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Abstract
Many physicalphenomena are modeled as stochastic searchers looking for
targets. In these models, the probability that a searcher finds a particular tar-
get, its so-called hitting probability,is often of considerable interest.In this
work we determine hitting probabilities for stochastic search processes condi-
tioned on being faster than a random short time.Such times have been used
to model stochastic resetting or stochastic inactivation.These results apply
to any search process, diffusive or otherwise, whose unconditional short-time
behavior can be adequately approximated,which we characterize for broad
classes of stochastic search. We illustrate these results in several examples and
show thatthe conditionalhitting probabilities depend predominantly on the
relative geodesic lengths between the initial position of the searcher and the
targets.Finally, we apply these results to a canonical evidence accumulation
model for decision making.

Keywords: stochastic search, hitting probabilities, first passage time,
stochastic resetting, stochastic inactivation

1. Introduction

Various physical phenomena are often modeled as stochastic ‘searchers’ looking for ‘targets’.
When there is more than one target, the probability that a searcher finds a particular target, its
so-called hitting probability, is typically of interest. In recent years there has been significant
progress in characterizing hitting probabilities associated with stochastic search processes [1–
5]. Here, we study the hitting probabilities associated with stochastic search conditioned on
being faster than a random short time. Given the generality of its construction, the results herein
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are useful in numerous areas of applied mathematics and statistical physics research including
search under stochastic resetting or stochastic inactivation.

Stochastic resetting describes the random repositioning of a searcher according to a given
distribution.The utility of stochastic resetting often lies in reducing the mean first passage
time (FPT) of search processes or otherwise optimizing search processes [6–13]. Consider, for
example, the work of Mercado–Vásquez and Boyer [14], which models predator dynamics as
Lévy flights that stochastically reset to regions of prey. Instead of assessing strategy optimality
in terms of search times, the authors use predator population as a proxy. Their analysis reveals
an interesting relationship between mobility, resetting, birth, death, and total population.

Stochastic inactivation, which is used to assign a lifespan to a searcher according to a given
distribution, can also be used to tune, or sharpen, search process statistics [15–19]. In the work
of Ma et al [20] on the role of inactivation in intracellular signalling, inactivation can model
degradation, (de)phosphorylation, or other mechanisms that immobilize signal propagation.
The authors use soft x-ray tomography images of human B cells to study the stochastic search
process of a stochastically inactivating intracellular signal from cell membrane to nucleus.
By numerically solving the Fokker–Planck equation associated with the propagation of the
signal, they determine the full distribution of the arrival time of the signal to the nucleus and
quantify how stochastic inactivation can compensate for the delay in signal arrival times due
to organelle barriers.

Much of the current literature involving stochastic resetting or inactivation, like the
examples described above, considers only exponentially distributed random times. While often
suitable,especially in memoryless systems,by no means does this choice exhaust all such
conditional search processes [21–23]. For example, stochastic inactivation is a one-time event
and thus agnostic to system memory. Moreover, it is typical that memory plays a critical role
in population-level search processes. For these reasons, and also to emphasize the ease with
which our methods can be adapted, we consider a variety of distributions for this time.

In particular, we consider an evidence accumulation model for fast decision making before a
short, deterministic time. By equating evidence with the log-likelihood ratio of possible hypo-
theses, or choices, experimental data suggests that models of evidence accumulation accur-
ately capture decision-making and, moreover, that this process evolves according to a biased
Brownian motion [24–30]. Such models have thus been widely used to study how humans and
other animals make choices [31–38].

In the fast search limit, only an approximation of the short-time behavior of the uncondi-
tional search process is needed to compute the conditional hitting probabilities. To be precise,
consider an unconditional search process and let {X(t)} t⩾0 denote the path of the stochastic
searcher in a domain D ∈ Rd with K ⩾ 2 targets denoted byV0, V1, . . . ,VK− 1  D∈ . Then the
first hitting time to a target is

τ := inf
{

t > 0 : X(t)  ∈ ∪ K− 1
k= 0 Vk  D∈

}
.

Let κ  {∈ 0, 1, . . . ,K − 1} denote the index of the target hit by the searcher. Then the hitting
probability of targetVk is

P(κ = k) for k  {∈ 0, 1, . . . ,K − 1} .

Analytically computing the hitting probabilities for a purely diffusive search requires solving
an elliptic partial differential equation with mixed boundary conditions and,depending on
the domain, can be quite involved [39]. A similarly involved procedure applies to computing
statistics of first hitting times [40].
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While these results are useful in numerous settings, it has been emphasized that other times-
cales are often more relevant. For instance, the term ‘redundancy principle’ has recently been
coined to convey the utility of seemingly wasteful copies of biological entities in accelerat-
ing time-sensitive processes [41, 42]. In this case, the relevant time scale is that of the fastest
searcher, called the extreme FPT, and the corresponding hitting probabilities are called extreme
hitting probabilities [43].

In another instance, that of interest in this work, there may be a time limit before which
an event must occur. Such a time limit may occur naturally or can serve as an external force
aiming to filter out certain perhaps undesirable behaviors and provide some amount of reli-
ability, or predictability, to the system. For example, it was recently shown that early arrivers
to targets encode information about search initial condition [44]. Throughout, we refer to this
time limit in relation to stochastic resetting but we emphasize that these results hold much
more generally. Moreover, we remark that while first hittingtimesare not agnostic to whether
the time constraint indicates inactivation or resetting, hittingprobabilitiesare.

As a motivating example, consider a driftless diffusive search process with diffusivityD > 0
in one dimension. Assume the searcher starts atx0 ∈ (0, ℓ/2) where V0 = (−∞, 0] and V1 =
[ℓ, ∞) are targets. LetL0 > 0 andL1 > 0 be the distances toV0 andV1 from x0, respectively.
In the case that there is no condition on the search time, one can show [45] that the probability
of the searcher reachingV1 beforeV0 is

P(κ = 1) = x0
ℓ = 1 − P(κ = 0).

Now suppose the searcher stochastically resets to its initial positionx0 at random independent
and identically-distributed times governed by σ > 0. If σ > 0 is exponentially distributed with
rater > 0, we show in section 3.1 that the hitting probability toV1 decays to zero like

P (κ = 1|τ < σ) ∼ exp
(

−
√

(L1 − L0)2 r/ D

)
asr → ∞. (1)

In words, equation (1) says thatthe hitting probability to the further targetdecays to zero
exponentially fast with respect to the square root of the resetting rate. This decay is especially
fast when the relative distances to the nearest target and furthest targets is large. Hence, while
previous studies often focus on using resetting to accelerate search times, equation (1) shows
how resetting can be used to ensure that a particular target is found. We illustrate this beha-
vior in figure 1. The remainder of this paper concerns this problem in more general settings
with various stochastic search processes, various spatial domains of different dimensions, and
various resetting distributions.

Throughout,we write the hitting probability of target Vk associated with a resetting
searcher by

P(κ = k|τ < σ) for k  {∈ 0, 1, . . . ,K − 1} . (2)

Let k= 0 be the index of the target nearest the initial position of the searcher. In equation (1)
we show how a hitting probability depends on the geodesic lengths to the nearest target and the
target of interest from the searcher initial position. We verify in this work that this exponential
decay holds in much more general scenarios of diffusive search and, more broadly, that

P(κ = 0|τ < σ) → 1 in the frequent resetting limit. (3)
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Figure 1.Hitting probabilities for diffusion with unit diffusivity, initial position x0 ∈
(0, ℓ). Solid colored curves illustrate case of exponentially distributed resetting times
σ > 0 with rater > 0; dashed black curve denotes no conditioning.

That is, a frequently resetting searcher will necessarily find the nearest target. Though (3) may
seem intuitive, we derive quantitative estimates of the convergence in (3) for a wide variety of
search scenarios. Moreover, we show that (3) does not hold for every search process of interest.

The rest of the paper is organized as follows. We detail the results section 2. In section 3,
we apply these results to several examples and compare to numerical solutions. In section 4,
we apply our results to an evidence accumulation model for decision making. We conclude by
discussing our results in the context of recent related work. Proofs and numerical details are
collected in the appendix.

2. Conditional hitting probability asymptotics

In this section, we present results on hitting probabilities for searchers conditioned on being
faster than a random shorttime. This section and the results herein make no reference to
the underlying search process, instead assuming properties of the short-time behavior of the
unconditional hitting probabilities. Mild conditions are placed on the resetting distribution. In
section 3 we apply our results to diffusive search and other stochastic search processes.

2.1. Probabilistic setup and integral representation

Let τ > 0 be a strictly positive random variable and let κ be a random variable taking values
from the set {0, 1, . . . ,K − 1}. In the applications of this text, τ > 0 denotes the hitting time of
an unconditional search process to a target and κ indexes which of theK ⩾ 2 targets is hit. For
each indexk  {∈ 0, 1, . . . ,K − 1}, let τ (k) be the hitting time to targetVk,

τ (k) =

{
τ κ = k,

+∞ κ ̸= k,

and define

F(k)
τ (t) := P

(
τ (k) ⩽ t

)
= P(τ ⩽ t ∩ κ = k) , t ∈ R.
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Let Fτ (t) denote the cumulative distribution function of τ > 0,

Fτ (t) := P (τ ⩽ t) =
K− 1∑

k= 0

F(k)
τ (t) , t ∈ R.

Further, let σ > 0 be a strictly positive random variable defined by

σ := Y/ r,

where we call the parameterr > 0 the resetting rate andY> 0 is a strictly positive random
variable with unit mean and a finite moment generating function in a neighborhood of the
origin. That is, there exists η > 0 such that

E [Y] = 1,

E
[
ezY

]
< ∞ for all z∈ [−η, η] .

(4)

Applying the second condition in (4) and Chebyshev’s inequality (see, for example, theorem
1.6.4 in [46]), we obtain thatSY(y) := P( Y> y) decays at least exponentially fast,

SY(y) ⩽ Ce−η y for all y ∈ R,

where η > 0 is as in (4) andC = E[eηY] < ∞. Since τ and σ are independent random vari-
ables, we can write the probability of the search process ending prior to a resetting event as a
Riemann–Stieltjes integral,

p = p(r) := P (τ < σ) = E [ Sσ (τ )] =
ˆ ∞

0
Sσ (t) dFτ (t) , (5)

whereSσ (t) = P(σ > t) is the survival probability of σ > 0.Similarly, since τ(k) and σ are
independent random variables, the probability of the search process hitting target κ =k prior
to a resetting event is

pk = pk (r) := P (κ = k∩ τ < σ) = E
[
Sσ

(
τ (k)

)]
=

ˆ ∞

0
Sσ (t) dF(k)

τ (t) . (6)

To avoid trivial cases, we assumep> 0 andpk > 0 for all r > 0. Hence, by definition of con-
ditional probability,

P(κ = k|τ < σ) ∼ p̃k

p̃
asr → ∞ (7)

where p̃ = p̃(r) is any function of r > 0 such that p̃ ∼ p as r → ∞ and likewise of p̃k.
Throughout this work,f ∼ g meansf/ g → 1. The results in section 2.2 allow us to determ-
ine explicit expressions for (7) in a wide variety of stochastic search processes.
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2.2. Exact hitting probability asymptotics

Applying (7) to a specific search process requires specifying a resetting distribution. We con-
sider four such distributions: exponential, gamma, uniform, and sharp (or deterministic). The
following proposition, previously stated and proved in [43], states the asymptotic behavior of
an integral representative of those in (5) and (6) in typical scenarios of diffusive search under
exponential and gamma distributed resetting.

Proposition 1.Assume C> 0, δ > 0 and b∈ R. Then

ˆ δ

0
e− rt tbe− C/ t dt ∼

√
πC

2b+ 1
2 r

− 2b− 3
4 e−

√
4Cr as r→ ∞. (8)

Theorem 2 below uses proposition 1 to compute the asymptotic behavior of (2) in the large
r limit assuming information about the short-time behavior ofFτ andF(k)

τ on a linear scale in
the case that resetting is gamma distributed. Its corollary (corollary 3) concerns the specific
case that resetting is exponentially distributed.

Theorem 2.Under the assumptions of section2.1, assume further thatσ > 0 is gamma dis-
tributed with shapeη > 0 and rate r> 0 and that for some k {∈ 1, . . . ,K − 1} ,

Fτ (t) ∼ Atme− C/ t as t→ 0+ , (9)

F(k)
τ (t) ∼ Btne− Ck/ t as t→ 0+ , (10)

where A> 0, B> 0, Ck > C > 0 , and m, n ∈ R. Then

P(κ = k|τ < σ) ∼ ξ r(m− n)/ 2e− 2(
√

Ck−
√

C)
√

r as r→ ∞, (11)

where

ξ := B
A

C(2n+ 2η− 1)/ 4
k

C(2m+ 2η− 1)/ 4 > 0.

Corollary 3.Under the assumptions of theorem2, assume further thatη = 1. That is,σ > 0 is
exponentially distributed with rate r> 0. Then (11) holds with

ξ := B
A

C(2n+ 1)/ 4
k

C(2m+ 1)/ 4 > 0.

We remark on the exclusion ofk= 0 from theorem 2 above: Information about the nearest
targetdetermines the constants in (9).Hence if k= 0 the expressions in (9) and (10) are
identical and the asymptotic hitting probability is trivial. For this reason,k= 0 is also omitted
from the remaining results that follow.

Moreover,we note that in both theorem 2 and corollary 3 the dominant behavior of the
asymptotic hitting probabilities depends only onC andCk. We show in section 3 that this
dependence is in fact only on the geodesic lengths to the nearest target and to targetk for
diffusive search. Also observe that asr increases in theorem 2 and corollary 3, the asymptotic
hitting probabilities behave progressively more like decaying exponential functions. The same
qualitative behavior is true in the following theorem, which is relevant to typical scenarios of
diffusive search under uniformly distributed resetting.
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Theorem 4.Under the assumptions of section2.1, assume further thatσ > 0 is uniformly
distributed on[0, 2/r] and for some k  {∈ 1, . . . ,K − 1} ,

Fτ (t) ∼ Atme− C/ t as t→ 0+ ,

F(k)
τ (t) ∼ Btne− Ck/ t as t→ 0+ ,

where A> 0, B> 0, Ck > C > 0 , and m, n ∈ R. Then

P(κ = k|τ < σ) ∼ B
A

C
Ck

( r
2

) m− n
e−( Ck− C) r/ 2 as r→ ∞.

In addition to instances of diffusive search,we consider superdiffusive search,discrete
stochastic search on a network,and run-and-tumble search.Despite vast differences in the
nature of these three search processes, the short-time behavior of their unconditional search
times is similar. The following theorem describes the asymptotic behavior of the conditional
hitting probabilities under exponential and gamma distributed resetting.

Theorem 5.Under the assumptions of section2.1, assume further thatσ > 0 is gamma dis-
tributed with shapeη > 0 and rate r> 0 and that for some k {∈ 1, . . . ,K − 1} ,

Fτ (t) ∼ Atm as t→ 0+ , (12)

F(k)
τ (t) ∼ Btn as t→ 0+ , (13)

where A> 0, B> 0, and0 < m⩽ n. Then

P(κ = k|τ < σ) ∼ B
A

Γ (n+ η)
Γ (m+ η)

rm− n as r→ ∞.

The following corollary, while immediately clear from theorem 5, applies to superdiffusive
search [47] and fundamentally differs from instances of diffusive search. In particular, these
probabilities are neither zero nor one for every target in the asymptotic limit, hence, the nearest
target may not be found.

Corollary 6.Under the assumptions of theorem5, assume further that m= n = 1 . Then

P(κ = k|τ < σ) ∼ B
A

as r→ ∞.

The final theorem, stated below, holds for any short-time behavior ofF(k)
τ andFτ specified in

the aforementioned results and any other instance not specified herein. In particular, it conveys
that hitting probabilities conditioned on a deterministic reset time behave like the ratio of these
functions of τ > 0 evaluated at that time.

Theorem 7.Under the assumptions of section2.1, assume further thatσ > 0 is deterministic
and equal toσ := 1/ r. Then

P(κ = k|τ < σ) = F(k)
τ (1/ r)

Fτ (1/ r)
∼ F̃(k)

τ (1/ r)
F̃τ (1/ r)

as r→ ∞,

whereF̃τ andF̃(k)
τ denote the short-time behavior of Fτ and F(k)

τ , respectively,

Fτ (t) ∼ F̃τ (t) as t→ 0+ ,

F(k)
τ (t) ∼ F̃(k)

τ (t) as t→ 0+ .

7
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Figure 2.Conditionalhitting probabilities for diffusion with diffusivity D = 1, drift
µ ∈ R, initial positionx0 ∈ (0, ℓ/2), and exponentially distributed σ > 0 with rater > 0.
Curves illustrate analytical asymptotic estimates; markers denote numerical solutions.
See sections 3.1 and 3.2 for details.

3. Examples and numerical solutions

The results stated in section 2 provide the exact asymptotic behavior of conditional hitting
probabilities in the larger limit in terms of the short-time behavior ofFτ andF(k)

τ . In this
section we illustrate these results in several specific examples and compare our analytical res-
ults to numerical solutions.

3.1. Pure diffusion in one dimension

Consider a diffusive search process with diffusivityD > 0 in one dimension. Assume the
searcher starts atx0 ∈ (0, ℓ/2) where V0 = (−∞, 0] and V1 = [ℓ, ∞) are targets. For ease of
notation, define the distances fromx0 to each target by

0 < L0 := x0 < ℓ − x0 =: L1.

It has been shown in numerous works, for example [48], thatFτ andF(1)
τ satisfy (9) and (10)

where

A =

√
4D
πL2

0
, B =

√
4D
πL2

1
, C = L2

0
4D

, C1 = L2
1

4D
, m= n = 1/2. (14)

Hence, Corollary 3 implies that for exponentially distributed σ > 0 with rater > 0 the condi-
tional hitting probabilities behave like

P (κ = 1|τ < σ) ∼ e −

√
(L1− L0)2r

D = e−

√
( ℓ− 2x0)2r

D asr → ∞.

That is, the probability of the searcher finding the further target decays exponentially fast with
respect to the square root of the resetting rate. In particular, notice that even if the searcher
starts only slighter closer to one target, resetting can guarantee that the nearer target is found.

The asymptotic behavior of the conditional hitting probabilities for pure diffusion in the
interval with numerous distributions for σ are catalogued in table 1. Figure 2 illustrates these
probabilities and compares them to numerical solutions.
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Table 1.Conditional hitting probabilities on the interval for types of diffusive search and various resetting
distributions. Subscripts ‘e’, ‘g’, ‘u’, and ‘s’ on σ > 0 denote exponential, gamma, uniform, and sharp
distributions. See sections 3.1–3.3 for details.

Pure diffusion With drift With partially absorbing targets

P(κ = 1| τ < σ e) e−
√

(ℓ− 2x0) 2r/ D e−
√

(ℓ− 2x0) 2r/ D+(µℓ/ 2D) γ 1
γ 0

e−
√

(ℓ− 2x0) 2r/ D

P(κ = 1| τ < σ g)
( ℓ− x0

x0

) η− 1e−
√

(ℓ− 2x0) 2r/ D
( ℓ− x0

x0

) η− 1e−
√

(ℓ− 2x0) 2r/ D+(µℓ/ 2D) γ 1
γ 0

( ℓ− x0
x0

) η− 1e−
√

(ℓ− 2x0) 2r/ D

P(κ = 1| τ < σ u) x3
0

(ℓ− x0) 3 e−(ℓ− 2x0) rℓ/( 8D) x3
0

(ℓ− x0) 3 e−(ℓ− 2x0) rℓ/( 8D)+(µℓ/ 2D) γ 1
γ 0

x4
0

(ℓ− x0) 4 e−(ℓ− 2x0) rℓ/( 8D)

P(κ = 1| τ < σ s) x0
ℓ− x0

e−(ℓ− 2x0) rℓ/( 4D) x0
ℓ− x0

e−(ℓ− 2x0) rℓ/( 4D)+(µℓ/ 2D) γ 1
γ 0

x2
0

( ℓ − x0) 2 e−(ℓ− 2x0) rℓ/( 4D)

3.2. Diffusion with constant drift

Assuming the details of section 3.1, consider in addition that the searcher experiences a con-
stant drift µ ∈ R. That is, suppose that prior to a resetting event at time σ > 0 the searcher
position {X(t)} t⩾0 evolves according to a stochastic drift–diffusion process,

dX(t) = µd t +
√

2DdW(t) ,

where {W(t)} t⩾0 denotes a standard one-dimensionalBrownian motion.It has again been
previously shown [43] thatFτ andF(1)

τ satisfy (9) and (10) where

A = e−µ L0/ 2D

√
4D
πL2

0
, B = eµL1/ 2D

√
4D
πL2

1
,

andC, C1, m, andn in (14) are left unchanged.
Thus by corollary 3 where σ > 0 is exponentially distributed with rater > 0, the conditional

hitting probabilities behave like

P (κ = 1|τ < σ ) ∼ e
µℓ
2D e−

√
( ℓ− 2x0)2r

D asr → ∞ .

Qualitatively, we observe exponential decay of the hitting probability to the further target akin
to the case of pure diffusion in section 3.1.The sole difference in this case is a prefactor
exhibiting the influence of drift,which increases the hitting probability of the targetin its
direction. Still, this influence is limited: in the limit asr → ∞ the hitting probability to the
nearest target goes to one independent of drift directionality.

The asymptotic conditional hitting probabilities for diffusion with drift in the interval with
numerous distributions for σ are catalogued in table 1. Figure 2 illustrates these probabilities
and compares them to numerical solutions.

3.3. Diffusion with partially absorbing targets

In the previous two examples, we assumed that the target was ‘found’ by the searcher instant-
aneously upon arrival. That is, the so-called trapping rate was infinite. Alternatively, one may
be interested in search processes wherein targets are found only after the searcher has spent
sufficient time nearby. That is, for the unconditional search process with partially absorbing
targets, the FPT is given by

τpartial := inf { t > 0 : λk > ξ k/γ kfor somek  {∈ 0, . . . ,K − 1}}

9
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where {ξk}
K− 1
k= 0 are unit rate exponential random variables, {γk}

K− 1
k= 0 are non-negative trapping

rates, and λk is the local time ofX(t) on targetVk [49].
Now in addition to the details of section 3.1, suppose the trapping rate of the target atx= 0

is given by γ0 ∈ (0, ∞) and that of x = ℓ is γ 1 ∈ (0, ∞). To be precise, suppose the survival
probability for the search process, whose backward Kolmogorov equation is given by the one-
dimensional heat equation,

∂tS= D∂xxS, x ∈ (0, ℓ) ,

with initial conditionS(x, t = 0) = 1, has Robin boundary conditions,

D∂xS= γ 0S, x = 0,
− D∂xS= γ 1S, x = ℓ.

Solving this system and taking the limits as right and left boundaries of the interval extend
out to infinity yield the short time behavior ofFτ andF(1)

τ , respectively. These expressions
have been shown [48] to satisfy (9) and (10) with

A =
2γ0

L0

√
4D
πL2

0
, B =

2γ1

L1

√
4D
πL2

1
, m= n =

3
2

with C andC1 unchanged from (14).
Corollary 3 thus implies that, for exponentially distributed σ > 0 with rater > 0, the con-

ditional hitting probabilities behave like

P (κ = 1|τ < σ) ∼
γ1
γ0

e−

√
( ℓ− 2x0)2r

D asr → ∞.

Qualitatively, we observe exponential decay of the hitting probability to the further target again
akin to the case of pure diffusion in section 3.1. The prefactor in this case illustrates the rela-
tionship between the trapping rates at each target: a relatively high trapping rate at the further
target increases its corresponding hitting probability but this influence is always exceeded by
the exponential decay in the limit asr → ∞.

The asymptotic conditional hitting probabilities for pure diffusion with partially absorbing
targets in the interval with numerous distributions for σ are catalogued in table 1.

3.4. Diffusion between concentric spheres

Consider a diffusive search process with diffusivityD > 0 in three spatial dimensions between
two perfectly absorbing concentric spheres of radiiR1 > R0 > 0. Let the initial position of
the searcher bex0 := ∥ X(0)  ∥ ∈ ( R0, (R0 + R1)/2) where  · ∥ ∥ denotes the Euclidean norm. In
words, suppose the searcher starts closer to the inner sphere. For ease of notation, define the
distances fromx0 to each target by

0 < L0 := x0 − R0 < R1 − x0 =: L1.

It has been derived in numerous works,for example [43], that Fτ and F(1)
τ satisfy (9)

and (10) where

A = R0

x0

√
4D
πL2

0
, B = R1

x0

√
4D
πL2

1
, C = L2

0
4D

, C1 = L2
1

4D
, m= n = 1/2.

10
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Figure 3.Left: Conditionalhitting probabilities for diffusion with diffusivity D > 0
between concentric spheres of radiiR0 and R1 and exponentially distributed σ > 0
with rater > 0. Above,y0 := ( x0 − R0)/( R1 − R0). Curves illustrate analytical asymp-
totic estimates; markers denote numerical solutions. See section 3.4 for details. Right:
Conditional hitting probabilities for an RTP with velocityv> 0, tumble rate λ > 0, and
exponentially distributed σ > 0 with rater > 0. Curves illustrate analytical asymptotic
estimates; markers denote simulations. See section 3.7 for details.

Hence, by corollary 3 wherein σ > 0 is assumed to be exponentially distributed with rater > 0,
the conditional hitting probabilities behave like

P (κ = 1|τ < σ) ∼ R1

R0
e−

√
(R0+ R1− 2x0)2r

D asr → ∞.

The asymptotic conditional hitting probabilities for diffusion between concentric 3D
spheres with numerous distributions for σ are catalogued in table 2. Figure 3 illustrates these
probabilities and compares them to numerical solutions.

3.5. Random walk on a network

Now consider the spatially discrete stochastic search process of a random walk on a discrete
network. To be precise, let {X(t)} t⩾0 be a continuous-time Markov chain on a finite or count-
ably infinite state space,I. We assume the jump rates are bounded to preclude the possibility
of infinitely many jumps occurring in a short time on a countably infinite network.Denote
by i0 ∈ I the initial position ofX(t) and denote target nodes (or sets of nodes that constitute
targets) byVk ∈ I wherei0 ̸  ∈ ∪K− 1

k= 0 Vk.
Previous work on stochastic search processes on networks implies thatFτ andF(k)

τ sat-
isfy (12) and (13) where

A =
Λ0

m!
, B =

Λk

n!

with Λ0 and Λk denoting the products of the jump rates ofX(t) along the shortest path fromi0
to the nearest target and fromi0 to targetVk, respectively [50]. Further,n ⩾ 1 is the minimum
number of jumps betweeni0 andVk and similarlym⩾ 1 is the minimum number of jumps
betweeni0 and the nearest target. If there are multiple shortest paths, Λ0 or Λk are the sums of
the products of the jump rates along these paths.

11
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Table 2.Conditional hitting probabilities for various types of stochastic search and resetting distribu-
tions. Subscripts ‘e’, ‘g’, ‘u’, and ‘s’ on σ > 0 denote exponential, gamma, uniform, and sharp distribu-
tions. See sections 3.4–3.7 for details.

Diffusion between concentric spheres RW on a network RTP in an interval

P(κ = 1| τ < σ e) R1
R0

e−
√

( R0+ R1− 2x0) 2r/ D Λ 1
Λ 0

rm− n 1− q
q e−(λ+ r)( L1

v1
− L0

v0
)

P(κ = 1| τ < σ g)
(

R1− x0
x0− R0

) η− 1
e−

√
( R0+ R1− 2x0) 2r/ D Γ( n+η) m!Λ 1

Γ( m+η) n!Λ 0
rm− n 1− q

q

(
L1v0
L0v1

) η− 1
e−(λ+ r)( L1

v1
− L0

v0
)

P(κ = 1| τ < σ u) R1( x0− R0) 3

R0( R1− x0) 3 e− r( R0+ R1− 2x0)( R1− R0)/( 8D) ( m+ 1)!Λ 1
( n+ 1)!Λ 0

(
r
2
) m− n

P(κ = 1| τ < σ s) R1( x0− R0)
R0( R1− x0) e− r( R0+ R1− 2x0)( R1− R0)/( 4D) m!Λ 1

n!Λ 0
rm− n

Figure 4.Left: Path of an unconditional α = 1 Lévy flight search. Markers denote reset-
ting. Right: Conditional hitting probabilities for Lévy flights with α ∈ (0, 2) and expo-
nentially distributed σ > 0 with rater > 0. Lines illustrate analytical asymptotic estim-
ates; markers denote simulations. See section 3.6 for details.

Theorem 5 thus implies that, for exponentially distributed σ > 0 with rater > 0, the condi-
tional hitting probabilities behave like

P(κ = k|τ < σ) ∼
Λk

Λ0
rm− n asr → ∞.

The asymptotic conditional hitting probabilities for random walks on networks with numer-
ous distributions for σ are catalogued in table 2.

3.6. Superdiffusive Lévy flight in one dimension

Suppose now the stochastic search process is a superdiffusive Lévy flight starting fromx0 ∈
(0, ℓ/2) whereV0 = (−∞, 0] and V1 = [ℓ, ∞) are targets.

A useful characterization of a superdiffusive Lévy flight in this setting is a subordinated
Brownian motion,which is a random time change of a standard Brownian motion.In par-
ticular, if { B(s)} s⩾0 is a standard Brownian motion with unit diffusivity and {S(t)} t⩾0 is a
non-decreasing Lévy process withS(0) = 0. Denote the path of the search process by

X(t) := B(S(t)) + x0, t ⩾ 0.

12
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In a particular scaling limit, the probability densityp(x, t) of the position of the search
process satisfies

∂tp = − D̄ (−∆) α/ 2 p, t > 0,

whereD̄ > 0 is the generalized diffusivity and (−∆)α/ 2 is the fractional Laplacian with α ∈
(0, 2) [51]. Assumingx0 /∈ V0 ∪ V1, one can show thatFτ andF(1)

τ satisfy (12) and (13) with

A =
Γ (α) D̄sin (απ/2)

π (ℓ − x0)α +
Γ (α) D̄sin (απ/2)

πxα
0

, B =
Γ (α) D̄sin (απ/2)

π (ℓ − x0)α

andm= n = 1 [47, 52]. Hence, by corollary 6 with gamma distributed σ > 0 with shape η > 0
and rater > 0, the conditional hitting probabilities behave like

P (κ = 1|τ < σ) ∼ xα
0

xα
0 + (ℓ − x0)α asr → ∞.

This result differs substantially from the previously considered examples; not only is the
asymptotic hitting probability independent of the (generalized) diffusivity but it is also inde-
pendent of the resetting rate. That is, regardless of the search speed, there is strictly positive
probability that the search finds a far target in lieu of the nearest one. We illustrate this behavior
in the right panel of figure 4.

3.7. Run and tumble in one dimension

We conclude our examples with an application to a stochastically resetting run and tumble
particle (RTP). Recent studies on this process concern steady-state behavior in the absence of
targets [53, 54] and FPTs in the presence of targets [10]. Here we consider the hitting prob-
abilities of an RTP in one dimension between targets atV0 = (−∞, 0] and V1 = [ℓ, ∞) and
initial position x0 ∈ (0, ℓ). We defineL0 := x0 andL1 := ℓ − x0. The searcher has probability
q ∈ [0, 1] of initially moving in the negativex-direction and switches between velocitiesv1 > 0
and −v0 < 0 at Poissonian rate λ > 0. Moreover, we assumeL0/ v0 < L1/ v1. Ultimately by way
of theorem 5, we determine that, for exponentially distributed σ > 0 with rater > 0, the con-
ditional hitting probabilities behave like

P (κ = 1|τ < σ) ∼
1 − q

q
e−(λ+ r)( L1/ v1− L0/ v0) asr → ∞.

The details of this calculation are contained in section A.2 of the appendix. Moreover, the
asymptotic conditional hitting probabilities for one-dimensional RTPs with numerous distri-
butions for σ are catalogued in table 2. Figure 3 illustrates these probabilities and compares
them to numerical solutions.

4. Application to a decision-making model

In this section, we apply theorem 7 to an evidence accumulation model for decision making,
which is a model type that is widely used to describe how individuals gather information to
make decisions [34, 35, 37, 55, 56]. In particular, it has been shown that the log-likelihood ratio
describing the belief state of an individual can be approximated by a drift–diffusion process
[27, 31, 57]. Within this framework we determine the asymptotic behavior of an individual
who makes a decision before a fast deterministic deadline. In the fast decision limit, we show

13



J. Phys. A: Math. Theor. 57(2024) 305003 S Linn and S D Lawley

that the individual decides in agreement with her initial bias. How this limit depends on the
‘tightness’ of the deadline is detailed below.

Consider an individual gathering information according to

dX(t) = µd t +
√

2DdW(t) ,

where the drift parameter, µ ∈ R, represents bias toward a particular decision and the diffus-
ivity, D > 0, denotes the magnitude of the Brownian motion, {W(t)} t⩾0 , which describes the
noisiness in the information gathering process.Suppose first that the individual is deciding
between two choices and that a choice is made when the drift–diffusion process reaches one
of two thresholds, −θ or θ, for fixed θ > 0. Suppose further that the individual has an initial
bias ofx0 ∈ (0, θ).

Under these assumptions, we inquire about the decision made by the individual before a
sharp (deterministic) deadline σs ≡ 1/ r for fixed r > 0. We emphasize that in this setting the
individual has no knowledge of the deadline but nevertheless decides quickly. By theorem 7,
whereF̃τ andF̃(k)

τ given in section 3.2 withL0 = θ − x0, Lk = θ + x0,

A = e−µ L0/ 2D

√
4D
πL2

0
, B = eµLk/ 2D

√
4D
πL2

k

, C = L2
0

4D
, Ck = L2

k

4D
,

andm= n = 1/2, we determine that the probability of the individual deciding against its initial
bias is

P (X(τ ) = −θ | τ = 1/ r) ∼
θ − x0

θ + x0
e−θµ/ De−θ x0r/ D asr → ∞. (15)

Qualitatively, we infer that quick decisions are biased decisions. That is, the individual will
always decide in agreement with her initial bias in the tight deadline limit, even in the presence
of an external bias ‘pushing’ the agent toward the alternative. That is, regardless of external
bias,

P (X(τ ) = θ | τ = 1/ r) → 1 asr → ∞.

While such hasty decisions may not be made frequently by a single agent, first deciders
among groups of agents are reliably quick and similarly biased [56]. The influence of these
early decisions on agents still deliberating can be substantial; recent work suggests that having
many fast deciders can sway the group to the same hasty decision, but having only a few fast
deciders can caution remaining agents against biased decision-making [34].

Unsurprisingly,the presence of a disagreeable externaldrift does slow the convergence
to zero of the probability in (15).We illustrate this behavior in the left panel of figure 5 to
emphasize its limited influence. Relatively weak initial biases also slow the convergence to
zero of the probability in (15) but its influence is similarly limited. We illustrate this behavior
in the right panel of figure 5. Finally we remark that these results extend to higher dimensional
landscapes for decision making. In these settings, the lengthsL0 andLk denote the geodesic
lengths to the nearest decision threshold and another decision threshold of interest.

5. Discussion

In this work, we determine hitting probabilities for fast stochastic search.Our results yield
the exact asymptotics of these hitting probabilities in terms of the short-time behavior of the
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Figure 5.Left: The probability that an individual decides in agreement with her initial
bias converges to unity in the tight deadline limit independent of an external bias. In this
panel,x0 = θ/2. Right: The probability that an individual decides in agreement with
her initial bias converges to unity in the tight deadline limit independent of initial bias
strength. In this panel, µ = 0.

stochastic search process without a time constraint.In typical scenarios of diffusive search
the limit of these asymptotic quantities reveals that the nearest target is always found. In par-
ticular, hitting probabilities to far targets exhibits exponential decay.This behavior readily
breaks down for certain non-diffusive search processes including random walks on networks
and superdiffusive search. In the random walk case, hitting probabilities to far targets exhibit
polynomial decay. Superdiffusive search, however, can always find far targets quickly. That
is, all limiting hitting probabilities associated with superdiffusive search are strictly positive.
Hence, with sufficiently frequent resetting, modulation of the search process and various sys-
tem parameters are an effective means of ‘sharpening’ hitting probabilities to achieve a specific
goal.

This work adds a new piece to the vast and growing body of work on stochastic search pro-
cesses and, in particular, fast stochastic search. Until recently, the remarkable acuity of timing
and directionality in biological processes was poorly understood. The so-called redundancy
principle has since provided an explanation for processes in which many nearly identical cop-
ies of bio-entities,though effectively independent,work together to increase the likelihood
of fast, precise,and accurate action [41].In the case ofN ≫ 1 independentsearchers,the
moments of the fastest FPT for typical scenarios of diffusive search are given by [42]

E [Tm
N] ∼

(
L2

0
4D lnN

) m

asN → ∞,

whereD > 0 is the diffusivity andL0 > 0 is a geodesic length to the nearest target. The asso-
ciated hitting probabilities to far targets are [43]

P (κN = k) ∼ β (ln N)(( Lk/ L0)− 1)/ 2 N1−( Lk/ L0)2
asN → ∞

where β > 0 is a constant dependent on system parameters andLk > 0 is a geodesic length to
a far target. In the case of evidence accumulation models for decision making, the analogous
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hitting probability result indicates that the fastest decider is she who had the strongest initial
bias [56].

Where redundancy is notat play, or perhaps working simultaneously with redundancy,
stochastic inactivation or resetting serves a similar biological purpose. Recent work in this area
characterizes when infrequent stochastic resetting increases the hitting probability or decreases
the mean FPT to particular targets [3]. For typical scenarios of diffusive search, the moments
of the FPT under frequent exponentially distributed resetting with rater ≫ L2

0/4 D is [23]

E [Tm
reset] ∼

(
eL0

√
r/ D

r

) m

asr → ∞.

Moreover, the same quantity for an inactivating searcher is [58]

E [Tm
inact] ∼

(
L2

0
4Dr

) m/ 2

asr → ∞.

The associated hitting probabilities to far targets, as derived in this work, are

P (κr = k) ∼ ηe−( Lk− L0)
√

r/ D asr → ∞

where η > 0 is a constantdepending on system parameters.In terms of the decision mak-
ing model discussed in section 4,the analogous hitting probability results indicate that fast
decisions agree with an individual’s initialbias.There have been numerous recentstudies
quantifying the ‘cost’ associated with redundancy, resetting, and inactivation and analyzing
its effects [59–62]. While we do not consider such a cost in this work, we acknowledge the
potential influence on system behavior and hence its importance for certain biological and
decision-making applications.

To conclude, we have shown that the hitting probabilities of fast stochastic search can differ
tremendously from those free of time constraints. These results build on the growing body of
work seeking to understand the nature of stochastic search in biology,sociology,and other
scientific disciplines. In particular, we show that while hitting probabilities for typical scen-
arios of diffusive search decay exponentially fast in the frequent resetting limit, other search
processes exhibit notable quantitative and qualitative differences. It is also the case, as high-
lighted in this work, that while hitting probabilities for unconstrained stochastic search can
prove challenging to compute, especially in complicated domains, hitting probabilities for fast
stochastic search rely on very few details of the system and can often be easily determined.
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Appendix

This appendix contains proofs of the propositions and theorems stated in section 2 as well as
details of the numerical methods used in section 3.

A.1. Proofs

proof of proposition 1.The proof of this proposition is in the appendix of [23]. We repeat it
here for readability: The exponential term in the integrand of (8) achieves its maximum at

t∗ :=
√

C/ r.

Let r > 0 be sufficiently large so thatt∗ ∈ (0, δ). Under the change of variabless= t/ t∗ , the
integral in (8) becomes

ˆ δ

0
e− rt tbe− C/ t dt =

(
C
r

) b+ 1
2

ˆ δ/ t∗

0
sbexp

(
−

√
Cr

(
s+ s− 1) )

dt. (16)

Applying Laplace’s method to (16) wheres= 1 ∈ (0, δ/t∗) corresponds to the maximum of
the exponential term in the integrand completes the proof.

proof of theorem 2.Let ϵ > 0 and define

Ia,b :=
ˆ b

a
Sσ (t) dFτ (t) . (17)

By the assumption in (9), there exists δ > 0 so that

(1 − ϵ)Atme− C/ t ⩽ Fτ (t) ⩽ (1 + ϵ) Atme− C/ t for all t ∈ (0, δ) .

Under this assumption, we can integrate by parts and boundI0,δ from above,

I0,δ = Sσ (δ) Fτ (δ) −
ˆ δ

0
Fτ (t) dSσ (t) = Sσ (δ) Fτ (δ) +

ˆ δ

0
Fτ (t) fσ (t) dt

⩽

(
1 −

γ (η,rδ)
Γ (η)

)
Fτ (δ) +

(1 + ϵ)Arη

Γ (η)

ˆ δ

0
tm+η− 1e−( C/ t)− rt dt, (18)

where γ(s,x) :=
´ x

0 ts− 1e− t dt denotes the lower incomplete gamma function.The first term
on the right-hand side of (18) decays exponentially fast asr → ∞. To control Iδ,∞ , we use
integration by parts to write
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Iδ,∞ = − Sσ (δ) Fτ (δ) +
ˆ ∞

δ
Fτ (t) dFσ (t)

⩽ − Sσ (δ) Fτ (δ) +
ˆ ∞

δ
dFσ (t)

= Sσ (δ) (1 −Fτ (δ)) ,

which decays at least exponentially fast asr → ∞. We emphasize that this bound holds in
general so long as τ and σ satisfy the assumptions in section 2.1. Hence, recalling the definition
of p in (5) and applying proposition 1 yields

lim sup
r→∞

p

(A/Γ(η))
√

πC(2m+ 1)/ 4) r(4η− 2m− 3)/ 4e−
√

4Cr
⩽ 1 + ϵ.

An analogous argument gives the lower bound

lim inf
r→∞

p

(A/Γ(η))
√

πC(2m+ 1)/ 4) r(4η− 2m− 3)/ 4e−
√

4Cr
⩾ 1 − ϵ.

Repeating this procedure forpk as defined in (6) yields similar relations,

lim sup
r→∞

pk

(B/Γ(η))
√

πC(2n+ 1)/ 4)
k r(4η− 2n− 3)/ 4e−

√
4Ckr

⩽ 1 + ϵ,

lim inf
r→∞

pk

(B/Γ(η))
√

πC(2n+ 1)/ 4)
k r(4η− 2n− 3)/ 4e−

√
4Ckr

⩾ 1 − ϵ.

Since ϵ ∈ (0, 1) is arbitrary, recalling that

P(κ = k|τ < σ) = pk

p
=

´ ∞

0 Sσ (t) dF(k)
τ (t)

´ ∞

0 Sσ (t) dFτ (t)

completes the proof.

proof of theorem 4.Let ϵ > 0. From (9), there exists δ > 0 so that

(1 − ϵ)Atme− C/ t ⩽ Fτ (t) ⩽ (1 + ϵ) Atme− C/ t for all t ∈ (0, δ) .

Let r > 0 be sufficiently large so that 2/r < δ and letIa,b be as defined in (17). Integrating by
parts to boundI0,2/ r from above, we have

I0,2/ r = −
ˆ 2/ r

0
Fτ (t) dSσ (t) =

ˆ 2/ r

0
Fτ (t) fσ (t) dt

⩽
(1 + ϵ)Ar

2

ˆ 2/ r

0
tme− C/ t dt =

(1 + ϵ)Ar
2

Cm+ 1Γ(− m− 1, Cr/2)
(19)

where Γ(s,x) :=
´ ∞

x ts− 1e− t dt denotes the upper incomplete gamma function. Applying the
asymptotic relation Γ(s,x) ∼ xs− 1e− x asx → ∞ to the rightmost side of (19) and observing
from the proof of theorem 2 thatI2/ r,∞ decays exponentially fast, we infer that

lim sup
r→∞

p

(A/ C) (r/2) − m− 1 e− Cr/ 2
⩽ 1 + ϵ.
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An analogous argument gives the lower bound

lim inf
r→∞

p

(A/ C) (r/2) − m− 1 e− Cr/ 2
⩾ 1 − ϵ.

Repeating this procedure forpk yields similar relations,

lim sup
r→∞

pk

(B/ Ck) (r/2) − n− 1e− Ckr/ 2
⩽ 1 + ϵ,

lim inf
r→∞

pk

(B/ Ck) (r/2) − n− 1e− Ckr/ 2
⩾ 1 − ϵ.

Since ϵ ∈ (0, 1) is arbitrary, recalling that

P(κ = k|τ < σ) = pk

p
=

´ ∞

0 Sσ (t) dF(k)
τ (t)

´ ∞

0 Sσ (t) dFτ (t)

completes the proof.

proof of theorem 5.Let ϵ > 0. From (9), there exists δ > 0 so that

(1 − ϵ)Atm ⩽ Fτ (t) ⩽ (1 + ϵ) Atm for all t ∈ (0, δ) .

Under this assumption and withIa,b as defined in (17), we can integrate by parts and bound
I0,δ from above,

I0,δ ⩽

(
1 −

γ (η,rδ)
Γ (η)

)
Fτ (δ) +

(1 + ϵ)Arη

Γ (η)

ˆ δ

0
tm+η− 1e− rt dt, (20)

where γ(s,x) :=
´ x

0 ts− 1e− t dt denotes the lower incomplete gamma function. The first term on
the right-hand side of (18) decays exponentially fast asr → ∞ and the same is true ofIδ,∞ , as
shown in the proof of theorem 2. Further, the larger behavior of the integral in (20) is given
by

ˆ δ

0
tm+η− 1e− rt dt ∼ r− m−η Γ (m+ η) asr → ∞.

Hence,

lim sup
r→∞

p
Ar− mΓ (m+ η) /Γ (η)

⩽ 1 + ϵ.

An analogous argument gives the lower bound

lim inf
r→∞

p
Ar− mΓ (m+ η) /Γ (η)

⩾ 1 − ϵ.

Repeating this procedure forpk yields similar relations,

lim sup
r→∞

pk

Br− nΓ (n+ η) /Γ (η)
⩽ 1 + ϵ,

lim inf
r→∞

pk

Br− nΓ (n+ η) /Γ (η)
⩾ 1 − ϵ.
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Since ϵ ∈ (0, 1) is arbitrary, recalling that

P(κ = k|τ < σ) = pk

p
=

´ ∞

0 Sσ (t) dF(k)
τ (t)

´ ∞

0 Sσ (t) dFτ (t)

completes the proof.

proof of theorem 7.Let ϵ > 0. From (9), there exists δ > 0 so that

(1 − ϵ) F̃τ (t) ⩽ Fτ (t) ⩽ (1 + ϵ) F̃τ (t) for all t ∈ (0, δ) .

Let r > 0 be sufficiently large so that 1/r < δ and letIa,b be as defined in (17). Integrating by
parts to boundI0,1/ r from above,

I0,1/ r ⩽ (1 + ϵ)
ˆ 1/ r

0
F̃τ (t) dSσ (t) = (1 + ϵ) F̃τ (1/ r) .

We achieve a similar result for the lower bound:

I0,1/ r ⩾ (1 − ϵ)
ˆ 1/ r

0
F̃τ (t) dSσ (t) = (1 − ϵ) F̃τ (1/ r) .

SinceI1/ r,∞ is identically zero, we infer that

1 − ϵ ⩽ lim inf
r→∞

p

F̃τ (1/ r)
⩽ lim sup

r→∞

p

F̃τ (1/ r)
⩽ 1 + ϵ.

Since ϵ > 0 is arbitrary, repeating this procedure forpk completes the proof.

A.2. Calculations for run-and-tumble in one dimension

In the right panel of figure 3 we illustrate conditional hitting probabilities corresponding to
RTP search in one dimension between targets atx= 0 andx = ℓ. The searcher has probability
q ∈ [0, 1] of initially moving in the negativex-direction and switches between velocitiesV1 >
0 and −V0 < 0 at Poissonian rate λ > 0.We assumex0/ V0 < (ℓ − x0)/ V1 and compare the
asymptotic hitting probabilities forr ≫ 1 to the hitting probabilities for anyr > 0, which we
approximate numerically. Below we compute the asymptotic hitting probabilities. The details
of the numerical approximation in the case that σ > 0 is exponentially distributed with rate
r > 0 are in the following section.

Define L0 := x0 and L1 := ℓ − x0. Integrating by parts the expression forp := P(τ < σ)
in (5) yields

p =
ˆ ∞

0
fσ (t0 + t) Fτ (t0 + t) dt

wheret0 = L0/ V0 since we assumeL0/ V0 < L1/ V1 andfσ := d/d t Fσ is the density of σ > 0.
The cumulative distribution function of τ is given by
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Fτ (t0 + t) = P(τ ⩽ t0 + t)
= P(τ < t0) + P(τ = t0) + P (t0 < τ ⩽ t0 + t) + P(τ = t0 + t)
= qe−λ t0 + P( t0 < τ ⩽ t0 + t) .

Hence,

p = qe−λ t0Sσ (t0) +
ˆ ∞

0
fσ (t0 + t) P (t0 < τ ⩽ t0 + t) dt. (21)

From previous work on the short-time behavior of RTPs [63], it is known that

P (t0 < τ ⩽ t0 + t) ∼
(
1 − qe−λ t0

)
(α 0/ t0) t ast → 0+ (22)

where

α0 :=
λL0 (λ L0q− qV0 + V0)

V0 (V0 + V1)
(
eλ L0/ V0 − q

) . (23)

At this point, we consider separately the resetting distributions of interest. To start, suppose
σ > 0 is exponentially distributed with rater > 0. By the proof of theorem 5, we determine the
larger behavior ofp> 0,

p ∼ qe−(λ+ r) t0 + e− rt0
(
1 − qe−λ t0

)
α0/ ( rt0) ∼ qe−(λ+ r)L0/ V0 asr → ∞.

Similarly, by lettingt1 = L1/ V1, we find that

p1 ∼ (1 − q) e−(λ+ r)L1/ V1 asr → ∞.

Hence,

P (κ = 1|τ < σ) ∼
1 − q

q
e−(λ+ r)( L1/ V1− L0/ V0) asr → ∞.

Now suppose σ > 0 is gamma distributed with shape η > 0 and rater > 0. Equations (21)–
(23) hold with

Sσ (t) =
Γ (η,rt)
Γ (η)

, fσ (t) =
rη

Γ (η)
tη− 1e− rt .

From the proof of theorem 5,

p ∼ qe−λ t0 Γ (η,rt0)
Γ (η)

+ e− rt0
(
1 − qe−λ t0

)
α0/ ( rt0)2−η

∼
(

rL0

V0

) η− 1 q
Γ (η)

e−(λ+ r)L0/ V0 asr → ∞.

Similarly, by lettingt1 = L1/ V1, we find that

p1 ∼
(

rL1

V1

) η− 1 (1 − q)
Γ (η)

e−(λ+ r)L1/ V1 asr → ∞.

21



J. Phys. A: Math. Theor. 57(2024) 305003 S Linn and S D Lawley

Hence,

P (κ = 1|τ < σ) ∼
1 − q

q

(
L1V0

L0V1

) η− 1

e−(λ+ r)( L1/ V1− L0/ V0) asr → ∞.

Setting η = 1 reduces these results to the exponential σ > 0 case, as expected.
We omit the cases of uniformly distributed and sharp σ > 0 since for sufficiently larger > 0

the search process will never complete.

A.3. Numerical methods

A.3.1 Diffusion with drift in one dimension. In figure 2 we illustrate conditional hitting prob-
abilities corresponding to diffusive search in one dimension between targets atx= 0 andx = ℓ
with x0 ∈ (0, ℓ/2). The searcher has diffusivityD > 0 and experiences a drift of magnitude
µ ∈ R, and σ > 0 is exponentially distributed with rater > 0. We compare the asymptotic hit-
ting probabilities forr ≫ 1 to the hitting probabilities for anyr > 0. The details of quadrature
are as follows:

First suppose µ = 0. In this case, the exact conditional hitting probability for exponentially
distributed σ > 0 with rater > 0 is known [64],

P (κ = 1|τ < σ) =
sinh

(
x0

√
r/ D

)

sinh
(

x0
√

r/ D
)

+ sinh
(

(ℓ − x0)
√

r/ D
) . (24)

Thus, the circular markers in figure 2 are given precisely by equation (24).
Now suppose µ ̸= 0 and consider the unconstrained search process. The probability density

for hitting the left boundary is [65]

f(0)
τ (t) :=

d
dt

F(0)
τ (t) = exp

(
−

µx0

2D
−

µ2t
4D

)
D
ℓ2

ϕ
(

Dt
ℓ2

, x0
ℓ

)
(25)

where

ϕ (s,w) :=

{ ∑ ∞
k= 1e− k2π2s2kπ sin (kπw) ,
1√

4π s3

∑ ∞
k=−∞ (w+ 2k) e−( w+ 2k)2/ 4s. (26)

The expressions for ϕ in (26) are equivalent, but the top expression converges quickly for large
swhile the bottom expression converges quickly for smalls.

By symmetry, the probability density for hitting the right boundary is

f(1)
τ (t) :=

d
dt

F(1)
τ (t) = exp

(
µ (ℓ − x0)

2D
−

µ2t
4D

)
D
ℓ2

ϕ
(

Dt
ℓ2 , 1 −

x0
ℓ

)
.

The density for hitting either boundary is thusfτ = f(0)
τ + f(1)

τ and so

Fτ = F(0)
τ + F(1)

τ .

With these formulae, we use quadrature to approximate the conditional hitting probabilities
from the integral representation in (5) and (6), which we plot with triangular and square mark-
ers in figure 2. We use the short-time expansion of ϕ fors⩽ 1 and the long-time expansion
of ϕ for s> 1. We use 104 terms in each sum for ϕ and 104 terms each in the log-spaced time
intervals fors⩽ 1 ands> 1. We takeD = 1 and ℓ = 1. The same procedure is used to produce
figure 5.
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A.3.2. Diffusion between concentric spheres in three dimensions. Similar to the case of dif-
fusion in one dimension, here we use quadrature to approximate the conditional hitting prob-
abilities from the integral representation in (5) and (6) where σ > 0 is exponentially distrib-
uted with rater > 0. We determineFτ andF(1)

τ by numerically solving the partial differential
equations that they satisfy.

In particular, the cumulative distribution function of Brownian motion between concentric
spheres of radiiR0 > 0 andR1 > 0 with R0 < R1 and initial positionx0 ∈ (R0,R1) satisfies

∂Fτ

∂t
= D

(
2
x0

∂Fτ

∂x0
+

∂2Fτ

∂x2
0

)
, x0 ∈ (R0,R1) (27)

with initial conditionFτ = 0 at t = 0 and boundary conditionsFτ = 1 at x0 = R0 andx0 = R1.
The functionF(1)

τ similarly satisfies (27) with the same initial condition and boundary con-
ditionsFτ = 0 at x0 = R0 andx0 = R1. We numerically solve these boundary value problems
using the MATLAB solverpdepewith 2000 linearly spaced radial mesh points betweenR0
andR1 and 5000 log-spaced time points between 10− 10 and 10 [66]. In the left panel of figure 3
we takeD = 1, R0 = 1, andR1 = 2.

A.3.3. Run-and-tumble in one dimension. In the right panel of figure 3 we illustrate condi-
tional hitting probabilities corresponding to an RTP in one dimension with parameter choices
as described in section 3.7.The circular markers in the figure correspond to simulations of
the process whereinq = 1/2, ℓ = 1, λ = 2, and V0 = V1 = 2. Each markers corresponds to the
average of 8000 trials.

A.3.4. Superdiffusive Lévy flight in one dimension. In figure 4 we illustrate conditional hit-
ting probabilities corresponding to a superdiffusive Lévy flight in one dimension as detailed
in section 3.6.We now describe the stochastic simulation algorithm used herein.Given a
discrete time step ∆t > 0, we generate a statistically exactpath of the (α/2)-subordinator
U = { U(t)} t⩾0 on the discrete time grid {tn} n∈ N with tn = n∆ t via

U (tn+ 1) = U (tn) + (∆ t)2/α Θn, n ⩾ 0,

whereU(t0) = U(0) = 0 and {Θn} n∈ N is an independent and identically-distributed sequence
of realizations

Θ =
sin ((α/2) (V+ π/2))

(cosV)2/α

(
cos (V− (α/2) ( V+ π/2))

E

) (2−α)/α
,

whereV is uniformly distributed on (−π/2, π/2) andE is an independent unit mean expo-
nential random variable [67]. From this we can generate a statistically exact path of Brownian
motion {B(s)} s⩾0 on the discrete time grid {U(tn)} n∈ N via

B(U (tn+ 1)) = B(U (tn)) +
√

2 (Ds∆ t)2/α Θnξn, n ⩾ 0,

where {ξn} n∈ N is an independent and identically-distributed sequence of standard Gaussian
random variables. Finally one obtains a statistically exact path of a Lévy flight with generalized
diffusivity Ds > 0 via the following random time change of the Brownian motionB,

X(t) := D1/α
s B(U (t)) , t ⩾ 0.

23



J. Phys. A: Math. Theor. 57(2024) 305003 S Linn and S D Lawley

To determine the conditional hitting probabilities, we generate an exponentially distributed
resetting time and simulate a Lévy flight path until the reset time. If the path reaches a target
prior to the resetting time, the process ends and we note which target was found. Otherwise
we reset the search to its initial position and start the process anew.Repeating this process
for a given resetting rate allows us to compute the corresponding conditional hitting probab-
ility. Each data point in figure 4 is computed from 12 000 independent trials withDs = 1 and
∆ t = 10− 4.
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[38] Stickler M, Ott W, Kilpatrick Z P, Josić K and Karamched B R 2023 Impact of correlated inform-
ation on pioneering decisionsPhys. Rev. Res.5033020

[39] Oksendal B 2003Stochastic Differential Equations: An Introduction With Applications(Springer)
[40] Gardiner C 2009Stochastic methods: a handbook for the natural and socialsciences Springer

Series in Synergeticsvol 13, 4th edn (Springer)
[41] Schuss Z, Basnayake K and Holcman D 2019 Redundancy principle and the role of extreme stat-

istics in molecular and cellular biologyPhys. Life Rev.2852–79
[42] Lawley S D 2020 Universal formula for extreme first passage statistics of diffusionPhys. Rev.E

101012413
[43] Linn S and Lawley S D 2022 Extreme hitting probabilities for diffusionJ. Phys. A: Math. Theor.

55345002
[44] Lindsay A E, Bernoff A J and Navarro H A 2023 Short-time diffusive fluxes over membrane recept-

ors yields the direction of a signalling sourceR. Soc. Open Sci.10221619
[45] Redner S 2001A Guide to First-Passage Processes(Cambridge University Press)
[46] Durrett R 2019Probability: Theory and Examples(Cambridge University Press)
[47] Lawley S D 2023 Extreme statistics of superdiffusive Lévy flights and every other Lévy subordinate

Brownian motionJ. Nonlinear Sci.3353
[48] Lawley S D 2020 Distribution of extreme first passage times of diffusionJ. Math. Biol.802301–25
[49] Grebenkov D S 2020 Paradigm shiftin diffusion-mediated surface phenomenaPhys.Rev.Lett.

125078102
[50] Lawley S D 2020 Extreme first-passage times forrandom walks on networksPhys. Rev.E

102062118
[51] Lischke A et al 2020 What is the fractional Laplacian? a comparative review with new resultsJ.

Comput. Phys.404109009

25



J. Phys. A: Math. Theor. 57(2024) 305003 S Linn and S D Lawley

[52] Palyulin V V, Blackburn G, Lomholt M A, Watkins N W, Metzler R, Klages R and Chechkin. A V
2019 First passage and first hitting times of Lévy flights and Lévy walksNew J. Phys.21103028

[53] Bressloff P C 2020 Occupation time of a run-and-tumble particle with resettingPhys.Rev.E
102042135

[54] Olsen K S 2023 Steady-state moments under resetting to a distributionPhys. Rev.E 108044120
[55] Acemoglu D, Dahleh M A, Lobel I and Ozdaglar A 2011 Bayesian learning in social networksRev.

Econ. Stud.781201–36
[56] Linn S, Lawley S D, Karamched B R, Kilpatrick Z P and Josić K 2024 Fast decisions reflect biases,
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