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Abstract

We establish weak-type (1, 1) bounds for the maximal function associated with ergodic

averaging operators modeled on a wide class of thin deterministic sets B. As a corol-

lary we obtain the corresponding pointwise convergence result on L1. This contributes

yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991

asserting the failure of pointwise convergence on L1 of ergodic averages along arith-

metic sets with zero Banach density. The second main result is a multiparameter

pointwise ergodic theorem in the spirit of Dunford and Zygmund along B on L p,

p > 1, which is derived by establishing uniform oscillation estimates and certain

vector-valued maximal estimates.

1 Introduction

The work presented in this paper has two parts. The first part is a one-parameter

pointwise ergodic theorem on L1, which contributes another counterexample for a cel-

ebrated conjecture of Rosenblatt and Wierdl, and the second part is a multi-parameter

pointwise result in the spirit of Dunford and Zygmund, see for example 1.11. Before

precisely stating our results, some historical remarks are in order.

1.1 Brief Historical Remarks

In 1991 Rosenblatt and Wierdl [25, Conjecture 4.1] formulated a famous conjec-

ture asserting that for any arithmetical set A with zero Banach density and for

any (X ,B, μ, T ) aperiodic probability dynamical system, there exists a function

f ∈ L1
μ(X), such that
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MA,N f =
1

|A ∩ [1, N ]|

∑

n∈A∩[1,N ]

f ◦ T n does not converge almost everywhere,

i.e. the set of x ∈ X such that limN→∞ MA,N f (x) does not exist has positive measure.

This was disproven in 2006 by Buczolich [5], where he provided a counterexample by

constructing inductively an appropriate set A of zero Banach density for which one

gets the pointwise convergence of the ergodic averages MA,N f for all f ∈ L1.

Calderón’s transference principle suggests that such questions are closely related

to the study of weak type (1, 1) estimates for the maximal function corresponding to

those averages over the integer shift system, namely for the operator

MA f (x) = sup
N∈N

1

|A ∩ [1, N ]|

∑

n∈A∩[1,N ]

| f (x − n)|.

A year later it was shown [26] that for A =
{
�nc� : n ∈ N

}
with c ∈

(
1, 1001

1000

)
, the

operator MA is of weak type (1, 1), and as a corollary the authors proved pointwise

convergence on L1 for the corresponding ergodic averages along the set A, providing

a counterexample of the aforementioned conjecture given by a concrete formula. This

class of examples was extended in [20] where the author established the weak type

(1,1) bounds for MA and the corresponding pointwise ergodic theorem on L1 for sets

of the form
{
�nc�(n)� : n ∈ N

}
, where c is close to 1 and � is a certain kind of

slowly varying function, for example any iterate of log, see Definitions 1.1,1.2 below.

Finally, another class of examples appeared in [7], where for any r ∈ Q ∩ (1,∞),

certain sequences {an}n∈N of algebraic nature were constructed such that an 	 nr and

such that the associated maximal operator is of weak type (1, 1). Comparing this with

the failure of the estimate for A = {nk : n ∈ N} for any k ≥ 2, see [6] and [18], one

sees that determining whether the weak type (1, 1) bound holds for MA is a delicate

problem which is rather sensitive to perturbations of the sequence. For example, even

the case correspoding to A = {�n log n� : n ∈ N} remains open.

One of the main results of the present work is a natural extension of the result from

[20] and in order to formulate it, we must introduce two families of functions that one

may think of as slowly varying and regularly varying functions respectively.

Definition 1.1 Fix x0 ≥ 1 and let L denote the set of all functions � : [x0,∞) →

[1,∞) such that

�(x) = exp

(∫ x

x0

ϑ(t)

t
dt

)

where ϑ ∈ C2([x0,∞)) is a real-valued function satisfying

ϑ(x) → 0 , xϑ ′(x) → 0 , x2ϑ ′′(x) → 0 as x → ∞.
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Definition 1.2 Fix x0 ≥ 1 and let L0 denote the set of all functions � : [x0,∞) →

[1,∞) such that

�(x) = exp

(∫ x

x0

ϑ(t)

t
dt

)

where ϑ ∈ C2([x0,∞)) is a positive and decreasing function satisfying

ϑ(x) → 0 ,
xϑ ′(x)

ϑ(x)
→ 0 ,

x2ϑ ′′(x)

ϑ(x)
→ 0 as x → ∞,

and such that for all ε > 0 we have ϑ(x) �ε x−ε and limx→∞ �(x) = ∞.

We note that L0 ⊆ L and we give some examples of these slowly varying functions.

For a > 0, b ∈ (0, 1), k ∈ N and c ∈ R, we have

loga x ∈ L0, ea logb x ∈ L0, log ◦ · · · ◦ log x︸ ︷︷ ︸
k times

∈ L0, logc x ∈ L, ec logb x ∈ L.

We proceed by defining a family of regularly varying functions.

Definition 1.3 Fix x0 ≥ 1, c ∈ (1,∞) and let Rc be the set of all functions

h : [x0,∞) → [1,∞) such that h is strictly increasing, convex and of the form

h(x) = xc�(x) for some � ∈ L. We define R1 analogously with the extra assumption

that � ∈ L0.

We are now ready to give the definitions of the arithmetic sets we are interested in.

Let c1, c2 ∈ [1, 2) and let us fix h1 and h2 in Rc1 and Rc2 respectively. Let ϕ1 and

ϕ2 be the compositional inverses of h1 and h2 and for convenience, let γ1 = 1/c1 and

γ2 = 1/c2. Fix a function ψ : [1,∞) → (0, 1/2], ψ ∈ C2([1,∞)) such that

ψ(x) ∼ ϕ′
2(x), ψ ′(x) ∼ ϕ′′

2 (x), ψ ′′(x) ∼ ϕ′′′
2 (x) as x → ∞.

We can now define B+ = { n ∈ N : {ϕ1(n)} < ψ(n) } and B− = { n ∈ N :

{−ϕ1(n)} < ψ(n) }, where {x} = x − �x�.

Those sets have been introduced and studied in [17], where the authors proved that

the Hardy-Littlewood majorant property holds for them, as a corollary of a restriction

theorem. Recently, the author [9] proved an analogous result for P ∩ B±, see The-

orem 1.8 in [9], as well as Roth’s theorem in these sets, namely, it was shown that

any subset of the primes of the form B± with positive relative upper density contains

infinitely many non-trivial three-term arithmetic progressions.

Following [9] we repeat and extend some comments on the sophisticated nature of

the sets B±. To motivate the definition of B±, we note that

n ∈ B− ⇐⇒ ∃m ∈ N : 0 ≤ m − ϕ1(n) < ψ(n)

⇐⇒ ∃m ∈ N : ϕ1(n) ≤ m < ϕ1(n) + ψ(n) ⇐⇒
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∃m ∈ N : n ≤ h1(m) < h1(ϕ1(n) + ψ(n))

⇐⇒ ∃m ∈ N : h1(m) ∈ [n, h1(ϕ1(n) + ψ(n))).

For γ ∈ (0, 1), h1(x) = h2(x) = x1/γ and ψ(x) = ϕ1(x+1)−ϕ1(x), note that the last

condition becomes m1/γ ∈ [n, n + 1) or n = �m1/γ �, thus B− = { �m1/γ � : m ∈ N }.

It is not difficult to see that any set

Nh := { �h(m)� : m ∈ N }, h ∈ Rc (1.4)

can also be brought in the form B− by similar appropriate choices. Thus the family of

sets we consider includes the fractional powers with exponent close to 1 and even the

more general sets considered in [20].

1.2 One-Parameter Ergodic Theorem on L1

We state one of the main results of our paper. Due to some technical complications,

we demand further that ϕ1 	 ϕ2, and note that this implies that c1 = c2.

Theorem 1.5 (Weak-type (1,1) inequality for MB± ) Assume c1 ∈ (1, 30/29) and

ϕ1 	 ϕ2. Then the maximal function

MB± f (x) = sup
N∈N

1

|B± ∩ [1, N ]|

∑

n∈B±∩[1,N ]

| f (x − n)|

is of weak-type (1,1), i.e.:

|{x ∈ Z : |MB± f (x)| > λ}| ≤ Cλ−1‖ f ‖�1(Z).

By interpolation, this implies that for all p ∈ (1,∞], there exists a constant C p > 0

such that

‖MB± f ‖�p(Z) ≤ C p‖ f ‖�p(Z).

We use this, together with 2-oscillation estimates, see Theorem 1.12, to obtain the

following pointwise convergence result.

Theorem 1.6 (Pointwise ergodic theorem) Assume c ∈ (1, 30/29), ϕ1 	 ϕ2 and let

(X ,B, μ, T ) be an invertible σ -finite measure preserving system. For any p ∈ [1,∞)

and any f ∈ L
p
μ(X), we have that

MB±,N f (x) =
1

|B± ∩ [1, N ]|

∑

n∈B±∩[1,N ]

f (T n x) converges μ-a.e. on X .

Before discussing the strategy of our proofs, we would like to further examine the sets

B± and give some concrete examples. Note that
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n ∈ B+ ⇐⇒ ∃m ∈ N : 0 ≤ ϕ1(n) − m < ψ(n)

⇐⇒ ∃m ∈ N : m ∈ (ϕ1(n) − ψ(n), ϕ1(n)].

Now assume that n ∈ B+, and m ∈ N is such that m ∈ (ϕ1(n) − ψ(n), ϕ1(n)] and

assume that n0 is the smallest integer such that m ∈ (ϕ1(n0)−ψ(n0), ϕ1(n0)]. Even in

simple examples, we should expect that B+ will contain a lot of consecutive integers

after n0. For example, for any ϕ1 inverse of a function in Rc, let ϕ2 = C100ϕ1, where

C is the doubling constant of ϕ′
1, namely, ϕ′

1(x) ≤ Cϕ′(2x), and let ψ = ϕ′
2. Since ϕ1

is increasing and ψ = ϕ′
2 is decreasing, we get that ϕ1 −ψ is increasing and thus since

m /∈ (ϕ1(n0 −1)−ψ(n0 −1), ϕ1(n0 −1)], we get that m > ϕ1(n0 −1). We claim that

for all l ∈ {0, · · · , 99}, we get that m ∈ (ϕ1(n0 + l) − ψ(n0 + l), ϕ1(n0 + l)], which

implies that B+ contains 99 consecutive integers after n0. Clearly, m ≤ ϕ1(n0 + l) for

all l ∈ N0. If we assume for the sake of a contradiction that for some l ∈ {0, . . . , 99}

we have that m < ϕ1(n0 + l) − ψ1(n0 + l), then

ϕ1(n0 − 1) < ϕ1(n0 + l) − ψ(n0 + l)

and by the Mean Value Theorem, there exists a ξn0,l ∈ (n0 − 1, n0 + l) such that

C100ϕ′
1(n0 + l)

l + 1
<

ϕ1(n0 + l) − ϕ1(n0 − 1)

l + 1

= ϕ′
1(ξn0,l) ≤ ϕ′

1(n0 − 1) ≤ Cϕ′
1(2n0 − 2)

≤ Cϕ′
1(n0 + l).

Thus

100 < l + 1 which is a contradiction.

This shows that the set B+ considered here contains infinitely many full blocks of 100

consecutive integers. Such a set B+ stands in sharp contrast to the sets of the form

Nh = { �h(m)� : m ∈ N }, h ∈ Rc, as the gaps between members of such sets tend to

infinity.

In general, the constant supx∈[1,∞)
ϕ′

2(x)

ϕ′
1(x)

determines an important qualitative aspect

of the form of the sets B±, see Lemma 2.4. Loosely speaking, for big intervals of

integers where the ratio is bigger than L , we expect that B± will contain blocks of

length at least L/C , where C is the doubling constant of ϕ′
1. The technical issues

that arose when trying to handle the case where B± contains arbitrarily long intervals

of integers (specifically in the counting Lemma 5.1) forced the author to impose the

restriction ϕ′
1 	 ϕ′

2, which is equivalent to ϕ1 	 ϕ2. We note that
ϕ′

2(x)

ϕ′
1(x)

could oscillate

and thus B± could contain blocks of various oscillating lengths.

We give certain explicit examples to enhance and extend the heuristics described

above as well as to illustrate the reach of the main theorems of the present work. We

begin by considering the sets Nc = {�mc� : m ∈ N}, and by observing that

n ∈ Nc ⇐⇒ ∃m ∈ N : n ≤ mc < n + 1, (1.7)
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which means that n ∈ Nc if and only if the interval [n, n + 1) “contains a c-power”.

Introducing the sets B± allows us to consider intervals of various lengths.

Intervals of fixed length Let c > 1, γ = 1/c. With the choices

ϕ1(x) = xγ , ϕ2(x) =
1

100
xγ , ψ(x) =

(
x +

1

100

)γ

− xγ ,

we get

n ∈ B− ⇐⇒ ∃m ∈ N : mc ∈
[
n, n +

1

100

)
,

or equivalently B− = N ∩
{

�100mc�
100

: m ∈ N

}
.

The previous example is readily generalizable. Let c > 1, γ = 1/c and fix A > 0,

B ≥ 0 and C ∈ N, and let

ϕ1(x) =

(
Cx

A
−

B

A

)γ

, ϕ2(x) =
Cγ−1

Aγ
xγ ,

ψ(x) =

(
Cx

A
+

1 − B

A

)γ

−

(
Cx

A
−

B

A

)γ

.

Then

n ∈ B− ⇐⇒ ∃m ∈ N :
Cn

A
−

B

A
≤ mc <

Cn

A
+

1 − B

A
⇐⇒

∃m ∈ N : Cn ≤ Amc + B < Cn + 1 ⇐⇒ ∃m ∈ N : n =
�Amc + B�

C
,

and thus

B− = N ∩

{
�Amc + B�

C
: m ∈ N

}
.

Similarly, appropriate choices of parameters give B− the following form

B− = {n ∈ N : ∃m ∈ N with mc ∈ [n + α1, n + α2)}

with 0 < α1 < α2and c > 1. (1.8)

For α2 − α1 ≥ 2, we have that B− is a union of intervals of length at least α2 −

α1 − 1 “around c-powers”, see also the proof of Lemma 2.4. This set highlights the

aforementioned qualitative difference of B± with any Nh for h ∈ Rc considered in

[20], namely, the sets B± can contain consecutive integers.

Intervals of oscillating lengths For certain choices of parameters one produces a set

B− which is comprised of intervals of oscillating lengths around c-powers. Let c > 1,

γ = 1/c and

ϕ1(x) = xγ , ϕ2(x) = xγ (99 sin(log log x) + 100),
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ψ(x) = (x + 99 sin(log log x) + 100)γ − xγ .

Then n ∈ B− ⇐⇒ n ≤ mc < n + 99 sin(log log n) + 100, and thus

B− = {n ∈ N : ∃m ∈ N with mc ∈ [n, n + 99 sin(log log n) + 100)}.

We believe that the examples illustrate the flexibility in the choices of parameters

defining B± and consequently the reach of Theorem 1.6.

Let us remark that the examples given are readily generalizable, for example, mc

can be replaced by h1(m) with h1 ∈ Rc1 . Routine but lengthy calculations show that

all the choices we made for our parameters are compatible with the conditions in the

definition of the set B±, as well as the technical assumption ϕ1 	 ϕ2, except possibly

for small values of x , which is insignificant since only the tail of the set B± plays a

role in our results.

Let us restrict our attention to the sets B+, which we call B from now on, as the

results for B− are of equal difficulty. We make the following remarks.

Remark 1.9 (Smooth dyadic maximal operator) To establish Theorem 1.5, it is conve-

nient to work with a smooth dyadic variant of the maximal operator. More precisely,

let us fix η ∈ C∞(R) such that 0 ≤ η(x) ≤ 1 for all x ∈ R, supp(η) ⊆ (1/2, 4) and

η(x) = 1 for all x ∈ [1, 2]. We define

M
(sd)
B f (x) = sup

k∈N0

{
1

ϕ2(2k)

∑

n∈B

| f (x − n)|η
( n

2k

)}

and note that

MB f (x) � sup
k∈N0

{
1

|B ∩ [2k, 2k+1)|

∑

n∈B∩[2k ,2k+1)

| f (x − n)|

}
� M

(sd)
B f (x).

The first inequality is straightforward, and for the second one, note that Lemma 2.1

implies that

|B ∩ [1, N ]| 	 |B ∩ [N/2, N )| 	 ϕ2(N ) for sufficiently large N .

Thus it suffices to establish the weak type (1,1) bound for M
(sd)
B which we denote by

M, and let

KN (x) =
1

ϕ2(N )

∑

n∈B

δn(x)η
( n

N

)
,

so that M f (x) = supk∈N0
{K2k ∗ | f |(x)}.

We give a brief overview of the main ideas of the proof of Theorem 1.5. We use

a subtle variation of the Calderón-Zygmund decomposition that was introduced by

Fefferman [11], see also [8], in a similar manner to [26] and [20]. More specifically,
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after approximating Kn ∗ K̃n by suitable well-behaving functions, see Lemma 5.2,

we employ a refined Calderón-Zygmund decomposition which allows us to use �2-

estimates for the “very bad” part of the decomposition, see subsection 5.2. The

aforementioned approximation is analogous to the one presented in section 5 of [20]

and similar techniques are used here. The novelty lies in the sophisticated nature

of the sets B which complicates the situation substancially. For example, bounding

|Kn ∗ K̃n(x)| for small values of x , see Lemma 5.1, is precisely what forced the author

to impose the extra assumption ϕ1 	 ϕ2. To carry out the approximation one needs

to estimate certain exponential sums and the main tool is Van der Corput’s inequality.

Some of the necessary exponential sum estimates can be readily found in section 3

of [20] and suitable extensions are already established by the author in [9]. Finally,

we formulate an abstract result, see Theorem 5.5, which is a generalization of Theo-

rem 6.1 of [20], adapted to our approximation for Kn ∗ K̃n . We give the full proof of

Theorem 1.5 in Sect. 5 and the reader is encouraged to compare it with section 3 of

[26], and section 5 and 6 of [20].

Combining Theorem 1.5 with the trivial estimate ‖MB‖�∞(Z)→�∞(Z) � 1, we

obtain by interpolation that ‖MB‖�p(Z)→�p(Z) �p 1, for all p ∈ (1,∞]. Calderón’s

transference principle implies that for any invertible σ -finite measure preserving

system (X ,B, μ, T ) we have

∥∥ sup
N∈N

MB,N f
∥∥

L
p
μ(X)

�p ‖ f ‖L
p
μ(X) for p ∈ (1,∞), and

μ(
{

x ∈ X : | sup
N∈N

MB,N f (x)| > λ
}
) �

‖ f ‖L1
μ(X)

λ
,

and a standard argument shows that L
p
B =

{
f ∈ L

p
μ(X) :

limN→∞ MB,N f exists μ-a.e.
}

is closed in L
p
μ(X), for all p ∈ [1,∞), and thus

to establish Theorem 1.6 it suffices to exhibit an L
p
μ-dense class of functions Dp

contained in L
p
B . The exponential sum estimates of Lemma 2.1 together with a

straightforward adaptation of the argument presented in section 3 of [20], which uses

ideas from [4], shows that one may take Dp = L
p
μ(X)∩ L2

μ(X) and conclude. Instead

of this, we derive the pointwise convergence immediately by the much stronger uni-

form 2-oscillation L
p
μ-estimates of Theorem 1.12, which are also exploited in the

sequel.

1.3 Multi-Parameter Ergodic Theorem

The second main result of our paper is a multi-parameter variant of Theorem 1.6. Here

we discard the assumption ϕ1 	 ϕ2 and the acceptable range of c1 and c2 is consid-

erably larger. In contrast to the one-parameter situation, weak-type (1, 1) estimates

do not hold here, which is comparable with the failure of Lebesgue’s differentiation

theorem for rectangles with sides parallel to the axes on L1.

To make the exposition slightly cleaner, let us fix k ∈ N and B1, . . . , Bk as in the

introduction, where (h1,i , h2,i ) ∈ Rc1,i
× Rc2,i

are as in the definition of Bi , and we
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assume that c1,i ∈ [1, 2) and c2,i ∈ [1, 6/5) for all i ∈ [k]. We are ready to state the

second main result.

Theorem 1.10 Assume (X ,B, μ) is a σ -finite measure space and {Si : i ∈ [k]} is a

family of invertible μ-invariant commuting transformations. Then for any p ∈ (1,∞)

and any f ∈ L
p
μ(X) we have that

lim
min{N1,...,Nk }→∞

1
∏k

i=1 |Bi ∩ [1, Ni ]|

∑

l∈
∏k

i=1 Bi ∩[1,Ni ]

f ◦ S(l)(x) exists for μ-a.e. x ∈ X ,

where S(l1,...,lk ) = S
l1
1 ◦ · · · ◦ S

lk
k .

Apart from the larger range of exponents, the absence of the condition ϕ1 	 ϕ2

allows us to consider a variety of additional sets here. We provide some examples.

Shrinking intervals The fact that we can choose c1 < c2 allows us to consider

shrinking intervals. Let 1 < c1 < c2, γ1 = 1/c1 and γ2 = 1/c2, and let

ϕ1(x) = xγ1 , ϕ2(x) =
γ1xγ2

γ2
,

ψ(x) =
(
x + xγ2−γ1

)γ1 − xγ1 .

Then

n ∈ B− ⇐⇒ ∃m ∈ N : n ≤ mc1 < n + nγ2−γ1

⇐⇒ ∃m ∈ N : mc1 ∈
[
n, n + nγ2−γ1

)
,

which gives B− the following form,

B− =
{
n ∈ N : ∃m ∈ N with mc ∈

[
n, n + n−θ

)}
,

for c > 1, θ > 0 and close to 1 and 0 respectively, which in turn, means that we only

consider integers that “approach c-powers” rapidly.

Expanding intervals Analogously, with appropriate choices with c1 > c2, we get

B− =
{
n ∈ N : ∃m ∈ N with mc ∈

[
n, n + nθ

)}
,

for c > 1, θ > 0 and close to 1 and 0 respectively, which is a union of intervals of

expanding lengths, and again, such sets are not of the form Nh . For an example of

expanding intervals when c1 = c2, let c > 1, γ = 1/c and let

ϕ1(x) = xγ , ϕ2(x) = xγ (2 log x), ψ(x) = (x + 2 log x)γ − xγ .

Note that then

B− =
{
n ∈ N : ∃m ∈ N with mc ∈

[
n, n + 2 log n

)}
.
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We make some brief historical remarks. In 1951 Dunford [10] and Zygmund [28]

independently showed that given a σ -finite measure space (X ,B, μ) and a family of

μ-invariant transformations {Ti : i ∈ [k]}, for any p ∈ (1,∞) and any f ∈ L
p
μ(X),

we have

1

N1 · · · Nk

∑

l∈
∏k

i=1[1,Ni ]

f (T
l1
1 · · · T

lk
k x) converges μ-a.e. on X

and in L p norm as min{N1, . . . , Nk} → ∞.

Notably, for k ≥ 2, pointwise convergence fails on L1. Motivated by that observation

and after his seminal work on pointwise ergodic theory [2–4], Bourgain showed that

for any p ∈ (1,∞) and any f ∈ L
p
μ(X), we have

1

N1 · · · Nk

∑

l∈
∏k

i=1[1,Ni ]

f
(

T
P1(l1)

1 · · · T
Pk (lk )

k x
)

converges μ-a.e. on X

as min{N1, . . . , Nk} → ∞,

where P1, . . . , Pk ∈ Z[x], P1(0) = · · · = Pk(0) = 0 and {Ti : i ∈ [k]} is a family

of commuting and invertible μ-invariant transformations. In contrast to Dunford and

Zygmund’s result, the commutativity assumption turns out to be indispensable for the

polynomial case. For a more thorough exposition on the matter we refer the reader to

Section 1.2 in [23] as well as the introduction from [1], see page 3. In the spirit of the

above, Theorem 1.10 establishes the multi-parameter result for orbits along sets of the

form B. For example, for appropriate choices of parameters, Theorem 1.10 implies

that for any p ∈ (1,∞) and any f ∈ L
p
μ(X), we have

1

N1 · · · Nk

∑

l∈
∏k

i=1[1,Ni ]

f
(

T
�l

c1
1 �

1 · · · T
�l

ck
k �

k x
)

converges μ-a.e. on X

as min{N1, . . . , Nk} → ∞, (1.11)

where c1, . . . , ck ∈ (1, 6/5) and {Ti : i ∈ [k]} is a family of commuting and invertible

μ-invariant transformations. To the best of the author’s knowledge, this is the first

time multi-parameter pointwise convergence is established for orbits along fractional

powers in the spirit of Dunford and Zygmund.

Using an abstract multi-parameter oscillation result from [23], we reduce the task of

proving the above theorem to establishing some useful quantitative uniform estimates,

which may be of independent interest.

Before precisely formulating these estimates, we note that for any Y ⊆ X ⊆ R,

with |X | > 2, we have that

SJ (X) = {{I0 < · · · < IJ } ⊆ X} and O2
I ,J (at (x) : t ∈ Y )

=
( J−1∑

j=0

sup
t∈[I j ,I j+1)∩Y

|at (x) − aI j
(x)|2

)1/2
.
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For the basic properties of oscillations as well as the definition of multi-parameter

oscillations we refer the reader to section 2 from [23].

Theorem 1.12 (Uniform 2-oscillation and vector-valued maximal estimates) Assume

c1 ∈ [1, 2), c2 ∈ [1, 6/5) and B as in the introduction. Assume (X ,B, μ) is a σ -finite

measure space and T is an invertible μ-invariant transformation. Let

MB,t f (x) =
1

|B ∩ [1, t]|

∑

n∈B∩[1,t]

f (T n x).

Then for any p ∈ (1,∞), there exists a constant C p such that

sup
J∈N

sup
I∈SJ (N)

‖O2
I ,J (MB,t f : t ∈ N)‖L

p
μ(X)

≤ C p‖ f ‖L
p
μ(X) for any f ∈ L p

μ(X) (1.13)

and such that

∥∥∥
(∑

j∈Z

(
sup
t∈N

MB,t | f j |
)2)1/2∥∥∥

L
p
μ(X)

≤ C p

∥∥∥
(∑

j∈Z

| f j |
2
)1/2
∥∥∥

L
p
μ(X)

for any ( f j ) j∈Z ∈ L p
μ

(
Z; �2(Z)

)
. (1.14)

We now comment on the proof of Theorem 1.12. Again, Calderón’s transference

principle suggests that it suffices to establish these estimates for the integer shift sys-

tem. Ultimately, those estimates are derived from the analogous ones for the standard

discrete Hardy–Littlewood averaging operator. For the vector-valued maximal inequal-

ity we use the exponential sum estimates of Lemma 2.1 together with the fact that ψ

behaves “like a constant” in dyadic blocks in order to eventually be able to use the

corresponding estimates for the Hardy–Littlewood averaging operator (for example

see Theorem 1 in [12] or Theorem C in [21]). The situation is much more compli-

cated for the oscillations. We follow the strategy from [22] and [27], and we break

our analysis into short and long oscillations, and instead of opting to handle as our

“long oscillations” the rather natural choice {2n : n ∈ N0}, we choose a much denser

set, namely {�2nτ
� : n ∈ N0}, for τ small. This affords us to bound the short oscilla-

tions straightforwardly. Loosely speaking, the long oscillations are treated in similar

manner to the vector-valued maximal inequality, but the fact that the 2-oscillations

are not a positive operator makes the use of the fact that ψ behaves nicely in dyadic

blocks difficult. Here, we adapt the argument from section 5 in [24] to our oscilla-

tion setting in order to compare averages with different weights. Again, we use the

uniform oscillation estimates for the discrete Hardy–Littlewood averaging operator

to conclude (which one may find for example in [15] or [19]). Finally, we mention

that the exponential sum estimates help us understand some error terms on �2, and

Riesz–Thorin interpolation together with trivial bounds coming from the fact that we

deal with averaging operators help us establish the corresponding �p bounds.
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1.4 Notation

We denote by C a positive constant that may change from occurrence to occurrence.

If A, B are two non-negative quantities, we write A � B or B � A to denote that

there exists a positive constant C such that A ≤ C B. Whenever A � B and A � B

we write A 	 B. For two complex-valued functions f , g we write f ∼ g to denote

that limx→∞
f (x)
g(x)

= 1. For any topological space X , we denote by C(X) the set of

all complex-valued continuous functions. We denote the average value of a function

f : Z → C over a finite set Q ⊆ Z by [ f ]Q = 1
|Q|

∑
x∈Q f (x). For any natural

number N , we let [N ] = {1, 2, . . . , N }.

2 Basic Properties of the Sets B

In this section we collect some useful properties of the sets B. We begin by stating

an exponential sum estimate proven in [17]. Here, and for the following two sections,

we fix two constants c1, c2 such that c1 ∈ [1, 2) and c2 ∈ [1, 6/5), as well as h1,

h2 ∈ Rc1 and Rc2 respectively and ψ , γ1, γ2, B are as in the introduction and all the

implied constants may depend on them. We note that we use the basic properties of

those functions as described in Lemma 2.6 and Lemma 2.14 from [20] without further

mention.

Lemma 2.1 Assume χ > 0 is such that (1 − γ1) + 3(1 − γ2) + 6χ < 1. Then there

exists a real number χ ′ > 0 such that

∑

n∈B∩[N ]

ψ(n)−1e2π inξ =
∑

n∈[N ]

e2π inξ + O(N 1−χ−χ ′

) (2.2)

as well as

∑

n∈B∩[N ]

e2π inξ =
∑

n∈[N ]

ψ(n)e2π inξ + O(ϕ2(N )N−χ−χ ′

) (2.3)

where the implied constant does not depend on ξ or N.

Proof We note that one is derived from the other using summation by parts. The proof

can be found in page 6 as well as Lemma 3.2 in [17]. ��

Lemma 2.4 If ϕ2 � ϕ1, then B does not contain arbitrarily long intervals in Z.

Proof Assume that ϕ2 � ϕ1 and let {n, n + 1, . . . , n + l − 1} ⊆ B, we wish to bound

l. First of all let us notice that B may be partitioned as follows

B =
⋃

m∈N

Bm

where Bm = { n ∈ N : 0 ≤ ϕ1(n) − m < ψ(n) }, note that Bm ∩ Bk = ∅ for m �= k.

For sufficiently large m, k with m < k, we have that dist(Bm, Bk) ≥ 2 since if we
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assume for the sake of a contradiction that dist(Bm, Bk) = 1 then there exists n ∈ Bm

such that and n + 1 ∈ Bk . But then

0 ≤ ϕ1(n) − m < ψ(n) and 0 ≤ ϕ1(n + 1) − k < ψ(n + 1)

and thus

(k − m) − ψ(n) < ϕ1(n + 1) − ϕ1(n),

which implies

ϕ1(n + 1) − ϕ1(n) > 1/2.

By the Mean Value Theorem there exists ξn ∈ (n, n + 1) such that ϕ′
1(ξn) > 1/2,

which will be a contradiction for sufficiently large n, since ϕ′
1(x) → 0, as x → ∞.

Thus, ignoring some first few terms of B, the fact that {n, n + 1, . . . , n + l − 1} ⊆ B,

together with our previous observation, imply that there exists an m ∈ N such that

{n, n + 1, . . . , n + l − 1} ⊆ Bm . Then by combining n, n + l − 1 ∈ Bm , we obtain

ϕ1(n + l − 1) − ϕ1(n) < ψ(n + l)

which by the Mean Value Theorem becomes

(l − 1)ϕ′
1(n + l) ≤ (l − 1)ϕ′

1(ξn,l) < ψ(n + l) � ϕ′
2(n + l)

and thus (l − 1) �
ϕ′

2(n+l)

ϕ′
1(n+l)

� ϕ2(n+l)
ϕ1(n+l)

� 1, since ϕ2 � ϕ1. Thus B does not contain

arbitrarily long intervals. ��

3 Uniform 2-oscillation Estimates

We prove the first half of Proposition 1.12, namely we establish the estimate (1.13).

By the Calderón Transference Principle, in order to establish that estimate for any σ -

finite measure preserving system, it suffices to establish it for the integer shift system,

namely for (Z,P(Z), | · |, S) where S is the shift map S(x) = x − 1 and the | · | is the

counting measure. To simplify the notation, we let Bt = B ∩ [1, t] and write

Mt f (x) =
1

|Bt |

∑

n∈Bt

f (x − n).

We therefore wish to show that for any p ∈ (1,∞), there exists a contant C p such that

sup
J∈N0

sup
I∈SJ (N)

‖O2
I ,J (Mt f : t ∈ N)‖�p(Z) ≤ C p‖ f ‖�p(Z) for any f ∈ �p(Z). (3.1)
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To obtain this result, we break the 2-oscillations into short and long ones, and we

will need to carefully choose some parameters first. Let p0 ∈ (1,∞) be such that

p ∈ (p0, p′
0), let τ ∈ (0, min

{ p0−1
2

, 1
2

}
) and let Dτ = {2nτ

: n ∈ N0}. It is not

difficult to see that

sup
J∈N

sup
I∈SJ (N)

‖O2
I ,J (Mt f : t ∈ N)‖�p(Z)

� sup
J∈N

sup
I∈SJ (Dτ )

‖O2
I ,J (Mt f : t ∈ Dτ )‖�p(Z)

+

∥∥∥∥
( ∞∑

n=0

V 2
(

Mt f : t ∈
[
2nτ

, 2(n+1)τ
))2
)1/2∥∥∥∥

�p(Z)

(3.2)

where

V 2
(

Mt f (x) : t ∈
[
2nτ

, 2(n+1)τ
))

= sup
J∈N

sup
t0<···<tJ

t j ∈
[

2nτ
,2(n+1)τ

)

( J−1∑

j=0

|Mt j+1
f (x) − Mt j

f (x)|2
)1/2

,

see [23] page 17. One may adapt the argument appearing in Lemma 1.3 in [16] to

establish this. We deal with the second term of (3.2). Note that

∥∥∥∥
( ∞∑

n=0

V 2
(

Mt f : t ∈
[
2nτ

, 2(n+1)τ
))2
)1/2∥∥∥∥

�p(Z)

=

∥∥∥∥
( ∞∑

n=0

(
sup
J∈N

sup
t0<...tJ

t j ∈
[

2nτ
,2(n+1)τ

)

( J−1∑

j=0

|Mt j+1
f − Mt j

f |2
)1/2

)2)1/2∥∥∥∥
�p(Z)

�

∥∥∥∥
( ∞∑

n=1

(
sup
J∈N

sup
t0<...tJ

t j ∈
[

2(n−1)τ ,2(n+2)τ
)
∩B

( J−1∑

j=0

|Mt j+1
f − Mt j

f |
))2)1/2∥∥∥∥

�p(Z)

where we have used the fact that ‖ ·‖�2 ≤ ‖·‖�1 , together with the fact that Mt f (x) =

Ms f (x) whenever Bt = Bs . For any n ∈ N, let
{
β

(n)
m : m ∈ {0, . . . , ln}

}
be an

increasing enumeration of
[
2(n−1)τ , 2(n+2)τ

)
∩ B. Then we use the triangle inequality

to bound the last expression by

∥∥∥∥
( ∞∑

n=1

(( ln∑

m=1

|M
β

(n)
m

f − M
β

(n)
m−1

f |
))2)1/2∥∥∥∥

�p(Z)

.



Journal of Fourier Analysis and Applications (2024) 30 :37 Page 15 of 50 37

Let Kt (x) = 1
|Bt |

∑
n∈Bt

δn(x), where δn(x) = 1{n}(x), and note that Mt f (x) =

Kt ∗ f (x). Thus we rewrite the expression above as

∥∥∥∥
( ∞∑

n=1

(( ln∑

m=1

|(K
β

(n)
m

− K
β

(n)
m−1

) ∗ f |
))2)1/2∥∥∥∥

�p(Z)

.

We firstly consider the case p ∈ (2,∞). We get

∥∥∥∥
( ∞∑

n=0

V 2
(

Mt f : t ∈
[
2nτ

, 2(n+1)τ
))2
)1/2∥∥∥∥

�p(Z)

�

∥∥∥∥
( ∞∑

n=1

(( ln∑

m=1

|K
β

(n)
m

− K
β

(n)
m−1

| ∗ | f |
))2)1/2∥∥∥∥

�p(Z)

=

(∑

x∈Z

( ∞∑

n=1

(( ln∑

m=1

|K
β

(n)
m

− K
β

(n)
m−1

| ∗ | f |(x)
))2)p/2)1/p

≤

( ∞∑

n=1

( ln∑

m=1

(∑

x∈Z

(
|K

β
(n)
m

− K
β

(n)
m−1

| ∗ | f |(x)
)p)1/p

)2)1/2

=

( ∞∑

n=1

( ln∑

m=1

∥∥|K
β

(n)
m

− K
β

(n)
m−1

| ∗ | f |
∥∥

�p(Z)

)2)1/2

≤

( ∞∑

n=1

( ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

‖ f ‖�p(Z)

)2)1/2

=

( ∞∑

n=1

( ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

)2)1/2

‖ f ‖�p(Z)

where we have used Minkowski’s inequality for p/2 > 1 and p > 1, and then Young’s

convolution inequality. In the case where p ∈ (1, 2], we note

∥∥∥∥
( ∞∑

n=0

V 2
(

Mt f : t ∈
[
2nτ

, 2(n+1)τ
))2
)1/2∥∥∥∥

�p(Z)

�

∥∥∥∥
( ∞∑

n=1

(( ln∑

m=1

|K
β

(n)
m

− K
β

(n)
m−1

| ∗ | f |
))2)1/2∥∥∥∥

�p(Z)

≤

∥∥∥∥
( ∞∑

n=1

(( ln∑

m=1

|K
β

(n)
m

− K
β

(n)
m−1

| ∗ | f |
))p)1/p∥∥∥∥

�p(Z)

≤

(∑

x∈Z

∞∑

n=1

(( ln∑

m=1

|K
β

(n)
m

− K
β

(n)
m−1

| ∗ | f |(x)
))p)1/p
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≤

( ∞∑

n=1

( ln∑

m=1

(∑

x∈Z

(
|K

β
(n)
m

− K
β

(n)
m−1

| ∗ | f |(x)
)p)1/p

)p)1/p

=

( ∞∑

n=1

( ln∑

m=1

∥∥|K
β

(n)
m

− K
β

(n)
m−1

| ∗ | f |
∥∥

�p(Z)

)p)1/p

≤

( ∞∑

n=1

( ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

‖ f ‖�p(Z)

)p)1/p

=

( ∞∑

n=1

( ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

)p)1/p

‖ f ‖�p(Z)

where we have used Minkowski’s inequality and Young’s convolution inequality.

Combining the two cases gives

∥∥∥∥
( ∞∑

n=0

V 2
(

Mt f : t ∈
[
2nτ

, 2(n+1)τ
))2
)1/2∥∥∥∥

�p(Z)

�

( ∞∑

n=1

( ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

)q)1/q

‖ f ‖�p(Z) (3.3)

where q = min{2, p}. We focus on
∥∥K

β
(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

, note that

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

=
∑

x∈B
β
(n)
m−1

1

|B
β

(n)
m−1

|
−

1

|B
β

(n)
m

|

+
∑

x∈B
β
(n)
m

\B
β
(n)
m−1

1

|B
β

(n)
m

|

=

|B
β

(n)
m

| − |B
β

(n)
m−1

|

|B
β

(n)
m

|
+

|B
β

(n)
m

\ B
β

(n)
m−1

|

|B
β

(n)
m

|

= 2

|B
β

(n)
m

| − |B
β

(n)
m−1

|

|B
β

(n)
m

|

thus

ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

�

ln∑

m=1

|B
β

(n)
m

| − |B
β

(n)
m−1

|

|B
β

(n)
m

|
�

|B2(n+2)τ | − |B2(n−1)τ |

|B2(n−1)τ |
.
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We know that there exists ε > 0 such that |Bt | = ϕ2(t)(1 + O(t−ε)), (see [17], page

5), thus we get

ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

�
ϕ2(2

(n+2)τ ) − ϕ2(2
(n−1)τ ) + ϕ2(2

(n+2)τ )O(2−ε(n−1)τ )

ϕ2(2(n−1)τ )
.

Note that
ϕ2(2

(n+2)τ )2−ε(n−1)τ

ϕ2(2(n−1)τ )
≤

ϕ2(2
(n−1)τ +3τ

)2−ε(n−1)τ

ϕ2(2(n−1)τ )
� 2−ε(n−1)τ , since 0 < τ ≤ 1/2,

ϕ2 is increasing and ϕ2(4x) � ϕ2(x). We also note that by the Mean Value Theorem for

f (x) = ϕ2(2
xτ

) on the interval [n−1, n+2] we get that there exists xn ∈ (n−1, n+2)

such that

ϕ2(2
(n+2)τ ) − ϕ2(2

(n−1)τ )

3
=

f (n + 2) − f (n − 1)

3

= f ′(xn) = ϕ′
2(2

xτ
n )2xτ

n log(2)τ xτ−1
n

� ϕ2(2
xτ

n )(n − 1)τ−1 ≤ ϕ2(2
(n+2)τ )(n − 1)τ−1

≤ ϕ2(2
(n−1)τ +3τ

)(n − 1)τ−1

� ϕ2(2
(n−1)τ )(n − 1)τ−1.

Thus

ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

� (n − 1)τ−1 + 2−ε(n−1)τ ,

which implies

( ∞∑

n=1

( ln∑

m=1

∥∥K
β

(n)
m

− K
β

(n)
m−1

∥∥
�1(Z)

)q)1/q

� 1 +

( ∞∑

n=2

(n − 1)q(τ−1)

)1/q

+

( ∞∑

n=1

2−εq(n−1)τ
)1/q

.

Note that if p > 2 then q = 2 and then q(1 − τ) > 2(1 − 1/2) = 1 thus the

first sum converges. Similarly, if p ≤ 2, then q = p. Note that τ < (p0 − 1)/2 <

(p0 − 1)/p0 = 1/p′
0, but then q(1 − τ) > p(1 − 1/p′

0) = p/p0 > 1, as desired. In

either case, the first series is summable. The second series is also summable, since for

example 2−qεnτ
�p,τ n−2, and thus (3.3) becomes

∥∥∥∥
( ∞∑

n=0

V 2
(

Mt f : t ∈
[
2nτ

, 2(n+1)τ
))2
)1/2∥∥∥∥

�p(Z)

�p,τ ‖ f ‖�p(Z).
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To establish the estimate (3.2), it remains to bound the first term. Note that

sup
J∈N

sup
I∈SJ (Dτ )

‖O2
I ,J (Mt f : t ∈ Dτ )‖�p(Z)

= sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
M2nτ f : n ∈ N0

)
‖�p(Z),

and we now establish the following estimate.

Claim There exists a constant C p,τ > 0 such that

sup
J∈N

sup
I∈SJ (N0)

‖O2
I ,J

(
M2nτ f : n ∈ N0

)
‖�p(Z) ≤ C p,τ‖ f ‖�p(Z).

Proof We introduce some auxiliary averaging operators. Let

Ht f (x) =
1

t

∑

1≤s≤t

f (x − s) and At f (x) =
1

|Bt |

∑

1≤s≤t

ψ(s) f (x − s) = (L t ∗ f )(x)

where L t (x) = 1
|Bt |

∑
1≤s≤t ψ(s)δs(x). We may compare Mt with At as follows

sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
M2nτ f : n ∈ N0

)
‖�p(Z)

≤ sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
M2nτ f − A2nτ f : n ∈ N0

)
‖�p(Z)

+ sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
A2nτ f : n ∈ N0

)
‖�p(Z)

�
∥∥∥
( ∑

n∈N0

|M2nτ f − A2nτ f |2
)1/2∥∥∥

�p(Z)

+ sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
A2nτ f : n ∈ N0

)
‖�p(Z). (3.4)

The first term of the expression (3.4) will be bounded by using Lemma 2.1 and

interpolation. More specifically, we start with p = 2, and we note

∥∥∥
( ∑

n∈N0

|M2nτ f − A2nτ f |2
)1/2∥∥∥

�2(Z)
=
( ∑

n∈N0

‖M2nτ f − A2nτ f ‖2
�2(Z)

)1/2

and for each n ∈ N0 we have

‖M2nτ f − A2nτ f ‖�2(Z) = ‖(K2nτ − L2nτ ) ∗ f ‖�2(Z)

= ‖(K̂2nτ − L̂2nτ ) f̂ ‖L2(T) ≤ ‖K̂2nτ − L̂2nτ ‖L∞(T)‖ f ‖�2(Z)
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and note that there exists χ > 0 such that for any ξ ∈ T we get

|K̂2nτ (ξ) − L̂2nτ (ξ)| =

∣∣∣∣
1

|B2nτ |

∑

s∈B
2nτ

e2π isξ −
1

|B2nτ |

∑

1≤s≤2nτ

ψ(s)e2π isξ

∣∣∣∣

�
ϕ2(2

nτ
)2−χnτ

|B2nτ |
� 2−χnτ

and thus

‖M2nτ f − A2nτ f ‖�2(Z) � 2−χnτ

‖ f ‖�2(Z)

which gives

∥∥∥
( ∑

n∈N0

|M2nτ f − A2nτ f |2
)1/2∥∥∥

�2(Z)

�
( ∑

n∈N0

2−2χnτ
)1/2

‖ f ‖�2(Z) �τ ‖ f ‖�2(Z).

For the case of p �= 2, firstly, let us assume that p ∈ (2,∞). Note that there exists a

positive constant C such that

‖M2nτ f − A2nτ f ‖
�

p′
0 (Z)

≤ ‖M2nτ f ‖
�

p′
0 (Z)

+ ‖A2nτ f ‖
�

p′
0 (Z)

≤ C‖ f ‖
�

p′
0 (Z)

since

∥∥∥∥
1

|Bt |

∑

s∈Bt

f (· − s)

∥∥∥∥
�

p′
0 (Z)

≤ ‖ f ‖
�

p′
0 (Z)

and

∥∥∥∥
1

|Bt |

∑

1≤s≤t

ψ(s) f (· − s)

∥∥∥∥
�

p′
0 (Z)

≤
1

|Bt |

∑

1≤s≤t

ψ(s)‖ f ‖
�

p′
0 (Z)

� ‖ f ‖
�

p′
0

where we have used the trigonometric estimates [17], page 6, for ξ = 0. We may choose

θ ∈ (0, 1) such that 1
p

= θ
2

+ 1−θ
p′

0
and use Riesz–Thorin interpolation theorem. Since

for any n ∈ N0 we have

‖M2nτ f − A2nτ f ‖�2(Z) ≤ C2−χnτ

and ‖M2nτ f − A2nτ f ‖
�

p′
0 (Z)

≤ C‖ f ‖
�

p′
0 (Z)

,

we interpolate to obtain

‖M2nτ f − A2nτ f ‖�p(Z) ≤ (C2−χnτ

)θC1−θ‖ f ‖�p(Z) = C(2−χθ )nτ

‖ f ‖�p(Z).
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Note that since p/2 > 1, we have

∥∥∥
( ∑

n∈N0

|M2nτ f − A2nτ f |2
)1/2∥∥∥

�p(Z)

=
(∑

x∈Z

( ∑

n∈N0

|M2nτ f (x) − A2nτ f (x)|2
)p/2)1/p

≤
( ∑

n∈N0

(∑

x∈Z

|M2nτ f (x) − A2nτ f (x)|p
)2/p)1/2

=
( ∑

n∈N0

‖M2nτ f − A2nτ f ‖2
�p(Z)

)1/2

≤ C
( ∑

n∈N0

(2−2χθ )nτ
)1/2

‖ f ‖�p(Z) ≤ C p,τ‖ f ‖�p(Z).

The case of p ∈ (1, 2) is similar; we choose θ ∈ (0, 1) such that 1
p

= θ
2

+ 1−θ
p0

.

Riesz-Thorin interpolation theorem yields the same estimate as before

‖M2nτ f − A2nτ f ‖�p(Z) ≤ C(2−χθ )nτ

‖ f ‖�p(Z),

and we note that

∥∥∥
( ∑

n∈N0

|M2nτ f − A2nτ f |2
)1/2∥∥∥

�p(Z)
≤

∥∥∥
( ∑

n∈N0

|M2nτ f − A2nτ f |p
)1/p∥∥∥

�p(Z)

≤
( ∑

n∈N0

‖M2nτ f − A2nτ f ‖
p

�p(Z)

)1/p

≤ C
( ∑

n∈N0

(2−pχθ )nτ
)1/p

‖ f ‖�p(Z)

≤ C p,τ‖ f ‖�p(Z).

We have appropriately bounded the first term of equation (3.4). We now focus on the

second term. We will reduce the 2-oscillation �p estimates for A2nτ to the correspond-

ing ones for the standard H2nτ . Firstly, the analysis of the 2-oscillations will be made

easier if we adjust At to the following very similar operator

Dt f (x) =
1∑

1≤s≤t ψ(s)

∑

1≤s≤t

ψ(s) f (x − s).

Note that

|A2nτ f (x) − D2nτ f (x)| =

∣∣∣∣
(

1

|B2nτ |
−

1∑
1≤s≤2nτ ψ(s)

) ∑

1≤s≤2nτ

ψ(s) f (x − s)

∣∣∣∣.
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Thus

‖A2nτ f − D2nτ f ‖�p(Z) ≤

∣∣∑
1≤s≤2nτ ψ(s) − |B2nτ |

∣∣
|B2nτ |

∑
1≤s≤2nτ ψ(s)

∑

1≤s≤2nτ

ψ(s)‖ f ‖�p(Z)

�
ϕ2(2

nτ
)2−χnτ

|B2nτ |
‖ f ‖�p(Z) � 2−χnτ

‖ f ‖�p(Z).

One may use a similar argument to the one presented earlier to compare A2nτ with

D2nτ and obtain

sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
A2nτ f : n ∈ N0

)
‖�p(Z)

≤ sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
A2nτ f − D2nτ f : n ∈ N0

)
‖�p(Z)

+ sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
D2nτ f : n ∈ N0

)
‖�p(Z)

�
∥∥∥
( ∑

n∈N0

|A2nτ f − D2nτ f |2
)1/2∥∥∥

�p(Z)

+ sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
D2nτ f : n ∈ N0

)
‖�p(Z). (3.5)

Using the estimate ‖A2nτ f − D2nτ f ‖�p(Z) � 2−χnτ
‖ f ‖�p(Z), we can bound the first

term of equation (3.5) by C p,τ‖ f ‖�p(Z) and our task has been reduced to estimating

the 2-oscillations of D2nτ . In fact, we will be able to estimate the 2-oscillations of Dn

by comparing it with Hn . For convenience, let �(k) =
∑

1≤s≤k ψ(s). We perform

summation by parts

Dk f (x) =
1

�(k)

∑

1≤s≤k

ψ(s) f (x − s)

=
1

�(k)

(
ψ(k)

∑

1≤s≤k

f (x − s) −
∑

1≤s≤k−1

( ∑

1≤l≤s

f (x − l)
)
(ψ(s + 1) − ψ(s))

)

=
kψ(k)

�(k)

∑

1≤s≤k

f (x − s)

k
−

∑

1≤s≤k−1

s(ψ(s + 1) − ψ(s))

�(k)

∑

1≤l≤s

f (x − l)

s

=
kψ(k)

�(k)
Hk f (x) −

∑

1≤s≤k−1

s(ψ(s + 1) − ψ(s))

�(k)
Hs f (x)

=

∞∑

s=1

λk
s Hs f (x)
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where

λk
s =

⎧
⎪«
⎪¬

s(ψ(s)−ψ(s+1))
�(k)

if 1 ≤ s ≤ k − 1
kψ(k)
�(k)

if s = k

0 if s > k.

We have shown Dk f (x) =
∑∞

s=1 λk
s Hs f (x). Without loss of generality, ψ(s) is

decreasing, and thus (λk
s )s,k∈N is a family of non-negative real numbers (in the spirit

of Lemma 2 from [24]) and we note that for any k ∈ N we have that

∞∑

s=1

λk
s =

k−1∑

s=1

s(ψ(s) − ψ(s + 1))

�(k)
+

kψ(k)

�(k)
= 1

and we also have that for any fixed N ∈ N the sequence
∑N

s=1 λk
s is decreasing in k,

since

N∑

s=1

λk
s =

{
1

�(k)

∑N
s=1 s(ψ(s) − ψ(s + 1)) if 1 ≤ N ≤ k − 1

1 if N ≥ k

and for any 1 ≤ N ≤ k − 1 we have

1

�(k)

N∑

s=1

s(ψ(s) − ψ(s + 1)) =
1

�(k)

( N∑

s=1

ψ(s) − Nψ(N + 1)
)

≤ 1.

For any k ∈ N we introduce the function Nk : [0, 1) → N such that Nk(t) = min{N ∈

N :
∑N

i=1 λk
i > t} and we also introduce I k

s = N−1
k ({s}) = {t ∈ [0, 1) : Nk(t) = s}.

We note that for all k ∈ N, Nk is increasing in t . Also, since for any fixed N ∈ N

the sequence
∑N

s=1 λk
s is decreasing in k, we have that for any fixed t ∈ [0, 1), the

sequence Nk(t) is increasing in k. Note that |I k
s | = λk

s . Then

Dk f (x) =

∞∑

s=1

λk
s Hs f (x) =

∞∑

s=1

|I k
s |Hs f (x)

=

∞∑

s=1

∫

I k
s

HNk (t) f (x)dt =

∫ 1

0

HNk (t) f (x)dt .

Finally, for any J ∈ N0 and any I = {I0, . . . , IJ } ∈ SJ (N0), we have that

O2
I ,J

(
Dk f (x) : k ∈ N

)
= O2

I ,J

( ∞∑

s=1

λk
s Hs f (x) : k ∈ N

)

= O2
I ,J

(∫ 1

0

HNk (t) f (x)dt : k ∈ N

)
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=

( J−1∑

j=0

sup
I j ≤k<I j+1

∣∣∣∣
∫ 1

0

(
HNk (t) f (x) − HNI j

(t) f (x)
)
dt

∣∣∣∣
2)1/2

≤

( J−1∑

j=0

(∫ 1

0

sup
I j ≤k<I j+1

|HNk (t) f (x) − HNI j
(t) f (x)|dt

)2)1/2

≤

∫ 1

0

( J−1∑

j=0

sup
I j ≤k<I j+1

|HNk (t) f (x) − HNI j
(t) f (x)|2

)1/2
dt ,

and we finish the argument by noting that

‖O2
I ,J

(
Dk f (x) : k ∈ N

)
‖�p(Z)

≤

(∑

x∈Z

∣∣∣∣
∫ 1

0

( J−1∑

j=0

sup
I j ≤k<I j+1

|HNk (t) f (x) − HNI j
(t) f (x)|2

)1/2
dt

∣∣∣∣
p)1/p

≤

∫ 1

0

(∑

x∈Z

( J−1∑

j=0

sup
I j ≤k<I j+1

|HNk (t) f (x) − HNI j
(t) f (x)|2

)p/2)1/p

dt

≤

∫ 1

0

(∑

x∈Z

( J−1∑

j=0

sup
NI j

(t)≤m<NI j+1
(t)

|Hm f (x) − HNI j
(t) f (x)|2

)p/2)1/p

dt

=

∫ 1

0

‖O2
{NI0(t),...,NIJ (t)},|{NI0(t),...,NIJ (t)}|−1

(
Hm f (x) : m ∈ N

)
‖�p(Z)dt

≤

∫ 1

0

sup
J̃∈N

sup
Ĩ∈S(N)

‖O2

Ĩ , J̃

(
Hm f (x) : m ∈ N

)
‖�p(Z)dt ≤ C p‖ f ‖�p(Z)

where we have used the uniform 2-oscillation �p-estimates for the standard averaging

operator for p ∈ (1,∞), see [15] or [19], or more precisely

sup
J̃∈N

sup
Ĩ∈S(N)

‖O2

Ĩ , J̃

(
Hm f (x) : m ∈ N

)
‖�p(Z)

�p ‖ f ‖�p(Z).

We note that

sup
J∈N0

sup
I∈SJ (N0)

‖O2
I ,J

(
D2nτ f : n ∈ N0

)
‖�p(Z)

≤ sup
J∈N

sup
I∈S(N)

‖O2
I ,J

(
Dk f (x) : k ∈ N

)
‖�p(Z) �p ‖ f ‖�p(Z).

This establishes the estimate (1.13). ��
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4 Vector-ValuedMaximal Estimates and Concluding the Proof of
Theorem 1.10

In this section we establish the vector-valued estimates for the maximal function corre-

sponding to Mt , namely the estimate (1.14). By the Calderón Transference Principle,

it suffices to prove the following.

Proposition 4.1 For any p ∈ (1,∞), there exists a constant C p such that for any

( f j ) j∈Z ∈ �p
(
Z; �2(Z)

)
we have

∥∥∥∥
(∑

j∈Z

(
sup

t∈[1,∞)

Mt | f j |
)2)1/2

∥∥∥∥
�p(Z)

≤ C p

∥∥∥
(∑

j∈Z

| f j |
2
)1/2∥∥∥

�p(Z)
.

Proof Firstly, we note that supt∈[1,∞) Mt | f |(x) � supn∈N0
M2n | f |(x) and thus

∥∥∥∥
(∑

j∈Z

(
sup

t∈[1,∞)

Mt | f j |
)2)1/2

∥∥∥∥
�p(Z)

�

∥∥∥∥
(∑

j∈Z

(
sup

n∈N0

M2n | f j |
)2)1/2

∥∥∥∥
�p(Z)

≤

∥∥∥∥
(∑

j∈Z

(
sup

n∈N0

∣∣M2n | f j | − A2n | f j |
∣∣+ sup

n∈N0

A2n | f j |
)2)1/2

∥∥∥∥
�p(Z)

≤

∥∥∥∥
(∑

j∈Z

(
sup

n∈N0

∣∣M2n | f j | − A2n | f j |
∣∣2)
)1/2

∥∥∥∥
�p(Z)

+

∥∥∥∥
(∑

j∈Z

(
sup

n∈N0

A2n | f j |
)2)1/2

∥∥∥∥
�p(Z)

≤

∥∥∥∥
(∑

j∈Z

∑

n∈N0

∣∣M2n | f j | − A2n | f j |
∣∣2
)1/2

∥∥∥∥
�p(Z)

+

∥∥∥∥
(∑

j∈Z

(
sup

n∈N0

A2n | f j |
)2)1/2

∥∥∥∥
�p(Z)

. (4.2)

We focus on the first term, for p = 2 we note that

∥∥∥∥
(∑

j∈Z

∑

n∈N0

∣∣M2n | f j | − A2n | f j |
∣∣2
)1/2

∥∥∥∥
�2(Z)

=
(∑

x∈Z

∑

j∈Z

∑

n∈N0

∣∣M2n | f j |(x) − A2n | f j |(x)
∣∣2
)1/2

=
(∑

j∈Z

∑

n∈N0

∥∥M2n | f j | − A2n | f j |
∥∥2

�2(Z)

)1/2
.

By Plancherel theorem combined with Lemma 2.1 we obtain the following

‖M2n | f j | − A2n | f j |‖�2(Z) � 2−χn‖ f j‖�2(Z),
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and thus

∥∥∥∥
(∑

j∈Z

∑

n∈N0

∣∣M2n | f j | − A2n | f j |
∣∣2
)1/2

∥∥∥∥
�2(Z)

�
(∑

j∈Z

∑

n∈N0

2−2χn‖ f j‖
2
�2(Z)

)1/2
�
(∑

j∈Z

‖ f j‖
2
�2(Z)

)1/2

=
(∑

j∈Z

∑

x∈Z

| f j (x)|2
)1/2

=

∥∥∥
(∑

j∈Z

| f j |
2
)1/2∥∥∥

�2(Z)
.

For the case of p �= 2, we proceed in a manner identical to the one of the previous

section. Firstly, let us assume that p ∈ (2,∞). We fix a p0 > p and we note that there

exists a positive constant C such that

‖M2n f − A2n f ‖�p0 (Z) ≤ ‖M2n f ‖�p0 (Z) + ‖A2n f ‖�p0 (Z) ≤ C‖ f ‖�p0 (Z),

since

∥∥∥∥
1

|Bt |

∑

s∈Bt

f (· − s)

∥∥∥∥
�p0 (Z)

≤ ‖ f ‖�p0 (Z)&

∥∥∥∥
1

|Bt |

∑

1≤s≤t

ψ(s) f (· − s)

∥∥∥∥
�p0 (Z)

≤
1

|Bt |

∑

1≤s≤t

ψ(s)‖ f ‖�p0 (Z) � ‖ f ‖�p0 .

We may choose θ ∈ (0, 1) such that 1
p

= θ
2

+ 1−θ
p0

and use Riesz-Thorin interpolation

theorem. Since for any n ∈ N0 we have

‖M2n f − A2n f ‖�2(Z) ≤ C2−χn‖ f ‖�2(Z) & ‖M2n f − A2n f ‖�p0 (Z) ≤ C‖ f ‖�p0 (Z),

we interpolate to obtain

‖M2n f − A2n f ‖�p(Z) ≤ (C2−χn)θC1−θ‖ f ‖�p(Z) = C(2−χθ )n‖ f ‖�p(Z). (4.3)

Thus if we let Tn : �p(Z) → �p(Z) such that Tn f = M2n f − A2n f , then we know

that Tn is a bounded linear operator with ‖Tn‖�p(Z)→�p(Z) ≤ C(2χθ )−n . Thus, we

know that Tn has an �2-valued extension (see for example [13], page 386) with the

same norm, that is

∥∥∥

⎛
¿∑

j∈Z

|Tn( f j )|
2

À
⎠

1/2 ∥∥∥
�p(Z)

≤ C(2χθ )−n
∥∥∥

⎛
¿∑

j∈Z

| f j |
2

À
⎠

1/2 ∥∥∥
�p(Z)

. (4.4)
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Finally, since p/2 > 1, we get

∥∥∥∥

⎛
¿∑

j∈Z

∑

n∈N0

∣∣M2n | f j | − A2n | f j |
∣∣2
À
⎠

1/2 ∥∥∥∥
�p(Z)

=

(∑

x∈Z

( ∑

n∈N0

∑

j∈Z

∣∣M2n | f j |(x) − A2n | f j |(x)
∣∣2
)p/2

)1/p

≤

( ∑

n∈N0

(∑

x∈Z

(∑

j∈Z

∣∣Tn| f j |(x)
∣∣2
)p/2)2/p

)1/2

≤
( ∑

n∈N0

∥∥∥
(∑

j∈Z

∣∣Tn| f j |
∣∣2
)1/2∥∥∥

2

�p(Z)

)1/2

≤
( ∑

n∈N0

C2(22χθ )−n
∥∥∥
(∑

j∈Z

| f j |
2
)1/2
∥∥∥

2

�p(Z)

)1/2

≤ C
∑

n∈N0

(22χθ )−n
∥∥∥
(∑

j∈Z

| f j |
2
)1/2
∥∥∥

�p(Z)

�p

∥∥∥
(∑

j∈Z

| f j |
2
)1/2
∥∥∥

�p(Z)
.

For p ∈ (1, 2) the situation is similar, we choose p0 ∈ (1, p), and θ ∈ (0, 1) such that
1
p

= θ
2

+ 1−θ
p0

and Riesz-Thorin interpolation theorem yields the estimate of (4.3),

which in turn implies the estimate (4.4). Since p < 2, we have

∥∥∥∥
(∑

j∈Z

∑

n∈N0

∣∣M2n | f j | − A2n | f j |
∣∣2
)1/2

∥∥∥∥
�p(Z)

=

(∑

x∈Z

( ∑

n∈N0

∑

j∈Z

∣∣M2n | f j |(x) − A2n | f j |(x)
∣∣2
)p/2

)1/p

=

(∑

x∈Z

( ∑

n∈N0

[(∑

j∈Z

∣∣Tn| f j |(x)
∣∣2
)1/2]2)p/2

)1/p

≤

(∑

x∈Z

∑

n∈N0

[(∑

j∈Z

∣∣Tn| f j |(x)
∣∣2
)1/2]p

)1/p

=
( ∑

n∈N0

∥∥∥
(∑

j∈Z

∣∣Tn| f j |
∣∣2)1/2

∥∥∥
p

�p(Z)

)1/p

�
( ∑

n∈N0

2−pχθn
∥∥(∑

j∈Z

| f j |
2
)1/2∥∥p

�p(Z)

)1/p

�p

∥∥(∑

j∈Z

| f j |
2
)1/2∥∥

�p(Z)
.
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We have bounded appropriately the first term of (4.2) and all is left is to bound the

second term. We firstly observe that for any n ∈ N0 we get

A2n | f |(x) =
1

|B2n |

∑

1≤s≤2n

ψ(s)| f (x − s)| ≤
1

|B2n |

n∑

k=0

∑

2k≤s<2k+1

ψ(s)| f (x − s)|

≤
1

|B2n |

n∑

k=0

|B ∩ [2k, 2k+1)|
1

|B ∩ [2k, 2k+1)|

∑

2k≤s<2k+1

ψ(s)| f (x − s)|

≤
|B2n+1 |

|B2n |
sup
k∈N0

1

|B ∩ [2k, 2k+1)|

∑

2k≤s<2k+1

ψ(s)| f (x − s)|

�
ϕ2(2

n+1)

ϕ2(2n)
sup
k∈N0

ϕ′
2(2

k)

|B ∩ [2k, 2k+1)|

∑

2k≤s<2k+1

| f (x − s)|

� sup
k∈N0

ϕ′
2(2

k)2k

|B ∩ [2k, 2k+1)|

1

2k

∑

2k≤s<2k+1

| f (x − s)|

� sup
k∈N0

1

2k

∑

2k≤s<2k+1

| f (x − s)| � sup
k∈N0

1

2k

∑

1≤s≤2k

| f (x − s)| = sup
k∈N0

H2k | f |(x)

since

ϕ′
2(2

k)2k

|B ∩ [2k, 2k+1)|
	

ϕ2(2
k)

|B ∩ [2k, 2k+1)|
	 1.

Since n ∈ N0 was arbitrary, we have shown that supn∈N0
A2n | f |(x) �

supn∈N0
H2n | f |(x), and thus the second term of 4.2 may dominated by

∥∥∥∥
(∑

j∈Z

(
sup

n∈N0

A2n | f j |
)2)1/2

∥∥∥∥
�p(Z)

�

∥∥∥∥
(∑

j∈Z

(
sup

n∈N0

H2n | f j |
)2)1/2

∥∥∥∥
�p(Z)

�p

∥∥∥
(∑

j∈Z

| f j |
2
)1/2
∥∥∥

�p(Z)
.

This completes the proof. ��

The work of Sects. 3 and 4 proves Proposition 1.12. We describe how Proposition 1.12

implies Theorem 1.10.

Proof of Theorem 1.10 assuming Proposition 1.12 We simply apply Proposition 4.1

from [23] to establish a multi-parameter uniform 2-oscillation estimate, which accord-

ing to Remark 2.4 together with Proposition 2.8, page 15, from the same paper yield

the desired result. ��
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5 Proof of theWeak-Type (1,1) Inequality

Throughout this section we have fixed a set B with ϕ1 	 ϕ2 and c1 = c2 = c ∈

(1, 30/29). All constants may depend on ϕ1, ϕ2 and ψ but on nothing else, unless

stated otherwise. We remind the reader that it suffices to establish the weak type (1,1)

bound for the smooth dyadic maximal function

M( f )(x) = sup
k∈N0

{K2k ∗ | f |(x), where KN (x)

=
1

ϕ2(N )

∑

n∈B

δn(x)η
( n

N

)
, see Remark 1.9.

The next two lemmas are devoted to studying the properties of KN ∗ K̃N and they will

be key ingredients for establishing the weak-type (1,1) bound.

Lemma 5.1 There exists a positive constant C such that for all N ∈ N and all x ∈ Z

with C ≤ |x | ≤ ϕ1(N ), we have that |KN ∗ K̃N (x)| ≤ C N−1.

Proof We have assumed that ϕ2 	 ϕ1 and thus, by Lemma 2.4, there exists a uniform

bound CB for the length of intervals contained in B. For any x ∈ Z such that |x | ≥

CB + 1, we get

KN ∗ K̃N (x) =
1

ϕ2(N )2

∑

n∈Z

1B(n)1B(n + x)η
( n

N

)
η
(n + x

N

)

and with a change of variables we see that KN ∗ K̃N (x) = KN ∗ K̃N (−x), and thus,

without loss of generality, let us assume that x ≥ CB + 1. Since supp(η) ⊆ (1/2, 4)

and 0 ≤ η(x) ≤ 1, we have

KN ∗ K̃N (x) ≤
1

ϕ2(N )2
|{ n ∈ Z : n, n + x ∈ B ∩ (N/2, 4N ) }|

and all is left to do is to estimate the cardinality of that set. Let Ax
N = { n ∈ Z :

n, n + x ∈ B ∩ (N/2, 4N ) }, and notice that for any n ∈ Ax
N , we have that there exists

a unique s, m ∈ N0 such that

0 ≤ ϕ1(n + x) − (m + s) < ψ(n + x) and 0 ≤ ϕ1(n) − m < ψ(n).

Notice that since x > CB , we have that s ≥ 1, since n and n + x cannot correspond

to the same m. By combining the previous set of inequalities we obtain

ϕ1(n + x) − ϕ1(n) − ψ(n + x) < s < ϕ1(n + x) − ϕ1(n) + ψ(n).

For constants depending only on ϕ1, ϕ2 and ψ , we have
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ϕ1(n + x) − ϕ1(n) + ψ(n) ≤ Cxϕ′
1(N ) + Cϕ′

2(N ) ≤ Cxϕ′
1(N ) + Cϕ′

1(N )

= C(x + 1)
ϕ1(N )

N
≤ Cx

ϕ1(N )

N

and similarly

ϕ1(n + x) − ϕ1(n) − ψ(n + x) ≥ cxϕ′
1(N ) − cϕ′

2(N ) ≥ cxϕ′
1(N ) − cϕ′

1(N )

≥ c(x − 1)
ϕ1(N )

N
≥ cx

ϕ1(N )

N
.

Thus s 	
xϕ1(N )

N
. We have that m ≤ ϕ1(4N ) � ϕ1(N ) and m > ϕ1(n) − ψ(n) ≥

ϕ1(n) − Cϕ′
1(n) ≥ ϕ1(n)

(
1 − C/n) ≥ Cϕ1(N ), when n ∈ (N/2, 4N ) thus m 	

ϕ1(N ). We also note that

h1(ϕ1(n) − ψ(n)) < h1(m) ≤ n and

h1(ϕ1(n + x) − ψ(n + x)) < h1(m + s) ≤ n + x

and thus

x −
(
n + x − h1(ϕ1(n + x) − ψ(n + x))

)

< h1(m + s) − h1(m) < x +
(
n − h1(ϕ1(n − ψ(n)))

)
.

Note that for all l we get that l − h1(ϕ1(l)−ψ(l)) = h1(ϕ1(l))− h1(ϕ1(l)−ψ(l)) =

ψ(l)h′
1(ξl), for some ξl ∈ (ϕ1(l) − ψ(l), ϕ1(l)), and thus l − h1(ϕ1(l) − ψ(l)) �

ϕ′
2(l)h

′
1(ϕ1(l)) =

ϕ′
2(l)

ϕ′
1(l)

. Since ϕ2 	 ϕ1, we get that there exists an absolute constant

T , such that l − h1(ϕ1(l) − ψ(l)) ≤ T , and thus

h1(m + s) − h1(m) ∈ B(x, T ).

Consider the set Bx
N = {(s, m) ∈ N × N : s 	

xϕ1(N )
N

, m 	 ϕ1(N ), h1(m + s) −

h1(m) ∈ B(x, T )} and note that for any (s, m) ∈ Bx
N there are at most CB number

of n’s in Ax
N corresponding to m. Therefore |Ax

N | � |Bx
N |, and everything reduces to

estimating |Bx
N |. For every s ≥ 1 such that s 	

xϕ1(N )
N

, we wish to estimate the number

of m’s such that (s, m) ∈ Bx
N . Notice that if we define g(m) = h1(m + s) − h1(m)

then by the Mean Value Theorem we get

g(m + 1) − g(m) = h1(m + 1 + s) − h1(m + 1) − h1(m + s) + h1(m)

= h′
1(m + s + ξ1) − h′

1(m + ξ2)

= (s + ξ1 − ξ2)h
′′
1(m + ξ3)

for some ξ1, ξ2 ∈ (0, 1) and ξ3 ∈ (m, m + s + 1). Thus

g(m + 1) − g(m) 	 sh′′
1(ϕ1(N )) 	

s N

ϕ1(N )2
	

x

ϕ1(N )
.
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Since x − T < h1(m + s) − h1(m) < x + T , according to the previous calculation,

for any fixed s 	
xϕ1(N )

N
, we have that there are at most 1 + C

T ϕ1(N )
x

� ϕ1(N )
x

, where

in the last estimate we used that x ≤ ϕ1(N ). The number of s’s in [1, C
xϕ1(N )

N
], where

C is the implied fixed constant appearing in s 	
xϕ1(N )

N
, are bounded by C

xϕ1(N )
N

, and

therefore

|Bx
N | �

xϕ1(N )

N

ϕ1(N )

x
=

ϕ1(N )2

N
.

This implies that

KN ∗ K̃N (x) �
ϕ1(N )2

Nϕ2(N )2
�

1

N

and the proof is complete. ��

Lemma 5.2 There exists a real number χ > 0 such that KN ∗ K̃N (x) = G N (x) +

EN (x) for all |x | > ϕ1(N ) where

G N (x) =
1

ϕ2(N )2

∑

n∈Z

ψ(n)ψ(n + |x |)η
( n

N

)
η
(n + x

N

)
and

EN (x) = KN ∗ K̃N (x) − G N (x).

We also have that G N (x) � N−1, |G N (x + h) − G N (x)| � N−2|h| and |EN (x)| �

N−1−χ .

Proof We note that for all n ∈ N we have that 1B(n) = �ϕ1(n)� − �ϕ1(n) − ψ(n)�,

see [17, Lemma 2.2]. We can therefore split our kernel to several manageable pieces.

KN ∗ K̃N (x) =
1

ϕ2(N )2

∑

n∈Z

1B(n)1B(n + x)η
( n

N

)
η
(n + x

N

)

=
1

ϕ2(N )2

∑

n∈N

(
�ϕ1(n)� − �ϕ1(n) − ψ(n)�

)(
�ϕ1(n + x)�

−�ϕ1(n + x) − ψ(n + x)�
)
η
( n

N

)
η
(n + x

N

)
.

We will exploit a famous truncated Fourier Series. More precisely, we know that if

�(x) = {x} − 1/2 then for all M ∈ N we get

�(x) =
∑

0<|m|≤M

1

2π im
e−2π imx + O

(
min

{
1,

1

M ||x ||

})
(see section 2 from [14]).

Importantly, we also have

min

{
1,

1

M ||x ||

}
=
∑

m∈Z

bme2π imx
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and

bm � min

{
log(M)

M
,

1

|m|
,

M

|m|2

}
.

Finally, we can rewrite

1B(n) = �ϕ1(n)� − �ϕ1(n) − ψ(n)� = ϕ1(n) − {ϕ1(n)}

−
(
ϕ1(n) − ψ(n) − {ϕ1(n) − ψ(n)}

)

= ψ(n) + {ϕ1(n) − ψ(n)} − {ϕ1(n)}

= ψ(n) + ({ϕ1(n) − ψ(n)} − 1/2) − ({ϕ1(n)} − 1/2)

= ψ(n) + �(ϕ1(n) − ψ(n)) − �(ϕ1(n)).

Let us use the truncated Fourier Series and define

�M (n) =
∑

0<|m|≤M

1

2π im
e−2π im(ϕ1(n)−ψ(n)) −

∑

0<|m|≤M

1

2π im
e−2π imϕ1(n)

=
∑

0<|m|≤M

e−2π imϕ1(n)

2π im

(
e2π imψ(n) − 1

)

and

�M (n) =
(
�(ϕ1(n) − ψ(n)) − �(ϕ1(n))

)
− �M (n)

and thus

�M (n) = O

(
min

{
1,

1

M ||ϕ1(n) − ψ(n)||

})
+ O

(
min

{
1,

1

M ||ϕ1(n)||

})
.

Thus

1B(n) = ψ(n) + �M (n) + �M (n).

Returning back to the splitting

KN ∗ K̃N (x) =
1

ϕ2(N )2

∑

n∈N

(
ψ(n) + �M (n) + �M (n)

)(
ψ(n + x) + �M (n + x)

+ �M (n + x)
)
η
( n

N

)
η
(n + x

N

)

=
1

ϕ2(N )2

∑

n∈N

ψ(n)ψ(n + x)η
( n

N

)
η
(n + x

N

)

+
1

ϕ2(N )2

∑

n∈N

ψ(n)�M (n + x)η
( n

N

)
η
(n + x

N

)
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+
1

ϕ2(N )2

∑

n∈N

ψ(n)�M (n + x)η
( n

N

)
η
(n + x

N

)

+
1

ϕ2(N )2

∑

n∈N

�M (n)ψ(n + x)η
( n

N

)
η
(n + x

N

)

+
1

ϕ2(N )2

∑

n∈N

�M (n)ψ(n + x)
)
η
( n

N

)
η
(n + x

N

)

+
1

ϕ2(N )2

∑

n∈N

�M (n)�M (n + x)η
( n

N

)
η
(n + x

N

)

+
1

ϕ2(N )2

∑

n∈N

�M (n)�M (n + x)η
( n

N

)
η
(n + x

N

)

+
1

ϕ2(N )2

∑

n∈N

�M (n)�M (n + x)η
( n

N

)
η
(n + x

N

)

+
1

ϕ2(N )2

∑

n∈N

�M (n)�M (n + x)η
( n

N

)
η
(n + x

N

)
=

= I1(x) + I2(x) + · · · + I9(x). Let G N (x) = I1(x) and EN (x) =
∑9

i=2 Ii (x). Let us

firstly estimate I1, we have

I1(x) =
1

ϕ2(N )2

∑

N/2≤n≤4N
N/2≤n+x≤4N

ψ(n)ψ(n + x)η
( n

N

)
η
(n + x

N

)
�

Nϕ′
2(N )2

ϕ2(N )2
� N−1,

and for any h ∈ Z we have

|I1(x + h) − I1(x)| ≤
1

ϕ2(N )2

∑

n∈N

ψ(n)η
( n

N

)∣∣∣∣ψ(n + x + h)η
(n + x + h

N

)

−ψ(n + x)η
(n + x

N

)∣∣∣∣

=
1

ϕ2(N )2

∑

n∈N

ψ(n)η
( n

N

)

∣∣∣∣
∫ n+x+h

n+x

(
ψ ′(t)η(t/N ) − ψ(t)η′(t/N )

1

N

)
dt

∣∣∣∣.

It suffices to consider x, h such that n + x, n + x +h ∈ [N/2, 4N ] since the integrand

is zero outside that interval. We get

|I1(x + h) − I1(x)| �
ϕ′

2(N )

ϕ2(N )2
N |h|(ϕ′′

2 (N ) + ϕ′
2(N )/N ) � N−2|h|.
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This shows that G N satisfies the desired properties. Now we bound EN . Let us start

with I2. We can rewrite I2 as

I2(x) =
1

ϕ2(N )2

∑

n∈N

ψ(n)�M (n + x)η
( n

N

)
η
(n + x

N

)

=
1

ϕ2(N )2

∑

n∈N

ψ(n)
∑

0<|m|≤M

e−2π imϕ1(n+x)

2π im

(
e2π imψ(n+x) − 1

)
η
( n

N

)
η

(n + x

N

)

=
1

ϕ2(N )2

∑

0<|m|≤M

1

2π im

∑

N/2≤n≤4N
N/2≤n+x≤4N

e2π i(−m)ϕ1(n+x)

(
ψ(n)η

( n

N

)
η
(n + x

N

)

(
e2π imψ(n+x) − 1

))
.

According to Corollary 3.12 in [20], if we let F x
m(t) = ψ(t)η

(
t
N

)
η
(

t+x
N

)(
e2π imψ(t+x)−

1
)
, we have that for all m ∈ Z\{0}

∣∣∣∣
∑

N/2<n≤4N
N/2<n+x≤4N

e2π i(−m)ϕ1(n+x)F x
m(n)

∣∣∣∣

� |m|1/2 N (ϕ1(N )σ1(N ))−1/2

(
sup

N/2<n≤4N
N/2<n+x≤4N

|F x
m(n)| + N sup

N/2<n≤4N
N/2<n+x≤4N

|F x
m(n + 1) − F x

m(n)|

)
.

Let us follow the notation of [20] and write N1,x = max{N/2, N/2 − x} and N2,x =

min{4N , 4N − x}. For all n ∈ (N1,x , N2,x ] we get

|F x
m(n)| = ψ(n)η

( n

N

)
η
(n + x

N

)∣∣e2π imψ(n+x) − 1
∣∣

�
ϕ2(N )

N
|2π imψ(n + x)| �

ϕ2(N )2

N 2
|m|

where we used that for all real numbers x we have |ei x −1| ≤ |x |. Similarly, after apply-

ing the mean value theorem to obtain |F x
m(n + 1) − F x

m(n)| ≤ supt∈[n,n+1]

∣∣∣ d(F x
m (t))

dt

∣∣∣,
we can use the following bound

∣∣∣∣
d
(
F x

m(t)
)

dt

∣∣∣∣ ≤

∣∣∣ψ ′(t)η
( t

N

)
η
( t + x

N

)(
e2π imψ(t+x) − 1

)∣∣∣

+

∣∣∣ψ(t)η′
( t

N

) 1

N
η
( t + x

N

)(
e2π imψ(t+x) − 1

)∣∣∣
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+

∣∣∣ψ(t)η
( t

N

)
η′
( t + x

N

) 1

N

(
e2π imψ(t+x) − 1

)∣∣∣

+

∣∣∣ψ(t)η
( t

N

)
η
( t + x

N

)(
(2π imψ ′(t + x))e2π imψ(t+x)

)∣∣∣

�
ϕ2(N )2

N 3
|m|.

Therefore we can bound I2

|I2(x)| �
1

ϕ2(N )2

∑

0<|m|≤M

1

|m|
|m|1/2 N (ϕ1(N )σ1(N ))−1/2

(
ϕ2(N )2

N 2
|m|

)
.

Since γ ∈ (29/30, 1) and ϕ1 	 ϕ2, we get that for M = N 1+2χ+εϕ2(N )−1, χ = 1−γ

and ε < χ/10

|I2(x)| �
M3/2

Nϕ2(N )1/2σ1(N )1/2
=

N 3/2+5/2χ+3ε

N 1+χϕ2(N )2σ1(N )1/2
.

We use that for all ε1 > 0 we have σ1(x) �ε1 x−ε1 and ϕ2(x) �ε1 xγ−ε1 to get

|I2(x)| �
1

N 1+χ
N 3/2+5/2χ+3ε−2γ+2ε1+ε1/2.

For a fixed ε1 = ε ∈ (0, χ/10) we get

|I2(x)| � N−1−χ N 3/2−2γ+6ε � N−1−χ

since

3/2 + 5/2χ − 2γ + 6ε < 0 ⇐⇒ 4(1 − γ ) + 5(1 − γ ) + 6/10(1 − γ ) < 1

⇐⇒ 96/10(1 − γ ) < 1

which is true since γ > 29/30. Therefore we have shown that |I2(x)| � N−1−χ , as

desired. The term I4 is treated similarly

I4(x) =
1

ϕ2(N )2

∑

n∈N

ψ(n + x)�M (n)η
( n

N

)
η
(n + x

N

)

=
1

ϕ2(N )2

∑

n∈N

ψ(n + x)
∑

0<|m|≤M

e−2π imϕ1(n)

2π im

(
e2π imψ(n) − 1

)
η
( n

N

)
η
(n + x

N

)

=
1

ϕ2(N )2

∑

0<|m|≤M

1

2π im

∑

N/2≤n≤4N
N/2≤n+x≤4N

e2π i(−m)ϕ1(n)

(
ψ(n + x)η

( n

N

)
η
(n + x

N

)

(
e2π imψ(n) − 1

))
.



Journal of Fourier Analysis and Applications (2024) 30 :37 Page 35 of 50 37

Using Corollary 3.12 in [20], for Gx
m(n) = ψ(n + x)η

(
n
N

)
η
(

n+x
N

)(
e2π imψ(n) − 1

)
,

we obtain in an almost identical fashion the bound |I4(x)| � N−1−χ . To bound the

remaining terms, we use Lemma 3.18 [20], which we state here.

Lemma 5.3 Let N ≥ 1, p, q ∈ {0, 1}, x ∈ Z and M ≥ 1. Then

∑

n∈N

min

{
1,

1

M ||ϕ1(n + px + q)||

}
η
( n

N

)
η
(n + x

N

)
�

N log(M)

M
+

N M1/2 log(M)

(σ1(N )ϕ1(N ))1/2
.

We will also use an appropriate extension of the lemma.

Lemma 5.4 Let N ≥ 1, p ∈ {0, 1}, x ∈ Z and M ≥ 1. Then

∑

n∈N

min

{
1,

1

M ||ϕ1(n + px) − ψ(n + px)||

}
η
( n

N

)
η
(n + x

N

)

�
N log(M)

M
+

N M1/2 log(M)

(σ1(N )ϕ1(N ))1/2
.

Proof We have that

min

{
1,

1

M ||x ||

}
=
∑

m∈Z

bme2π imx

and

bm � min

{
log(M)

M
,

1

|m|
,

M

|m|2

}
.

Thus

∑

n∈N

min

{
1,

1

M ||ϕ1(n + px) − ψ(n + px)||

}
η
( n

N

)
η
(n + x

N

)

�
∑

n+px∈(N/2,4N ]

min

{
1,

1

M ||ϕ1(n + px) − ψ(n + px)||

}

=
∑

n+px∈(N/2,4N ]

∑

m∈Z

bme2π im(ϕ1(n+px)−ψ(n+px)) �
∑

m∈Z

|bm |

∣∣∣∣
∑

n+px∈(N/2,4N ]

e2π im(ϕ1(n+px)−ψ(n+px))

∣∣∣∣

�
N log(M)

M
+
∑

m∈Z

|bm ||m|1/2 N
(
ϕ1(N )σ1(N )

)−1/2
�

N log(M)

M

+
∑

0<|m|≤M

log(M)

M
|m|1/2 N

(
ϕ1(N )σ1(N )

)−1/2
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+
∑

|m|>M

M

|m|2
|m|1/2 N

(
ϕ1(N )σ1(N )

)−1/2
�

N log(M)

M

+N log(M)M1/2
(
ϕ1(N )σ1(N )

)−1/2

where we used Lemma 4.1 from [9] to obtain the estimate for∣∣∑
n+px∈(N/2,4N ] e2π im(ϕ1(n+px)−ψ(n+px))

∣∣. ��

Using the two lemmas above, together with the trivial estimates

ψ(x), |�M (x)|, |�M (x)| � 1 (since 1B(n) = ψ(n) + �M (n) + �M (n)), we may

estimate

|I3(x)| + |I5(x)| + |I7(x)| + |I8(x)| + |I9(x)|

�
1

ϕ2(N )2

∑

n∈N

∑

p∈{0,1}

(
min

{
1,

1

M ||ϕ1(n + px) − ψ(n + px)||

}

+ min

{
1,

1

M ||ϕ1(n + px)||

})
η
( n

N

)
η
(n + x

N

)

�
1

ϕ2(N )2

(
N log(M)

M
+

N M1/2 log(M)

(σ1(N )ϕ1(N ))1/2

)

�
N log(N )

ϕ2(N )N 1+2χ+ε
+

N 3/2+χ+ε/2 log(N )

ϕ2(N )3σ1(N )1/2

� N−1−χ log(N )N 1−ε−γ−χ+ε/2 + N−1−χ

(
N 5/2+2χ+ε/2−3γ+3ε/2+ε log(N )

)
� N−1−χ

since χ = 1 − γ and 5/2 + 2χ − 3γ + 3ε < 0 ⇐⇒ 10(1 − γ ) + 6ε < 1 and since

γ ∈ (29/30, 1), one may choose such an appropriately small ε > 0. Finally, for I6 we

get

I6(x) =
1

ϕ2(N )2

∑

n∈N

�M (n)�M (n + x)η
( n

N

)
η
(n + x

N

)

=
1

ϕ2(N )2

∑

n∈N

∑

0<|m1|,|m2|≤M

e−2π im1ϕ1(n)

2π im1

(
e2π im1ψ(n) − 1

)e−2π im2ϕ1(n+x)

2π im2

(
e2π im2ψ(n) − 1

)
η
( n

N

)
η
(n + x

N

)

=
1

ϕ2(N )2

∑

0<|m1|,|m2|≤M

1

(2π i)2m1m2

∑

N1,x <n≤N2,x

e−2π im1ϕ1(n)−2π im2ϕ1(n+x)F x
m1,m2

(n)
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where F x
m1,m2

(n) =
(
e2π im1ψ(n) − 1

)(
e2π im2ψ(n) − 1

)
η
(

n
N

)
η
(

n+x
N

)
. Therefore we

have that

|I6(x)| �
1

ϕ2(N )2

∑

0<|m1|,|m2|≤M

1

|m1m2|

∣∣∣∣
∑

N1,x <n≤N2,x

e−2π im1ϕ1(n)−2π im2ϕ1(n+x)F x
m1,m2

(n)

∣∣∣∣.

For all n ∈ (N1,x , N2,x ] we have |F x
m1,m2

(n)| � |m1m2|ψ(N )2 � |m1m2|
ϕ2(N )2

N 2 and

also by the mean value theorem together with the following calculation

∣∣∣
d
(
F x

m1,m2
(t)
)

dt

∣∣∣ � |m1|ψ
′(N )|m2|ψ(N )

+|m1|ψ(N )|m2|ψ
′(N ) + 1/N |m1m2|ψ(N )2

� |m1m2|
ϕ2(N )2

N 3

we get supN1,x <n≤N2,x
{|F x

m1,m2
(n + 1) − F x

m1,m2
(n)|} � |m1m2|

ϕ2(N )2

N 3 . We let m =

max{m1, m2} and we use Corollary 3.12 from [20] for α = 0 and κ = 1 to obtain

∣∣∣∣
∑

N1,x <n≤N2,x

e−2π im1ϕ1(n)−2π im2ϕ1(n+x)F x
m1,m2

(n)

∣∣∣∣

� max{m1, m2}
2/3 N 4/3σ1(N )−1/3ϕ1(N )−2/3|m1m2|ϕ2(N )2 N−2.

We can now finish our estimates for I6

|I6(x)| �
∑

0<|m1|,|m2|≤M

max{m1, m2}
2/3 N 4/3σ1(N )−1/3ϕ1(N )−2/3 N−2

=

∑
0<|m1|,|m2|≤M max{m1, m2}

2/3

ϕ1(N )2/3 N 2/3σ1(N )1/3

�
M8/3

ϕ1(N )2/3 N 2/3σ1(N )1/3
�ε1

N 8/3+16/3χ+8/3ε

ϕ1(N )10/3 N 2/3 N−ε1

�ε1

N 8/3+16/3χ+8/3ε

N 10/3γ−ε1 N 2/3 N−ε1
.

We wish to have that 8/3 + 16/3χ + 8/3ε − 10/3γ + 2ε1 − 2/3 ≤ −1 − χ , but we

have that

8/3 + 16/3χ + 8/3ε − 10/3γ + 2ε1 − 2/3 ≤ −1 − χ ⇐⇒

10(1 − γ ) + 19χ + 8ε + 6ε1 ≤ 1,

and we can choose ε1 > 0 to make this true. ��
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We use Lemma 5.1 and Lemma 5.2 to prove the weak type (1,1) estimates of

Theorem 1.5. We state and prove a general Theorem that allows us to conclude. It is

a natural extension of Theorem 6.1 in [20], and the novelty lies in our handling of the

problematic initial part of KN ∗ K̃N .

Theorem 5.5 Let M( f )(x) = supn∈N |Kn ∗ f (x)| be the maximal function cor-

responding to a family of nonnegative kernels
(
Kn

)
n∈N

⊆ �1(Z) such that

||M( f )||�∞(Z) � || f ||�∞(Z) for all f ∈ �∞(Z) and let
(
Fn

)
n∈Z

be a family of non-

negative functions. Assume that there are sequences (dn)n∈N, (Dn)n∈N ⊆ [1,∞) such

that |supp(Kn)| = dn , supp(Kn) ⊆ [0, Dn], supp(Fn) ⊆ [−Dn, Dn], dn ≤ D
ε0
n

for some ε0 ∈ (0, 1) and assume there exists a finite constant M > 1 such that

Mdn ≤ dn+1 and M Dn ≤ Dn+1 ≤ 2n+1 for all n ∈ N. Also, assume that exists a real

number ε1 > 0 such that for all n ∈ N and x ∈ Z we have

|Kn ∗ K̃n(x) − Fn(x)| � D−1−ε1
n

and assume that there exists a constant A > 0 such that

Fn(x) � d−1
n for all x with |x | ≤ A and |Fn(x)|

� D−1
n for all x with |x | > A. (5.6)

Finally, assume that there exists an ε2 ∈ (0, 1] such that

|Fn(x + y) − Fn(x)| � D−2
n |y| whenever |x |, |x + y| � dε2

n . (5.7)

Then we have that there exists a constant C > 0 such that

||M( f )||�1,∞(Z) ≤ C || f ||�1(Z) for all f ∈ �1(Z).

Before proving the theorem let us briefly show how it implies the weak-type (1,1)

bound.

Proof of Theorem 1.5 By letting Kn(x) = 1
ϕ2(2n)

∑
k∈B δk(x)η

(
k
2n

)
, dn 	 ϕ1(2

n),

Dn 	 2n we can apply the theorem for

Fn(x) =

{
(Kn ∗ K̃n)(x), 0 ≤ |x | ≤ ϕ1(2

n)

G2n (x), |x | > ϕ1(2
n)

.

Lemma 5.2 guarantees the existence of a real number ε1 > 0 such that |Kn ∗ K̃n(x)−

Fn(x)| � D
−1−ε1
n for |x | > ϕ1(2

n) and for smaller values of x the estimate is trivially

established from the definition of Fn . We also have

Kn ∗ K̃n(x) =
1

ϕ2(2n)2

∑

k∈N

1B(k)1B(k + x)η
( k

2n

)
η
(k + x

2n

)
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and thus if C is the constant appearing in Lemma 5.1, for all integers x such that

|x | ≤ C , we get that

|Fn(x)| = |Kn ∗ K̃n(x)| �
1

ϕ1(2n)
	 d−1

n

and for all x such that C ≤ |x | ≤ ϕ1(2
n) we get

|Fn(x)| = |G2n (x)| � 2−n 	 D−1
n .

We can conclude by letting ε2 = 1, and using the estimates from Lemmas 5.1 and 5.2.

This completes the proof. ��

Proof of Theorem 5.5 Let f ∈ �1(Z) such that f ≥ 0 and let α > 0. We will perform

a subtle variation of the Calderón-Zygmund decomposition. There exists a family of

disjoint dyadic cubes (Qs, j )(s, j)∈B, where B ⊆ N0×Z and Qs, j = [ j2s, ( j+1)2s)∩Z

and functions g, b such that

• f = g + b,

• ‖g‖�1(Z) ≤ ‖ f ‖�1(Z) and ‖g‖�∞(Z) ≤ 2α,

• b =
∑

(s, j)∈B bs, j where bs, j is supported on Qs, j ,

•
∑

x∈Qs, j
bs, j (x) = 0,

• ‖bs, j‖�1(Z) ≤ 4α|Qs, j |,

•
∑

(s, j)∈B |Qs, j | ≤ α−1‖ f ‖�1(Z).

For every s ≥ 0 we let

bs =
∑

j∈Z:
(s, j)∈B

bs, j

and for every n ∈ N0 we decompose further

• bn
s (x) = bs(x)1{y∈Z: |bs (y)|>αdn}(x),

• hn
s (x) = bn

s (x) − bn
s (x) = bs(x)1{y∈Z: |bs (y)|≤αdn}(x),

• gn
s (x) =

∑
j∈Z:

(s, j)∈B

[hn
s ]Qs, j

1Qs, j
,

• Bn
s (x) = hn

s (x) − gn
s (x) =

∑
j∈Z:

(s, j)∈B

(
hn

s − [hn
s ]Qs, j

)
1Qs, j

.

Let s(n) = min{s ∈ N0 : 2s ≥ Dn} and decompose f as g +
∑

s≥0 bs = g +

∑
s≥0(b

n
s + gn

s + Bn
s ) =

(
g +

∑
s≥0 gn

s

)
+
∑

s≥0 bn
s +

∑s(n)−1
s=0 Bn

s +
∑∞

s=s(n) Bn
s .

We have that

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗ f (x)| > Cα
}∣∣∣

≤

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
(

g +
∑

s≥0

gn
s

)
(x)| > Cα/4

}∣∣∣
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+

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
(∑

s≥0

bn
s

)
(x)| > Cα/4

}∣∣∣

+

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
( ∞∑

s=s(n)

Bn
s

)
(x)| > Cα/4

}∣∣∣

+

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
( s(n)−1∑

s=0

Bn
s

)
(x)| > Cα/4

}∣∣∣

and our treatment will be different for each summand. The following subsections are

devoted to this task, and the most difficult part will be to bound the final one, where

we will exploit the cancellation properties of Bn
s together with the properties of Fn .

5.1 Estimates for the First Three Summands

For the good part we will use �∞-bounds together with the fact that ‖M‖�∞→�∞ =

T < ∞. Note that

∣∣∑

s≥0

gn
s (x)

∣∣ ≤
∑

(s, j)∈B

|[hn
s ]Qs, j

1Qs, j
(x)| ≤

∑

(s, j)∈B

[|hn
s |]Qs, j

1Qs, j
(x)

≤
∑

(s, j)∈B

[|bs, j |]Qs, j
1Qs, j

(x)

≤
∑

(s, j)∈B

‖bs, j‖�1(Z)|Qs, j |
−11Qs, j

(x) ≤
∑

(s, j)∈B

4α1Qs, j
(x) ≤ 4α

and g(x) ≤ 2α for all x ∈ Z, and thus ‖g +
∑

s≥0 gn
s ‖�∞(Z) ≤ 6α and thus

∣∣Kn ∗(
g +

∑
s≥0 gn

s

)
(x)
∣∣ ≤ T 6α for all x ∈ Z and n ∈ N. Thus for any C > 24T we get

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
(

g +
∑

s≥0

gn
s

)
(x)| > Cα/4

}∣∣∣ = 0

since it is the empty set.

For the second summand we use the lacunary nature of (dn)n∈N as well as the

bounds for the cardinality of the support of Kn . Specifically, we have

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
(∑

s≥0

bn
s

)
(x)| > Cα/4

}∣∣∣

≤

∣∣∣
⋃

n∈N

⋃

s∈N0

supp Kn ∗ |bn
s |

∣∣∣ ≤
∑

n∈N

∑

s∈N0

| supp Kn ∗ |bn
s |

≤
∑

n∈N

∑

s∈N0

| supp Kn| · | supp bn
s | ≤

∑

n∈N

∑

s∈N0

dn|{x ∈ Z : |bs(x)| > αdn}|

=
∑

n∈N

∑

s∈N0

dn

∑

k≥n

|{x ∈ Z : αdk+1 ≥ |bs(x)| > αdk}|
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=
∑

s∈N0

∑

k∈N

( k∑

n=1

dn

)
|{x ∈ Z : αdk+1 ≥ |bs(x)| > αdk}| �M

α−1
∑

s∈N0

∑

k∈N

αdk |{x ∈ Z : αdk+1 ≥ |bs(x)| > αdk}|

≤ α−1
∑

s∈N0

‖bs‖�1(Z) � α−1‖ f ‖�1(Z).

For the third summand we simply use the fact for any n ∈ N and any s ≥ s(n) we

get that 2s ≥ Dn and thus

supp(Kn ∗ Bn
s ) ⊆ supp(Kn) + supp(Bn

s ) ⊆ [0, Dn] +
⋃

j∈Z

(s, j)∈B

Qs, j ⊆ [0, 2s]

+
⋃

j∈Z

(s, j)∈B

Qs, j ⊆
⋃

j∈Z

(s, j)∈B

3Qs, j

where 3Q denotes the interval with the same center as Q and three times its radius.

Therefore

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
( ∞∑

s=s(n)

Bn
s

)
(x)| > Cα/4

}∣∣∣

=

∣∣∣
⋃

n∈N

⋃

s≥s(n)

supp(Kn ∗ Bn
s )

∣∣∣ ≤
∣∣∣
⋃

n∈N

⋃

s≥s(n)

⋃

j∈Z

(s, j)∈B

3Qs, j

∣∣∣

≤

∣∣∣
⋃

(s, j)∈B

3Qs, j

∣∣∣ � α−1‖ f ‖�1(Z).

5.2 Estimates for the Fourth Summand

The fourth summand is the most difficult to estimate and here we use the regularity of

Kn ∗ K̃n . We have

∣∣∣
{

x ∈ Z : sup
n∈N

|Kn ∗
( s(n)−1∑

s=0

Bn
s

)
(x)| > Cα/4

}∣∣∣ � α−2
∑

x∈Z

sup
n∈N

|Kn ∗
( s(n)−1∑

s=0

Bn
s

)
(x)|2

≤ α−2
∑

x∈Z

∑

n∈N

|Kn ∗
( s(n)−1∑

s=0

Bn
s

)
(x)|2 = α−2

∑

n∈N

∥∥∥
s(n)−1∑

s=0

Kn ∗ Bn
s

∥∥∥
2

�2(Z)

= α−2
∑

n∈N

( s(n)−1∑

s=0

‖Kn ∗ Bn
s ‖2

�2(Z)
+ 2

∑

0≤s1<s2≤s(n)−1

〈Kn ∗ Bn
s1

, Kn ∗ Bn
s2

〉�2(Z)

)
.

We need the following result to conclude.



37 Page 42 of 50 Journal of Fourier Analysis and Applications (2024) 30 :37

Claim There exists 0 < λ < 1 such that for all n ∈ N and 0 ≤ s1 ≤ s2 ≤ s(n) − 1 we

get

∣∣〈Kn ∗ Bn
s1

, Kn ∗ Bn
s2

〉�2(Z)

∣∣ � λs(n)−s1α‖Bn
s2

‖�1(Z)

+d−1
n

∑

| j |≤A

|〈δ j ∗ Bn
s1

, Bn
s2

〉�2(Z)|. (5.8)

Assuming that (5.8) holds, let us see how we can deduce the desired estimate. We

have

α−2
∑

n∈N

( s(n)−1∑

s=0

‖Kn ∗ Bn
s ‖2

�2(Z)
+ 2

∑

0≤s1<s2≤s(n)−1

〈Kn ∗ Bn
s1

, Kn ∗ Bn
s2

〉�2(Z)

)

� α−2
∑

n∈N

s(n)−1∑

s=0

(
λs(n)−sα‖Bn

s ‖�1(Z) + d−1
n

∑

| j |≤A

|〈δ j ∗ Bn
s , Bn

s 〉�2(Z)|
)

+α−2
∑

n∈N

∑

0≤s1<s2≤s(n)−1

(
λs(n)−s1α‖Bn

s2
‖�1(Z)

+d−1
n

∑

| j |≤A

|〈δ j ∗ Bn
s1

, Bn
s2

〉�2(Z)|
)

� α−1
∑

n∈N

s(n)−1∑

s=0

λs(n)−s‖Bn
s ‖�1(Z) + α−2

∑

n∈N

s(n)−1∑

s=0

d−1
n

∑

| j |≤A

|〈δ j ∗ Bn
s , Bn

s 〉�2(Z)|

+α−1
∑

n∈N

∑

0≤s1<s2≤s(n)−1

λs(n)−s1‖Bn
s2

‖�1(Z) + α−2
∑

n∈N∑

0≤s1<s2≤s(n)−1

d−1
n

∑

| j |≤A

|〈δ j ∗ Bn
s1

, Bn
s2

〉�2(Z)|.

For the first and the third term note that

α−1
∑

n∈N

∑

0≤s1<s2≤s(n)−1

λs(n)−s1‖Bn
s2

‖�1(Z)

= α−1
∑

n∈N

∑

1≤s2≤s(n)−1

‖Bn
s2

‖�1(Z)

⎛
¿ ∑

0≤s1≤s2−1

λs(n)−s1

À
⎠

� α−1
∑

n∈N

∑

1≤s2≤s(n)−1

λs(n)−s2‖Bn
s2

‖�1(Z) ≤ α−1
∑

n∈N

s(n)−1∑

s=0

λs(n)−s‖Bn
s ‖�1(Z) �λ
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α−1
∑

n∈N

s(n)∑

s=0

λs‖Bn
s(n)−s−1‖�1(Z) � α−1

∑

s∈N0

λs
∑

(t, j)∈B

‖bt, j‖�1(Z)

� α−1
∑

(t, j)∈B

4α|Qt, j | � α−1‖ f ‖�1(Z)

where we have used the estimates from the Calderón-Zygmund decomposition in the

beginning of the proof.

The fourth term is bounded as follows.

α−2
∑

n∈N

∑

0≤s1<s2≤s(n)−1

d−1
n

∑

1≤| j |≤A

|〈δ j ∗ Bn
s1

, Bn
s2

〉�2(Z)|

≤ α−2
∑

1≤| j |≤A

∑

n∈N

∑

0≤s1<s2≤s(n)−1

d−1
n

∑

x∈Z

|Bn
s1

(x − j)||Bn
s2

(x)|

= α−2
∑

x∈Z

∑

1≤| j |≤A

∑

n∈N

∑

0≤s1<s2≤s(n)−1

d−1
n |Bn

s1
(x − j)||Bn

s2
(x)|.

Fix | j | ≤ A and x ∈ Z such that x − j ∈ supp(bs0) for some integer s0. Since the

supports of bs’s are disjoint we have that there can be at most one integer s′
0 such that

x ∈ supp(bs′
0
). Note also that [|hn

s |]Qs, j
� α, as we observed earlier. We have

∑

n∈N

∑

0≤s1<s2≤s(n)−1

d−1
n |Bn

s1
(x − j)||Bn

s2
(x)| ≤

∑

n∈N

d−1
n |Bn

s0
(x)||Bn

s′
0
(x − j)|

�
∑

n∈N

d−1
n

(
|bs0(x)|1{y∈Z: |bs0

(y)|≤αdn}(x) + α1supp bs0
(x)
)

(
|bs′

0
(x − j)|1{y∈Z: |bs′

0
(y)|≤αdn}(x − j) + α1supp bs′

0

(x − j)
)

≤
∑

n∈N:
dn≥|bs0

(x)|/α

dn≥|bs′
0
(x− j)|/α

d−1
n |bs0(x)||bs′

0
(x − j)| + α2

∑

n∈N

d−1
n 1supp bs0

(x)

+
∑

n∈N:
dn≥|bs0

(x)|/α

d−1
n |bs0(x)|α1supp bs′

0

(x − j)

+
∑

n∈N:
dn≥|bs′

0
(x− j)|/α

d−1
n |bs′

0
(x − j)|α1supp bs0

(x)

� max{|bs0(x)|2, |bs′
0
(x − j)|2} min{α/|bs0(x)|, α/|bs′

0
(x − j)|} + α21supp bs0

(x)

≤
∑

s∈N0

α|bs(x)| + α|bs(x − j)| +
∑

s∈N0

α21supp bs (x) (5.9)
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where we have used the existence of a finite constant M > 1 such that Mdn ≤ dn+1.

We get that

α−2
∑

n∈N

∑

0≤s1<s2≤s(n)−1

d−1
n

∑

1≤| j |≤A

|〈δ j ∗ Bn
s1

, Bn
s2

〉�2(Z)|

� α−2
∑

x∈Z

∑

1≤| j |≤A

( ∑

s∈N0

α|bs(x)| + α|bs(x − j)| +
∑

s∈N0

α21supp bs (x)
)

� α−1
∑

1≤| j |≤A

∑

s∈N0

2‖bs‖�1(Z) + A
∑

s∈N0

| supp bs |

� α−1 A‖b‖�1(Z) + A

∣∣∣
⋃

(s, j)∈B

Qs, j

∣∣∣ � α−1‖ f ‖�1(Z).

A similar argument may be used to bound the second term. For the sake of completeness

we note that

α−2
∑

n∈N

s(n)−1∑

s=0

d−1
n

∑

1≤| j |≤A

|〈δ j ∗ Bn
s , Bn

s 〉�2(Z)|

≤ α−2
∑

1≤| j |≤A

∑

n∈N

s(n)−1∑

s=0

d−1
n

∑

x∈Z

|Bn
s (x − j)||Bn

s (x)|

= α−2
∑

x∈Z

∑

1≤| j |≤A

∑

n∈N

s(n)−1∑

s=0

d−1
n |Bn

s (x − j)||Bn
s (x)|.

Fix | j | ≤ A and x ∈ Z such that x − j ∈ supp(bs0) for some integer s0. Since the

supports of bs’s are disjoint we have that there can be at most one integer s′
0 such that

x ∈ supp(bs′
0
). We have

∑

n∈N

s(n)−1∑

s=0

d−1
n |Bn

s (x − j)||Bn
s (x)| ≤

∑

n∈N

d−1
n |Bn

s0
(x)||Bn

s′
0
(x − j)|.

By comparing the inequality above with (5.9), we see that an argument identical to

the one used previously may be used here. The proof will be completed once we have

established the estimate (5.8) of the claim. We do this in the following subsection.

5.3 Proof of the Estimate (5.8)

Let n ∈ N and 0 ≤ s1 ≤ s2 ≤ s(n) − 1 and let us note that

∣∣〈Kn ∗ Bn
s1

, Kn ∗ Bn
s2

〉�2(Z)

∣∣ =
∣∣〈Kn ∗ K̃n ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣
≤
∣∣〈Fn ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣

+
∣∣〈(Kn ∗ K̃n − Fn) ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣.
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Now decompose Fn(x) = Fn(x)1|x |≤A + Fn(x)1|x |>A =
∑

−A≤ j≤A Fn( j)δ j (x) +

Fn(x)1|x |>A and let Gn(x) = Fn(x)1|x |>A. We obtain

∣∣〈Kn ∗ Bn
s1

, Kn ∗ Bn
s2

〉�2(Z)

∣∣ ≤
∑

−A≤ j≤A

|Fn( j)|
∣∣〈δ j ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣

+
∣∣〈Gn ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣

+
∣∣〈(Kn ∗ K̃n − Fn) ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣

� d−1
n

∑

| j |≤A

∣∣〈δ j ∗ Bn
s1

, Bn
s2

〉�2(Z)

∣∣

+
∣∣〈Gn ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣+
+
∣∣〈(Kn ∗ K̃n − Fn) ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣.

In the right hand side of our inequality one of the terms of the desired estimate

already appeared and thus we can now focus on the other two summands. Let

Zm,n =
[
m2s(n), (m + 1)2s(n)

)
∩ Z, Z̃m,n =

[
(m − 1)2s(n), (m + 2)2s(n)

)
∩ Z and

En = Kn ∗ K̃n − Fn . Note that supp(En) ⊆ [−Dn, Dn] ⊆ [−2s(n), 2s(n)]. We have

that

∣∣〈(Kn ∗ K̃n − Fn) ∗ Bn
s1

, Bn
s2

〉�2(Z)

∣∣ =
∣∣∑

x∈Z

(En ∗ Bn
s1

)(x)Bn
s2

(x)
∣∣

=
∣∣∑

x∈Z

(∑

y∈Z

En(y)Bn
s1

(x − y)
)

Bn
s2

(x)
∣∣

≤
∑

x∈Z

∑

y∈Z

|En(y)Bn
s1

(x − y)Bn
s2

(x)| ≤
∑

y∈Z

∑

m∈Z

∑

x∈Zm,n

1Z̃m,n
(x − y)

|En(y)Bn
s1

(x − y)Bn
s2

(x)|

≤ D−1−ε1
n

∑

m∈Z

∑

x∈Zm,n

|Bn
s2

(x)|

(∑

y∈Z

1Z̃m,n
(x − y)|Bn

s1
(x − y)|

)

≤ D−1−ε1
n ‖Bn

s2
‖�1(Z) sup

m∈Z

‖Bn
s1

1Z̃m,n
‖�1(Z).

Now we note that for any m ∈ Z we have

‖Bn
s1

1Z̃m,n
‖�1(Z) =

∑

k∈Z
(s1,k)∈B

∑

x∈Z

|Bn
s1

1Z̃m,n
(x)1Qs1,k

(x)|

≤
∑

k∈Z: (s1,k)∈B

Qs1,k∩Z̃m,n �=∅

‖Bn
s1

1Qs1,k
‖�1(Z). (5.10)

On the one hand
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‖Bn
s1

1Qs1,k
‖�1(Z) ≤ ‖hn

s1
1Qs1,k

‖�1(Z) + ‖[hn
s1

]Qs1,k
1Qs1,k

‖�1(Z)

≤ 2‖bs1 1Qs1,k
‖�1(Z) ≤ 4α|Qs1,k | ≤ 4α2s1 (5.11)

and on the other hand |{k ∈ Z : (s1, k) ∈ B & Qs1,k ∩ Z̃m,n �= ∅}| � 2s(n)−s1

since Z̃m,n can be partitioned into 3 dyadic intervals, Qs1,k is a dyadic interval and

s1 ≤ s(n). Therefore

‖Bn
s1

1Z̃m,n
‖�1(Z) � 2s(n)−s1 4α2s1 = 8α2s(n)−1 ≤ 8αDn , (5.12)

and finally

∣∣〈(Kn ∗ K̃n − Fn) ∗ Bn
s1

, Bn
s2

〉�2(Z)

∣∣ � D−ε1
n 8α‖Bn

s2
‖�1(Z)

� 2−ε1(s(n)−s1)α‖Bn
s2

‖�1(Z),

since Dn ≥ 2s(n)−1 ≥ 2s(n)−s1−1, we get

∣∣〈(Kn ∗ K̃n − Fn) ∗ Bn
s1

, Bn
s2

〉�2(Z)

∣∣ �
(
2−ε1

)s(n)−s1α‖Bn
s2

‖�1(Z)

as desired.

Now we focus on the last term
∣∣〈Gn ∗ Bn

s1
, Bn

s2
〉�2(Z)

∣∣. Note that supp(Gn) ⊆

[−2s(n), 2s(n)]. We have

∣∣〈Gn ∗ Bn
s1

, Bn
s2

〉�2(Z)

∣∣ =
∣∣∑

x∈Z

(Gn ∗ Bn
s1

)(x)Bn
s2

(x)
∣∣

=
∣∣∑

x∈Z

(∑

y∈Z

Gn(y)Bn
s1

(x − y)
)

Bn
s2

(x)
∣∣

≤
∣∣∑

m∈Z

∑

x∈Zm,n

(∑

y∈Z

Gn(y)Bn
s1

(x − y)1Z̃m,n
(x − y)

)
Bn

s2
(x)
∣∣

≤
∑

m∈Z

sup
x∈Zm,n

∣∣Gn ∗ (Bn
s1

1Z̃m,n
)(x)

∣∣ ∑

x∈Zm,n

|Bn
s2

(x)|

≤ sup
m∈Z

sup
x∈Zm,n

∣∣Gn ∗
(
Bn

s1
1Z̃m,n

)
(x)
∣∣‖Bn

s2
(x)‖�1(Z).

Let us define Bn
s, j = Bn

s 1Qs, j
, and note that for any m ∈ Z, x ∈ Zm,n , we have

∣∣Gn ∗
(
Bn

s1
1Z̃m,n

)
(x)
∣∣ ≤

∑

j∈Z:
(s1, j)∈B

∣∣Gn ∗
(
Bn

s1, j 1Z̃m,n

)
(x)
∣∣, since

∑

j∈Z:
(s1, j)∈B

Bn
s, j = Bn

s .

We also note that
∑

x∈Z
Bn

s1, j (x)1Z̃m,n
(x) = 0. To see this note that if supp(Bn

s1, j ) ∩

Z̃m,n = ∅, then it is trivial, and if they intersect, we must have that supp(Bn
s1, j ) ⊆ Z̃m,n ,
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since supp(Bn
s1, j ) ⊆ Qs1, j which is a dyadic interval of length 2s1 and Z̃m,n is the

union of three dyadic intervals of larger length. In the second case we get

∑

x∈Z

Bn
s1, j (x)1Z̃m,n

(x) =
∑

x∈Z

Bn
s1, j (x) = 0

from the definition of Bn
s1, j (x). Fix m ∈ Z and j ∈ Z such that (s1, j) ∈ B and let

xs1, j be the center of the cube Qs1, j . Assume x ∈ Zm,n is such that |x − xs1, j | ≥

Cd
ε2
n + C2s1 . Using the cancellation property we have established together with the

regularity assumptions for Fn , we get

∣∣Gn ∗
(
Bn

s1, j 1Z̃m,n

)
(x)
∣∣ =

∣∣∣
∑

y∈Z

(
Gn(x − y) − Gn(x − xs1, j )

)
Bn

s1, j (y)1Z̃m,n
(y)

∣∣∣

�
∑

y∈Z

D−2
n |y − xs1, j ||B

n
s1, j (y)1Z̃m,n

(y)|

� D−2
n 2s1‖Bn

s1, j 1Z̃m,n
‖�1(Z).

Here we have used the fact that |x−y| ≥ |x−xs1, j |−|xs1, j −y| ≥ Cd
ε2
n +C2s1 −2s1 �

d
ε2
n and thus we may use (5.7). Taking into account (5.6) and the definition of Gn , we

get that for any x ∈ Z

∣∣Gn ∗
(
Bn

s1, j 1Z̃m,n

)
(x)
∣∣ � D−1

n ‖Bn
s1, j 1Z̃m,n

‖�1(Z).

Now we may estimate as follows

sup
m∈Z

sup
x∈Zm,n

∣∣Gn ∗
(
Bn

s1
1Z̃m,n

)
(x)
∣∣

≤ sup
m∈Z

sup
x∈Zm,n

∑

j∈Z:
(s1, j)∈B

∣∣Gn ∗
(
Bn

s1, j 1Z̃m,n

)
(x)
∣∣

≤ sup
m∈Z

sup
x∈Zm,n

∑

j∈Z: (s1, j)∈B

|x−xs1, j |≥Cd
ε2
n +C2s1

D−2
n 2s1‖Bn

s1, j 1Z̃m,n
‖�1(Z)

+ sup
m∈Z

sup
x∈Zm,n

∑

j∈Z: (s1, j)∈B

|x−xs1, j |<Cd
ε2
n +C2s1

D−1
n ‖Bn

s1, j 1Z̃m,n
‖�1(Z).

For the first summand note that

sup
m∈Z

sup
x∈Zm,n

∑

j∈Z: (s1, j)∈B

|x−xs1, j |≥Cd
ε2
n +C2s1

D−2
n 2s1‖Bn

s1, j 1Z̃m,n
‖�1(Z)

≤ D−2
n 2s1 sup

m∈Z

∑

j∈Z: (s1, j)∈B

‖Bn
s1, j 1Z̃m,n

‖�1(Z)
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≤ D−2
n 2s1 sup

m∈Z

‖Bn
s1

1Z̃m,n
‖�1(Z).

The calculations from (5.10), (5.12) show that supm∈Z ‖Bn
s1

1Z̃m,n
‖�1(Z) � αDn and

thus the first summand is bounded by a constant multiple of

αD−1
n 2s1 ≤ α21−s(n)2s1 � α(1/2)s(n)−s1 .

For the second summand we consider two cases. In the first case we assume that

2s1 ≤ d
ε2
n . Then, any interval of radius � d

ε2
n contains at most � 2−s1 d

ε2
n sets of the

form Qs1, j . Thus we have

sup
m∈Z

sup
x∈Zm,n

∑

j∈Z: (s1, j)∈B

|x−xs1, j |<Cd
ε2
n +C2s1

D−1
n ‖Bn

s1, j 1Z̃m,n
‖�1(Z)

� sup
m∈Z

sup
x∈Zm,n

|{ j ∈ Z : (s1, j) ∈ B and |x − xs1, j | < 2Cdε2
n }|D−1

n α2s1

� 2−s1 dε2
n D−1

n α2s1

�
αdn

D
ε0
n D

1−ε0
n

�
α

(2s(n))1−ε0
� α(1/21−ε0)s(n)−s1

where we used the estimate (5.11), the fact that dn ≤ D
ε0
n and the fact that 2s(n)−1 <

Dn ≤ 2s(n). We have established the appropriate bound for the first case.

In the second case, we assume that 2s1 > d
ε2
n . In that case, any interval of radius

� 2s1 contains at most � 2s1 2−s1 = 1 sets of the form Qs1, j . Thus we have

sup
m∈Z

sup
x∈Zm,n

∑

j∈Z: (s1, j)∈B

|x−xs1, j |<Cd
ε2
n +C2s1

D−1
n ‖Bn

s1, j 1Z̃m,n
‖�1(Z)

� sup
m∈Z

sup
x∈Zm,n

|{ j ∈ Z : (s1, j) ∈ B and |x − xs1, j | < 2C2s1}|D−1
n α2s1

� D−1
n α2s1 � α(1/2)s(n)−s1 .

This concludes the second case.

Combining everything we get

∣∣〈Gn ∗ Bn
s1

, Bn
s2

〉�2(Z)

∣∣ � sup
m∈Z

sup
x∈Zm,n

∣∣Gn ∗
(
Bn

s1
1Z̃m,n

)
(x)
∣∣‖Bn

s2
(x)‖�1(Z)

�
(
2ε0−1

)s(n)−s1‖Bn
s2

(x)‖�1(Z)

since 2−1 � 2ε0−1. For λ = min{2−ε1 , 2ε0−1} ∈ (0, 1), we obtain the estimate (5.8)

and the proof of Theorem 5.5 is complete. ��
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