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A Comparative Study of Principled rPPG-Based
Pulse Rate Tracking Algorithms for
Fitness Activities

Qiang Zhu
Zachary McBride Lazri
Chang-Hong Fu

Abstract—Performance improvements obtained by re-
cent principled approaches for pulse rate (PR) estimation
from face videos have typically been achieved by adding
or modifying certain modules within a reconfigurable sys-
tem. Yet, evaluations of such remote photoplethysmogra-
phy (rPPG) are usually performed only at the system level.
To better understand each module’s contribution and facil-
itate future research in explainable learning and artificial
intelligence for physiological monitoring, this paper con-
ducts a comparative study of video-based, principled PR
tracking algorithms, with a focus on challenging fithess
scenarios. A review of the progress achieved over the last
decade and a half in this field is utilized to construct the ma-
jor processing modules of a reconfigurable remote pulse
rate sensing system. Experiments are conducted on two
challenging datasets—an internal collection of 25 videos
of two Asian males exercising on stationary-bike, elliptical,
and treadmill machines and 34 videos from a public ECG
fitness database of 14 men and 3 women exercising on
elliptical and stationary-bike machines. The signal-to-noise
ratio (SNR), Pearson’s correlation coefficient, error count
ratio, error rate, and root mean squared error are used for
performance evaluation. The top-performing configuration
produces respective values of —0.8 dB, 0.86, 9%, 1.7%,
and 3.3 beats per minute (bpm) for the internal dataset and
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1.3 dB, 0.77, 28.6%, 6.0%, and 8.1 bpm for the ECG Fitness
dataset, achieving significant improvements over alterna-
tive configurations. Our results suggest a synergistic effect
between pulse color mapping and adaptive motion filtering,
as well as the importance of a robust frequency tracking
algorithm for PR estimation in low SNR settings.

Index Terms—Heart/pulse rate (HR/PR), remote photo-
plethysmography (rPPG), fithess exercise, pulse color map-
ping, motion compensation, frequency tracking, explain-
able Al.

|. INTRODUCTION

ULSE rate (PR) is a vital, noninvasive, and time-efficient

metric for monitoring training load and assessing an ath-
lete’s response [1], [2], [3], [4], [5]. Accurate PR estimation
is essential for optimizing training effectiveness and safety,
helping coaches and athletes achieve their training goals.

Conventional cardiac monitoring, such as chest-strap heart
rate monitoring based on electrocardiography (ECG) [6] is not
comfortable and may cause skin irritation during prolonged use;
photoplethysmography (PPG) [7], [8] in the form of wristband
or watch is prone to motion artifacts and has limited accuracy
compared to an ECG chest strap. Contact-free monitoring of
the PR using videos of human faces, known as remote photo-
plethysmography (rPPG), is a user-friendly approach compared
to conventional contact-based methods that involve electrodes,
chest straps, or finger clips. Such a monitoring system extracts
a one-dimensional (1-D) oscillating face color signal that has
the same frequency as the heartbeat from a facial video. The
ability to measure PR without direct contact is attractive and
has potential applications in smart health, sports medicine, and
cardiac rehabilitation.

In this paper, we ask and seek to answer the following re-
search questions: (i) How can one’s pulse rate be accurately
tracked from facial videos captured in a typical fitness setup?
(ii) How much impact does each major block of a pulse rate
tracking pipeline have on the overall performance? Addressing
these questions requires us to understand and tackle multi-
ple challenges in fitness rPPG sensing, stemming from every
component of the rPPG sensing system, namely, the camera,
the illumination conditions, and the subject [9]. In a fitness
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Fig. 1. The proposed modular system for studying the pulse rate
monitoring for fitness exercise videos with candidate algorithms in
parentheses.

setup, motion-induced changes in illumination intensity may
dominate the light reflected from the skin of the face because
pulse-induced color variations are usually much subtler. The
measurement is also associated with nuisance sources such
as the sensor and quantization noise. To handle these fac-
tors and perform reliable pulse signal extraction, dedicated
algorithms need to be designed to address these challenges
synergistically.

The last decade and a half has witnessed a rapid increase of
works dedicated to pulse rate estimation for still/rest cases or
with relatively little motion [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23], [24]. Previous
works [25], [26], [27], [28], [29] on pulse rate estimation often
overlook significant subject motion in fitness contexts [26], [27].
When subject motion is considered, these studies either fail to
quantitatively assess performance [28] or show large deviations
from reference values [29]. Meanwhile, the evaluation process
provided in most works is reported at the system level, whereas
the contribution of the specific choice of each system module
over other alternatives remains unclear. Such coarse evaluation
may hinder the community’s understanding of the design options
of each system component and limit the progress of future
research and development.

In this paper, we investigate techniques that can provide the
best possible performance for fitness exercise videos. We par-
ticularly focus our analysis on principled methods—as opposed
to primarily data-driven methods—since they are well suited to
real-world situations that may involve many unique and unseen
environmental conditions. Our analysis of these methods is
performed by constructing a system serving as a platform to
evaluate various modular configurations. The system shown in
Fig. 1 contains the typical building blocks agreed upon within the
literature. Some key building blocks include face registration,
motion artifacts removal, and frequency tracking [30]. A
candidate algorithm for each module is listed in parentheses.
For example, to accommodate fitness activities, motion artifacts
within the intermediate face color signal can be removed by
an adaptive filtering algorithm such as the normalized least
mean squares (NLMS) [31]. An in-depth comparative study
is conducted in the second half of the paper to examine the
detailed contribution of each system module and determine

the combination of modules that is likely to provide the best
performance of the overall system.

The rest of the paper is organized as follows. In
Section II, we review the last decade and a half of research
on rPPG and the skin reflection model adopted in this paper. In
Section III, we describe a modular system for rPPG-based PR
estimation specially designed for fitness exercises. In Section IV,
we present the experimental conditions used to perform our
experimental analysis. In Section V, we conduct a comparative
study of PR estimation using different module combinations
and provide a discussion. In Section VI, we conclude the

paper.

Il. RELATED WORK ON REMOTE PULSE RATE
MEASUREMENT

In this section, we review the recent progress made in the rPPG
research for PR estimation. The works listed and discussed here
are in no way exhaustive. Nevertheless, the contributions of these
works in addressing the various challenges associated with PR
extraction from videos have enabled the design of the modular
system proposed in this work. We extend our discussion on the
prior art below from the perspectives of region of interest (ROI)
selection and motion-resilient pulse signal extraction.

A. ROI Selection

The purpose of ROI selection is to locate an exposed region
on the human body that is easily trackable and contains pulsatile
information in the visual form. For this reason, most methods
typically use a person’s face for ROI selection. Below, we
summarize from the literature four main alternative approaches
for ROI selection. All methods, aside from the manual selection
approach, use automated face detection and differ in how they
construct the ROI within the facial region.

Manual selection: A single ROI may be selected in the
first frame of a video and used as the ROI of all subsequent
frames [13], [32], [33]. While reviewed for completeness, we
avoid manual selection in our comparative analysis given its
sensitivity to small motions.

Frame-wise landmark localization: A face detection algo-
rithm is applied frame-wise [10] to localize a person’s face
in each video frame. Facial landmarks are then detected in the
facial region of each frame and used to construct polygons that
represent the ROI.

Geometric transformation: Face detection and landmark lo-
calization algorithms are applied to construct polygons on a
person’s face in the first frame of a video. The ROI in each
subsequent video frame is then constructed by applying a geo-
metric projection to the ROI in the previous video frame. The
frame-wise geometric projections are constructed using “good
features for tracking” [15], [20]. However, in the presence of
large motion displacement, more fine-grain local alignment is
required to ensure the stability of the detected ROI region for
accurate PR extraction.

Frame-wise skin detection: A face detection algorithm is
applied frame-wise [10] to localize a person’s face in each
video frame. Since skin face pixels produce most, if not all,
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pulsatile information in the facial region, an ROI is constructed
only from skin pixels in the facial region of each frame. To
distinguish between skin and non-skin face pixels, an approach
proposed by Wang et al. [34] may be used to train a skin pixel
detector using the first several video frames. While robust for
different skin tones, it may generate false positive skin pixels
when illumination conditions vary temporally.

B. Motion-Resilient Pulse Signal Extraction

Green channel methods [12],[15],[18], [32], [35] focus on us-
ing the green color channel for extracting pulse information as it
produces the highest pulse-signal strength among the three color
channels. This is because oxyhemoglobin and deoxyhemoglobin
have greater absorption in the green wavelength compared with
the red or blue wavelengths.

Blind source separation (BSS) methods [36], [37], [38] per-
form pulse extraction by demixing the pulse signal from the
R, G, and B measurements. These methods assume that either
the sources are uncorrelated [36] or independent [37], or use
ensemble empirical mode decomposition to extract the intrinsic
mode functions from multiple face ROIs to be passed to a BSS
algorithm for demixing [38]. These methods perform well when
the pulse signal, noise, and interfering components exhibit the
aforementioned statistical behaviors but may break down when
strong periodic motion artifacts enter the RGB signal sourced
from the face.

Skin model-based methods [23], [25], [26], [27], [29], [34],
[39], [40], [41], [42], [43] operate by providing a best-guessed
color projection direction for extracting the pulse source. Multi-
ple methods [23], [26], [29], [41], [42], [43] use or extend algo-
rithms based on the dichromatic skin reflection model as prior
knowledge for extracting the pulse signal by projecting tempo-
rally normalized RGB signals in some direction orthogonal to
non-physiological information. Recognizing that the hue change
on the skin is another useful feature for pulse extraction [39],
the 2SR algorithm [40] exploits pulse-induced hue changes by
tracking the principal direction of the hue channels. For a more
detailed discussion about the strengths and weaknesses of the
algorithms mentioned above, we referred the readers to [26].

Neural-network-based methods [21], [22], [44], [45], [46],
[47], [48], [49], [50], [51] leverage the training data to perform
PR estimation. These methods can either be constructed for
end-to-end PR extraction [21], [22], [45], [49], or apply some
form of prior knowledge to preprocess the data to be fed to
the network [44], [46], [47], [48], [50], [51]. For example, Yu
et al. [45] found that applying a 3D-CNN directly to the frames
of a video can produce accurate results since this structure can
jointly handle spatial and temporal information. Conversely,
rather than inputting video frames directly into a neural network,
Niu et al. [47] construct MSTmaps from the spatially averaged
RGB and YCbCr signals taken from various regions of the
face as the network input. However, for these trained models to
generalize, the training and testing datasets need to be identically
distributed. This makes it hard to perform PR extraction in
different scenes and in fitness situations in which people have
highly variable PR levels.
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Fig. 2. lllustration of the composition of light reflected from human skin
tissue and captured by an RGB camera sensor used for pulse signal
modeling (adapted froms [26]).

C. Modeling the Skin Reflection and Motion

As illustrated in Fig. 2, when a light source illuminates
a patch of skin, the reflected light can be characterized by
two components—specular reflection and diffuse reflection.
Specular reflection is a mirror-like reflection that contains
no pulsatile information and is produced by light directly re-
flecting off of the outer layer of the skin [52], [53], [54].
Diffuse reflection is produced by light penetrating the skin’s
surface and reflecting off of the inner dermal skin layers carrying
pulsatile information [52]. The aim of pulse signal extraction
is to isolate the pulsatile information present in the diffuse
reflection captured by a camera’s sensor. To facilitate pulse
signal extraction, the dichromatic skin reflection model (DRM)!
provided in (1) is used to represent the components of light
captured by a camera’s sensor [26], [27], [54]:

Ch(t) = 1(t) [vs(t) + va(t)] + v, 1), (D

where C/(t) € R? denotes the vector of the intensity values of
the R, G, and B channels of the (th skin-pixel at time ¢; I(t)
represents the intensity of the light that arrived at the corre-
sponding skin surface; v¢(t) and v4(t) denote the specular and
diffuse reflection components, respectively; and v(¢) denotes
camera sensing and compression noise. v(t) and v4(t) may be
decomposed as:

Vs (t) = Us - [30 + S(t)] ) (2a)

va(t) =ua - do +up - p(2), (2b)

where ug, ug, and u, € R3 denote the unit color vectors of the
light spectrum, skin tissue, and pulse, respectively; sq and dg
denote the strengths of the DC component of the specular and
diffuse reflection, respectively; s(¢) and p(t) denote the strengths
of the AC component of the specular reflection and pulse signal,
respectively. The temporal variations of I(¢) and s(¢) come from
motion.

By letting C(t) denote the spatial average of all skin pix-
els in (1) and defining I(t) £ [1 +i(t)]I and u. cp = ug s +
uy dy, where i(t) indicates the change in illumination, we can
modify (1) to obtain:

C(t) =~ Ip[1 +i(t)] [uc - co + ug - s(t) +up - p(t)] (3a)

!For the completeness of this paper, we briefly review the modeling process
that has been presented in detail in [26], [27]. The terminology used in the two
papers is incorporated in this paper for consistency.
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~ I [uc'CO +uc-co Z(t) + uS'S(t) + uP’p(t”? (3b)

where second-order cross AC-terms are small, and thus dropped
from the approximation, and spacial averaging effectively re-
moves the noise term, v (%), when the number of pixels is large.

As pointed out in [27], a limiting assumption of model (3)
is that a single light source produces a single specular variation
direction, i.e., us, which is unrealistic in practice. To account
for other sources of light in our model, we assume a total of
J light sources present in the scene. Equation (3) therefore
becomes:

J J
C(t) ~ Zucyj . I()’j + €o,j + ZUCJ‘ . IO,j ©Co,j Z](t)
j=1 j=1

DC Intensity

“)

J J
+> g oy st + | Y upy-Tog | p(h),
j=1

j=1

Specular Pulse

where ¢;(t) and s;(¢) denote the intensity variation and spec-
ular variation signals of the jth light source [27], respectively.
The DC component Z}‘le uc ;- Io j co j can be estimated and
subtracted from (4) by using the short-term smoothing approach
introduced in [25], [26] or detrending methods introduced [55],
[56]. Since both i;(t) and s;(t) come from motion, they can
be approximated as different linear combinations of the mo-
tion components, i.e., i;(t) = Sr_, aj mi(t) and s;(t) =
SR b mi(t), where my,(t) denotes the kth motion com-
ponent. Denoting C(#) as the detrended signal after removing
the DC component, we finally obtain:

K
Ct) = - m(t) +u - p(t),
k=1 S~ )

Pulse

Motion

where up £ Z'j]:l U ;- ajkCojloj+Usj-bjklo; is the
color vector of the kth motion component, u, £ Z‘j]:l up j,
and I ; is the color vector of the pulse component. Equation (5)
reveals that it is possible to completely separate the pulse term
from the motion term via linear projection only if u; is
simultaneously orthogonal to U, 1,...,Un x. This is almost
never the case when a subject is performing physical exercises
in an uncontrolled environment. In this scenario, the motion
subspace spanned by {um}5_, is highly likely to have a
nonnegligible component along the pulse color direction,
making the pulse component uy, - p(t) not completely linearly
separable from the motion.

To further alleviate the impact of motion artifacts, we use
precise alignment of the face ROI in Section III-B(1), an
adaptive motion filtering module in Section III-B(2), and a
robust frequency-trace tracking algorithm in Section III-B(3)
that leverages temporal correlations between consecutive human
PR values. All these efforts jointly contribute to a robust and
accurate extraction of PR signals.

[ll. A MODULAR SYSTEM FOR FITNESS RPPG

In this section, we first present the general modular fitness
rPPG system for principled PR extraction, followed by a detailed
discussion of the module setup that leads to the highest accuracy
of the overall system.

A. General rPPG System

The general rPPG system for PR extraction, as shownin Fig. 1,
consists of seven modules, five of which are considered to be
customizable with different candidate algorithms. The system
starts with face detection since only the skin pixels on the face
are useful for extracting the pulse signal. The next two modules
include motion estimation and ROI selection. The ROI is used
to define the exact regions on the face from which we will aim
to extract the pulse signal. Since there may be displacement in a
region from frame to frame due to the movement of the subject,
a motion estimation module is used to align the face in each
frame before defining the ROI to ensure that the face is stabilized
throughout the video. A spatial averaging module is applied
to the pixels inside the stabilized ROI of each frame to obtain
temporal R, G, and B signals C(t) with boosted signal-to-noise
ratio (SNR) levels. The pulse extraction module uses a channel
combination algorithm, as described in Section II-B, to obtain
a 1-D channel combined signal cpos(t) with most lighting and
motion artifacts removed. This signal can be further processed
to obtain a cleaner pulse signal épos(¢) through additional motion
filtering. In the final module of the system, the estimated PR sig-
nal can be obtained by applying a frequency-tracking algorithm.

In the next subsection, we provide detailed descriptions of the
algorithms used in this system that achieve the best experimental
results to be presented in Section V. The algorithms that optimize
each module of the system are shown in parentheses in Fig. 1.
Specifically, (i) an optical flow-based motion estimation and
compensation algorithm is used to minimize face registration
error, (ii) refined removal of the remaining motion artifacts by
using anormalized least mean square (NLMS) filter to “subtract”
the motion information in the visual track [31] from the color-
channel combined signal output by the POS algorithm [26], and
(iii) the PR signal is extracted using a robust frequency tracker
named the adaptive multi-trace carving (AMTC) algorithm [30],
[57], [58].

B. Optimized System

1) Precise Face Registration Via Optical Flow [56]: We
use the Viola—Jones face detector [59] to obtain rough estimates
of the location and scale of the face, effectively generating a
pre-aligned video for the facial region. Optical flow is applied
next to fine-tune the facial alignment.

In our problem, two facial images likely have a global color
difference due to the heartbeat, making it imprecise to use the
illumination consistency assumption that is widely adopted in
the design of standard optical flow algorithms. Instead, to ensure
that an optical flow algorithm can precisely align two facial
images with a subtle color difference, one has to assume more
generally that the intensity I of a point in two frames is related
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Fig. 3. Facial images from a video segment before and after optical-
flow-based motion compensation, illustrating the use of the motion esti-
mation module.

by an affine model, namely,
I(m+Amtvy+Aytat+1):(1_6t)‘[(xayvt)+bta (6)

where (Ax;, Ay;) is the motion vector tracking the point (z, y)
from frame index ¢ to ¢t 4 1, and ¢; and b; control the scaling
and bias of the intensities between two frames, respectively.
When ¢, = b, =0 for all ¢, the model degenerates to fulfill
the illumination consistency assumption. Applying a standard
optical flow algorithm will result in a mismatch between the
modeling assumption and the characteristics of the rPPG facial
images. The bias of the estimated motion vectors is reported
to be at the same order of magnitude compared to the intrinsic
error of the optical flow system [56]. To alleviate potential bias,
different strategies can be applied. For example, using a global
flow regularization strategy [60] or a coarse-to-fine hierarchical
searching strategy [60], [61] instead of doing one-shot Taylor-
based local approximation. In this study, we use Liu’s optical
flow implementation [62] of Brox et al.’s method [60]. Modern
deep-learning-based optical flow algorithms [63], [64] may also
be used.

To avoid potential occlusion issues when applying optical
flow-based motion compensation, we divide each video into
small temporal segments with one frame overlapping for suc-
cessive segments and use the frame in the middle of the segment
as the reference. Fig. 3 shows a few facial images from the same
segment before and after the application of optical flow. The
faces are precisely aligned. Using facial landmarks identified by
the method proposed by Yu et al. [65], we construct a polygon on
each cheek to represent an ROI and perform spatial averaging for
each of the R, G, and B channels to obtain three 1-D time-series
signals for each segment. We then temporally concatenate these
signals, removing the discontinuities between consecutive seg-
ments by taking the difference between the first and last points of
each segment. We apply a detrending algorithm [56] to remove
the DC and slowly varying components for each color channel.
Finally, we temporally normalize each of the resulting 1-D time
series to obtain the standardized vector-valued RGB time-series
signal, C(t), to be further processed in the next module.

2) Motion Artifacts Removal Via Adaptive Filtering: This
module begins by linearly mapping C(t) to a specific color
direction in the RGB space to generate a 1-D pulse signal. The
pulse color mapping schemes have been extensively investigated
in [26] and [27]. We note that the design of the pulse color
mapping algorithms discussed in this paper is not within the con-
tributions of this work, although different pulse color mapping

approaches [26], [27], [29], [37] are implemented and evaluated
in the Section V.

Without loss of generality, we assume C(t) will be mapped
to the POS direction [26], which is one of the most robust color
feature representations, containing the highest relative pulse
strength. We denote the projected 1-D channel combined signal
as cpos(t). According to (5), we have

K

cpos(t) = pTC(t) = pTu;) p(t) + Z P Umk - mg(t),
AP ™)

Motion Residue

Pulse

where p € R? denotes the projection vector of the POS algo-
rithm. The motion residue term in (7) is negligible when the
illumination source is single, as the POS direction is orthogonal
to the color direction of the motion-induced intensity change,
and the specular change is suppressed via alpha tuning [29].
However, if the video is captured in an uncontrolled environ-
ment, the motion residue is often nonnegligible, and may even
have a higher strength than the pulse term.

To adaptively track and decouple the possibly time-varying
signal correlation between the motion residue and pulse signal
in (7), we apply the normalized least mean square (NLMS)
filter [31]. The goal of the NLMS problem is characterized as
follows. Given an input and desired signal, determine a filter,
w(t), that minimizes the error between the filter output and the
desired signal. In our application, we know that ¢y (t) contains
a mixture of a pulse and motion residue signal in (7). We also
can obtain an isolated motion signal by tracking the movement
of an individual exercising in a video. In particular, letting
m(t) and m, (t) denote the estimated face motion sequences
in the horizontal and vertical directions obtained from the
facial landmarks in each video frame, we construct a motion
tap vector given by m(t) £ [m,(t — M +1),m,(t — M +
2),..omg(t),my(t — M +1),my(t — M +2),...,my(t)]T.
Assuming that the motion residue term in (7) can be represented
as the output of a linear combination of the elements of m(¢),
then subtracting this output from cpos(t) will give us the pulse
signal in (7). Thus, we can solve for this pulse signal by treating
it as the error in the NLMS problem and optimizing for the filter
weights that are used to construct the linear combination of the
elements of m(t).

The structure of the filtering framework is shown in Fig. 4(a).
We treat cpos(t) as the filter’s observed response at time instant
t. We treat the motion tap vector m(t) = [m,(t — M + 1),
my(t — M +2),...,my(t), my(t — M +1),my(t —M +2),
..., My ()] as the input and ¢,(t) as the output of the system
and also the error signal. The estimated tap-weight vector of
the transversal filter is denoted as w(t), and the weight control
mechanism follows the iterative NLMS algorithm [31] as
follows:

Cpos(t) = Cpos(t) — WT(t) m(t), (8a)

Wt +1) = W(t) + —L— m(t) - Gos(t).  (8b)

lm(#)?
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Fig. 4. (a) Adaptive motion compensation filter framework and spec-
trograms of (b) the POS signal cpos(t), (€) the combined normalized
subject motion in horizontal and vertical directions, and (d) the filtered
POS signal épos(t). The NLMS filter removes the motion trace in the
spectrogram of the POS signal, allowing for easier pulse tracking.

In (8a), cpos(t) represents the desired signal from the current
time step in the NLMS formulation. wT(¢) m(¢) represents the
filtered output signal in the current time step, which we use to
model the motion residual in (7). Thus, the error signal, épos(t),
provides us with an estimate of the pulse signal from (7). An
iterative update is performed in (8b) to obtain the weights needed
to calculate Cpos (t) in (8a) for each future time step. Specifically,
the filter weights, w(¢), and motion tap vector, m(t), from
the current time step are used to estimate the filter weights,
w(t + 1), that minimize the error between the filtered output
and desired signal. Fig. 4(b)—(d) give an example of the adaptive
filtering result using this approach. Note that the NLMS filter has
successfully removed almost all the motion residue components
from the channel combined signal, cpos(t), while protecting the
pulse information, p(t).

3) PR Signal Estimation Via Frequency Tracking: Noting
that two temporally consecutive heart/pulse rate measurements
may not deviate too much from each other, we propose to
exploit this PR continuity property to improve the estimation
quality of PR signals by searching for the dominating fre-
quency trace appearing in the signal’s spectrogram image us-
ing the adaptive multi-trace carving (AMTC) algorithm [30],
[57], [58]. Its details are briefly described. Let Z € RV
be the magnitude component of a signal’s spectrogram image,
with N discrete bins along the time axis and M bins along
the frequency axis. We aim to find the dominating frequency
trace, £ = {(f(n),n)}"_,, inside the image. Defining the en-
ergy of a trace to be E(f) £ Zﬁle Z(f(n),n) and modeling
the transition probability of the pulse rate, P,, = P[f(1) = m]
and P, = P[f(n) = m|f(n — 1) = m/], by a discrete-time
Markov chain, the tracking problem is formulated as follows

f* =argmax E(f) +1P(f), )
£

where  P(f) £ log P(f(1)) + Y2, 5 log P(f(n)| f(n — 1))
controls the trace smoothness. This regularized tracking
problem (9) can be solved by using dynamic programming
to recursively track the path that leads to the highest point in
accumulated regularized maximum energy map at the most
recent time instant n [57], [58].

[V. EXPERIMENTAL CONDITIONS

We evaluate the reconfigurable system on two datasets to un-
derstand the different factors that affect principled PR estimation
with fitness motions. The first dataset contains 25 self-collected
videos consisting of subjects exercising on elliptical, treadmill,
and stationary bike machines. The second dataset contains 34
videos of subjects exercising on elliptical and stationary bike
machines from the ECG Fitness dataset [66]. The parameter
settings, evaluation metrics, and dataset details are described in
the following subsections.

A. Parameter Settings

The following parameters are used in our investigation unless
otherwise stated:

1) The tap number for joint-channel NLMS is 8, and the
NLMS learning rate/adaptation constant z is 0.1.

2) Each video was empirically divided into segments of 1.5
seconds with one frame overlap to ensure two frames
being aligned by the optical flow method do not have
significant occlusion due to long separation in time.

3) The spectrum analysis window length was set to 10 sec-
onds with 98% overlap to balance the trade-off between
the resolution in the frequency and time domains. A
Hamming window was applied in each analysis window,
and the number of frequency bins in the normal PR range—
50 to 240 beats per minute (bpm)-was set as 1024 via
padding zeros at the end of the analysis signal sequence.
The transitional probability model used in the frequency
tracking algorithm [57], [58] was a uniform random walk
model with the width parameter % set to 1 bpm.

B. Metrics of Performance Evaluation

a) Pulse Signal Quality: As in other papers, we use SNR as
the pulse signal quality metric [26], [27], [29], [34]. The SNR in
each spectral frame is defined as the ratio between the spectral
energy around the first two harmonics of the reference PR and
the remaining energy of the power spectrum. We express the
SNR measure using the logarithmic decibel scale:

5 er S2(NP)
s L= Si(f)] P(f)) -0

where S,,(f) is a defined binary window to select the fre-
quency bins belong to the two-harmonics region; P(f) is the
power spectrum of the pulse signal; set 7 = { f | 50 bpm < f <
240 bpm}.

b) PR Estimation Accuracy: Three well-adopted metrics
for pulse rate estimation accuracy are used in this study:
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1) Root mean squared error (RMSE):

1N 5\ ?
Ermse = (NZ [f(n)—f(n)} > ; an
n=1
2) Error rate:
1SN,

EWN;fwmwﬂw,<m

3) Error count ratio:
Fraun = 3y [0 170) = f001 /1) > 73|, 13)

4) Pearson’s correlation coefficient:
Sy [F) = F] [rm) = 7]
(SNl t) = FP L) — T12)

PCC =

(14)
where |{-}| denotes the cardinality of a countable set; N denotes
the total number of the PR estimates; f (n), f(n), f ,and f denote
the PR estimate at time instant n, ground-truth PR at time instant
n, average PR estimate, and average reference PR, respectively.
7 was empirically chosen to be 3%, determined from the spread
of the frequency components.

C. Datasets for Evaluation

a) Internal Dataset: In order to test the robustness of the
system in a fitness-in-the-wild setup, we conducted experiments
in two typical apartment fitness rooms. The illumination sources
involved only the existing lighting equipment in each room,
including several overhead fluorescent lights and possibly dif-
fused sunlight passing through a window. The environment was
unconstrained so people were allowed to enter and exit the room
during any video recording sessions. In total, 25 three-minute
videos were recorded of two healthy Asian males between the
ages of 25 and 35 exercising on a stationary bike, elliptical, and
treadmill machine. The skin tone of both subjects is classified
as Type III according to the Fitzpatrick skin scale [67]. Five
elliptical and treadmill videos belong to each subject, and the
final five stationary bike videos belong to one subject. All
stationary bike videos were captured by a Huawei P9 mobile
phone, whereas the other 20 videos were captured by the rear
camera of an iPhone 6s mobile phone. All videos have a frame
rate of 30 fps, aresolution of 1280 x 720, and an average bit rate
is about 6 MB per second. Moreover, all videos were compressed
with the H.264/AVC codec. The shutter speed of both sensors
was set as constant to minimize the possibility of introducing
artifacts. In each video, the camera was placed at eye level at
a distance of approximately one meter from the subject’s face.
Each subject also wore a Polar H7 chest strap underneath his
clothes to record electrocardiogram (ECG) signals to obtain a
reference heart rate. A thorough analysis of each module in
the principled modular system is conducted on this dataset in
Sections V-B through V-E.

b) ECG Fitness Dataset: To further evaluate the modules
of this principled modular system, we perform experiments
on the ECG Fitness database created at the Czech Technical
University [66]. This dataset contains one-minute videos of 17
subjects (14 males and 3 females) between the ages of 20 and
53 performing a variety of different activities that may produce
various unconstrained motions. Though not reported, all subjects
appear to have a Type I, II, or III skin type according to the
Fitzpatrick skin scale [67]. All videos were captured at 30 fps
with a resolution of 1920 x 1080 by one of two RGB Logitech
C920 web cameras that were either directly attached to the fitness
machine in the video or placed on a tripod as close as possible to
the same position as the other camera. Each video was also stored
in an uncompressed YUV planar pixel format. The environmen-
tal lighting conditions consist of three lighting setups—natural
lighting coming from a nearby window, a 400 W halogen light,
or a 30 W LED light. All PR references were obtained using a
two-lead Viatom CheckME™ Pro ECG device. Since the focus
of this paper is on analyzing exercise fitness videos, we analyze
the videos in which the subjects are exercising on a stationary
bike or elliptical machine. Each subject has one elliptical and
stationary bike video leaving us with a total of 34 videos avail-
able for analysis. A detailed analysis of the principled modular
system is conducted on this dataset in Section V-F. Since the
subjects are allowed to perform unconstrained motions during
their exercises, which have the potential to violate the underlying
assumptions of OF-based motion compensation methods, we
center our motion compensation analysis on OF methods, to
emphasize the importance of satisfying these assumptions.

V. RESULTS AND DISCUSSIONS

As our proposed system consists of multiple modules with
each focusing on a specific task, a holistic end-to-end system-
level test would be insufficient to evaluate the contribution of
each system component. In this section, we discuss the exper-
imental benchmark results based on fine-level comparisons in
terms of the motion estimation schemes, the pulse color mapping
algorithms, the motion adaptive filtering operations, and the
frequency estimation methods. To analyze the contribution of
a particular module, we vary the algorithms used in that module
while fixing all other modules according to the top-performing
algorithms introduced in Section III; namely, OF-B for motion
estimation, POS algorithm for pulse color mapping, NLMS
filtering for motion filtering, and AMTC for pulse frequency
tracking. For all results provided in tables in this section, values
in parentheses represent sample standard deviations and the
top-performing entry for each metric is highlighted in bold.

A. Modules for Comparison

a) Compared Registration Methods: In order to test the
efficacy of the optical flow-based motion estimation method,
we compared it with other possible alternatives listed below for
a thorough evaluation.

1) Face detection and landmark localization (FD): In each

frame, the facial rectangle region is first estimated, and
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the two cheek regions are localized according to the facial
landmarks estimated by [65].

2) Face and skin detection (FSD): In each frame, the ROI is
estimated by a color-based skin detection algorithm [68]
operated in the face-detected rectangle region.

3) Geometric transform correction (GTC): We detect the
face ROl in the first frame the same way as in FD. Then,
we estimate the ROI in the next frame by projecting
each point in the ROI of the previous frame to the next
frame using the estimated 2-D geometric transform. The
geometric transform is estimated as in [15] by tracking a
set of good-features-to-track [69].

4) Proposed optical flow framework as described in
Section III-B(1), respectively, using Lucas and Kanade
(OF-LK) [70], Horn and Schunk (OF-HS) [71],
Farneback (OF-F) [61], and Brox et al. (OF-B) meth-
ods [60].

b) Compared Pulse Color Mapping Methods: Our sec-
ond comparative analysis consists of comparing state-of-the-
art pulse color mapping algorithms including the blind source
separation (BSS) based approaches (ICA [10] and PCA [36])
and skin model-based approaches (CHROM [29], POS [26],
and SB [27]). Each method maps the RGB face color sig-
nal to a specific direction aiming to provide the highest rel-
ative pulse strength based on its model/source-observation
assumptions.

A detailed discussion of these approaches based on the human
skin reflection model can be found in [26] and [27]. However, the
evaluations and the conclusions in both papers are only based
on the SNR metric, which may be insufficient for evaluating
fitness videos. This is because two signals with the same SNR
level might result in completely different PR estimates. For
example, a pulse signal with high interference, originating from
a subject’s motion [see Fig. 4(b)], and low noise might confuse a
frequency estimator/tracker more significantly than a signal with
only white noise at the same SNR level. Thus, for evaluating the
effect of the color mapping algorithm choice on the principled
system, iy, results are presented along with the SNR.

c¢) Compared Frequency Tracking/Estimation Methods:
In order to isolate the contribution and demonstrate the effec-
tiveness of the AMTC frequency estimation module presented
in Section III-B(3), we compared it with three other commonly
used frequency estimation methods:

1) Maximum energy (ME): The PR in each spectral frame
is estimated as the frequency component with the highest
spectral energy. This provides the maximum likelihood
frequency estimate [72] when the noise component is
independent of the source and is temporally independent.

2) Particle filter (PF) [73]: PF first approximates the poste-
rior distribution of the frequency state via the sequential
Monte-Carlo method. The pulse rate is then estimated by
the maximum a posteriori.

3) Yet Another Algorithm for Pitch Tracking (YAAPT) [74]:
YAAPT estimates the frequency trace from a set of
local spectral peaks in a spectrogram using a similar
dynamic programming approach to the one detailed in
Section III-B(3).

TABLE |
PERFORMANCE OF MOTION COMPENSATION SCHEMES WHEN OTHER
MODULES ARE FIXED

SNR PCC Ecount FErate Ermsk

(dB) (%) (%) (bpm)
FD —5.0 (4.0) 0.73 (0.38) 23 (25) 6.4 (8.9) 9.0 (16.8)
FSD —1.6 (43) 0.86 (0.21) 14 (28) 5.3 (12.3) 7.3 (15.8)
GTC  —3.1(29) 078 (033) 28(34)  7.5(3.0) 125(15.8)
OFLK —7.6(32) 067 (042) 36 (40) 11.9(149) 12.6 (20.6)
OF-HS —6.6(3.6) 078 (034) 40 (47) 7.6 (13.0) 18.6 (20.9)
OF-F  —12(50) 0.82(028) 15(26) 5.1 (12.5) 89 (12.4)
OF-B 08 (48 0.86(021) 9(10) 1722 3364

Note: Values in parentheses are sample standard deviations; the
top-performing entry for each metric is highlighted in bold.

B. Comparison Study for Motion Estimation Schemes

In Fig. 6, we provide examples of spectrograms generated
from seven motion estimation schemes for four facial videos
from the internal dataset.

We listed the averaged SNR estimates of the processed pulse
signals and the PR estimation accuracy in terms of PCC, Equn,
Eiye, and Egrysg in Table 1. As observed from Fig. 6, the
pulse signal obtained using the OF-B motion estimation scheme
has the highest signal quality when compared with the other
schemes, especially for the videos of subject 1 (first two rows).
This observation is consistent with the quantitative results listed
in Table I.Specifically, when compared with the second best
results, OF-B improves the SNR by about 0.4 dB, E.y by
about 3.4%, and Erysg by about 4 bpm. These results suggest
the importance of a precise face alignment for the video-based
heart-rate monitoring method for fitness scenarios.

Nonetheless, not all optical flow-based motion estimation
schemes generate as good results as OF-B. OF-LK estimates
the pixel displacement between two images by assuming a local
parameterized flow structure with the linearized gray value con-
stancy assumption. However, such an assumption can be easily
violated by the pulse-induced color change on the face, and the
resulting biased flow estimates distort the pulse information in
return. The classic global optical flow estimation methods, such
as OF-HS, also generate highly biased flow estimates due to the
large head motion in the fitness scenarios. By incorporating the
coarse-to-fine flow searching strategy to tackle the large motion
problem, both OF-F and OF-B have significant performance
gains in almost all measures.

C. Analysis of Pulse Color Mappings and Motion
Filtering

We evaluate the pulse color mapping module by reconfiguring
it with different algorithms described in Section II-B in situations
in which the adaptive motion filter from Section III-B(2) is and
is not applied. In doing so, we gain a better understanding of
the possible synergistic strength of each pair of algorithms.
We depicted the system’s performance in terms of average
SNR and Eiye using different pulse color mapping schemes in
Fig. 7(a)—(b). Note that the blind source separation methods,
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TABLE Il
PERFORMANCE OF MOTION FILTERING WHEN OTHER
MODULES ARE FIXED

SNR PCC Ecount Erae Ermse
(dB) (%) (%) (bpm)
No NLMS-1Ch  —3.5(5.9) 0.72 (0.36) 48.1 (40.2) 10.2 (16.7) 20.9 (28.1)
NLMS-1Ch —0.8 (4.8)  0.86 (0.21) 9.0 (10) 1.7 2.2) 3.3 (6.4)
TABLE Il

PERFORMANCE OF TRACKING METHODS WHEN OTHER
MODULES ARE FIXED

PCC Ecount Erae  ERMSE

(%) (%) (bpm)

ME 0.17 (0.38) 39 (28) 14 (12) 34 (17)
PF 0.37 (0.33) 34 (25) 13 (9) 23 (16)
YAAPT 0.60 (0.21) 33 (34) 11 3) 19 (16)
AMTC  0.86 (0.21) 9(10) 172 33()

Note: The average SNR of the associated spectrograms is —0.8 (4.8) dB.

i.e., ICA and PCA, typically produce less accurate PR estimates
compared with the model-based methods such as POS and SB.
This mainly occurs when the presence of a dominant motion
frequency in the normal 50-240 bpm PR range causes the source
selection method to choose a motion component instead of the
PR component from the three demixed source components.
The violation of the assumption that pulse is the dominating
component in the measurement is commonly seen in fitness
scenarios.

By turning on the NLMS motion filtering module, an SNR
improvement of about 2 dB with almost every color mapping
scheme can be achieved. This is mainly due to the successful
removal of excess motion residue from the signal produced
by the color mapping operation. Of the three model-based
methods—CHROM, POS, and SB—SB performed the best
when the NLMS filter was turned off, whereas POS performed
slightly better than SB when the NLMS filter was turned on. The
improvement in the quality of the processed signal has naturally
led to the improvement in the pulse estimation accuracy. Specif-
ically, applying the NLMS filter improved the performance of
the system in the FE,,. metric by about 8% for almost all the
pulse color mapping schemes.

To obtain an understanding of the overall effectiveness of
the NLMS motion filtering module, Table II provides results
for the optimal modular system when the NLMS filter is and
is not applied. A clear improvement in all listed metrics can
be observed by using the NLMS filter. This highlights the
importance of accounting for the motion residue term in (7).
Failing to do so can cause the PR extraction system to mistake
the PR trace for the motion trace in videos that contain severe
quasi-periodic motions.

D. Comparison Study for Frequency Estimation Methods

To study the contribution of different frequency tracking
algorithms for robust PR estimation, we compare the perfor-
mances of four frequency estimation algorithms. Experimental
results for these algorithms are provided in Table III. AMTC

(f) (z)

Fig. 5. Sample frames in fitness video dataset with three types of
fitness motion: (a) stationary bike, (b) elliptical machine, and (c) tread-
mill. The challenges in the dataset include head rotation in (d) yaw
and (e) pitch, (f) motion blurred frames, and (g) significant illumination
change on the face.

significantly outperforms the other three methods in the PCC,
FEeounts Frae, and Erysg with respective performance gains of
0.26, 24.1%, 9.3%, and 15.7 bpm over the second best perform-
ing algorithm in each of these metrics. The superior performance
of AMTC highlights the challenge of frequency tracking under
extremely noisy conditions. Even though motion estimation,
pulse color mapping, and adaptive motion filtering are designed
to mitigate motion artifacts, they cannot completely remove
such artifacts. This results in the final extracted PR signal
remaining relatively noisy around the PR frequency, indicated
by the average SNR of —0.8 dB for the videos processed with the
optimized system. This is evidenced in the top right spectrogram
in Fig. 6, in which the PR trace signal is visible, but surrounded
by noise. The influence of outliers in PR extraction methods that
rely on local peak finding may thus result in biased estimates
under such conditions. Since AMTC directly enforces temporal
continuity through regularization in the cost function, it is less
susceptible to noise influence, generating a smoother frequency
trace.

E. Impact of the Fitness Motion Type

To study the effect of the subject’s exercise motion on the
pulse signal and the PR estimation accuracy, we show the
averaged SNR and FEi,. using bar plots in Fig. 7(c) and (d),
respectively. We note that the highest pulse signal quality and
the PR estimation accuracy are achieved in the stationary bike
scenario, whereas the PR estimation in the treadmill scenario is
overall the least accurate. As seen in the sample video frames
shown in Fig. 5(a)—(c), there is only minor face rigid motion
when a subject is exercising on a stationary bike, especially
in a sitting position. On the other hand, the subject motion is
much more significant in the elliptical machine and the treadmill
scenarios. The experimental results are therefore consistent with
the intuition that the more significant the subject exercising
motion is, the more difficult it becomes to extract precise PRs
from the facial videos.
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Fig. 7. System performance using different pulse color mappings in
terms of (a) SNR and (b) E\4te when motion filtering is and is not applied.
Optimal system performance in terms of (c) SNR and (d) Erate under
different forms of exercise. Motion filtering improves the system perfor-
mance regardless of the selected pulse color mapping, while exercises
involving less nonrigid motion lead to the highest system performance.

F. Evaluation on ECG Fitness Dataset

In this section, we extend our analysis of the OF methods
described in this paper to emphasize the importance of satisfying
their underlying assumptions to obtain accurate results. OF
methods rely on two major assumptions:

1) Brightness constancy: The observed brightness of an ob-
ject is constant over time.

Framel Frame2 Reference

Stable

Unstable

Fig. 8. lllustration of different motion types in the ECG Fitness dataset
and the spectrograms produced for the reference ECG signals, the
estimated pulse signals obtained from the modular system, and the
motion signals obtained from face tracking.

2) Motion smoothness: Local image motion can be approx-
imated by local derivatives.

These assumptions are reasonably satisfied when a person’s
face remains in a frontal position with respect to a camera during
exercise. However, large unconstrained motions such as head
rotations and tilting may violate these assumptions. That is, as a
person’s face deviates from its frontal position with respect to the
camera, the angle between the light source, skin, and camera also
changes. This violates the first assumption. The second assump-
tion may also be violated since such unconstrained motions may
cause a large frame-by-frame displacement of nearby points,
and may even cause certain points on a person’s face to become
occluded.

We focus our analysis on the ECG Fitness dataset [66] since
subjects are allowed to perform unconstrained motions in these
videos, which could potentially lead to violations of the OF as-
sumptions. Fig. 8 provides examples of stable and unstable head
movements present in this dataset and the effects they have on PR
estimation. The first two columns provide sample frames from
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TABLE IV
OF MoTION COMPENSATION PERFORMANCE SCHEMES FOR
EXTERNAL DATABASE

TABLE V
PERFORMANCE OF MOTION FILTERING WHEN OTHER MODULES ARE FIXED
FOR EXTERNAL DATABASE

SNR PCC Ecount FErate Ermse

(dB) (%) (%) (bpm)
OF-LK 09 (2.3) 039 (0.72) 509 (37.9) 11.5(154) 14.7 (18.8)
: OF-HS 09 (2.3) 041 (0.72) 49.5(38.1) 11.5(154) 14.5(18.8)

All Videos
OF-F 09 (1.8) 0.53 (0.59) 47.1 (41.7) 12.0 (16.2) 152 (19.7)
OF-B 1.3 (1.9) 0.77 (0.43) 28.6 (32.1) 6.0 (12.2) 8.1 (16.2)
F-LK 09 (24) 045 (0.70) 46.1 (36.5) 9.5 (13.9) 11.6 (16.8)
: OF-HS 09 (2.4) 0.47 (0.70) 44.6 (36.6) 9.3 (14.0) 11.6 (16.8)
Stable Videos

OF-F 1.1 (1.8) 0.54 (0.60) 42.2 (40.6) 11.1(16.4)  13.8 (20.5)
OF-B 1.4 (1.9) 0.83(0.36) 20.1(22.8) 2.2 (1.8) 3.1 (2.6)

two videos. Columns three, four, and five respectively provide
the spectrograms of the reference ECG signal, estimated pulse
signal, and motion signal obtained from face tracking. We can
see clear PR traces in the rPPG spectrogram of the first subject,
whereas the second subject’s occlusion-based movements lead
the rPPG spectrogram to produce noise.

Notably, we have observed that some of the ECG reference
signals provided in this dataset are susceptible to motion arti-
facts. This issue can be observed from the presence of multiple
strong traces appearing in the top reference ECG spectrogram
in Fig. 8. In particular, multiple strong traces can be seen (corre-
sponding to the motion and PR harmonics) in the first reference
spectrogram. Thus, identifying the correct trace associated with
a person’s PR becomes critical for analyzing a PR estimation
system on this dataset. To determine the correct trace, we track
the horizontal and vertical face motions in each video to obtain
m, and m,, as in Section III-B(2). By analyzing the spectrogram
of the sum of these two signals, we obtain an estimate of the
motion present in the video, which enables us to distinguish
between PR and motion (when present) spectrogram traces of
the reference ECG signals. Once this is done, we manually
label all PR traces in the spectrograms of each reference ECG
signal. Referring back to the spectrograms in Fig. 8, we can
clearly observe the motion traces present in the first subject’s
reference spectrogram. In particular, the bottom trace in this
reference spectrogram corresponds with the strong trace in the
corresponding motion spectrogram.

Of the 34 elliptical and stationary bike machines available for
analysis, the ECG reference and motion spectrograms associated
with the elliptical videos for subjects 1 and 4 show strong traces
in the same locations. This suggests that the motion interference
significantly degrades these ECG reference signals, so we omit
these videos from analysis leaving us with 32 videos to analyze.
In Table IV, we provide results that demonstrate the impact that
violating the OF assumptions has on the performance of the
PR system. The top set of results was obtained by analyzing
the optimal modular system configuration while varying the
optical flow implementation for all 32 elliptical and stationary
bike videos. The bottom set of results is provided for the subset
of videos for which there are no significant violations of the
OF assumptions. That is, we removed the elliptical videos for
subject 5 and the bike videos for subjects 9 and 14, leaving

SNR PCC Ecount Erate Ermsk
(dB) (%) (%) (bpm)
All Vid No NLMS-ICh 1.2 (1.7) 0.64 (0.54) 443 (44.1) 158 (20.5) 19.0 (25.1)
1deos NLMS-ICh 1.3 (1.9) 077 (043) 27.6 32.1) 6.0 (123) 8.1 (16.2)
Stable Videos N0 NLMS-ICh 13 (19) 076 (0.40) 366 (415) 129 (199) 154 (23.7)
NLMS-ICh 14 (1.9) 083 (0.36) 20.1(228) 22(1.8)  3.1(26)
TABLE VI

PERFORMANCE OF TRACKING METHODS WHEN OTHER MODULES ARE
FIXED FOR EXTERNAL DATABASE

PCC Ecounl Erale ERMSE

(%) (%) (bpm)
ME 031 (049) 402 (342) 14.6 (13.1) 25.0 (20.0)
4 PF 042 (0.63) 44.8 (44.8) 14.5(20.6) 192 (25.9)
AlLVideos v ppr 066 (042) 34.5(34.1) 8.6 (113) 133 (16.8)
AMTC 077 (0.43) 286 (32.1) 6.0 (122) 8.1(162)
ME 035 (0.50) 347 31.0) 12.8 (122) 22.4 (18.9)
) PE 049 (0.59) 39.1 43.1) 12.5(19.4) 162 (22.9)
Stable Videos v \ppr 073 (037) 277 27.9) 5667 9.4 (11.7)
AMTC 083 (0.36) 20.1 22.8) 22(1.8) 3.1 (2.6)

us with 29 remaining videos. The OF-B method still tends to
produce the most stable results for all analyzed OF methods.
Noticeably, the results provided for all videos are moderately
worse than those provided in Table I. This is because none
of the videos in our internal dataset severely violate the OF
assumptions. As expected, the results for the subset of stable
videos show a distinct improvement over the results for all
32 videos, with particularly noticeable improvements in the
metrics associated with the top-performing OF-B method. These
performances are more in line with what we would expect for
videos that do not violate OF based on the results observed in
Table I. The PCC, Ermsg and E, values for OF-B, in particular,
are similar to those produced in Table I, meaning that the heart
rate estimates are close to the ground truth estimates and capture
the overall PR trends.

We compare the performance of the modular system with and
without motion filtering, along with different methods used for
tracking the pulse rate (PR). These comparisons are provided
in Tables V and VI, respectively. The results in Table V show
that the overall system performs better when motion filtering
is applied, while all other optimal modules are held constant
across every performance metric. Additionally, as presented
in Table VI, the AMTC method demonstrates the most stable
performance for PR tracking, outperforming all other methods
across all performance metrics. These findings are consistent
with the results and discussion provided for the internal dataset
presented in previous sections of this paper.

G. Discussion: Incorporating DNNs in a Modular System

Much recent effort has been devoted to the development of
neural-network-based approaches, typically designed to be as
close to end-to-end as possible to avoid the tuning of many
hyperparameters in intermediate modules. Such methods have
produced highly accurate results on benchmark datasets. In
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Fig. 9. Example of the spectrograms of the rPPG signals generated
from CVD (first row) and PhysNet (second row) without (left column) and
with (right column) the NLMS motion filtering. The reference PR trace
and the estimated PR traces generated by the AMTC and ME methods
are plotted on top of each spectrogram. The combination of motion
filtering and AMTC-based tracking produces the closest estimated pulse
signal to the reference.

this subsection, we illustrate the benefit that a modularized
system can have on the performance of two such networks—
PhysNet [45] and CVD [47]. Specifically, we incorporate them
in place of the motion estimation, cheek region selection, spatial
averaging, and pulse color mapping modules of our system.
For PhysNet, this means that we feed in motion-aligned face
clips into the network before outputting rPPG signals, while for
CVD this means extracting MSTmaps from the aligned face clips
before feeding them into the network for rPPG extraction. Since
our fitness exercise dataset only provides ground truth heart rate
data instead of pulse data, we train these models on the PURE
dataset [75], which contains six videos, each under different
types of face motions (still, talking, slow rotation, fast rotation,
slow translation, fast translation), for ten subjects. We trained the
models using the publicly available source code provided by the
authors on eight of the subjects’ data and used the remaining two
subjects’ data for testing. The results from using the optimized
system on the leave-two-out participants from the PURE dataset
show respective Fiu. and Fryvsg values of 0.07 and 4.81 for
CVD and 0.04 and 2.59 for PhysNet, respectively. These values
verify the networks’ high performance on the PURE dataset.

To verify our optimized system’s utility, we compared PR
estimation performance with and without the NLMS filter and
with AMTC and ME for pulse extraction on our fitness exercise
dataset. The visual results in Fig. 9 show that motion artifacts can
dominate the spectrograms of neural network rPPG signals with-
out motion filtering, degrading AMTC and ME tracking quality
due to strong traces from subjects’ motions. When NLMS
filtering is applied, it effectively eliminates motion artifacts,
improving the processing of these rPPG signals. AMTC, being
robust in frequency tracking, can track the PR signal frequency
once the motion trace is removed, while ME, less robust to noise,
produces unstable PR estimates even after filtering.

‘Without Traces

With Traces

H
£
I|
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£
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With Traces

Without Traces

Example 3

With Traces

Fig. 10. Three example neural network failure cases (right two
columns) versus principled system (left column). Spectrograms with and
without overlaid traces are provided for reference. It is revealed that
weak PR traces produced by the neural networks prevent AMTC from
precisely tracking the PR signals.

Neural networks often struggle to generalize when the char-
acteristics of the training and testing data differ significantly. We
illustrate three examples of failure cases from the neural network
methods that were trained on the PURE dataset in the right
two columns of spectrograms in Fig. 10, and the corresponding
success cases from the principled system in the left column.
The raw spectrograms without overlaying traces reveal that the
traces that appear in the spectrograms produced by the optimized
neural network systems for the CVD and PhysNet models are
weaker relative to the noise of the signal or non-existent around
the ground-truth PR estimates. This makes it difficult, if not
impossible, for any pulse extraction methods to extract the PR
accurately. This issue is not present when using the optimized
principled system, as evident from the precisely plotted PR
estimates seen in the left column of Fig. 10. While domain
adaptation and transfer learning techniques may help address
the data mismatch between training and deployment, it is chal-
lenging to automatically identify the mismatch, gather necessary
additional data, and perform additional training or adaptation.
That said, a more thorough analysis should be conducted to
verify the generalization capabilities (especially for end-to-end
neural network systems); gain broader insights into the roles that
a system with principled, explainable approaches such as ours
can have on these neural network methods; and use these insights
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to guide the future design of neural networks for PR extraction
under challenging fitness scenarios. Such efforts can lead to the
design and optimization of explainable neural-network-based
modules in a systematic pipeline, for example, to understand
the roles of adaptive filtering versus the recurrent neural network
adopted in Maity et al.’s design [76] to handle motion.

VI. CONCLUSION

In this paper, we have carried out a quantitative review
of the last decade and a half’s representative efforts in the
rPPG field, and have built a robust principled PR monitoring
system for fitness exercise videos. We focused on building a
high-precision motion compensation scheme with the help of
the localized facial optical flow and used motion information as
a cue to adaptively remove ambiguous frequency components
for improving the PR estimates. We have compared different
methods at each module level by examining four representative
performance measures. The results demonstrate the synergistic
strength of the POS pulse color mapping and NLMS motion
compensation schemes. The results also suggest the importance
of robust frequency tracking for accurate PR estimation in low
SNR fitness scenarios.
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