/600+13/12 1og% (P)gr (P)—1/601(
PB3/2+3X/2+32/2-29T72 /200+4/3—1 /2+e3
| PT/6+7/6x+T2/6-69372/600+13/12—71 /6-+<3
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since @1 () Zeq 1753, 01_1/2(:17) <., /% and log®(x) <., 2°¥/'2, and thus
o1 (@) log(w)y () Koy w A < g 2

(701—1/6(1:) 10g6(113)0'1_1/6($) 563 $—71/6+€3/6+€3/12+63/12 563 $—71/6+€3
It suffices to show that there exists a positive number 3 such that
3/2+3x/2+35/2 —297v2/200 +4/3 —y1/2+e3<1—x—¢
and
7/6 4+ Tx/6 + 7c/6 — 69372/600 + 13/12 — 1 /6 +e3 <1 —x — ¢
in order to conclude that

Z sup |V (Py)| < PYX—¢
o<micar P<P1<2P

Remembering that € < x /100, for the first inequality, it suffices to show that there exists an e3 > 0 such
that

11/6 + 5x/2 + 5x/200 — 29772 /200 — 71 /2 + 3 < 0
which is equivalent to
891/91(1 — v2) +300/91(1 — v1) + 1515x /91 + 600e3/91 < 1
and notice that
891/91(1 — v2) +300/91(1 — v1) + (1515/91)x < 17(1 — ) + 16(1 — 1) +31x <1

Thus for sufficiently small 3 the first inequality is satisfied. For the second inequality, in a similar fashion,
it suffices to find a 3 > 0 such that

5/4 4+ 1313 /600 — 6932 /600 — 71 /6 +e3 < 0
or equivalently
693/43(1 — v2) + 100/43(1 — 1) + 1313x/43 + 600e3 /43 < 1
and notice that

693/43(1 — 72) + 100/43(1 — 1) + (1313/43)x < 17(1 —42) + 16(1 — 1) + 31y < 1

Thus for sufficiently small €3 the second inequality is also satisfied. Therefore, we have that

Z sup |V (Py)| < Px—e
o<imiear P<PLI<2P

Thus, by 4.10, we get

> ) orelpt) — S loselr)| <

pEPNBN[N] pePN[N]
p=b (mod m) p=b (mod m)

lOg(N) sup Pl—X—E + log(N)Nl—X—e — log(N)Nl_X_€ 5 Nl_X—5/2
1<P<N
Let’s choose ' to be £/2, we have shown that

Yo v Mlogle@d) — D log(ple(p) = O(N'TXX)

pePNBN[N] pePN[N]
p=b (mod m) p=b (mod m)

which is the desired result. The proof of Lemma 1.10 is complete. O
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