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ROTH’S THEOREM AND THE HARDY–LITTLEWOOD MAJORANT PROBLEM

FOR THIN SUBSETS OF PRIMES

LEONIDAS DASKALAKIS

Abstract. We introduce a wide class of deterministic subsets of primes of zero relative density and we

prove Roth’s Theorem in these sets, namely, we show that any subset of them with positive relative

upper density contains infinitely many non-trivial three-term arithmetic progressions. We also prove that

the Hardy–Littlewood majorant property holds for these subsets of primes. Notably, our considerations

recover the results for the Piatetski–Shapiro primes for exponents close to 1, which are primes of the form

+nc+ for a fixed c > 1.

1. Introduction

For any arithmetical set A we call lim supN³>
|A+[1,N ]|

N its upper density. Also, we denote by r3(N)
the Erdös–Turán constant, namely, the density of the largest subset of { 1, . . . , N } with no non-trivial
three-term arithmetic progressions. Before stating the main Theorems of the present work we provide
some brief historical remarks. In 1953 Roth [1] proved that any subset of the integers with positive upper
density contains a non-trivial three-term arithmetic progression. In fact, his result is quantitative since he
showed that r3(N) = O((log logN)21). In the last 50 years, the result has been dramatically improved
([2, 3, 4, 5, 6, 7, 8, 9]) and recently, a striking leap has been made by Bloom and Sisask [10]. They
showed that r3(N) = O(log212cN) for some c > 0, breaking the logarithmic barrier and proving that any
arithmetic set A such that

∑

n*A
1
n = > contains non-trivial three-term arithmetic progressions.

This corollary implies that any A ¦ P with positive relative upper density, i.e. lim supN³>
|A+[1,N ]|
|P+[1,N ]| > 0,

contains infinitely many non-trivial three-term arithmetic progressions. This result was already proven
in 2003 in the seminal work of Green [11] but the recent work of Bloom and Sisask establishes Roth’s
Theorem in the primes using only their density and not their specific structure, which was exploited in
the paper of Green. In the introduction of Green’s paper he remarks that “it is possible, indeed probable,
that Roth’s theorem in the primes is true on grounds of density alone,” and the breakthrough of Bloom
and Sisask affirms Green’s conjecture.

The same year Roth proved his result [1], Piatetski–Shapiro introduced certain thin subsets of primes.
For ³ < 1 sufficiently close to 1, the Piatetski–Shapiro primes of type ³, are defined to be

P³ = P + { +n1/³+ : n * N }
and he showed [12] that for ³ * (11/12, 1) we have

P³ + [1, x] > x³

log x
, as x³ >

Loosely speaking the statement above should be understood as an independence statement, i.e. being a
prime and being of the form +n1/³+ are independent events since the density of their intersection is the
product of their densities.

Recently, Roth’s Theorem was established in the Piatetski–Shapiro primes, see [13], for ³ close to 1.

In fact, the aforementioned paper proves Roth’s Theorem in primes of the form +n1/³3(n)+ where 3 is a
certain kind of slowly varying function, for example any iterate of log, see Definitions 1.1, 1.2 below.
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One of our main results is a natural extension of Roth’s Theorem in the Piatetski–Shapiro primes and
to state it, we need to introduce two important families of functions.

Definition 1.1. Fix x0 g 1 and let L denote the set of all functions 3 : [x0,>) ³ [1,>) such that

3(x) = exp

(
∫ x

x0

Ó(t)

t
dt

)

where Ó * C2([x0,>)) is a real-valued function satisfying

Ó(x) ³ 0 , xÓ2(x) ³ 0 , x2Ó22(x) ³ 0 as x³ >
Definition 1.2. Fix x0 g 1 and let L0 denote the set of all functions 3 : [x0,+>) ³ [1,+>) such that

3(x) = exp

(
∫ x

x0

Ó(t)

t
dt

)

where Ó * C2([x0,+>)) is a positive and decreasing function satisfying

Ó(x) ³ 0 ,
xÓ2(x)
Ó(x)

³ 0 ,
x2Ó22(x)
Ó(x)

³ 0 as x³ >,

and such that for all · > 0 we have Ó(x) &· x
2· and limx³> 3(x) = >.

Note that L0 ¦ L. We may think of these families as slowly varying functions and now we define a
family of regularly varying functions.

Definition 1.3. Fix x0 g 1, c * (1,>) and let Rc be the set of all functions h : [x0,+>) ³ [1,+>)
such that h is strictly increasing, convex and of the form h(x) = xc3(x) for some 3 * L. We define R1

analogously, but with the extra assumption that 3 * L0.

We are now ready to give the definitions of the arithmetic sets we are interested in. Let c1, c2 * [1, 2)
and let us fix h1 and h2 in Rc1 and Rc2 respectively. Let ×1 and ×2 be the inverses of h1 and h2. For
convenience, let ³1 = 1/c1 and ³2 = 1/c2. Let us fix a function Ë : [1,+>) ³ (0, 1/2], Ë * C2([1,+>))
such that

Ë(x) > ×2
2(x) , Ë2(x) > ×22

2(x) , Ë22(x) > ×222
2 (x) as x³ >

We can now define B+ = {n * N : {×1(n)} < Ë(n) } and B2 = {n * N : {2×1(n)} < Ë(n) }, where
{x} = x2 +x+.

Those sets have been introduced and studied in [15], where the authors proved that the Hardy–Littlewood
majorant property holds for them, see Theorem 1 and 2 in [15], page 4, as a Corollary of a restriction
theorem. Let us denote P +B+ by PB+ and PB2

analogously. Note that these sets may be thought of as
generalized Piatetski–Shapiro primes. To see this note that

n * B2 ñó #m * N : 0 f m2 ×1(n) < Ë(n) ñó #m * N : ×1(n) f m < ×1(n) + Ë(n) ñó
#m * N : n f h1(m) < h1(×1(n) + Ë(n)) ñó #m * N : h1(m) * [n, h1(×1(n) + Ë(n)))

For ³ * (0, 1), h1(x) = h2(x) = x1/³ and Ë(x) = ×1(x + 1) 2 ×1(x) the last condition becomes m1/³ *
[n, n + 1) or n = +m1/³+. Thus in that case P³ = PB2

and moreover, any set { +h(m)+ : m * N }, h * Rc

can brought in the form B2 by similar appropriate choices. This means that Theorem 1.4 below implies
Roth’s Theorem in sets P + { +h(m)+ : m * N }, h * Rc for c close to 1, see [13], and in particular in the
Piatetski–Shapiro primes.

One of the main results of our paper is the following.

Theorem 1.4 (Roth’s theorem in the set PB±
). Let c1, c2 * [1, 95/94). Then any A ¦ PB±

with positive
relative upper density

i.e. lim sup
N³+>

|A + [N ]|
|PB±

+ [N ]| > 0

contains infinitely many non-trivial three-term arithmetic progressions.
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We note that one can also obtain with much less difficulty a Roth Theorem in B±.

Theorem 1.5 (Roth’s theorem in the set B±). Let c1, c2 * [1, 16/15). Then any A ¦ B± with positive
relative upper density,

i.e. lim sup
N³+>

|A + [N ]|
|B± + [N ]| > 0,

contains infinitely many non-trivial three-term arithmetic progressions.

Before making some remarks about Theorem 1.4 and discussing the strategy of our proof, we would like
to comment on the sophisticated nature of sets B+ and B2. Let us restrict our attention to the sets B+

which we call B from now on, since the results for the sets B2 are of equal difficulty. Firstly, note that

n * B ñó #m * N : 0 f ×1(n)2m < Ë(n) ñó #m * N : m * (×1(n)2 Ë(n), ×1(n)]

Now assume that n * B, and m * N is such that m * (×1(n) 2 Ë(n), ×1(n)] and assume that n0 is the
smallest integer such that m * (×1(n0)2Ë(n0), ×1(n0)]. Here, even in simple examples, we should expect
that B will have a lot of consecutive integers after n0. For example, a simple application of the Mean
Value Theorem shows that if we let ×1 be an inverse of a function in Rc, ×2 = C100×1, where C is the
doubling constant of ×2

1, namely, ×2
1(x) f C×2

1(2x), and Ë = ×2
2, then the set B will contain infinitely

many full blocks of 100 consecutive integers. Such a set B stands in sharp contrast to the sets of the form
{ +h(m)+ : m * N }, h * Rc, since the gaps between members of such sets tend to infinity. In general, the

constant supx*[1,>)
Ë(x)
×2
1(x)

determines an important qualitative aspect of the sets B. Loosely speaking, for

big intervals of integers where the ratio Ë(x)
×2
1(x)

is bigger than L, we expect that B will contain blocks of

length at least L/C, where C is the doubling constant of ×2
1. Even in the simpler case where ×1 c ×2, B

could contains blocks of various oscillating lengths!
We hope that the discussion above demonstrates how rich the family of sets B is and we now proceed

with some comments about Theorem 1.4.

Remark 1.6. We note that unlike Roth’s Theorem in the primes, no improvement of the bound of r3(N)
can ever imply Theorem 1.4 or Theorem 1.5 since the density of PB can decay polynomially and a result

of Behrend [14] shows that there exists an absolute constant C > 0 such that r3(N) g e2C
:
logN . This

means that any proof of our result cannot rely solely on density considerations and must use the underlying
structure of PB. That is the reason why Green’s work is extremely useful here.

Remark 1.7. Our proof of Theorem 1.4 works for c1, c2 g 1 such that 16(1 2 ³1) + 79(1 2 ³2) < 1,
where ³1 = 1/c1 and ³2 = 1/c2, but we chose the more strict condition c1, c2 * [1, 95/94) for the sake
of simplicity. One could optimize the constants of the proof and require slightly weaker assumptions but
in an effort to keep the exposition reasonable we avoided stating the sharpest result derivable by our
methods, since, unfortunately, even the sharpest result we can derive here is far from the one we believe
to be true, namely, that the result holds for the full range (1, 2).

The strategy of our proof of Theorem 1.4 is the following: we will prove a restriction theorem for PB,
see Proposition 2.7, and then we will use a transference principle in a similar manner to [11] and [13]
to conclude the proof. For the restriction theorem for the set PB we use the estimates for exponential
sums of Lemma 1.10 together with a Tomas–Stein TT 7 argument to reduce the matter to the restriction
theorem for primes that can be found in the work of Green [11]. Vaughan’s identity will play a crucial
role in the proof of Lemma 1.10, and we note that a main tool for estimating exponential sums appearing
in that proof will be Van der Corput’s inequality. In section 3, we use a general transference principle
to bring the problem to ZN = Z/NZ where finite Fourier Analysis together with the restriction theorem
for PB will be used to estimate certain trilinear forms. We conclude the proof of Theorem 1.4 by fol-
lowing an argument originally due to Varnavides [23] to obtain a lower bound for these trilinear forms.
Finally, we note that similarly to Green’s result, our proof of Theorem 1.4 is also quantitative, although
the bounds one may obtain from our methods are far from optimal (see the end of section 3). Roth’s
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Theorem in the sets B can be used as a toy model since the strategy is identical in both cases but the situ-
ation is much simpler there since the exponential estimates that lead to the restriction Theorem for those
sets are immediate corollaries of results from [15]. We only give a brief sketch for the proof of Theorem 1.5.

The second main result of the present work is proving that the sets PB obey the so-called Hardy–
Littlewood majorant property, namely, that the following Theorem holds.

Theorem 1.8 (Hardy–Littlewood majorant property for PB). Let c1 * [1, 16/15), c2 * [1, 17/16) and

r > 2 + 62262³2
16³1+17³2232 . There exists a positive constant C = C(r, h1, h2, Ë) such that for any N * N and

any (an)n*N sequence of complex numbers such that |an| f 1 for all n * N, we have
∥

∥

∥

∥

∑

p*PB+[N ]

ape
2Ãip¿

∥

∥

∥

∥

Lr(T)

f C

∥

∥

∥

∥

∑

p*PB+[N ]

e2Ãip¿
∥

∥

∥

∥

Lr(T)

Some brief historical remarks are in order. It was conjectured by Hardy and Littlewood [16] that for
any p g 2, there exists a positive constant Cp such that for any sequence of complex numbers (an)n*N
bounded by 1 and any finite set A ¦ N, we get

(1.9)

∥

∥

∥

∥

∑

n*A
ane

2Ãin¿

∥

∥

∥

∥

Lp(T)

f Cp

∥

∥

∥

∥

∑

n*A
e2Ãip¿

∥

∥

∥

∥

Lp(T)

Parseval’s identity shows that one may take C2k = 1 for any k * N, nevertheless, this conjecture fails for
any p > 2 which is not an even integer, see [17]. While the full conjecture may not be true, there has
been an effort to quantify that failure (see [19] for precise formulations and connections to the restriction
conjecture for the Fourier transform on R

d, see [15] for a brief exposition on the matter, and see [18] for
multi-dimensional results). Simultaneously, some efforts have been made to find specific infinite arithmetic
sets A where either inequality 1.9 does hold for any A + [N ] with Cp independent of N or it fails, but
nevertheless we have sufficiently good estimates for the growth of Cp(N), see [20, 11, 13, 15]. Here,
sufficiently good estimates means acceptable in the context of the connections of the Hardy–Littlewood
majorant problem and the restriction conjecture, see [19, 20]. It is worth mentioning that in contrast to the
seminal work of [20], where the behavior of Cp(N) was studied for random sets, we concern ourselves with
the Hardy–Littlewood majorant problem for a wide class of deterministic sets, similarly to [11, 13, 15].

Finally, we note that variants of this property can play an important role in some combinatorial argu-
ments. For example, establishing Roth’s Theorem in the primes (as well as the Piatetski–Shapiro primes)
involved proving a suitable discrete variant of the majorant property.

Both Theorem 1.4 and Theorem 1.8 rely heavily on the restriction Theorem for the sets PB, see The-
orem 2.7. The most technical part of establishing this restriction Theorem is the estimate 1.11 of the
following Lemma which we prove in the last section. Lemma 1.10 combined with Bourgain’s restriction
Theorem for the primes, see [11], page 3, will lead to the desired restriction Theorem for the sets PB.

Lemma 1.10. Let c1 * [1, 16/15) and c2 * [1, 17/16) and let ³1 = 1/c1 and ³2 = 1/c2. Let a, q * Z such
that 0 f a f q2 1 and (a, q) = 1. Then for every Ç > 0 such that 16(12 ³1) + 17(12 ³2) + 31Ç f 1 there
exists Ç2 > 0 such that:

(1.11)
∑

p*PB+[N ]
pca (mod q)

Ë(p)21 log(p)e2Ãip¿ =
∑

p*P+[N ]
pca (mod q)

log(p)e2Ãip¿ +O(N12Ç2Ç2

)

where the implied constant does not depend on ¿,N, a, q.

The curious reader might find of independent interest the following intermediate result which implies the
counterpart of the Prime Number Theorem for the set PB, which could be interpreted as an independence
statement in the same way the asymptotic formula of the Piatetski–Shapiro primes was understood.
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Theorem 1.12. Let c1 * [1, 16/15) and c2 * [1, 17/16), such that 16(12 ³1)+17(12 ³2) < 1. Let D > 0,
N,m, b * N such that b f m2 1, (b,m) = 1 and m f logD(N), then

(1.13) ËB(N ;m, b) =
∑

p*P+B+[N ]
pcb (mod m)

log(p) =

∫ N
1 Ë(t)dt

Ç(m)
+OD

(

×2(N)

logD(N)

)

and if m f log(N) then

(1.14) ÃB(N ;m, b) =
∑

p*P+B+[N ]
pcb (mod m)

1 =

∫ N
1 Ë(t)dt

Ç(m) log(N)
+O

(

×2(N)

log2(N)

)

where the implied constant depends only on D, h1, h2, and Ë.

1.1. Notation. We note that 3AP stands for non-trivial three-term arithmetic progression and any set
with no 3APs will be called 3AP-free. We denote by C a positive constant that may change from occurrence
to occurrence. If A,B are two non-negative quantities, we write A . B or B & A to denote that there
exists a positive constant C such that A f CB. Whenever A . B and A & B we write A c B. For two

complex-valued functions f, g we write f > g to denote that limx³>
f(x)
g(x) = 1. For any topological space

X, we denote by C(X) the set of all complex-valued continuous functions, and for any finitely supported
f : Z ³ C we define the Fourier Transform

F [f ](¿) =
∑

k*Z
f(k)e2Ãik¿, for all ¿ * T

For any g : ZN = Z/NZ ³ C we define the finite Fourier Transform and the inverse Fourier Transform

FZN
[g](¿) =

∑

k*ZN

g(k)e
22πikξ

N and F21
ZN

[g](¿) =
∑

k*ZN

g(k)e
2πikξ

N , for all ¿ * ZN

and note that the following Fourier Inversion formula holds F21
ZN

[

FZN
[g]

]

(¿) = Ng(¿).

2. Restriction Theorem for the set PB

This section is devoted to proving the restriction Theorem for the sets PB , see Definition 2.6 and The-
orem 2.7. The restriction theorem for the primes together with the exponential estimates of Lemma 1.10
will be the key elements of our proof. Here we fix two constants c1, c2 such that c1 * [1, 32/31) and
c2 * [1, 34/33), as well as h1, h2 * Rc1 and Rc2 respectively and Ë as in the introduction and all the
implied constants may depend on them. The reader should compare this work with the Section 4 of [13],
Section 2 of [11] and Section 3 of [15].

Before stating Bourgain’s Restriction Theorem for the primes, which will be essential for our argument,
we introduce the following notation from [11].

Definition 2.1. For any N * N and m, b * N such that 0 f b f m2 1 and (m, b) = 1 and m f log(N),
let

Λb,m,N = {n * { 1, . . . , N } : mn+ b * P }
and

»b,m,N (n) =

{

Ç(m) log(mn+b)
mN , n * Λb,m,N

0, n /* Λb,m,N

where Ç denotes the Euler’s totient function. Also, let’s define a function Tb,m,N : C(Λb,m,N ) ³ C(T) such
that

Tb,m,N (f)(¿) = F [f»b,m,N ](¿) =
∑

k*Z
f(k)»b,m,N (k)e

2Ãik¿ for all ¿ * T
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We will abuse notation and sometimes treat »b,m,N as a measure on Λb,m,N in the obvious way, namely

»b,m,N (A) =
∑

n*A
»b,m,N (n) for all A ¦ Λb,m,N

The Siegel–Walfisz Theorem allows us to think that »b,m,N is, loosely speaking, a probability measure on
Λb,m,N . More precisely we have the following theorem.

Theorem 2.2 (Siegel–Walfisz). Let D > 0, N,m, b * N such that b f m21, (m, b) = 1 and m f logD(N),
then

(2.3) Ë1(N ;m, b) =
∑

n*[N ]
ncb (mod m)

Λ(n) =
N

Ç(m)
+OD

(

N

logD(N)

)

and

(2.4) Ë2(N ;m, b) =
∑

p*PN

pcb (mod m)

log(p) =
N

Ç(m)
+OD

(

N

logD(N)

)

where the implied constant depends only on D.

Proof. For the proof of 2.3, see [21], Corollary 5.29, page 124. Through standard elementary estimates we
obtain

∣

∣Ë1(N,m, b) 2 Ë2(N,m, b)
∣

∣ .
:
N

which implies the desired result. �

Applying the result for D = 1 shows that »b,m,N (Λb,m,N ) =
∑

n*Λb,m,N
»b,m,N (n) ³ 1, as N ³ >,

justifying the previous heuristic.

Theorem 2.5 (Bourgain–Green). Suppose that r > 2 is a real number. Then there exists a positive
constant Cr such that for all functions f : Λb,m,N ³ C we have

||Tb,m,N (f)||Lr(T) f CrN
21/r||f ||L2(Λb,m,N ,»b,m,N )

Proof. This result can be found in [11], see Theorem 2.1, page 3. �

We now introduce the sets and measures analogous to Λb,m,N and »b,m,N that will allow us to state the
restriction Theorem for the set PB.

Definition 2.6. For any N * N and m, b * N such that 0 f b f m2 1 and (m, b) = 1 and m f log(N),
let

Pb,m,N = {n * { 1, · · · , N } : mn+ b * PB }
and

Ãb,m,N (n) =

{

Ë(mn+ b)21 · Ç(m) log(mn+b)
mN , n * Pb,m,N

0, n /* Pb,m,N
where Ç denotes the Euler’s totient function. Also, let’s define a function TBb,m,N : C(Pb,m,N ) ³ C(T) such
that

TBb,m,N (f)(¿) = F [fÃb,m,N ](¿) =
∑

k*Z
f(k)Ãb,m,N (k)e

2Ãik¿ for all ¿ * T

Theorem 2.7 (Restriction Theorem for PB). Let N * N and m, b * Z such that 0 f b f m 2 1,

(m, b) = 1 and m f log(N). Then for any real number r > 2+ 62262³2
16³1+17³2232 there exists a positive constant

C = C(r, h1, h2, Ë) such that for all f : Pb,m,N ³ C we have

||TBb,m,N (f)||Lr(T) f CN21/r||f ||L2(Pb,m,N ,Ãb,m,N )
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Proof. We will use the TT 7 argument and interpolation. Firstly, note that for g * L1(T) and f * C(Pb,m,N )
we have

〈TBb,m,N (f), g〉L2(T) =

∫ 1

0
F [fÃb,m,N ](¿)g(¿)d¿ =

∑

n*Z
f(n)Ãb,m,N(n)ĝ(n)

=
∑

n*Pb,m,N

f(n)ĝ(n)1Pb,m,N
(n)Ãb,m,N (n) = 〈f, ĝ1Pb,m,N

〉L2(Pb,m,N ,Ãb,m,N )

We remark that (C(Pb,m,N ))7 >= C(Pb,m,N ) as Banach Spaces through the map h ³ Φh, where Φh(f) =
〈f, h〉L2(Pb,m,N ,Ãb,m,N ) and also that any Lp(T), p g 1 can be embedded into (C(T))7 via the map k ³ Ψk,

where Ψk(g) = 〈g, k〉L2(T). We have shown that Ψg(T
B
b,m,N (f)) = Φĝ1Pb,m,N

(f) and thus (TBb,m,N )
7(Ψg) =

Φĝ1Λb,m,N
and we will abuse notation and write (TBb,m,N )

7(g)(n) = ĝ(n)1Pb,m,N
(n). Let’s notice that

TBb,m,N (T
B
b,m,N )

7(g) = TBb,m,N (ĝ1Pb,m,N
) = F(ĝ1Pb,m,N

Ãb,m,N ) = g 7 F [Ãb,m,N ]

and we note that a similar calculation shows that Tb,m,NT
7
b,m,N (g) = g 7 F [»b,m,N ]. Similarly to the

previous restriction Theorem, it is enough to show that

(2.8) ||TBb,m,N (TBb,m,N )7||Lr2 (T)³Lr(T) f CN22/r

To see this, let f * Lr(Pb,m,N , Ãb,m,N ) and g * Lr
2

(T), then

|〈TBb,m,N (f), g〉L2(T)| = |〈f, (TBb,m,N )7(g)〉L2(Pb,m,N ,Ãb,m,N )| f ||(TBb,m,N )7(g)||L2(Pb,m,N ,Ãb,m,N )||f ||L2(Pb,m,N ,Ãb,m,N )

and also
||(TBb,m,N )7(g)||2L2(Pb,m,N ,Ãb,m,N ) = 〈TBb,m,N (TBb,m,N )7(g), g〉L2(T) f

||TBb,m,N (TBb,m,N )7(g)||Lr(T)||g||Lr2 (T) f ||TBb,m,N (TBb,m,N )7||Lr2(T)³Lr(T)||g||2Lr2 (T)

Thus
|〈TBb,m,N (f), g〉L2(T)| f ||TBb,m,N (TBb,m,N )7||

1/2

Lr2(T)³Lr(T)
||g||Lr2 (T)||f ||L2(Pb,m,N ,Ãb,m,N )

which justifies the fact that proving 2.8 suffices for concluding our proof. We note that

||TBb,m,N (TBb,m,N )7(g)||Lr(T) = ||g 7F [Ãb,m,N ]||Lr(T) f ||g 7F [»b,m,N ]||Lr(T)+ ||g 7F [Ãb,m,N 2»b,m,N ]||Lr(T) f
||Tb,m,NT 7

b,m,N (g)||Lr(T) + ||g 7 F [Ãb,m,N 2 »b,m,N ]||Lr(T) f
(2.9) ||Tb,m,NT 7

b,m,N ||Lr2(T)³Lr(T)||g||Lr2 (T) + ||g 7 F [Ãb,m,N 2 »b,m,N ]||Lr(T)

By the proof of Bourgain–Green’s theorem, see (2,7) in page 4 in [11], we know that there exists a

positive constant C 2
r such that ||Tb,m,NT 7

b,m,N ||Lr2(T)³Lr(T) f C 2
rN

22/r and thus it suffices to estimate

the second term in 2.9 which we may think of as an error term. We show that there exists a constant
C = C(r, h1, h2, Ë) such that

(2.10) ||g 7 F [Ãb,m,N 2 »b,m,N ]||Lr(T) f CN22/r||g||Lr2 (T)

We prove this for r = 2, r = > and interpolate. For g * L2(T), we have

||g 7 F [Ãb,m,N 2 »b,m,N ]||L2(T) f ||ĝ(Ãb,m,N 2 »b,m,N )||32(Z) f ||Ãb,m,N 2 »b,m,N ||3>(Z)||ĝ||32(Z) f
(||Ãb,m,N ||3>(Z) + ||»b,m,N ||3>(Z))||g||L2(T)

and ||»b,m,N ||3>(Z) .
log(N)
N , since »b,m,N (n) f log(log(N)N+log(N))

N .
log(N)
N . Now let’s estimate ||Ãb,m,N ||3>(Z);

for all n * Pb,m,N we have

|Ãb,m,N (n)| =
Ç(m) log(mn+ b)

mNË(mn + b)
.

log(N)

N×2
2(mn+ b)

f log(N)

N×2
2(m(N + 1))

.

.
m log(N)

mN×2
2(mN)

.
log2(N)

×2(mN)
f log2(N)

×2(log(N)N)
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where we have used: Ë(x) > ×2
2(x), ×2 is concave and b f m 2 1 f log(N), Lemma 2.14 from [13] for

the form of x×2
2(x) and ×2

2(x) c ×2(2x). By Lemma 2.6 in [13], we have that limx³> ×2(x)/x = 0 which

gives log(N)
N .

log2(N)
×2(log(N)N) and thus

(2.11) ||g 7 F [Ãb,m,N 2 »b,m,N ]||L2(T) .
log2(N)

×2(log(N)N)
||g||L2(T)

On the other hand

||g 7 F [Ãb,m,N 2 »b,m,N ]||L>(T) f ||F [Ãb,m,N 2 »b,m,N ]||L>(T)||g||L1(T)

Since c1 * [1, 32/31) and c2 * [1, 34/33), we have that 16(12 ³1) + 17(12 ³2) < 1, let Ç > 0 be such that
16(1 2 ³1) + 17(1 2 ³2) + 31Ç = 1, according to Lemma 1.10, there exists Ç2 > 0 such that 1.11 is valid.
Again let’s estimate; let ¿ * T and let ¿2 = ¿/m, we get

|F [Ãb,m,N 2 »b,m,N ](¿)| =
∣

∣

∣

∑

n*Pb,m,N

Ãb,m,N (n)e(n¿)2
∑

n*Λb,m,N

»b,m,N (n)e(n¿)
∣

∣

∣
=

Ç(m)

mN

∣

∣

∣

∑

n*Pb,m,N

Ë(mn+ b)21 log(mn+ b)e(nm¿2)2
∑

n*Λb,m,N

log(mn+ b)e(nm¿2)
∣

∣

∣
f

Ç(m)

mN

∣

∣

∣

∑

k*PB+[mN+b]
kcb (mod m)

Ë(k)21e(k¿2)2
∑

k*P+[mN+b]
kcb (mod m)

e(k¿2)
∣

∣

∣
.
Ç(m)

mN
(mN + b)12Ç2Ç

2

.

m12Ç2Ç2

N2Ç2Ç2

. N2Ç2Ç2/2

Let · = Ç2/2, and note that we have

(2.12) ||g 7 F [Ãb,m,N 2 »b,m,N ]||L>(T) .
1

NÇ+·
||g||L1(T)

By applying Riesz-Thorin Interpolation to 2.11 and 2.12 we conclude that for any r * (1,+>) and

g * Lr
2

(T) we have

||g 7 F [Ãb,m,N 2 »b,m,N ]||Lr(T) .r (N
2Ç2·)122/r

(

log2(N)

×2(log(N)N)

)2/r

||g||Lr2 (T)

Let ·r be a sufficiently small positive real number which will be chosen later. We know that ×2(x) &·r

x³22·r . Thus we have

||g 7 F [Ãb,m,N 2 »b,m,N ]||Lr(T) .r,·r N
2Ç2·+2Ç/r+2·/r log4/r(N)

(

(log(N)N)2³2+·r
)2/r||g||Lr2 (T) =

(

log(N)
)4/r22³2/r+2·r/rN2Ç2·+2Ç/r+2·/r22³2/r+2·r/r||g||Lr2 (T)

We wish to have
(2.13)

2Ç2·+2Ç/r+2·/r22³2/r+2·r/r < 22/r, or equivalently r >
2(1 + Ç+ ·2 ³2 + ·r)

Ç+ ·
= 2+

2(1 2 ³2 + ·r)

Ç+ ·

For 2.13 to hold, it suffices to have

(2.14) r > 2 +
2(12 ³2 + ·r)

Ç
= 2 +

62(1 2 ³2 + ·r)

12 16(1 2 ³1)2 17(1 2 ³2)
= 2 +

622 62³2 + 62·r
16³1 + 17³2 2 32

We have that r > 2 + 62262/c2
16/c1+17/c2232 , and thus such a choice for ·r > 0 is possible and therefore we do

have that 2.13 is true, which in turn implies that

||g 7 F [Ãb,m,N 2 »b,m,N ]||Lr(T) .r N
22/r||g||Lr2 (T)
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which shows 2.10 and concludes our proof. �

We obtain the Hardy–Littlewood majorant property for the sets PB as a Corollary. To do so, we will
need some estimates for |PB + [N ]|, so let’s firstly prove Theorem 1.12.

Proof of Theorem 1.12. One may use Lemma 1.10 for ¿ = 0, summation by parts, the Siegel–Walfisz
Theorem and the basic properties of functions in Rc in order to obtain these estimates. We provide some
details here. Summation by parts gives

∑

p*PB+[N ]
pcb (mod m)

log(p) = Ë(N)
∑

p*PB+[N ]
pcb (mod m)

Ë(p)21 log(p)2
∫ N

2
Ë2(t)

∑

p*PB+[+t+]
pcb (mod m)

Ë(p)21 log(p)dt

There exists a real number Ç > 0 such that 16(12³1)+17(12³2)+31Ç < 1 and according to Proposition
1.10, there exists a real number Ç2 > 0 such that

∑

p*PB+[L]
pca (mod q)

Ë(p)21 log(p) =
∑

p*P+[L]
pca (mod q)

log(p) +O(L12Ç2Ç2

) =
L

Ç(m)
+OD

(

L

logD(L)

)

where we took into account 2.4. Thus we get

ËB(N ;m, b) =
NË(N)

Ç(m)
+OD

(

NË(N)

logD(N)

)

2
∫ N

2
Ë2(t)

( +t+
Ç(m)

+OD

( +t+
logD(+t+)

))

dt

and we note that by the basic properties of ×2 and Ë, see Lemma 2.14 in [13], we get

NË(N) 2
∫ N

1
Ë2(t)+t+dt =

N
∑

n=1

Ë(n) =

∫ N

1
Ë(t)dt+O(1) and NË(N) . N×2

2(N) . ×2(N)

Finally, we have
∫ N

2

∣

∣

∣

∣

Ë2(t)

( +t+
logD(+t+)

)
∣

∣

∣

∣

dt .

∫ N

2

∣

∣

∣

∣

×22
2(t)

(

t

logD(t)

)
∣

∣

∣

∣

dt .

∫ N

2
×2
2(t)

(

1

logD(t)

)

dt =

×2(N)/ logD(N)2 ×2(2)/ log
D(2)2

∫ N

2
×2(t)(2D) log2D21(t)

1

t
dt f

×2(N)/ logD(N) +D×2(N)

∫ log(N)

log(2)
u2D21du .D ×2(N)/ logD(N)

Therefore

ËB(N ;m, b) =
1

Ç(m)

∫ N

1
Ë(t)dt+OD

(

×2(N)

logD(N)

)

and we have proved 1.13. For the second estimate we have

ÃB(N ;m, b) =
1

log(N)
ËB(N ;m, b) 2

∫ N

2
ËB(t;m, b)

(

1

log(t)

)2
dt

We have that ËB(t;m, b) . ×2(t). Let us fix positive real numbers · * (0, 1) and ³22 such that ·³2 < ·³22 <
³2. Then ×2(N

·) . N ·³22 f ×2(N)/ log2(N), see Lemma 2.6 in [13], and thus

0 < 2
∫ N

2
ËB(t;m, b)

(

1

log(t)

)2
dt =

∫ N

2
ËB(t;m, b)

(

1

t log2(t)

)

dt .

∫ N

2
×2(t)

(

1

t log2(t)

)

dt =

∫ Nε

2
×2(t)

(

1

t log2(t)

)

dt+

∫ N

Nε

×2(t)

(

1

t log2(t)

)

dt . ×2(N
·) +

1

· log2(N)

∫ N

Nε

×2
2(t)dt .·

×2(N)

log2(N)

Finally, we combine with the previous asymptotic for D = 1 to obtain the asymptotic 1.14. �



ROTH’S THEOREM AND THE HARDY–LITTLEWOOD MAJORANT PROBLEM FOR THIN SUBSETS OF PRIMES 10

We remark that ×2
2 > Ë implies that

∫ N
1 Ë(t)dt c ×2(N) and thus |PB + [N ]| = ÃB(N ; 1, 0) c ×2(N)

log(N)

which will be a rough estimate sufficient for our purposes.

Proof of Theorem 1.8. Let N * N and (an)n*N be a sequence of complex numbers with |an| f 1. Apply

the restriction Theorem for m = 1, b = 0 and f(n) = anË(n)
log(n) 1{n>1}(n). There exists constant C =

C(r, h1, h2, Ë) such that

∥

∥

∥

∑

p*PB+[N ]

ap
N
e2Ãip¿

∥

∥

∥

Lr(T)
f CN21/r

(

∑

p*PB+[N ]

|an|2Ë(p)
N log(p)

)1/2

thus

(2.15)
∥

∥

∥

∑

p*PB+[N ]

ape
2Ãi¿

∥

∥

∥

Lr(T)
f CN21/r

(

N
∑

p*PB+[N ]

Ë(p)

log(p)

)1/2

f CN21/r

(

N
∑

p*PB+[N ]

×2
2(p)

log(p)

)1/2

On the other hand we have that
∥

∥

∥

∥

∑

p*PB+[N ]

e2Ãip¿
∥

∥

∥

∥

Lr(T)

g
(
∫ 1

100N

21
100N

∣

∣

∣

∑

p*PB+[N ]

e2Ãip¿
∣

∣

∣

r
)1/r

&
|PB + [N ]|
N1/r

& N21/r ×2(N)

log(N)

Finally, we will estimate the sum in 2.15 using summation by parts together with our asymptotic formula
for ÃB(N ; 1, 0). Let · = 2³221

8³2
> 0, then

∑

p*PB+[N ]

×2
2(p)

log(p)
= ÃB(N ; 1, 0)

×2
2(N)

log(N)
2
∫ N

2
ÃB(t; 1, 0)

×22
2(t) log(t)2 ×2

2(t)/t

log2(t)
dt .

×2(N)×2
2(N)

log2(N)
+

∫ N

2

×2(t)

log(t)

|t2×22
2(t) log(t)2 t×2

2(t)|
t2 log2(t)

dt .
×2
2(N)

N log2(N)
+

∫ N

2

×2
2(t)

t2 log2(t)
dt =

×2
2(N)

N log2(N)
+

∫ Nε

2

×2
2(t)

t2 log2(t)
dt+

∫ N

Nε

×2
2(t)

t2 log2(t)
dt .

×2
2(N)

N log2(N)
+

×2
2(N

·)

· log2(N)

∫ +>

2

1

t2
dt+

∫ N

Nε

×2
2(t)

t2 log2(t)
dt .·

×2
2(N)

N log2(N)
+

1

log2(N)

∫ N

Nε

×2
2(t)

t2
dt .

×2
2(N)

N log2(N)

where we have used the fact that ×2
2(x

·) . x(2³221)/2 . ×2
2(x)/x and also that

∫ N
Nε

×2
2(t)
t2

dt .
×2
2(N)
N . To see

this, define Φ2(x) = ×2
2(x)/x = x2³22132×2

(x) and notice that one can easily show that Φ2
2(x)x c Φ2(x).

Therefore, we may write
∫ N

Nε

×2
2(t)

t2
dt =

∫ N

Nε

Φ2(t)

t
dt .

∫ N

Nε

Φ2
2(t)dt . Φ2(N) =

×2
2(N)

N

This concludes the proof since we have shown that
∥

∥

∥

∑

p*PB+[N ]

ape
2Ãi¿

∥

∥

∥

Lr(T)
. N21/r ×2(N)

log(N)
.

∥

∥

∥

∥

∑

p*PB+[N ]

e2Ãip¿
∥

∥

∥

∥

Lr(T)

�

We wish to finish this section by making some remarks about the restriction Theorem for the much
simpler case of the sets B. The rather technical Lemma 1.10 is replaced by the following.

Lemma 2.16. Let c1 * [1, 2) and c2 * [1, 6/5) and let ³1 = 1/c1 and ³2 = 1/c2. Assume we have fixed
b,m * Z such that 0 f b f m 2 1. Then for every Ç > 0 such that (1 2 ³1) + 3(1 2 ³2) + 6Ç < 1 there
exists Ç2 > 0 such that



ROTH’S THEOREM AND THE HARDY–LITTLEWOOD MAJORANT PROBLEM FOR THIN SUBSETS OF PRIMES 11

(2.17)
∑

n*B+[N ]
ncb (mod m)

Ë(n)21e2Ãin¿ =
∑

n*[N ]
ncb (mod m)

e2Ãin¿ +O(N12Ç2Ç2

)

where the implied constant does not depend on ¿,N, b,m.

Proof. Use Lemma 3.2 from [15], together with the identity 1{n*Z : ncb (mod m)}(k) =
1
m

∑m21
s=0 e2Ãis(k2b)/m.

�

The analogues for Pb,m,N and Ãb,m,N are Mb,m,N = {n * [N ] : nm+ b * B } and

µb,m,N (n) =

{

Ë(nm+b)21

N , n * Mb,m,N

0, n /* Mb,m,N

Finally, the restriction Theorem is the following

Theorem 2.18 (Restriction Theorem for B). Let c1 * [1, 2) and c2 * [1, 6/5) and assume we have fixed
h1, h2, Ë and B as in the introduction. Let N, b,m * Z be such that 0 f b < m f log(N). For each

r > 2 + 12212/c2
1/c1+3/c223 , there exists a constant C = C(r, h1, h2, Ë) > 0 such that

||Sb,m,N (f)||Lr(T) f CN21/r||f ||L2(Mb,m,N ,µb,m,N )

for all f * L2(Mb,m,N , µb,m,N ), where Sb,m,N : C(Mb,m,N ) ³ C(T) is such that

Sb,m,N(f)(¿) = F [fµb,m,N ](¿) =
∑

n*Z
f(n)µb,m,N (n)e

2Ãin¿ for all ¿ * T

Proof. This Theorem is a generalization of Proposition 3.1 in [15]. A similar argument to the one presented
there works here as well. Essentially a TT 7 argument and interpolation are the key ingredients of the
proof, similarly to the proof of Theorem 2.7, but much simpler. �

Remark 2.19. Let’s remark that in the same spirit as in the proof of Theorem 1.8, this restriction
theorem implies that the set B has the Hardy–Littlewood majorant property. For the specific formulation
and proof we point the reader to [15].

Finally, we wish to comment that the restriction Theorem for the set B together with an appropriate
Transference Principle, analogous to the one we present in the next section for the sets PB, are sufficient
to yield Theorem 1.5.

3. Transference Principle

We are now ready to prove Theorem 1.4. We fix c1, c2 * [1, 95/94), h1, h2, Ë and B as in the
introduction. This implies that there exists Ç > 0 such that 16(1 2 ³1) + 17(1 2 ³2) + 31Ç < 1, and
therefore according to Proposition 1.10, there exists a real number Ç2 > 0 such that the estimate in 1.11
holds. Throughout the discussion here we have fixed such Ç, Ç2 > 0. All the implied constants in our
work in this section may depend on h1, h2, Ë, Ç, Ç

2 and on nothing else unless we explicitly indicate it. We
transfer our problem to ZN = Z/NZ.

Lemma 3.1. Let A0 ¦ P +B = PB and assume that

lim sup
N³>

|A0 + [N ]|
|PB + [N ]| > 0 or equivalently lim sup

N³>

log(N)|A0 + [N ]|
×2(N)

> 0

then

lim sup
N³>

log(N)|A0 + [N, 2N ]|
×2(N)

> 0
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Proof. We know that |PB+[N ]| c ×2(N)/ log(N) and thus there exists a positive constant C and a natural

number N1 such that |PB + [N ]| f C ×2(N)
log(N) for all N g N1. We also have that there exists a positive

real number ³0 for which there are infinitely many naturals numbers N such that log(N)|A0+[N ]|
×2(N) > ³0. We

have that ×2(x) = x³23×2(x) and for all real numbers t > 0 we have that 3×2(tx) > 3×2(x) as x³ >, see

Lemma 2.6 in [13], page 6. Let’s fix a real number t = 22k for some k * N such that t³2 < ³0
8C . We will

have that

×2(tN) = t³2N³23×2(tN) = t³2×2(N)
3×2(tN)

3×2(N)
= t³2×2(N) +

(

3×2(tN)

3×2(N)
2 1

)

t³2×2(N)

Thus there exists a natural number N2 such that for all N g N2 we have that ×2(tN) f 2t³2×2(N). Let’s

notice that for all natural numbers N such that N g max{2N1/t,N2} and such that |A0+[N ]
×2(N) > ³0 we have

|A0 + [tN,N ] = |A0 + [N ]| 2 |A0 + [1, tN)| g |A0 + [N ]| 2 |PB + [1, tN ]| g

³0
×2(N)

log(N)
2 C

×2(tN)

log(N)
g ³0

×2(N)

log(N)
2 2Ct³2

×2(N)

log(N)
g ³0

×2(N)

log(N)
2 2³0

8

×2(N)

log(N)
=

3³0

4

×2(N)

log(N)

We have that k = log2(1/t) and

k
∑

l=1

|A0+ [2l21tN, 2ltN ]| g
k21
∑

l=1

|A0+ [2l21tN, 2ltN)|+ |A0+ [2k21tN, 2ktN ]| = |A0+ [tN,N ]| g 3³0

4

×2(N)

log(N)

Thus there exists a natural number l * [1, k] such that |A0 + [2l21tN, 2ltN ]| g 3³0
4k

×2(N)
log(N) . Since ×2 is

increasing, we have

log(2l21tN)|A0 + [2l21tN, 2ltN ]|
×2(2l21tN)

g 3³0

4k

log(2l21tN)×2(N)

log(N)×2(2l21tN)
g Ck³0

We note that t = 22k is fixed, ×2(2x) . ×2(x) and that the previous inequality holds for infinitely many
natural numbers. This gives that there exists ³2

0 > 0 such that

lim sup
N³>

log(N)|A0 + [N, 2N ]|
×2(N)

> ³2
0

which is the desired result. �

Lemma 3.2. Assume A0 ¦ PB has positive upper relative density and thus, according to the previous

lemma, there exists a positive real number ³0 such that lim supn³>
log(n)|A0+[n,2n]|

×2(n)
> ³0. If A0 does not

contain 3APs, then there exists a small positive number ³ and infinitely many prime numbers N with
the property that for each such number there exists a set A = AN ¦ {1, 2, . . . +N/2+} and an integer
W =WN * [1/8 log logN, 1/2 log logN ] such that

i) A = AN has no 3APs,
ii) Ãb,m,N (A) g ³ for some b * {0, . . . ,m2 1}, with (b,m) = 1, where m =

∏

p*P+[W ] p.

Proof. Since lim supn³>
log(n)|A0+[n,2n]|

×2(n)
> ³0, we will have infinitely many even numbers n * N such that

|A0 + [n/2, n]| g ³0×2(n/2)
2 log(n/2) &

³0×2(n)
log(n) . Let W = +1/4 log log(n)+ and m =

∏

p*P+[W ] p, and notice that

m =
∏

p*P+[W ] p f 4W f e2/4 log log(n) = log1/2(n). According to Bertrand’s postulate, we know that there

exists a prime number N * [2n/m, 4n/m]. We have that W * [1/8 log log(N), 1/2 log log(N)] and also
that

∑

b*{0,...,m21}
(b,m)=1

n
∑

k=n/2

1A0+Pb,m
(k) = |A0 + [n/2, n]| & ³0×2(n)

log(n)
where Pb,m = {n * Z : n c b (mod m)}
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We have Ë(x) c ×2
2(x) c ×2(x)/x and ×2(x) c ×2(2x), and thus we get

∑

b*{0,...,m21}
(b,m)=1

n
∑

k=n/2

1A0+Pb,m
(k)Ë(k)21 log(k) &

∑

b*{0,...,m21}
(b,m)=1

n
∑

k=n/2

1A0+Pb,m
(k)×2

2(k)
21 log(k) &

log(n)×2
2(n)

21
∑

b*{0,...,m21}
(b,m)=1

n
∑

k=n/2

1A0+Pb,m
(k) & n log(n)×2(n)

21
∑

b*{0,...,m21}
(b,m)=1

n
∑

k=n/2

1A0+Pb,m
(k) & ³0n

By the pigeonhole principle there exists b * {0, . . . ,m2 1} with (b,m) = 1 and such that
n
∑

k=n/2

1A0+Pb,m
(k)Ë(k)21 log(k) & ³0n/Ç(m)

Let A = AN = 1
m(A0 + Pb,m + {n/2, . . . , n} 2 b) and notice that A ¦ {1, . . . , +N/2+}. Since A0 does not

have any 3APs, neither will A, and notice that this means that it will not have such progressions even
when considered as a subset of ZN . Finally, notice that A ¦ Pb,m,N and with a change of variables we get

(3.3) Ãb,m,N (A) =
∑

l*A
Ãb,m,N (l) =

n
∑

k=n/2

1A0+Pb,m
(k)Ë(k)21Ç(m) log(k)

mN
& ³0

n

mN
g ³0/4

�

From now on we fix A0 ¦ PB with positive upper relative density and we assume for the sake of a
contradiction that it does not contain any 3APs. We see that Lemmas 3.1 and 3.2 are applicable.

Lemma 3.4. Let N * P, W * [1/8 log logN, 1/2 log logN ], m and b be the integers of the previous lemma.
Then for sufficiently large N we get

sup
¿*ZN\{0}

|FZN
[Ãb,m,N ](¿)| . log logW/W

Proof. We will use the fact that for sufficiently large N we have that

sup
¿*ZN

∣

∣FZN
[»b,m,N ](¿)

∣

∣ f 2 log logW/W

which has been established in Green’s work, see [11], Lemma 6.2, page 17, together with our estimate
∑

n*P+BN

ncb (mod m)

Ë(n)21 log(n)e(n¿) =
∑

n*P+[N ]
ncb (mod m)

log(n)e(n¿) +O(N12Ç2Ç2

), where e(x) = e2Ãix

We have

sup
¿*ZN\{0}

|FZN
[Ãb,m,N ](¿)| f sup

¿*ZN\{0}
|FZN

[Ãb,m,N ](¿)2FZN
[»b,m,N ](¿)|+ sup

¿*ZN\{0}
|FZN

[»b,m,N ](¿)| f

sup
¿*FZN

\{0}

∣

∣

∣

∣

∑

n*{1,...,N}
nm+b*PB

Ç(m) log(mn+ b)

Ë(mn + b)mN
e22Ãin¿/N2

∑

n*{1,...,N}
nm+b*P

Ç(m) log(mn+ b)

mN
e22Ãin¿/N

∣

∣

∣

∣

+2 log logW/W =

sup
¿*FZN

\{0}

∣

∣

∣

∣

∑

n*{1,...,N}
nm+b*PB

Ç(m) log(mn+ b)

Ë(mn + b)mN
e

22πi(nm+b)ξ
Nm 2

∑

n*{1,...,N}
nm+b*P

Ç(m) log(mn+ b)

mN
e

22πi(nm+b)ξ
Nm

∣

∣

∣

∣

+2 log logW/W .

sup
¿*FZN

\{0}

∣

∣

∣

∣

∑

k*P+BmN+b

kcb (mod m)

Ç(m) log(k)

Ë(k)mN
e

22πikξ

Nm 2
∑

n*P+[mN+b]
ncb (mod m)

Ç(m) log(k)

mN
e

22πikξ

Nm

∣

∣

∣

∣

+N21 log(N)+2 log logW/W .
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(mN + b)12Ç2Ç
2

N
+ 2 log logW/W . N2Ç + 2 log logW/W . log log(N)

�

We define a new measure on ZN by letting a(S) =
∑

k*S 1S+A(k)Ãb,m,N (k) for any S ¦ ZN , where we
are considering Ãb,m,N as a function on ZN in the obvious way. According to Lemma 3.2, we will have that
a(ZN ) g ³. Now, we define yet another measure on ZN . Let ·, · * (0, 1) be numbers that will be chosen
later and define

R = { ¿ * ZN : |FZN
[a](¿)| g · }

If R = {¿1, . . . , ¿k} with |R| = k, then define

B = {x * ZN : sup
i*[k]

∥

∥

∥

x¿i
N

∥

∥

∥
f · }, where ‖x‖ = min{|x2 n| : n * Z}

We will have that |B| g ·kN , see Lemma 4.20 in [22], page 166, and thus B is non-empty for sufficiently
big N . Let ³(y) = 1

|B|1B(y) for all y * ZN . Finally, let a1 = a 7 ³ 7 ³, and note that a1(ZN ) g ³.

Lemma 3.5. Let N * P, W * [1/8 log logN, 1/2 log logN ], m and b be the integers as before and assume
that ·k g log logW/W , then

||a1||3>(ZN ) . 1/N

Proof. Here we use the Fourier Inversion Formula together with Lemma 3.4 to obtain

a1(x) = a 7 ³ 7 ³(x) f Ãb,m,N 7 ³ 7 ³(x) = 1

N
F21
ZN

[FZN
[Ãb,m,N 7 ³ 7 ³]](x) =

1

N

∑

¿*ZN

FZN
[Ãb,m,N ](¿)FZN

[³](¿)2e
2πiξx

N f

1

N
FZN

[Ãb,m,N ](0)FZN
[³](0)2 +

1

N
sup

·*Z\{0}

∣

∣FZN
[Ãb,m,N ](·)

∣

∣

∑

¿*ZN\{0}
FZN

[³](¿)2

It is not difficult to see that FZN
[Ãb,m,N ](0) . 1 and FZN

[³](0) = 1. We also have

∑

n*ZN\{0}

∣

∣FZN
[³](n)2

∣

∣ f
∑

n*ZN

(FZN
[³](n)) (FZN

[³](n)) =
∑

n*ZN

∑

m*ZN

∑

k*ZN

³(m)³(k)e2Ãinm/N e22Ãink/N =

=
∑

n*ZN

∑

m*ZN

|³(m)|2 +
∑

m*ZN

∑

k*ZN\{m}
³(m)³(k)

∑

n*ZN

e2Ãinm/N e22Ãink/N = N |B|21

Putting everything together, we use the previous Lemma as well as the fact that |B| g ·kN g N log logW/W
to obtain

|a1(x)| . 1/N + |B|21 log logW/W . 1/N

as desired. �

We now use the Restriction Theorem for the set PB, to obtain a discrete version of our Restriction
Theorem which is called discrete majorant property.

Lemma 3.6 (Discrete majorant property). Assume that r > 2+ 62262/c2
16/c1+17/c2232 , then there exists a positive

constant C = C(r, h1, h2, Ë) such that

||FZN
[a]||3r(ZN ) f C
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Proof. We will use Theorem 2.7 together with Marcinkiewicz–Zygmund theorem, see Lemma 6.5 in [11].
Let’s notice that

||FZN
[a]||r3r(ZN ) =

∑

k*ZN

|FZN
[a](k)|r =

N21
∑

k=0

∣

∣

∣

∣

N
∑

l=1

a(l)e2Ãil
k
N

∣

∣

∣

∣

r

=

N21
∑

k=0

∣

∣

∣

∣

FZ[a](k/N)

∣

∣

∣

∣

r

.r

N

∫

T

∣

∣FZ[a](t)
∣

∣

r
dt = N

∫

T

∣

∣FZ[1AÃb,m,N ](t)
∣

∣

r
dt = N ||TBb,m,N (1A)||rLr(T) .r,h1,h2,Ë ||1A||rL2(Pb,m,N ,Ãb,m,N ) . 1

�

We finish the proof by introducing and estimating certain trilinear forms. Let Λ be the following trilinear
form

Λ(f, g, h) =
∑

x,d*ZN

f(x)g(x+ d)h(x + 2d)

where f, g, h : ZN ³ C are arbitrary functions. By the Fourier Inversion formula the following useful
identity is holds whenever N is odd

Λ(f, g, h) =
1

N

∑

¿*ZN

FZN
[f ](¿)FZN

[g](22¿)FZN
[h](¿)

Let’s notice that since all the sets A = AN produced by Lemma 3.2 do not contain 3APs, we have that

Λ(a, a, a) =
∑

n*ZN

a(x)3 f
N
∑

n=1

Ãb,m,N (n)
3 =

∑

n*[N ]
mn+b*PB

(

Ç(m) log(nm+ b)

mNË(nm+ b)

)3

.

log3(Nm+ b)

N3

∑

n*[N ]
mn+b*PB

1

×2
2(nm+ b)3

f N log3(Nm+ b)

N3×2
2(Nm+ b)3

.
m3N log3(Nm)

×3
2(Nm)3

.
N log3(N) log3(N log(N))

×3
2(N log(N))

.·1

N log6(N)

(N log(N))3³223·1
.·1 N

123³2+4·1 f N23/2

where we have completed the estimates by using the basic properties of ×2, see Lemma 2.6 in [13], and by

choosing a positive number ·1 <
3³225/2

4 , which is possible for ³2 * (94/95, 1].

Lemma 3.7. For any r > 2 + 62262/c2
16/c1+17/c2232 , there exists a positive constant C1 = C1(r, h1, h2, Ë) such

that

(3.8) Λ(a1, a1, a1) f C1N
23/2 + C1N

21(·2·2r + ·22r/r
2

)

Proof. According to the previous estimate, we have that there exists a constant C0 = C0(h1, h2, Ë) such

that Λ(a, a, a) f C0N
23/2. Therefore, we have that

Λ(a1, a1, a1) f Λ(a1, a1, a1)2 Λ(a, a, a) + C0N
23/2 =

1

N

∑

¿*ZN

FZN
[a1](¿)FZN

[a1](22¿)FZN
[a1](¿)2

1

N

∑

¿*ZN

FZN
[a](¿)FZN

[a](22¿)FZN
[a](¿) + C0N

23/2 =

1

N

∑

¿*ZN

FZN
[a](¿)2FZN

[³](¿)4FZN
[a](22¿)FZN

[³](22¿)2 2 1

N

∑

¿*ZN

FZN
[a](¿)2FZN

[a](22¿) + C0N
23/2 =

1

N

∑

¿*ZN

FZN
[a](¿)2FZN

[a](22¿)
(

FZN
[³](¿)4FZN

[³](22¿)2 2 1
)

+ C0N
23/2
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For every ¿ * R, we will have that
∣

∣FZN
[³](¿)4FZN

[³](22¿)2 2 1
∣

∣ f 212·2; the proof is straightforward
and can be found in [11], see Lemma 6.7, page 19. On the one hand, Lemma 3.6 suggests that there exists
a constant C = C(r, h1, h2, Ë) such that

||FZN
[a]||3>(ZN ) f ||FZN

[a]||3r(ZN ) f C

On the other hand, we have

(3.9) ·r|R| f
∑

¿*R
|FZN

[a](¿)|r f
∑

¿*ZN

|FZN
[a](¿)|r f Cr

Thus

∣

∣

∣

∣

∣

∣

∑

¿*R
FZN

[a](¿)2FZN
[a](22¿)

(

FZN
[³](¿)4FZN

[³](22¿)2 2 1
)

∣

∣

∣

∣

∣

∣

f

212·2
∑

¿*R
|FZN

[a](¿)|2|FZN
[a](22¿)| f 212·2C3|R| f C3+r212·2·2r

Now we bound the sum along ¿ /* R. Firstly, we note that sup¿*ZN

∣

∣FZN
[³](¿)4FZN

[³](22¿)2 2 1
∣

∣ f 2

since |FZN
[³](¿)| f 1. For now, let’s assume that r * (2 + 62262/c2

16/c1+17/c2232 , 3), which is possible since

c1 * [1, 95/94), c2 * [1, 95/94) and thus 0 f 62262/c2
16/c1+17/c2232 < 1. Let r2 be such that 1/r + 1/r2 = 1 and

note that 22 r/r2 > 0. Thus

∣

∣

∣

∣

∣

∣

∑

¿ /*R
FZN

[a](¿)2FZN
[a](22¿)

(

FZN
[³](¿)4FZN

[³](22¿)2 2 1
)

∣

∣

∣

∣

∣

∣

f

2
∑

¿ /*R
|FZN

[a](¿)2FZN
[a](22¿)| f 2 sup

¿ /*R

∣

∣FZN
[a](¿)

∣

∣

22r/r2 ∑

¿ /*R
|FZN

[a](¿)r/r
2FZN

[a](22¿)| f

2·22r/r
2(

∑

¿*ZN

|FZN
[a](¿)|r

)1/r2(
∑

¿*ZN

|FZN
[a](22¿)|r

)1/r
= 2·22r/r

2
∑

¿*ZN

|FZN
[a](¿)|r f 2Cr·22r/r

2

For C1 = max{C0, C
3+r212, 2Cr } we get

Λ(a1, a1, a1) f C1N
23/2 + C1N

21(·2·2r + ·22r/r
2

)

For r g 3, let s * (2 + 12212/c2
1/c1+3/c223 , 3), the previous argument yields

Λ(a1, a1, a1) f C1N
23/2 + C1N

21(ë2·2r + ·22s/s
2

)

and since ·22s/s
2 f ·22r/r

2

we get the desired result. �

The following Lemma provides a lower bound for Λ(a1, a1, a1) and similarly to the work of Green [11],
we adapt Varnavides’ argument [23] in order to attain it.

Lemma 3.10. There exist positive constants C2 = C2(h1, h2, Ë), C3 = C3(h1, h2, Ë) such that

(3.11) Λ(a1, a1, a1) g C2N
21e2C3³21 log(1/³)

Proof. We know from Sanders’ result [6] that there exists a positive constant D such that if M g
eD³

21 log5(1/³) then all subsets of [M ] with density at least ³
4C contain a non–trivial three–term arith-

metic progression, where C = C(h1, h2, Ë) is the implied constant appearing in Lemma 3.5 and without
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loss of generality let us assume that C g 2. Let A2 = {x * ZN : a1(x) g ³
NC } and note that from Lemma

3.5

³ f a1(ZN ) =
∑

x*A2

a1(x) +
∑

x/*A2

a1(x) f
|A2|C
N

+
(N 2 |A2|)³

NC

which implies that |A2| g ³N
2C . Let’s define Z = |{ (x, d) * Z

2
N : x, x + d, x + 2d * A2 }| to be the number

of arithmetic progressions of length three in A2. Note that

Λ(a1, a1, a1) =
∑

x,d*ZN

a1(x)a1(x+ d)a1(x+ 2d) g Z
³3

N3C3

Let us fix M =
⌈

eD³
21 log5(1/³)

⌉

. For N g M , we find a lower bound for Z. Let a, d * ZN be such that

d 6= 0 and let Pa,d = { a, a+d, a+2d, . . . , a+(M 21)d}. For a fixed d, Sanders’ result gives that for every
a * ZN such that |A2 + Pa,d|/M g ³/(4C) we must necessarily have that A2 + Pa,d contains a non-trivial
three-term arithmetic progression. We have

∑

a*ZN

|A2 + Pa,d| =M |A2| g ³MN

2C

where we have used the fact that in the sum we count every element of A2 exactly M times. Therefore

³MN

2C
f

∑

a*ZN :|A2+Pa,d|g³M/(4C)

|A2 + Pa,d|+
∑

a*ZN :|A2+Pa,d|<³M/(4C)

|A2 + Pa,d|

and we have
∑

a*ZN :|A2+Pa,d|<³M/(4C)

|A2 + Pa,d| <
³MN

4C

which in turn implies that

³MN

4C
f

∑

a*ZN :|A2+Pa,d|g³M/(4C)

|A2 + Pa,d| f |{ a * ZN : |A2 + Pa,d| g ³M/(4C) }|M

Thus ³N
4C f |{ a * ZN : |A2 + Pa,d| g ³M/(4C) }|. There are at least ³N

4C values of a * ZN such that

|A2 + Pa,d| g ³M/(4C). Thus, for each d * ZN \ {0}, there are at least ³N
4C values of a * ZN such that

A2 + Pa,d contains a non–trivial three–term arithmetic progression in ZN . Each such progression can be

in at most M2 sets of the form Pa,d. Thus we have that Z g ³N(N21)
4M2C

. Finally, we have that

Λ(a1, a1, a1) =
∑

x,d*ZN

a1(x)a1(x+ d)a1(x+ 2d) g Z
³3

N3C3
g ³4

4C4M2
· N 2 1

N
·N21 g

³4

8C4M2
·N21 g ³4

32C4e2D³21 log5(1/³)
·N21 g C2N

21e2C3³21 log5(1/³)

for suitable positive constants C2, C3 as desired. For N < M , we trivially have

Λ(a1, a1, a1) =
∑

x,d*ZN

a1(x)a1(x+ d)a1(x+ 2d) g Z
³3

N3C3
g ³3

NM2C3

since Z must contain the trivial arithmetic progressions and A2 6= ' since |A2| g ³N
2C . We conclude with

the same calculation as before. �
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Concluding the Proof of Theorem 1.5. Remember that we have assumed for the sake of a contradiction
that there exists a 3AP-free A0 ¦ PB with positive upper relative density. All the previous lemmas are

applicable. Fix r * (2 + 62262/c2
16/c1+17/c2232 , 3), then from Lemmas 3.7, 3.10, we have that there exist positive

constants C1, C2, C3 such that

C2N
21e2C3³21 log5(³21) f Λ(a1, a1, a1) f C1N

23/2 + C1N
21(·2·2r + ·22r/r

2

)

We will choose ·, · * (0, 1) such that the above inequality fails and such that ·k g log log(W )/W , so that
Lemma 3.5 will be applicable. More specifically, we will choose two positive constants C4, C5 such that

· = e2C4³21 log5(1/³), · = e2C5³21 log5(1/³)

We have

C2N
21e2C3³21 log5(³21) f C1N

23/2 + C1N
21

(

e(22C5+rC4)³21 log5(1/³) + e2C4(22r/r2)³21 log5(1/³)
)

Thus

e2C3³21 log5(³21)
(

C2 2 C1e
2(2C52rC42C3)³21 log5(³21) 2 C1e

2(C4(22r/r2)2C3)³21 log5(³21)
)

f C1N
21/2

We can choose a sufficiently large C4 > 0 such that C1e
2(C4(22r/r2)2C3)³21 log5(³21) f C2/4, and then

choose a sufficiently large C5 > 0 such that C1e
2(2C52rC42C3)³21 log5(³21) f C2/4. Then

C2/2e
2C3³21 log5(1/³) f C1N

21/2

We will have a contradiction provided that the assumptions of Lemma 3.5 are in place. We note that

·k = ·|R| g ·C·
2r

, where C is a positive constant guaranteed by the estimate in 3.9. It suffices to show

that ·C·
2r g log logW/W which is equivalent to

CerC4³21 log5(1/³)C5³
21 log5(1/³) f log

(

W/ log logW
)

To show that this is the case for sufficiently large N , it suffices to show that

CerC4³21 log(1/³)5C5³
21 log5(1/³) f log

( 1
8 log logN

log log
(

1
8 log log(N)

)

)

which is true forN large enough to make ³ &
(log log log log logN)6

log log log logN . The proof of Theorem 1.4 is complete. �

4. Proof of Main Lemma

This section is devoted to the proof of Lemma 1.10, which is the main tool that allows us to use
Bourgain–Green’s result, see Theorem 2.5, to obtain our Restriction Theorem, see Theorem 2.7. The
methods used are analogous to the ones in Sections 6 and 7 of [13] and the main difficulty here lies in
the technical complications that the sophisticated nature of the sets B bring. We fix c1 * [1, 16/15) and
c2 * [1, 17/16), h1, h2, Ë and B as in the introduction and all the implied constants may depend on them.
Let us mention that if c1 = 1 then we fix Ã1 as in Lemma 2.14 in [13], otherwise let Ã1 be the constant
function 1. We use the basic properties of the functions, described in Lemma 2.6 and Lemma 2.14 in [13]
without further mention. Before attempting to prove the main Lemma, we collect some useful intermediate
results.

Lemma 4.1. Let m * Z \ {0}, l * N, j g 0, X g 1, ³ * R and s * {0, 1}. Then

∣

∣

∣

∣

X
∑

k=1

e2Ãi(³jkl+m(×1(kl)2sË(kl)))
∣

∣

∣

∣

. |m|1/2 log(lX)lX(Ã(lX)×1(lX))21/2
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and more precisely, for all positive real numbers Y, Y 2 we have
∣

∣

∣

∣

∑

Y <kfY 2f2Y

e2Ãi(³jkl+m(×1(kl)2sË(kl)))
∣

∣

∣

∣

. |m|1/2lY (Ã1(lY )×1(lY ))21/2

Proof. The proof of the result for s = 0 is given in [13], see Lemma 6.7, page 21. Let Y * [1,X] and
Y 2 * [Y +1, 2Y ] and F (t) = ³jlt+m(×1(lt)2 Ë(lt)). Then F 22(t) = ml2(×22

1(lt)2Ë22(lt)). If c1 > 1, then
we have that for all t * [Y, 2Y ]

|ml2×22
1(lt)| =

∣

∣

∣

∣

ml2
×1(lt)(³1 + »

(1)
1 (lt))(³1 2 1 + »

(1)
2 (lt))

(lt)2

∣

∣

∣

∣

c ml2
×1(lY )

(lY )2

where »
(j)
i is the function »i appearing in Lemma 2.14, [13] for ×j . Also,

|ml2Ë22(lt)| . |ml2×222
2 (lt)| =

∣

∣

∣

∣

ml2
×2(lt)(³2 + »

(2)
1 (lt))(³2 2 1 + »

(2)
2 (lt))(³2 2 2 + »

(2)
3 (lt))

(lt)3

∣

∣

∣

∣

. ml2
×2(lY )

(lY )3

and thus

|F 22(t)| . ml2
×1(lY )

(lY )2
+ml2

×2(lY )

(lY )3
. ml2

×1(lY )

(lY )2
, since

×2(lY )

×1(lY )lY
. 1

Also,

|F 22(t)| & ml2
×1(lY )

(lY )2
2ml2×2(lY )

(lY )3
= ml2

×1(lY )

(lY )2

(

12 ×2(lY )

×1(lY )lY

)

& ml2
×1(lY )

(lY )2
, since lim

Y³>
×2(lY )

×1(lY )lY
= 0

Thus |F 22(t)| c ml2×1(lY )
(lY )2

.

If c1 = 1, then we have that for all t * [Y, 2Y ]

|ml2×22
1(lt)| =

∣

∣

∣

∣

ml2
×1(lt)(³1 + »

(1)
1 (lt))Ã1(lt)Ç1(lt)

(lt)2

∣

∣

∣

∣

c ml2
×1(lY )Ã1(lY )

(lY )2

and thus

|F 22(t)| . ml2
×1(lY )Ã1(lY )

(lY )2
+ml2

×2(lY )

(lY )3
= ml2

×1(lY )Ã1(lY )

(lY )2

(

1+
×2(lY )

×1(lY )Ã1(lY )lY

)

. ml2
×1(lY )Ã1(lY )

(lY )2

since ×2(lY )
×1(lY )Ã1(lY )lY . 1, because

(lY )γ22γ121Ã1(lY )213ϕ2 (lY )

3ϕ1 (lY ) ³ 0 as Y ³ >. Finally,

|F 22(t)| & ml2
×1(lY )Ã1(lY )

(lY )2
2ml2×2(lY )

(lY )3
= ml2

×1(lY )Ã1(lY )

(lY )2

(

12 ×2(lY )

×1(lY )Ã1(lY )lY

)

& ml2
×1(lY )Ã1(lY )

(lY )2

Thus |F 22(t)| c ml2×1(lY )Ã1(lY )
(lY )2 . In both cases, we may apply Van der Corput Lemma, see Corollary 8.13,

page 208 in [21], (assume Ã1(x) = 1, whenever c1 > 1).

∣

∣

∣

∣

∑

Y <kfY 2f2Y

e2Ãi(³jkl+m(×1(kl)2Ë(kl)))
∣

∣

∣

∣

. Y |m|1/2 l(Ã1(lY )×1(lY ))1/2

lY
+ |m|21/2 l

21(Ã1(lY )×1(lY ))21/2

(lY )21
.

|m|1/2lY
(

Ã1(lY )×1(lY )

(lY )2

)1/2

+ |m|21/2Y (Ã1(lY )×1(lY ))21/2 .

|m|1/2lY (Ã1(lY )×1(lY ))21/2

(

Ã1(lY )×1(lY )

(lY )2
+ 1

)

. |m|1/2lY (Ã1(lY )×1(lY ))21/2

since Ã1(x) . 1 and ×1(x) . x2. To conclude, let’s estimate using the dyadic pieces

∣

∣

∣

∣

X
∑

k=1

e2Ãi(³jkl+m(×1(kl)2Ë(kl)))
∣

∣

∣

∣

. log(X) sup
Y *[1,X]

{

|m|1/2lY (Ã1(lY )×1(lY ))21/2

}
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. |m|1/2 log(lX)lX(Ã(lX)×1(lX))21/2

since x(Ã(x)×1(x))
21/2 = x×1(x)

21/2Ã
21/2
1 (x) is increasing. �

Finally, we will need the following Lemma. Let us denote by Λ the von Mangoldt’s function as usual

Λ(n) =

{

log(n), if n = pk for some p * P and k * N,
0, otherwise.

and let us define Λa,q(n) = Λ(n)1Pa,q(n), where Pa,q = {n * N : n c a (mod q) }.

Lemma 4.2. Let P * N, ¿ * T and M = P 1+Ç+·2(99/100)³2 where Ç > 0, 0 < · < Ç/100 are such that
such that 16(1 2 ³1) + 17(1 2 ³2) + 31Ç f 1. If we let a, q * N such that 0 f a < q and (a, q) = 1, then
for every m * Z such that 0 < |m| fM and every P1 * N we have

∣

∣

∣

∣

∑

P<kfP1f2P

Λa,q(k)e
2Ãi(k¿2m×1(k))

∣

∣

∣

∣

.

|m|1/2 log(P1)P
4/3
1

(

Ã1(P1)×1(P1)
)21/2

+ |m|1/6 log6(P1)P
13/12
1 (Ã1(P1)×1(P1))

21/6

Proof. Recall that

1Pa,q(k) =
1

q

q21
∑

s=0

e(s(k 2 a)/q), where e(x) = e2Ãix

we may write

∑

P<kfP1f2P

Λa,q(k)e
2Ãi(k¿2m×1(k)) =

∑

P<kfP1f2P

Λ(k)
1

q

q21
∑

s=0

e2Ãi(s(k2a)/q)e2Ãi(k¿2m×1(k)) =

1

q

q21
∑

s=0

e22Ãisa/q
∑

P<kfP1f2P

Λ(k)e2Ãi(k(¿+s/q)2m×1(k))

and therefore it suffices to show that
∑

P<kfP1f2P

Λ(k)e2Ãi(k³2m×1(k)) . |m|1/2 log(P1)P
4/3
1

(

Ã1(P1)×1(P1)
)21/2

+

|m|1/6 log6(P1)P
13/12
1

(

Ã1(P1)×1(P1)
)21/6

where the implied constant is uniform in ³ = ¿ + s/q where ¿ * T, 0 f s f q 2 1. To that end, we use
Vaughan’s identity, which we state here for the sake of clarity.

Lemma 4.3. Let v,w g 1 be real numbers and let n * N be such that n > v, then

Λ(n) =
∑

b|n
bfw

µ(b) log(n/b)2
∑∑

bc|n
bfw,cfv

µ(b)Λ(c) +
∑∑

bc|n
b>w,c>v

µ(b)Λ(c)

Or equivalently, for every n > v we have

Λ(n) =
∑

kl=n, lfw
log(k)µ(l) 2

∑

lfvw

∑

kl=n

Πv,w(l) +
∑

kl=n, k>v, l>w

Λ(k)Ξw(l)

where
Πv,w(l) =

∑

rs=l
rfv, sfw

Λ(r)µ(s)

and
Ξw(l) =

∑

d|l
d>w

µ(d)
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Proof. See Proposition 13.4, page 345 in [21]. �

We use this result for w = v so let Πv,v = Πv for simplicity. More specifically, set v = w = P
1/3
1 where

P < P1 f 2P . For sufficiently large P , n * (P,P1] is such that n > v and thus Vaughan’s identity is
applicable. We have

∑

P<nfP1f2P

Λ(n)e2Ãi(n³2m×1(n)) =
∑

P<nfP1f2P

∑

kl=n, lfv
log(k)µ(l)e2Ãi(n³2m×1(n))

2
∑

P<nfP1f2P

∑

lfv2

∑

kl=n

Πv(l)e
2Ãi(n³2m×1(n))

+
∑

P<nfP1f2P

∑

kl=n, k>v, l>v

Λ(k)Ξv(l)e
2Ãi(n³2m×1(n)) =

∑

lfv

∑

P/l<kfP1/l

log(k)µ(l)e2Ãi(³kl2m×1(kl))

2
∑

lfv

∑

P/l<kfP1/l

Πv(l)e
2Ãi(³kl2m×1(kl)) 2

∑

v<lfv2

∑

P/l<kfP1/l

Πv(l)e
2Ãi(³kl2m×1(kl))

+
∑

v<lfP1/v

∑

P/l<kfP1/l
k>v

Λ(k)Ξv(l)e
2Ãi(³kl2m×1(kl)) = S1 2 S2,1 2 S2,2 + S3

where we changed the order of summation, and we have named the four terms appearing in the final sum
by S1, 2S2,1, 2S2,2 and S3 respectively. The proof is now reduced to estimating these four terms. For
S1, we use summation by parts (for the specific version we are using see Theorem A4, page 304 in [24]).

Let’s denote by Ul(t) =
∑

P/l<kft e
2Ãi(³kl2m×1(kl)), then

|S1| f
∑

lfv
|µ(l)|

∣

∣

∣

∣

∑

P/l<kfP1/l

log(k)e2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

=
∑

lfv
|µ(l)|

∣

∣

∣

∣

Ul(P1/l) log(P1/l)2
∫ P1/l

P/l
Ul(t)/tdt

∣

∣

∣

∣

f

∑

lfv
|Ul(P1/l)| log(P1/l) + sup

P/l<tfP1/l
|Ul(t)|

(

log(P1/l)2 log(P/l)
)

f

2 log(P1)
∑

lfv
sup

P/l<tfP1/l
|Ul(t)|

For every t * (P/l, P1/l], P1/l f 2P/l, we estimate the dyadic pieces of the form
∣

∣

∣

∣

∑

Y <kfY 2f2Y

e2Ãi(³jkl+m
2(×1(kl)))

∣

∣

∣

∣

. |m2|1/2lY
(

Ã1(lY )×1(lY )
)21/2

by applying Lemma 4.1 for Y = P/l, m2 = 2m, j = 1, s = 0, and Y 2 = x, to obtain

|Ul(x)| =
∣

∣

∣

∣

∑

P/l<kfx
e2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

. |m|1/2P
(

Ã1(P )×1(P )
)21/2

. |m|1/2P1

(

Ã1(P1)×1(P1)
)21/2

where we have used the fact that x(Ã(x)×1(x))
21/2 is increasing. Thus we get

|S1| . log(P1)
∑

lfv
sup

P/l<tfP1/l
|Ul(t)| . log(P1)v|m|1/2P1

(

Ã1(P1)×1(P1)
)21/2

=

|m|1/2 log(P1)P
4/3
1

(

Ã1(P1)×1(P1)
)21/2

For S2,1, the estimates follow from similar considerations. Firstly, notice that

|S2,1| =
∣

∣

∣

∣

∑

lfv

∑

P/l<kfP1/l

Πv(l)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

f
∑

lfv
|Πv(l)||Ul(P1/l)|
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and also that

|Πv(l)| =
∣

∣

∣

∣

∑

r,s*N,
rs=l

rfv, sfv

Λ(r)µ(s)

∣

∣

∣

∣

f
∑

r|l
Λ(r) = log(l) f log(P1) for l f v = P

1/3
1

Thus we get

|S2,1| f
∑

lfv
|Πv(l)||Ul(P1/l)| f log(P1)

∑

lfv
sup

P/l<tfP1/l
|Ul(t)|

and we can conclude exactly as in the case of S1.
We now focus on S2,2, and S3 which will be treated simultaneously. We will use the dyadic pieces of

the sums

|S2,2| =
∣

∣

∣

∣

∑

v<lfv2

∑

P/l<kfP1/l

Πv(l)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

.

log(v2) log(P1/v) sup
L*[v,v2 ]

sup
K*[P/v2,P1/v]

sup
L2*(L,2L]

sup
K 2*(K,2K]

∣

∣

∣

∣

∑

L<lfL2f2L

∑

K<kfK 2f2K
P<klfP1

Πv(l)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

.

(4.4) log2(P1) sup
L*[v,v2]

sup
K*[P/v2,P1/v]

sup
L2*(L,2L]

sup
K 2*(K,2K]

∣

∣

∣

∣

∑

L<lfL2f2L

∑

K<kfK 2f2K
P<klfP1

Πv(l)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

For |S3|, we have

|S3| =
∣

∣

∣

∣

∑

v<lfP1/v

∑

P/l<kfP1/l
k>v

Λ(k)Ξv(l)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

.

log2(P1/v) sup
L*[v,P1/v]

sup
K*[v,P1/v]

sup
L2*(L,2L]

sup
K 2*(K 2,2K]

∣

∣

∣

∣

∑

L<lfL2f2L

∑

K<kfK 2f2K
P<klfP1

Λ(k)Ξv(l)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

.

(4.5) log2(P1) sup
L*[v,P1/v]

sup
K*[v,P1/v]

sup
L2*(L,2L]

sup
K 2*(K 2,2K]

∣

∣

∣

∣

∑

L<lfL2f2L

∑

K<kfK 2f2K
P<klfP1

Λ(k)Ξv(l)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

On the one hand, we have
∑

L<lfL2f2L

|Πv(l)|2 f
∑

L<lf2L

log2(l) . log2(L)L

On the other hand, if we let d(n) = |{ d * N : d|n }|, we have
∑

L<lfL2f2L

|Ξv(l)|2 .
∑

1flf2L

d(l)2 . L log3(L), (see Theorem A.14, page 313 in [24])

We now use the following technical Lemma.

Lemma 4.6. Let L,K * N and m * Z \ {0}. If |m|min{L,K} f ×1(LK)Ã1(LK) and ×1(LK) f
min{L,K}4, then

∣

∣

∣

∣

∑

L<lfL2f2L

∑

K<kfK 2f2K
P<klfP1

∆1(l)∆2(k)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

.

|m|1/6 log2(L) log2(K)(Ã1(LK)×1(LK))21/6 min{L,K}1/6KL
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for every sequence of complex numbers
(

∆1(l)
)

l*(L,2L] and
(

∆2(k)
)

k*(K,2K]
having the property that

∑

L<lf2L

|∆1(l)|2 . L log3(L) and
∑

K<kf2K

|∆2(k)|2 . K log3(K)

Proof. For the proof of this result we refer to [13], Lemma 6.12, page 23. �

We wish to use the above result to estimate the dyadic pieces in 4.4 and 4.5. For any K,L * N which
make the dyadic piece nonempty, there exist natural numbers k, l such that

KL < kl f P1 and KL g kl

4
> P/4 g P1/8

and thus P1/8 f KL f P1. For S2,2, notice that

K f P1/v = P
2/3
1 and K > P/v2 g P

1/3
1 /2, and thus K *

[

P
1/3
1 /2, P

2/3
1

]

and similarly

L * [v, v2] =
[

P
1/3
1 , P

2/3
1

]

¦
[

P
1/3
1 /2, P

2/3
1

]

For S3, notice that

K,L * [v, P1/v] =
[

P
1/3
1 , P

2/3
1

]

¦
[

P
1/3
1 /2, P

2/3
1

]

Therefore, in either case, K,L *
[

P
1/3
1 /2, P

2/3
1

]

. Also, since KL f P1, we must have that min{L,K} f
P

1/2
1 and ×1(LK) f ×1(P1) f P1 f min{L,K}4, since min{L,K}4 > P

4/3
1 /16 g P1 for sufficiently large

P1. Finally, we have

|m|min{L,K} fMP
1/2
1 = P 1+Ç+·299³2/100P

1/2
1 f P

3/2+Ç+·299³2/100
1

We claim that 3/2 + Ç+ ·2 99³2/100 < ³1. To show this, considering that 0 < · f Ç/100, it suffices to
show

3/2 + 101Ç/100 2 99³2/100 2 ³1 < 0

which, in turn, is equivalent to

101Ç/49 + 99/49(1 2 ³2) + 100/49(1 2 ³1) < 1

but this is true since

101Ç/49 + 99/49(1 2 ³2) + 100/49(1 2 ³1) < 31Ç+ 17(1 2 ³2) + 16(1 2 ³1) f 1

by our assumptions. The proof of the claim is complete. Now if we let · = 2(3/2+Ç+·299³2/1002³1) > 0,
then

|m|min{L,K} f P ³12·1 . ×1(P1)Ã1(P1) . ×1(LK)Ã1(LK)

Thus we may use the Lemma 4.6 for appropriate ∆1,∆2 depending on whether we deal with S2,2 or S3 to
obtain

∣

∣

∣

∣

∑

L<lfL2f2L

∑

K<kfK 2f2K
P<klfP1

∆1(l)∆2(k)e
2Ãi(³kl2m×1(kl))

∣

∣

∣

∣

.

|m|1/6 log2(L) log2(K)(Ã1(LK)×1(LK))21/6 min{L,K}1/6KL .

|m|1/6 log4(P1)(Ã1(P1)×1(P1))
21/6P

1/12
1 P1 = |m|1/6 log4(P1)(Ã1(P1)×1(P1))

21/6P
13/12
1

And thus

|S2,2|, |S3| . |m|1/6 log6(P1)(Ã1(P1)×1(P1))
21/6P

13/12
1

This concludes the proof of Lemma 4.2. �

We are now ready to prove the Main Lemma.
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Proof of Lemma 1.10. Let a, q * Z be such that 0 f a f q 2 1 and (a, q) = 1, and let Ç > 0 be such that
16(12 ³1)+17(12 ³2)+31Ç f 1. By Lemma 2.2 in [15], we have that +×1(n)+2+×1(n)2Ë(n)+ = 1B(n),
and thus

∑

p*PB+[N ]
pca (mod q)

Ë(p)21 log(p)e(p¿) =
∑

p*P+[N ]
pca (mod q)

Ë(p)21 log(p)(+×1(p)+ 2 +×1(p)2 Ë(p)+)e(p¿) =

∑

p*P+[N ]
pca (mod q)

Ë(p)21 log(p)
(

Ë(p) + (Φ(×1(p)2 Ë(p))) 2Φ(×1(p))
)

e(p¿) =

(where Φ(x) = {x} 2 1/2 = x2 +x+ 2 1/2)
∑

p*P+[N ]
pca (mod q)

log(p)e(p¿) +
∑

p*P+[N ]
pca (mod q)

Ë(p)21 log(p)(Φ(×1(p)2 Ë(p))) 2 Φ(×1(p))e(p¿) =

∑

p*P+[N ]
pca (mod q)

log(p)e(p¿) +
∑

n*[N ]

Ë(n)21Λa,q(n)
(

Φ(×1(n)2 Ë(n))) 2 Φ(×1(n))
)

e(n¿)2

2
(

∑

n*[N ]
n=ps for some p*P,sg2

Ë(n)21Λa,q(n)
(

Φ(×1(n)2 Ë(n)) 2 Φ(×1(n))
)

e(n¿)

)

The absolute value of the third term can be bounded by
∑

1fpsfN,
p*P,sg2

Ë(ps)21 log(p) .
N

×2(N)

∑

1fpsfN,
p*P,sg2

log(p), since Ë(ps)21 . ×2
2(p

s)21 . ×2
2(N)21 .

N

×2(N)

Notice that each prime p will contribute log(p) to the sum exactly sp 2 1 times where sp is the integer
with the property psp f N < psp+1 or equivalently sp = +log(N)/ log(p)+. Thus

∑

1fpsfN,
p*P,sg2

log(p) f
∑

1fp2fN,
p*P

⌊

log(N)

log(p)

⌋

log(p) f log(N)
∑

p*P
pf

:
N

1 .
log(N)

:
N

log(
:
N)

. N1/2

where we have used the fact that |P+ [1, x]| . x(log x)21. For every ·2 > 0, there exists a positive constant
C·2 such that

(

third term

)

.
N

×2(N)
N1/2 f C·N

3/22³2+·2

For the choice ·2 = ³223/2Ç21/2, we can verify that ·2 g 16/1723/6221/2 > 0 and that 3/22³2+·2 =
12 3/2Ç, and thus we have shown

(4.7)

∑

p*P+B+[N ]
pca (mod q)

Ë(p)21 log(p)e(p¿) =
∑

p*P+[N ]
pca (mod q)

log(p)e(p¿)+

+

N
∑

n=1

Ë(n)21Λa,q(n)
(

Φ(×1(n)2 Ë(n))2 Φ(×1(n))
)

e(n¿) +O(N123/2Ç)

This concludes our first reduction. We now bound the second term in 4.7 by looking at its dyadic pieces.
To achieve this, we will use the estimates for exponential sums we have proven in the section, together
with the Fourier Expansion of the function Φ. More specifically, for M g 1, we know that

Φ(x) =
∑

0<|m|fM

1

2Ãim
e22Ãimx + gM (x)
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with gM (x) = O
(

min
{

1, 1
M ||x||

})

and min
{

1, 1
M ||x||

}

=
∑

m*Z bme
2Ãimx where |bm| . min

{ log(M)
M , 1

|m| ,
M
|m|2

}

,

see section 2 in [25]. Let P * N, P 2 * [P + 1, 2P ] and M g 1, then

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)
(

Φ(×1(k)2 Ë(k)) 2Φ(×1(k))
)

e(k¿) =

(4.8)

∑

0<|m|fM

1

2Ãim

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)
(

e2Ãi(2m×1(k)+mË(k)+k¿) 2 e2Ãi(2m×1(k))+k¿
)

+

+
∑

P<kfP 2f2P

Ë(k)21Λa,q(k)
(

gM (×1(k)2 Ë(k)) 2 gM (×1(k))
)

e(k¿)

We estimate the second term of the above sum using Lemma 4.1. We have
∣

∣

∣

∣

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)
(

gM (×1(k)2 Ë(k)) 2 gM (×1(k))
)

e(k¿)

∣

∣

∣

∣

.

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)

(

min

{

1,
1

M ||×1(k) 2 Ë(k)||

}

+min

{

1,
1

M ||×1(k)||

})

Note that
∑

P<kfP 2f2P

Ë(k)21Λa,q(k)min

{

1,
1

M ||×1(k)2 Ë(k)||

}

.
log(P )

×2
2(P )

∑

P<kfP 2f2P

∑

m*Z
bme

2Ãim(×1(k)2Ë(k))

Using the estimate |bm| . M/|m|2, we conclude that the function is summable and by Fubini-Tonelli we
have

∣

∣

∣

∣

∑

P<kfP 2f2P

∑

m*Z
bme

2Ãim(×1(k)2Ë(k))
∣

∣

∣

∣

f
∑

m*Z
|bm|

∣

∣

∣

∣

∑

P<kfP 2f2P

e2Ãim(×1(k)2Ë(k))
∣

∣

∣

∣

=

|b0|P +
∑

0<|m|fM
|bm|

∣

∣

∣

∣

∑

P<kfP 2f2P

e2Ãim(×1(k)2Ë(k))
∣

∣

∣

∣

+
∑

|m|>M
|bm|

∣

∣

∣

∣

∑

P<kfP 2f2P

e2Ãim(×1(k)2Ë(k))
∣

∣

∣

∣

.

log(M)P

M
+

∑

0<|m|fM

log(M)

M
|m|1/2P (Ã1(P )×1(P ))

21/2 +
∑

|m|>M

M

|m|2 |m|1/2P (Ã1(P )×1(P ))
21/2 .

log(M)P

M
+ log(M)M1/2P (Ã1(P )×1(P ))

21/2 +M1/2P (Ã1(P )×1(P ))
21/2 .

log(M)P

M
+ log(M)M1/2P (Ã1(P )×1(P ))

21/2

where the estimates are justified by Lemma 4.1 for j = 0, l = 1 and s = 1, together with the estimates for
|bm|. Thus

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)min

{

1,
1

M ||×1(k)2 Ë(k)||

}

.

log(P )

×2
2(P )

( log(M)P

M
+ log(M)M1/2P (Ã1(P )×1(P ))

21/2
)

With similar considerations (and by applying Lemma 4.1 for s = 0), one obtains

∑

P<kfP 2f2P

Ë(k)21Λb,m(k)min

{

1,
1

M ||×1(k)||

}

.
log(P )

×2
2(P )

(

log(M)P

M
+ log(M)M1/2P (Ã1(P )×1(P ))

21/2

)

and thus
∑

P<kfP 2f2P

Ë(k)21Λa,q(k)

(

min

{

1,
1

M ||×1(k) 2 Ë(k)||

}

+min

{

1,
1

M ||×1(k)||

})

.
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log(P )

×2
2(P )

(

log(M)P

M
+ log(M)M1/2P (Ã1(P )×1(P ))

21/2

)

Let’s fix a number · such that 0 < · < Ç/100 and let M = P 1299³2/100+Ç+·. Then for all ·2 > 0, we have
that

log(P )

×2
2(P )

(

log(M)P

M
+ log(M)M1/2P (Ã1(P )×1(P ))

21/2

)

.

log2(P )
P 99³2/1002Ç2·

×2
2(P )

+ log2(P )
P 3/2299³2/200+Ç/2+·/2

×2
2(P )(Ã1(P )×1(P ))1/2

.·2

log2(P )

(

P 99³2/1002Ç2·2³2+1+·2 + P 5/22³22³1/2299³2/200+Ç/2+·/2+3·2/2

)

since ×2
2(x) & x³2212·2/2 and Ã21

1 (x) .· x
· for all · > 0. It suffices to show that there exists a positive

number ·2 such that

2³2/100 2 Ç2 ·+ 1 + ·2 < 12 Ç2 ·

and

5/2 2 299³2/200 2 ³1/2 + Ç/2 + ·/2 + 3·2/2 < 12 Ç2 ·

in order to conclude that

(4.9)

∣

∣

∣

∣

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)
(

gM (×1(k) 2 Ë(k)) 2 gM (×1(k))
)

e(k¿)

∣

∣

∣

∣

= O(P 12Ç2·)

The first inequality is equivalent to ·2 < ³2/100. Remembering that · < Ç/100, for the second inequality
to be true, it suffices to have

3/22 299³2/200 2 ³1/2 + 303Ç/200 + 3/2·2 < 0

or equivalently

·2 < 99/300

(

12 299/99(1 2 ³2)2 100/99(1 2 ³1)2 303Ç/99

)

We have that

299/99(1 2 ³2) + 100/99(1 2 ³1) + 303Ç/99 < 17(1 2 ³2) + 16(1 2 ³1) + 31Ç f 1

Thus, we may choose ·2 = min

{

³2/200, 99/600

(

1 2 299/99(1 2 ³2) 2 100/99(1 2 ³1) 2 303Ç/99

)}

> 0

and both inequalities are satisfied. Now notice that from 4.7 together with 4.8 and 4.9, we get
∣

∣

∣

∣

∑

p*P+B+[N ]
pca (mod q)

Ë(p)21 log(p)e(p¿)2
∑

p*P+[N ]
pca (mod q)

log(p)e(p¿)

∣

∣

∣

∣

=

∣

∣

∣

∣

N
∑

n=1

Ë(n)21Λa,q(n)
(

Φ(×1(n)2 Ë(n))2 Φ(×1(n))
)

e(n¿)

∣

∣

∣

∣

+O(N123/2Ç) .

log(N) sup
1fPfN

∣

∣

∣

∣

∑

P<nfP 2f2P

Ë(n)21Λa,q(n)
(

Φ(×1(n)2 Ë(n)) 2 Φ(×1(n))
)

e(n¿)

∣

∣

∣

∣

+N123/2Ç .

log(N) sup
1fPfN

∣

∣

∣

∣

∑

0<|m|fM

1

2Ãim

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)
(

e2Ãi(2m×1(k)+mË(k)+k¿) 2 e2Ãi(2m×1(k))+k¿
)

∣

∣

∣

∣

+

log(N)N12Ç2·
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We will use summation by parts, let

vm(k) = Λa,q(k)e
2Ãi(k¿2m×1(k)), Vm(x) =

∑

P<kfx
vm(k), dm(t) = Ë21(t)(e2ÃimË(t) 2 1)

We obtain
∣

∣

∣

∣

∑

P<kfP 2f2P

Ë(k)21Λa,q(k)
(

e2Ãi(2m×1(k)+mË(k)+k¿) 2 e2Ãi(2m×1(k))+k¿
)

∣

∣

∣

∣

=

∣

∣

∣

∣

∑

P<kfP 2f2P

vm(k)dm(k)

∣

∣

∣

∣

=

∣

∣

∣

∣

Vm(P
2)dm(P

2) +
∫ P 2

P
Vm(t)d

2
m(t)dt

∣

∣

∣

∣

f |Vm(P 2)dm(P
2)|+

∫ P 2

P
|Vm(t)d2m(t)|dt

We have
|dm(t)| f |Ë21(t)2ÃmË(t)| . |m|

and

|d2m(t)| f |Ë2(t)/Ë2(t)(e2ÃimË(t) 2 1)|+ |Ë21(t)2ÃmË2(t)e2ÃimË(t) | .
∣

∣

∣

∣

Ë2(t)
Ë(t)

∣

∣

∣

∣

|m| .
∣

∣

∣

∣

×22
2(t)

×2
2(t)

∣

∣

∣

∣

|m| . |m|
t

We can now estimate

|Vm(P 2)dm(P
2)|+

∫ P 2

P
|Vm(t)d2m(t)|dt . |m||Vm(P 2)|+

∫ P 2

P
sup

P<tf2P
|Vm(t)m|/tdt . |m| sup

P<tf2P
|Vm(t)|

and thus
∣

∣

∣

∣

∑

p*P+B+[N ]
pcb (mod m)

Ë(p)21 log(p)e(p¿)2
∑

p*P+[N ]
pcb (mod m)

log(p)e(p¿)

∣

∣

∣

∣

.

log(N) sup
1fPfN

∑

0<|m|fM

1

2Ã|m| |m| sup
P<tf2P

|Vm(t)|+ log(N)N12Ç2· .

(4.10) log(N) sup
1fPfN

∑

0<|m|fM
sup

P<P1f2P
|Vm(P1)|+ log(N)N12Ç2·

This is the final reduction, making the estimate of Lemma 4.2, the only missing element in our proof.
Notice that since we have chosen M = P 1+Ç+·299³2/100 where Ç > 0, 0 < · < Ç/100 and 16(1 2 ³1) +
17(1 2 ³2) + 31Ç f 1, Lemma 4.2 is directly applicable, and we get

|Vm(P1)| =
∣

∣

∣

∣

∑

P<kfP1f2P

Λa,q(k)e
2Ãi(k¿2m×1(k))

∣

∣

∣

∣

.

|m|1/2 log(P1)P
4/3
1

(

Ã1(P1)×1(P1)
)21/2

+ |m|1/6 log6(P1)P
13/12
1 (Ã1(P1)×1(P1))

21/6

and thus for any number ·3 > 0, we have
∑

0<|m|fM
sup

P<P1f2P
|Vm(P1)| .

∑

0<|m|fM
|m|1/2 log(P1)P

4/3
1

(

Ã1(P1)×1(P1)
)21/2

+

∑

0<|m|fM
|m|1/6 log6(P1)P

13/12
1 (Ã1(P1)×1(P1))

21/6 .

M3/2 log(P )P 4/3
(

Ã1(P )×1(P )
)21/2

+M7/6 log6(P )P 13/12(Ã1(P )×1(P ))
21/6 .

P 3/2+3Ç/2+3·/22297³2/200+4/3 log(P )×1(P )
21/2Ã1(P )

21/2

+P 7/6+7Ç/6+7·/62693³2/600+13/12 log6(P )×1(P )
21/6Ã1(P )

21/6 .·3

P 3/2+3Ç/2+3·/22297³2/200+4/32³1/2+·3

+P 7/6+7/6Ç+7·/62693³2/600+13/122³1/6+·3
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since ×1(x) &·3 x
³12·3 , Ã21/2

1 (x) .·3 x
·3/4 and log6(x) .·3 x

·3/12, and thus

×
21/2
1 (x) log(x)Ã

21/2
1 (x) .·3 x

2³1/2+·3/2+·3/12+·3/4 .·3 x
2³1/2+·3

×
21/6
1 (x) log6(x)Ã

21/6
1 (x) .·3 x

2³1/6+·3/6+·3/12+·3/12 .·3 x
2³1/6+·3

It suffices to show that there exists a positive number ·3 such that

3/2 + 3Ç/2 + 3·/2 2 297³2/200 + 4/32 ³1/2 + ·3 < 12 Ç2 ·

and

7/6 + 7Ç/6 + 7·/6 2 693³2/600 + 13/12 2 ³1/6 + ·3 < 12 Ç2 ·

in order to conclude that
∑

0<|m|fM
sup

P<P1f2P
|Vm(P1)| . P 12Ç2·

Remembering that · < Ç/100, for the first inequality, it suffices to show that there exists an ·3 > 0 such
that

11/6 + 5Ç/2 + 5Ç/200 2 297³2/200 2 ³1/2 + ·3 < 0

which is equivalent to

891/91(1 2 ³2) + 300/91(1 2 ³1) + 1515Ç/91 + 600·3/91 < 1

and notice that

891/91(1 2 ³2) + 300/91(1 2 ³1) + (1515/91)Ç < 17(1 2 ³2) + 16(1 2 ³1) + 31Ç f 1

Thus for sufficiently small ·3 the first inequality is satisfied. For the second inequality, in a similar fashion,
it suffices to find a ·3 > 0 such that

5/4 + 1313Ç/600 2 693³2/600 2 ³1/6 + ·3 < 0

or equivalently

693/43(1 2 ³2) + 100/43(1 2 ³1) + 1313Ç/43 + 600·3/43 < 1

and notice that

693/43(1 2 ³2) + 100/43(1 2 ³1) + (1313/43)Ç < 17(1 2 ³2) + 16(1 2 ³1) + 31Ç f 1

Thus for sufficiently small ·3 the second inequality is also satisfied. Therefore, we have that
∑

0<|m|fM
sup

P<P1f2P
|Vm(P1)| . P 12Ç2·

Thus, by 4.10, we get
∣

∣

∣

∣

∑

p*P+B+[N ]
pcb (mod m)

Ë(p)21 log(p)e(p¿)2
∑

p*P+[N ]
pcb (mod m)

log(p)e(p¿)

∣

∣

∣

∣

.

log(N) sup
1fPfN

P 12Ç2· + log(N)N12Ç2· = log(N)N12Ç2· . N12Ç2·/2

Let’s choose Ç2 to be ·/2, we have shown that
∑

p*P+B+[N ]
pcb (mod m)

Ë(p)21 log(p)e(p¿) 2
∑

p*P+[N ]
pcb (mod m)

log(p)e(p¿) = O(N12Ç2Ç2

)

which is the desired result. The proof of Lemma 1.10 is complete. �
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