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Figure 3. Prediction overlap. We show the overlap in predictions across all models. Each bin k = [0, . . . , N ] gives the percentage of

images from the dataset that were missed (incorrectly classified) by k out of N trained models (six models and five trials each).

The first method, Prediction Overlap, empirically esti-

mates image and class difficulty based on a set of strong

classifiers and how they collectively perform; the second

approach, Prediction Rank, determines difficulty by exam-

ining the rank of an image’s label within a classifier’s pre-

diction vector for the image; the final paradigm, Pairwise

Class Confusion, is focused on pairs of classes, seeking to

measure how distinct or confusing two classes are.

2.1. Prediction overlap

We propose prediction overlap as one method for quan-

tifying the difficulty of an image. The idea is to take the pre-

dictions of N independently trained models and look at how

many are correct. This process reveals a continuum of im-

age difficulty within the dataset, where images with many

correct predictions are inherently easier to classify, while

images with few correct predictions are harder. This defini-

tion of difficulty depends on the type and number of models

used, but as we show in Fig. 3 and explain in Sec. 4, there

is a clear pattern of easy and hard subsets in the data that

emerges across datasets, despite using many strong models.

Let us be precise in our definition of prediction over-

lap. We start with a dataset D, divided into train and eval-

uation sets DT and DE . D consists of images and their

corresponding class labels {(xi, yi)}. We train N differ-

ent models to predict yi from xi using DT . Once the

models are trained, we get N class predictions—one from

each model—for each image xi in the evaluation set DE :

(pi
1
, . . . , pi

N
). We then compute an overlap value oi for each

image as the number of correct predictions:

oi =
NX

k=1

1(pi
k
, yi) (1)

where 1(a, b) = 1 if a = b else 0. We use the overlap value

oi, or equivalently the overlap ratio oi/N , as a measure of

image difficulty. Fig. 2 (left) shows how this works.

In Sec. 4 we show prediction overlap results for multiple

datasets and models. We find that within each dataset there

are generally a large number of easy images, which are pre-

dicted correctly by all models. There is also a smaller set of

elusive images, which are never correctly classified. In be-

tween the two extremes are images varying from medium to

hard, which are sometimes classified correctly, with vary-

ing levels of frequency.

2.2. Prediction rank

We propose prediction rank as an additional, compli-

mentary method for quantifying the difficulty of an image.

Similar to prediction overlap, we start with the output of N
independently trained models, but we consider the predic-

tive distribution over classes (the logits) instead of just the

top prediction. We order the logits qi for each image xi

from highest to lowest, and calculate the rank of the ground

truth class (its position in the ordered list):

ri = rank(yi, argsort(qi)) (2)

where argsort returns the indices that sort the sequence

and rank(a,b) returns the index of a in b. Using N models

we obtain a vector of ranks for each image, (ri
1
, . . . , ri

N
),

and we normalize each value by the maximum observed

rank across all models and images: r̂i
k
=

r
i
k

maxj maxn r
j
n

. We

define the prediction rank score for image xi as its average

normalized rank

si
r
=

1

N

NX

k=1

r̂i
k

(3)

The score si
r

gives a continuous value of hardness for each

image. The process is depicted in Fig. 2 (right). We also

compute a class-level difficulty score by averaging the pre-

diction rank scores over all images in a class.
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Figure 5. iCub example images. Zoom in for detail.

3. Hard problems in FGVC

There are multiple factors that can make certain images

or classes difficult to classify. We give a brief overview of

some of the prominent ones here. Many are hard to quantify,

and we don’t attempt to measure them all in this work.

Similar class confusion Within FGVC datasets, there ex-

ist groups of classes that are especially hard to distinguish

from one another due to visual similarity within the do-

main; in fact, this is the core challenge of FGVC. When

a model’s error involves predicting a particularly similar-

looking class, we consider this to be an instance of simi-

lar class confusion. We compute how many similar classes

each dataset has in Sec. 4.

Object size and location We hypothesize that the size

and location of the object in relation to the image may ac-

count for some challenging images, where classifiers may

struggle more for objects that are very small (i.e. distant

from the camera), or not well-centered. We use bounding

box area and offset to approximate object size and location.

Pose Data driven classification methods naturally struggle

when they encounter out of distribution poses during infer-

ence. However, assessing the actual prevalence and impact

of this issue is very challenging. It would require both anno-

tations of poses as well as algorithms that group such poses

to determine which are in or out of distribution. Due to the

unavailability of the keypoint labels and the challenges as-

sociated with clustering poses, we propose such analysis for

future work.

Occlusion While we recognize the importance of occlu-

sion as a source of error, we do not address it in this work for

two reasons: first, it is difficult to precisely define occlusion

in a satisfying way; and second, previous definitions (e.g.

from Hoeim et al. [25]) rely entirely on manual annotation.

Distractors The background or other objects in the image

have the potential to confuse a classifier; this issue is also

hard to measure, and we don’t address it here.

Photometric Issues such as lack of contrast, poor illumi-

nation and blurriness can make images challenging to clas-

sify, but we do not address those here.

4. Experiments and analysis

4.1. Datasets

We use four prominent and well-studied fine-grained

classification datasets—FGVC Aircraft [41], Stanford

Cars [33], Caltech Birds (CUB) [57] and NABirds [55]—

along with the recently introduced Danish Fungi Mini

dataset [44]. Statistics of these datasets are shown in Ta-

ble 1 in the Supplementary Material. We also introduce a

new birds dataset specifically for use in evaluation, which

we call iCub. iCub has the same categories as CUB, but

more images and additional challenges. We describe iCub

in more detail next.

4.1.1 The iCub dataset

We introduce iCub, a new evaluation-only bird dataset that

consists of the same 200 bird species as CUB, but with im-

ages sourced from iNaturalist.1 The dataset is intended to

be used as an additional validation set for models trained on

CUB; thus, none of the images are designated for training.

We provide iCub as an aid in analyzing model errors.

iCub was built by downloading all research-grade iNat-

uralist images for CUB categories, available as of January

2020. Images are certified as “research grade” when the

label has been verified by consensus among the iNaturalist

citizen-scientist community. To keep the dataset size man-

ageable, we randomly selected 100 images per category and

filtered them by hand, removing images with large flocks of

birds or multiple birds of different species, then annotated

the remaining images with bounding boxes. In total, iCub

contains 16,876 images. The last row in Table 1 shows de-

tails for iCub and Fig. 5 shows randomly chosen iCub im-

ages.

Our purpose in introducing iCub is to provide an addi-

tional, large source of evaluation data that can test a CUB-

trained model’s performance on the same classes but on a

different, more challenging visual distribution. iCub con-

tains a greater number of difficult and elusive instances than

does CUB for the same categories. iCub also contains many

more images where the bird is small relative to the area of

the image. The distributions of object size, aspect ratio, and

centeredness (distance from the image center to the bound-

ing box center), estimated from the bounding boxes, are

shown in Fig. 12 (Supplementary) for CUB and iCub. The

distributions of object size in particular are quite different.

4.2. Models

We use a small representative set of FGVC-specific

methods—PMG [12], WSDAN [28], SIMTrans [51] and

IELT [64]—as well as ResNet-50 [24] and ViT [11], which

serve as the backbone networks for the other approaches.

1www.inaturalist.org
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Figure 11. Challenging images. We show several examples of elusive images from Aircraft (A, B) and CUB (C, D). We also show

examples of hard images, which were correctly predicted by between 1 and 10 models (out of 30), for Aircraft (E), CUB (F), Cars (G),

and Fungi (H).

single-domain datasets such as Aircraft [41], Birds [55,57],

Cars [33], Dogs [30], and Flowers [43] as benchmarks, each

having hundreds of classes with dozens of images each.

Deep learning has become the dominant approach to

FGVC [5, 14, 19, 40, 60, 70], like computer vision in gen-

eral. Most models are pre-trained on ImageNet [9, 47],

while some approaches train on other, related datasets be-

fore the target FGVC task (e.g. [32]). Data augmentation

has become ubiquitous in FGVC, and recent work explores

optimizing the set of transformations [7].

The main approaches to FGVC include segmentation

[4, 66], part-model [29, 50], and pose-alignment [17, 18,

20, 21, 38] methods, which attempt to isolate and model

important class-specific features in a pose-invariant way.

Pooling methods, such as bilinear [31, 36, 37, 67], Grass-

man [62], covariance [34, 35], and several learnable pool-

ing methods [1, 8, 49], attempt to leverage second order

statistics between deep CNN features. Attention meth-

ods [45, 46, 58] have also received a lot of “attention”, with

different methods employing recurrent models [16, 48, 69],

reinforcement learning [39], metric learning [52], and part

discovery [28, 70–72].

Other approaches modify the learning objective to ac-

count for high similarity and ambiguity between classes.

Label smoothing [42, 53] and taxonomy-based schemes [3,

54] redistribute probability mass in the target distributions.

Pairwise confusion [13] and maximum entropy [14] help re-

duce overconfidence by regularizing predictions. A recent

plugin module combines feature maps with top-k predic-

tions to overcome ambiguity [10]. Some methods resolve

such differences via mixture of experts [68].

Feature fusion methods [6, 23, 45, 59, 65] have become

increasingly popular with the introduction of the vision

transformer [11]. Transformer-based [51, 61] and graph-

based [2] approaches learn dependencies between image

patches in order to attend to the most relevant fine-grained

differences. Others learn dependencies by solving jigsaw

puzzles [5, 12].

Previous FGVC analysis focuses primarily on the dataset

or task itself as the vehicle for analysis, and analysis is lim-

ited to accuracy benchmarking [27]. Similar to Hoiem et

al. [26] diagnosis of object detection, we attempt to catego-

rize different types of errors.

6. Conclusion

In this paper, we carefully explore current FGVC chal-

lenges across a range of popular fine-grained datasets and

models. Through overlap analysis and rank estimation, we

establish a spectrum of image difficulty at a granular level,

allowing us to examine the impact of specific challenges

within the data on modern FGVC methods. Our code will

be made publicly available as a toolkit that can be used to

analyze additional datasets and models, giving FGVC re-

searchers a rich set of tools for moving the field forward.

As part of this toolkit, we provide a standardized training

recipe for FGVC methods. This sort of fair comparison re-

veals the inadequacy of existing leaderboards, which con-

flate progress on general purpose optimizers, learning rate

schedules, and data augmentation with progress on core

FGVC problems. Finally, we contribute iCub to allow for

additional analysis of bird classification methods.
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sen, Jacob Heilmann-Clausen, Thomas Læssøe, and Tobias

Frøslev. Danish fungi 2020-not just another image recogni-

tion dataset. In Proceedings of the IEEE/CVF Winter Confer-

ence on Applications of Computer Vision, pages 1525–1535,

2022. 5, 12

[45] Yongming Rao, Guangyi Chen, Jiwen Lu, and Jie Zhou.

Counterfactual attention learning for fine-grained visual cat-

egorization and re-identification, 2021. 8

[46] Pau Rodrı́guez, Josep M. Gonfaus, Guillem Cucurull,

F. Xavier Roca, and Jordi Gonzàlez. Attend and Rectify:
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