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Figure 1. Fine-grained analysis of elusive images. Despite the cutting-edge performance of state-of-the-art models, there are images that
are universally misclassified. Depicted above is a real example from the CUB-200-2011 dataset [57]: this image of a Pomarine Jaeger is
misclassified by all state-of-the-art-models (the images on the right show the respective classes that are incorrectly predicted). There are
various reasons why such images evade even our best classification models. This work seeks to identify the challenges behind these elusive

images and focus future research on them.

Abstract

While the community has seen many advances in re-
cent years to address the challenging problem of Fine-
grained Visual Categorization (FGVC), progress seems to
be slowing—new state-of-the-art methods often distinguish
themselves by improving top-1 accuracy by mere tenths of a
percent. However, across all of the now-standard FGVC
datasets, there remain sizeable portions of the test data
that none of the current state-of-the-art (SOTA) models can
successfully predict. This paper provides a framework for
identifying and studying the errors that current methods
make across diverse fine-grained datasets. Three models of
difficulty—Prediction Overlap, Prediction Rank and Pair-
wise Class Confusion—are employed to highlight the most
challenging sets of images and classes. Extensive experi-
ments apply a range of standard and SOTA methods, evalu-
ating them on multiple FGVC domains and datasets. In-
sights acquired from coupling these difficulty paradigms
with the careful analysis of experimental results suggest
crucial areas for future FGVC research, focusing criti-
cally on the set of elusive images that none of the cur-
rent models can correctly classify. Code is available at
catalysl.github.io/elusive-images—-fgvc.
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1. Introduction

Fine-grained visual categorization (FGVC), with its high
intra-class variation (e.g. different poses) and low inter-
class variation (e.g. all classes have the same parts), is a
uniquely challenging task within the broader area of image
classification and object recognition. While the deep learn-
ing approaches developed recently have improved bench-
mark performance considerably, they still have sizeable
shortcomings. Even the best methods mislabel images that
a human expert would not; and when applied to real-world
data, they leave much to be desired. Existing analysis, how-
ever, leaves such failures unexplored, focusing instead on
top-level metrics (e.g. top-1 accuracy) for various datasets
and tasks [27].

Ironically, the fine-grained recognition community tends
to consider errors at a coarse (entire dataset) level. This
lack of granularity and careful analysis limits progress; the
minute improvement in top-1 accuracy of a new state-of-
the-art (SOTA) method compared to its predecessors has
very little explanatory power. As a result, we receive lit-
tle insight into the actual progress being made in the field,
in terms of which core FGVC problems are now solved that
were unsolved before.

Identifying these unsolved problems starts with identi-
fying the images that are misclassified and studying their
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Figure 2. Calculating prediction overlap and prediction rank. (left): prediction overlap is the number of predictions from N different
models that match the true class. (right): prediction rank is the average normalized rank (across N models) of the ground-truth class in the

predicted distribution of the classifier.

characteristics. A given SOTA method can give inconsis-
tent predictions across differing initialization seeds on both
a per-image and per-class basis [22]. This can be leveraged
to assess individual image difficulty in terms of whether
one or more methods always predict correctly, compared to
those where one or more methods sometimes or even never
predict the correct class. We can consider other properties
of the method predictions to help identify which images are
hard, and, by aggregating information at the class level, the
hard classes as well.

Once hard images have been identified, we can carefully
analyze them to find the associated hard FGVC problems.
Fig. 1 provides a great example of one of the key types of
mistakes that these networks make. The struggle that clas-
sifiers have with this image serves as a reminder that their
reliance on training data is both a gift and a curse. While
increasing the amount of good data is a reliable way to
increase performance, the under-representation of a given
pose (such as a bird in flight) or other characteristic (crop-
ping, occlusion, object scale, background, efc.) in the train-
ing data often guarantees a model will err when that char-
acteristic occurs in the test set.

The fact that many such issues exist is well-documented
and understood within the community. Our purpose in this
work is not to simply restate these problems. Rather, we at-
tempt to identify challenges at increasing levels of detail—
moving from the dataset to its classes and even to individ-
ual images; to quantify them; and to provide analytic tools
for understanding them. By doing this, we hope to provide
tools and insight for future progress in the field.

In this paper, we seek to study what SOTA models have
yet to solve: the elusive set of misclassified images. Fine-
grained analysis, beyond the standard measure of overall
accuracy, is a practice we advocate for and believe to be
critical for further advancement of the field. We consider
errors at a more granular level, performing rigorous anal-
ysis on the class- and image-level mistakes of state-of-the-
art FGVC methods. In our effort to directly confront these
long-standing issues, this work makes the following contri-

butions:

* We introduce a novel framework for carefully analyz-
ing challenging images, with three distinct views on
difficulty (see Sec. 2). We will release this framework
as a toolkit which can be used to analyze other models
and datatsets.

* We standardize reimplementations of several state-of-
the-art FGVC methods in a publicly available repos-
itory, allowing for fast, fair comparison and bench-
marking.

* We present a novel real-world birds dataset, iCub (im-
ages of CUB categories gathered from iNaturalist.org)
which is critical to our analysis, and which we release
for further research.

* We employ our framework to analyze an extensive set
of experiments (6 methods across 6 datasets), identify-
ing the classes and images that SOTA methods struggle
with.

2. Models of difficulty

To date, virtually every paper published in the FGVC
literature—and in image classification, generally—uses a
single performance measure for comparison on a given
dataset. Typically, this measure is average accuracy (the
fraction of all images correctly predicted) or class aver-
age accuracy (the per-class accuracy averaged across all
classes). These measures are not only coarse, but limiting,
providing only a minimal degree of objective comparison.

More fine-grained analysis affords valuable insight into
the tradeoffs between approaches. Perhaps one model or
classifier struggles on particular classes but another com-
plementary model excels at those same classes. Moreover,
detailed analysis about which images and classes are being
classified correctly or incorrectly is rarely conducted; yet it
can be important and illuminating.

In this section, we present and describe three approaches
for assessing the difficulty of dataset images and classes.
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Figure 3. Prediction overlap. We show the overlap in predictions across all models. Each bin k = [0, ...

, N gives the percentage of

images from the dataset that were missed (incorrectly classified) by k out of IV trained models (six models and five trials each).

The first method, Prediction Overlap, empirically esti-
mates image and class difficulty based on a set of strong
classifiers and how they collectively perform; the second
approach, Prediction Rank, determines difficulty by exam-
ining the rank of an image’s label within a classifier’s pre-
diction vector for the image; the final paradigm, Pairwise
Class Confusion, is focused on pairs of classes, seeking to
measure how distinct or confusing two classes are.

2.1. Prediction overlap

We propose prediction overlap as one method for quan-
tifying the difficulty of an image. The idea is to take the pre-
dictions of NV independently trained models and look at how
many are correct. This process reveals a continuum of im-
age difficulty within the dataset, where images with many
correct predictions are inherently easier to classify, while
images with few correct predictions are harder. This defini-
tion of difficulty depends on the type and number of models
used, but as we show in Fig. 3 and explain in Sec. 4, there
is a clear pattern of easy and hard subsets in the data that
emerges across datasets, despite using many strong models.

Let us be precise in our definition of prediction over-
lap. We start with a dataset D, divided into train and eval-
uation sets Dp and Dg. D consists of images and their
corresponding class labels {(z;,y;)}. We train N differ-
ent models to predict y; from z; using Dr. Once the
models are trained, we get N class predictions—one from
each model—for each image z; in the evaluation set Dg:

(pi,...,pl%). We then compute an overlap value o; for each
image as the number of correct predictions:
N
= 1ph i) (1)
k=1

where 1(a,b) = 1if a = b else 0. We use the overlap value
0;, or equivalently the overlap ratio o; /N, as a measure of
image difficulty. Fig. 2 (left) shows how this works.

In Sec. 4 we show prediction overlap results for multiple
datasets and models. We find that within each dataset there
are generally a large number of easy images, which are pre-
dicted correctly by all models. There is also a smaller set of
elusive images, which are never correctly classified. In be-
tween the two extremes are images varying from medium to
hard, which are sometimes classified correctly, with vary-
ing levels of frequency.

2.2. Prediction rank

We propose prediction rank as an additional, compli-
mentary method for quantifying the difficulty of an image.
Similar to prediction overlap, we start with the output of N
independently trained models, but we consider the predic-
tive distribution over classes (the logits) instead of just the
top prediction. We order the logits q; for each image x;
from highest to lowest, and calculate the rank of the ground
truth class (its position in the ordered list):

r* = rank(y;, argsort(q;)) )

where argsort returns the indices that sort the sequence
and rank(a, b) returns the index of a in b. Using N models
we obtain a vector of ranks for each image, (r%,...,r%),
and we normalize each value by the maximum observed

Pt
k W
max,; max Tj ’ ©
J n T'n

define the prediction rank score for image x; as its average
normalized rank

rank across all models and images: 7 =

1w
=5 27 3)
k=1

The score s’ gives a continuous value of hardness for each
image. The process is depicted in Fig. 2 (right). We also
compute a class-level difficulty score by averaging the pre-
diction rank scores over all images in a class.
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Figure 4. Pairwise class confusion. The top and bottom rows respectively consider very distinct and very confusing pairs of classes. In
each row, prediction models estimate class label probabilities (each point is a model’s prediction on one image of label probability for each
of the two classes). These predictions have little to no overlap (distinct case) or have highly overlapping distributions (confusing case).
A symmetric KL divergence measure (denoted Sk 1) quantifies the degree to which models find a pair of classes confusing. At the right,
pairwise Sk 1, values for the full CUB dataset (all 200 classes) are shown; higher brightness indicates similarity and several block diagonal
regions show similar classes that are easily confused (often within a taxonomic family).

2.3. Pairwise class confusion

Our third approach for estimating difficulty uses pair-
wise class confusion to identify similar classes. For a pair
of classes, 1 < 4,5 < |C|, we construct two image sets
I; and I; containing the images with ground-truth labels
of ¢ and j, respectively. For an image zj, with ground-
truth class label yx, a model M produces a prediction vec-

tor Pys(z) = (p’f,p’g,p’g, . ,pl’“c|), |Pys| = 1. For each
Tk, we care about only two of the values in the prediction
vector, namely pf and p;?. These represent model M’s cal-
culations of the probability that image x; belongs to class ¢
and class j, respectively. These prediction values are com-
puted and extracted, effectively mapping an image xj to a
probability pair (pf, p¥).

The images in I; are mapped in this way to probability
pairs, forming a non-parametric distribution Pr(y, = ) vs
Pr(yx = j) over the unit square [0, 1],. In Fig. 4, a pair of
distinct classes are shown in the top row, and a pair of sim-
ilar classes are shown in the bottom row. The probability
pairs are plotted in the top-left and bottom-left. The top-
right and bottom-right plots show these same sets of points
as distributions (via kernel density estimation). Note that
for the distinct classes, these distributions are entirely dis-
joint (top-right plot). For the similar classes, there is sig-
nificant overlap between the blue and red point sets, indi-

cating that the model struggles to correctly classify the in-
stances from classes ¢ and j (actually misclassifying many
instances). This confusion is again observable in the over-
lapping distributions (lower-right plot).

To quantify how similar (confusing) or dissimilar (dis-
tinct) a pair of classes is, the Kullback-Leibler divergence is
used between their respective distributions to measure sim-
ilarity. The KL divergence D, is defined for two distribu-
tions P(z) and Q(z) as

P(x)
Dk (P,Q) = P(zx)-lo (€))
” 2 P tos (a)

KL divergence is inherently asymmetric, Dy (P, Q) #
Dk (Q, P). Therefore, a symmetric KL divergence Sk,
is defined to calculate similarity between two classes’ dis-
tributions:

Skr(P,Q) = 3 (Dkr(P,Q) + Dkr(Q, P))  (5)

For every pair of classes ¢ and j, these distributions Pr;
and Pr; are generated and the symmetric KL divergence
Skr (Pri, Prj) is calculated and used as a measure of sim-
ilarity. A pair of classes with distinct distributions has a very
high divergence, while a pair of similar classes will have a
low divergence.
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Figure 5. iCub example images. Zoom in for detail.

3. Hard problems in FGVC

There are multiple factors that can make certain images
or classes difficult to classify. We give a brief overview of
some of the prominent ones here. Many are hard to quantify,
and we don’t attempt to measure them all in this work.

Similar class confusion Within FGVC datasets, there ex-
ist groups of classes that are especially hard to distinguish
from one another due to visual similarity within the do-
main; in fact, this is the core challenge of FGVC. When
a model’s error involves predicting a particularly similar-
looking class, we consider this to be an instance of simi-
lar class confusion. We compute how many similar classes
each dataset has in Sec. 4.

Object size and location We hypothesize that the size
and location of the object in relation to the image may ac-
count for some challenging images, where classifiers may
struggle more for objects that are very small (i.e. distant
from the camera), or not well-centered. We use bounding
box area and offset to approximate object size and location.

Pose Data driven classification methods naturally struggle
when they encounter out of distribution poses during infer-
ence. However, assessing the actual prevalence and impact
of this issue is very challenging. It would require both anno-
tations of poses as well as algorithms that group such poses
to determine which are in or out of distribution. Due to the
unavailability of the keypoint labels and the challenges as-
sociated with clustering poses, we propose such analysis for
future work.

Occlusion While we recognize the importance of occlu-
sion as a source of error, we do not address it in this work for
two reasons: first, it is difficult to precisely define occlusion
in a satisfying way; and second, previous definitions (e.g.
from Hoeim et al. [25]) rely entirely on manual annotation.

Distractors The background or other objects in the image
have the potential to confuse a classifier; this issue is also
hard to measure, and we don’t address it here.

Photometric Issues such as lack of contrast, poor illumi-
nation and blurriness can make images challenging to clas-
sify, but we do not address those here.

4. Experiments and analysis
4.1. Datasets

We use four prominent and well-studied fine-grained
classification datasets—FGVC Aircraft [41], Stanford
Cars [33], Caltech Birds (CUB) [57] and NABirds [55]—
along with the recently introduced Danish Fungi Mini
dataset [44]. Statistics of these datasets are shown in Ta-
ble 1 in the Supplementary Material. We also introduce a
new birds dataset specifically for use in evaluation, which
we call iCub. iCub has the same categories as CUB, but
more images and additional challenges. We describe iCub
in more detail next.

4.1.1 The iCub dataset

We introduce iCub, a new evaluation-only bird dataset that
consists of the same 200 bird species as CUB, but with im-
ages sourced from iNaturalist.! The dataset is intended to
be used as an additional validation set for models trained on
CUB; thus, none of the images are designated for training.
We provide iCub as an aid in analyzing model errors.

iCub was built by downloading all research-grade iNat-
uralist images for CUB categories, available as of January
2020. Images are certified as “research grade” when the
label has been verified by consensus among the iNaturalist
citizen-scientist community. To keep the dataset size man-
ageable, we randomly selected 100 images per category and
filtered them by hand, removing images with large flocks of
birds or multiple birds of different species, then annotated
the remaining images with bounding boxes. In total, iCub
contains 16,876 images. The last row in Table | shows de-
tails for iCub and Fig. 5 shows randomly chosen iCub im-
ages.

Our purpose in introducing iCub is to provide an addi-
tional, large source of evaluation data that can test a CUB-
trained model’s performance on the same classes but on a
different, more challenging visual distribution. iCub con-
tains a greater number of difficult and elusive instances than
does CUB for the same categories. iCub also contains many
more images where the bird is small relative to the area of
the image. The distributions of object size, aspect ratio, and
centeredness (distance from the image center to the bound-
ing box center), estimated from the bounding boxes, are
shown in Fig. 12 (Supplementary) for CUB and iCub. The
distributions of object size in particular are quite different.

4.2. Models

We use a small representative set of FGVC-specific
methods—PMG [12], WSDAN [28], SIMTrans [51] and
IELT [64]—as well as ResNet-50 [24] and ViT [1 1], which
serve as the backbone networks for the other approaches.

lwww.inaturalist.org
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Figure 7. Per-class easy vs. hard and elusive images. Each
class has an orange dot and a blue dot: the orange dot shows the
percentage of hard images (1-10 models predict correctly) vs. easy
images, while the blue dot shows the percentage of elusive images
(no models predict correctly) vs. easy images.

We choose these methods since together they are repre-
sentative of major approachs to FGVC (see Sec. 5); a
jigsaw-solving method (PMG), a feature-fusion and spatial-
dependency learning method (SimTrans), a data augmenta-
tion and attention method (WSDAN) and an internal ensem-
bling transformer method (IELT).

4.3. Training procedure

We use a standardized training procedure for all models
and datasets, with a few specific adjustments where needed.
We choose to keep things as standardized as possible across
all methods, rather than using the exact backbone, schedule,
or hyperparameters used by the original model implementa-
tions. We feel that this helps to remove confounding factors
from the analysis. We include the precise details in the Sup-
plementary Material A.

We train each model 5 times using a fixed set of 5 ran-
dom seeds, which are the same across methods. We refer to
the same model trained with a different seed as distinct tri-
als or runs. We include these multiple trials in our analysis.
Fig. 6 shows the overall accuracy across all models and runs
on each dataset. When the pre-training, training and hyper-

Figure 8. Image vs. class rank. Using prediction rank estimation
(Sec. 2.2), we show the image rank compared to the class rank,
which shows that certain images are much more challenging than
the class average.

parameters are standardized, WSDAN outperforms more
recent works such as SIMTrans. As a community, we must
carefully consider the impact of factors like data augmen-
tation, optimizer, and learning rate when comparing SOTA
FGVC methods.

4.4. Analysis
4.4.1 Measures of difficulty

Prediction overlap Fig. 3 shows the results of the anal-
ysis we describe in Sec. 2.1. In general, each dataset has
a large set of easy images, and a smaller set of elusive im-
ages. Not all datasets are equally challenging; Fungi and
iCub have a much smaller easy set than other methods, and
larger elusive sets. We believe careful examination of the
hard (few models predict correctly) and elusive sets is key
to future model design, and we start this examination in our
work in Sec. 4.4.2.

We also measure difficulty at the class level. In Fig. 7 we
measure the extent to which each class is comprised of easy,
hard (1-10 correct predictions) or elusive images. We find
that while datasets such as Cars tend to be made up mostly
of easy classes, other datasets (Fungi, NABirds, iCub) have
a large set of classes that include no easy images; and iCub
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has no trivial classes. We take a closer look at easy classes
by model in Fig. 14 in the Supplementary Material.
Prediction rank We show both image and class diffi-
culty using prediction rank estimation in Fig. 8. These
results reinforce our prediction overlap findings; datasets
like iCub and Fungi have harder images and harder classes,
while Cars and CUB tend to have easier images and eas-
ier classes—also note that NABirds may look skewed, due
to the much larger number of classes and thus smaller like-
lihood of a high image-rank score. We observe that there
are certain images which are much harder than the class
average; but there are also easy images belonging to more
challenging classes. Certain classes are intrinsically more
challenging—Ilikely due to similar class confusion; but it’s
interesting that certain images are still easy.

Pairwise class confusion Using Pairwise Class Confu-
sion to quantify similarity between classes, we calculate
for each class how many other classes are highly similar.
We define highly similar class pairs as those whose Sk,
values (Eq. 4) are at least three standard deviations below
the mean. Fig. 9 shows this distribution for each dataset.
The distributions are similar across datasets, with the ex-
ception of Cars and NABirds. NABirds has proportionally
fewer similar classes, but that is likely due to the fact that it
has many more classes overall; the actual number of similar
classes may be the same as or higher than in other datasets.
For instance, 4% of classes for NABirds corresponds to 22
classes. Clearly, similar class confusion remains a major
challenge in FGVC.

4.4.2 Diagnostics

Spatial distribution Certain properties of the object in an
image, such as size or location, could affect classifier per-
formance. To measure this, we correlate an objects’ spatial
properties with prediction overlap. Fig. 15 in the Supple-
mentary Material shows these correlations for object size,
aspect ratio and distance from the image center for each
dataset. Surprisingly, in most cases there isn’t any corre-
lation. However, iCub and NABirds do show a correlation
between object size (area of the bounding box) and predic-

iCub NABirds
Pearson: 0.347 (0.0) Pearson: 0.123 (0.0)

1.0
0.8
0.6
0.4
0.2
0.0

Area

| |
easy elusive easy elusive

Prediction overlap

Figure 10. Spatial distribution. Distribution of relative bounding
box area for each prediction overlap group in iCub and NABirds.
Columns in each plot correspond to the prediction overlaps from
Fig. 3, with 31 columns total ranging from easy to elusive. The
Pearson correlation (and p-value) is shown in red.

tion overlap; this is shown in Fig. 10. This confirms, un-
surprisingly, that objects that are smaller with respect to the
image are more challenging to recognize, and these types of
images are more prevalent in iCub and NABirds.

Hard and elusive image examples Figure 11 shows
some examples of images from the elusive and hard sub-
sets, where we’ve defined “hard” in this case to be images
where less than a third of the predictions are correct (1-10
correct predictions out of 30). The hard subset is particu-
larly interesting because it contains images that are some-
times predicted correctly, but frequently aren’t. The elusive
subset may contain images that are mislabeled or not repre-
sentative of the dataset; for example, B2 and B3 in Fig. 11.
Some commonalities we observe in these challenging im-
ages include uncommon pose or viewpoint (D1, E4, F3-4,
G1-6, H5-8); “camouflage” (C1, E7, F4-5); and distractor
objects (C3, F1, H4), to name a few.

Discussion In Sec. 3 we discuss properties that can make
images challenging, but which are difficult to measure.
We see evidence of those properties in Fig. 11; but, we
need to be careful about assuming causality. A more thor-
ough examination of images across all prediction overlap
groups—as well as correlation with the training set—would
be needed for substantiation. There are also many images
that don’t have an obvious reason for being challenging; for
example, E8, F7 and G8. These are arguably the most inter-
esting, because they should be solvable; understanding and
addressing the reason behind their difficulty is an important
direction for improving FGVC.

5. Related Work

For general image classification, categories can be dis-
tinguished based on major differences such as the pres-
ence or absence of key parts (e.g. a human has legs while
a car has wheels). In FGVC, however, categories may
have subtle differences in the shape or color of parts they
have in common (e.g. differences in beak color or length
between different sea bird species). While large datasets
like ImageNet [9,47] and iNat [56] have subdomains that
are fine-grained, FGVC research more commonly uses
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Elusive (0 models)

Hard (1-10 models)

Figure 11. Challenging images. We show several examples of elusive images from Aircraft (A, B) and CUB (C, D). We also show
examples of hard images, which were correctly predicted by between 1 and 10 models (out of 30), for Aircraft (E), CUB (F), Cars (G),

and Fungi (H).

single-domain datasets such as Aircraft [41], Birds [55,57],
Cars [33], Dogs [30], and Flowers [43] as benchmarks, each
having hundreds of classes with dozens of images each.

Deep learning has become the dominant approach to
FGVC [5, 14, 19,40, 60, 70], like computer vision in gen-
eral. Most models are pre-trained on ImageNet [9, 47],
while some approaches train on other, related datasets be-
fore the target FGVC task (e.g. [32]). Data augmentation
has become ubiquitous in FGVC, and recent work explores
optimizing the set of transformations [7].

The main approaches to FGVC include segmentation
[4, 66], part-model [29, 50], and pose-alignment [17, 18,
20, 21, 38] methods, which attempt to isolate and model
important class-specific features in a pose-invariant way.
Pooling methods, such as bilinear [31,36,37,67], Grass-
man [62], covariance [34,35], and several learnable pool-
ing methods [1, &, 49], attempt to leverage second order
statistics between deep CNN features. Attention meth-
ods [45,46,58] have also received a lot of “attention”, with
different methods employing recurrent models [16, 48, 69],
reinforcement learning [39], metric learning [52], and part
discovery [28,70-72].

Other approaches modify the learning objective to ac-
count for high similarity and ambiguity between classes.
Label smoothing [42, 53] and taxonomy-based schemes [3,
54] redistribute probability mass in the target distributions.
Pairwise confusion [ 3] and maximum entropy [ 14] help re-
duce overconfidence by regularizing predictions. A recent
plugin module combines feature maps with top-k predic-
tions to overcome ambiguity [10]. Some methods resolve
such differences via mixture of experts [68].

Feature fusion methods [0, 23, 45,59, 65] have become
increasingly popular with the introduction of the vision

transformer [11]. Transformer-based [51, 61] and graph-
based [2] approaches learn dependencies between image
patches in order to attend to the most relevant fine-grained
differences. Others learn dependencies by solving jigsaw
puzzles [5, 12].

Previous FGVC analysis focuses primarily on the dataset
or task itself as the vehicle for analysis, and analysis is lim-
ited to accuracy benchmarking [27]. Similar to Hoiem et
al. [26] diagnosis of object detection, we attempt to catego-
rize different types of errors.

6. Conclusion

In this paper, we carefully explore current FGVC chal-
lenges across a range of popular fine-grained datasets and
models. Through overlap analysis and rank estimation, we
establish a spectrum of image difficulty at a granular level,
allowing us to examine the impact of specific challenges
within the data on modern FGVC methods. Our code will
be made publicly available as a toolkit that can be used to
analyze additional datasets and models, giving FGVC re-
searchers a rich set of tools for moving the field forward.
As part of this toolkit, we provide a standardized training
recipe for FGVC methods. This sort of fair comparison re-
veals the inadequacy of existing leaderboards, which con-
flate progress on general purpose optimizers, learning rate
schedules, and data augmentation with progress on core
FGVC problems. Finally, we contribute iCub to allow for
additional analysis of bird classification methods.
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