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ABSTRACT
Proteins can form droplets via liquid–liquid phase separation (LLPS) in cells.Recent experiments demonstrate that LLPS is qualitatively
different on two-dimensional (2D) surfaces compared to three-dimensional (3D) solutions. In this paper, we use mathematical modeling to
investigate the causes of the discrepancies between LLPS in 2D and 3D. We model the number of proteins and droplets inducing LLPS by
continuous-time Markov chains and use chemical reaction network theory to analyze the model. To reflect the influence of space dimension,
droplet formation and dissociation rates are determined using the first hitting times of diffusing proteins. We first show that our stochastic
model reproduces the appropriate phase diagram and is consistent with the relevant thermodynamic constraints. After further analyzing the
model,we find that it predicts that the space dimension induces qualitatively different features of LLPS,which are consistent with recent
experiments. While it has been claimed that the differences between 2D and 3D LLPS stem mainly from different diffusion coefficients, our
analysis is independent of the diffusion coefficients of the proteins since we use the stationary model behavior.Our results thus give new
hypotheses about how space dimension affects LLPS.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0235456

I. INTRODUCTION

In a cell, liquid–liquid phase separation (LLPS) manifests as
the formation of droplets from protein condensation.These liquid
droplets in a dense phase separate from their surrounding spaces
of dilute phases.1–5 Biologists have made significant strides in elu-
cidating the importance of LLPS and its involvementin cellular
processes.Repair protein factors,for example,are involved in the
initiation of LLPS during DNA double-strand breaks.6–8 In addition,
it has been found that the condensates of SCOTIN, an Endoplasmic
Reticulum (ER) transmembrane protein with a cytosolic intrin-
sically disordered region,inhibit ER-to-Golgi transport through
LLPS.9 Furthermore, dysregulation of LLPS has been associated with
various diseases, including cancer.10–12

LLPS is found in many different intracellular locations, includ-
ing on two-dimensional (2D) surfacessuch as the endoplasmic
reticulum membrane9,13,14or in three-dimensional (3D) spaces such

as the cytoplasm13,15–17[Fig. 1(a)]. Qualitative differences between
two-dimensional LLPS (2D-LLPS) and three-dimensional LLPS
(3D-LLPS) have been observed recently.14,18,19For example,Snead
et al.14 revealed differences in droplet formation times between 2D
and 3D environments. While droplets in 2D can form within min-
utes,it takes hours for them to form in 3D. In addition, droplets
in 2D can be arrested within minutes,suggesting resistance to size
growth,whereas in 3D,they can reach their maximum size within
hours. To explain these qualitative differences observed in 2D vs
3D, some have proposed that droplet size arrest may result from
disparities of diffusion coefficients in 2D and 3D environments.14

For example,diffusion coefficients ofeGFP proteins in 2D differ
markedly from 3D.20,21

While it is true that diffusion coefficients differ in 2D vs 3D
cellular environments,the space dimension has more fundamen-
tal effects on diffusion processes.For example,far fewer steps are
required (on average) for a random walk to find a target if the
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FIG. 1. Overview of modeling LLPS using a reaction network. (a) LLPS occurrence in 2D (e.g., membrane) and 3D (e.g., cytoplasm). (b) The value  m represents the threshold
number required for droplet formation. (c) A visual representation of a state of the Markov chain  X( t) . (d) The hydrodynamic radius r of a protein. A droplet is approximated
as a sphere in 3D and a circle in 2D to derive its radius. (e) and (f) Understanding the reaction rates  a1, ak ’s and bk ’s. The ak and bk are defined by mean first hitting and exit
times. (g) Plots of the rates a1, ak , bk of 2D and 3D under equal diffusion coefficients and viscosity.
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search is restricted to a 2D lattice rather than a 3D lattice.22 More
mathematically sophisticated examples ofdimensionaldiscrepan-
cies include the recurrence vs transience of 2D vs 3D random
walks23,24 and the logarithmic vs algebraic singularities of the 2D
vs 3D Laplacian Green’s functions.25 Importantly, these discrepan-
cies cannot be accounted for by merely rescaling time. Studying how
these fundamental,dimensionaldifferences in diffusion affect cell
biology has a long history in the biophysics literature.26–37 How do
these differences affect LLPS?

In this paper, we formulate and analyze the mathematical
models of microscopic intracellular LLPS and theoretically com-
pare LLPS in 2D vs 3D.The main theoreticalframework for this
is biochemical reaction network theory.By describing droplet for-
mation, coarsening, and dissociation with reactions between species,
LLPS can be associated with a reaction network. Our model consists
of the following reactions:

mP
a1Ð⇀Ð
bm

Dm (droplet formation) ,

P+ Dk

ak
Ð⇀Ð

bk+1

Dk+1 (coarsening and dissociation)

for k=m, . . . , L−1,

Dk + Dj

fkj

Ð⇀Ð
gk+ j

Dk+ j ( fusion and fission)

for 2m≤k+ j ≤L,

(1)

where P denotes a single protein and Dk denotes a droplet consist-
ing of k proteins.m indicates the threshold number of proteins to
form a droplet.We modelthe reactions in (1) with a continuous-
time Markov chain, which tracks the copy numbers of each “species”
P and Di . We derive the closed form of the stationary probability
distribution of this Markov chain using biochemicalreaction net-
work theory.The reaction rate parameters [ai , bi , fi , and gi in (3)]
are set via first passage time theory of diffusion processes to reflect
spatial dimension differences. We then study how these dimensional
disparities in diffusion yield differences for LLPS by computing the
resulting stationary distribution of (1).

The theoreticalstudy of LLPS spans various fields.In physi-
cal chemistry,scientists have investigated LLPS phenomena under
thermodynamic theory by measuring energy,showing that energy
minimization leads to the demixing of substances and liquid state
phase separation.4,38–40In addition, theorists used partial differential
equation models, such as the Cahn–Hilliard equation,41 Allen–Cahn
equation,42 and Cahn–Hilliard–Navier–Stokes equation,43 to ana-
lyze and numerically simulate LLPS.44–49 Machine learning and
data-driven methods have also been employed to analyze phase
separation.50 In contrast to previous models that primarily use ther-
modynamic frameworks such as free energy and chemical potentials
to explain LLPS, our model is built from first hitting times of
diffusing proteins.

We now briefly summarize our results and their biophysical
implications.We first verify that our model reproduces the appro-
priate phase diagram and phase separation and is consistent with
existing thermodynamic models.We then study qualitative differ-
ences between 2D-LLPS and 3D-LLPS via the stationary distribution
of the reaction network (1). The shape of the stationary distribution

is determined by protein characteristics such as the droplet viscos-
ity, the minimum size of droplets,and the hydrodynamic radius
of proteins.We first investigate the effect of the droplet viscosity,
indicating the strength of the protein–protein interactions. Within a
wide range of droplet viscosity values, we find that 2D-LLPS forms
large droplets,while proteins are likely to remain without form-
ing in 3D-LLPS.Notably,a higher droplet viscosity is required in
3D than in 2D to increase the droplet size.Next, we find that
there exists a range of the minimum droplet size in which 2D- and
3D-LLPS have significantly different probabilities of forming
droplets.Finally, we show that when proteins are tethered on a
membrane yielding a reduction on the hydrodynamic radius of
the protein, less droplets in 2D can be produced compared to a
3D space,but only for a sufficiently large reduction.We present
these results using both mathematical analysisand numerical
computations.

The stationary distribution thus reveals how diffusion in 2D vs
3D yields differences between 2D-LLPS and 3D-LLPS. Importantly,
the stationary distribution is independentof the diffusion coeffi-
cient. Therefore,our analysis predicts thatprominent qualitative
differences between 2D-LLPS and 3D-LLPS stem from fundamental
differences in spatial dimension rather than solely from differences
in diffusion coefficients. To our knowledge, our study provides the
first model of intracellular LLPS using first passage time analysis,
chemicalreaction network theory, and continuous-time Markov
chains.

This paper is organized as follows. We first introduce biochem-
ical reaction networks, one of the key theoretical frameworks of this
study, in Sec. II. In that section, we also derive the closed form sta-
tionary distribution of the copy numbers of the proteins and the
droplets. In Sec. III, we use first passage time theory to set the reac-
tion rates.In Sec.IV, the main results are provided:reproduction
of thermodynamic description ofLLPS with our model and the
qualitative differences of stationary distributions modeling 2D- and
3D-LLPS in terms of viscosity,threshold droplet size,and hydro-
dynamic radius of proteins. In Sec. V, we provide mathematical
analyses of our main results. We conclude in Sec. VI by discussing
potential avenues for future work.

II. REACTION NETWORK DESCRIPTION OF LLPS
We develop a stochastic processmodeling LLPS based on

reaction networks to describe LLPS in both 2D and 3D cellular envi-
ronments.A reaction network is a graph whose nodes and edges
represent complexes and reactions, respectively. For example, in (3),
the reaction P+ Dk → Dk+1 describes the coarsening of the droplet
of k proteins by recruiting an additional protein P. The reactant
P+ Dk is a complex consisting of a single copy of P and a single copy
of Dk, and Dk+1 is the product complex of the reaction.

We use a continuous-time Markov chain to model the stochas-
tic evolution of the copy numbers of species in a reaction network.
In particular, let X( t) = (P( t) , Dm( t) , . . . , DL( t)) be a continuous-
time Markov chain associated with (1).Each coordinate ofX( t)
gives the copy number of the corresponding speciesat time t
[Fig. 1(c)]. The evolution of X is given by a reaction. For example, if
P+ Dm → Dm+1 fires at t, then X( t) −X( t−) = (−1,−1, 1, 0, . . . , 0) .
The reaction to fire and the time for the next reaction are randomly
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determined using the reaction intensityλy→ y′ for a reaction y→ y′

defined as

P(X( t + Δt) = x + νy→ y′ ∣X( t) =x)

= λy→ y′ (x)Δ t + o(Δ t) asΔt → 0+, (2)

where νy→ y′ is the reaction vectordescribing the net change of
the reaction y→ y′. For example,νmP→Dm = (−m, 1, 0, 0, . . . , 0) . The
function λy→ y′ provides the rate of the transition given by the reac-
tion y → y′.23 Hence, these intensities fully characterize X. We now
highlight important assumptions for modeling LLPS.

(i) We assume thatthe timescale ofLLPS is faster than pro-
tein production and degradation. Hence, we do not consider
production and degradation reactions, PÐÐ⇀↽ÐÐ∅.

(ii) We do not consider the reactions kP ÐÐ⇀↽ÐÐD
k

for k < m

because we assume that there exists a threshold number, m, of
proteins to form a droplet [Fig.1(b)]. The existence of such
a threshold was experimentally and theoretically verified in
Ref. 51. The volume fraction of the dense phase under the sta-
tionary distribution of X( t) , which we derive in (8), can also
be used to theoretically support this. We provide more details
about this setting in Appendix A 1.

(iii) Proteins inside droplets are expected to have a smaller mobil-
ity compared to proteins outside droplets,9,52 which means
that fkj and gk+ j are much smaller than the other reac-
tion rates. Hence,to simplify our analysis, we neglectthe

fusion reactions and the fission reactions Dk + D j

fk j

Ð⇀Ð
gk+ j

Dk+ j (see

Appendix A 5 for details on this assumption).

Under these assumptions,the reaction network describing
LLPS in this paper is

mP
a1Ð⇀Ð
bm

Dm, P+ Dk

ak
Ð⇀Ð

bk+1

Dk+1 for k=m, . . . , L−1. (3)

Remark 1. The reactions in (3) do not result in chemical
changes on the proteins or the droplets, although such reactions are
often termed “chemical reactions” in mathematical biology or chem-
ical reaction network theory. For example, the birth of an animal can
be described with a chemicalreaction A→ 2A. In the same sense,
we also emphasize that the reactions in (3) do not mean protein
assembly,which is a chemical process related to,but distinct from
LLPS.We discuss protein assembly in relation to our modeling in
Appendix A 3.

In Sec.IV (a) and Appendix A, we describe how this model
is consistent with certain thermodynamic aspects ofLLPS.Based
on mass-action kinetics,the intensities of the reactions in (3) are
defined at x= (p, dm, . . . , dL) as

λmP→Dm(x) =a1p(p−1) ⋅ ⋅ ⋅ (p−m+ 1)𝟙 p≥m,
λDm→mP(x) =bmdm𝟙 dm≥1,

λP+Dk→Dk+1(x) =akpdk𝟙 p≥1𝟙 dk≥1,
and

λDk+1→P+Dk(x) =bk+1dk+1𝟙 dk+1≥1

(4)

for k =m, . . . , L−1. Here,𝟙A denotes the indicator function, which
is 1 if the condition A is satisfied and is zero otherwise. For instance,

𝟙 p≥m =
⎧⎪⎪
⎨
⎪⎪⎩

1 if p≥m,
0, otherwise.

(5)

Abusing notation, for a reaction y→ y′, we can regard the com-
plexes y and y′ as vectors.For example,the complexes mP and
P+ Dm can be represented by (m, 0, . . . , 0) and (1, 1, 0, . . . , 0) ,
respectively.Then, for y → y′, the reaction vector can be denoted
by y′ −y, which means the net gain of species via the reaction
y → y′. The probability distribution p(x, t) =P(X( t) =x) of X( t)
is governed by the chemical master equation,a system of ordinary
differential equations defined as

d
dt

p(x, t)

= λmP→Dm(x− (−m, 1, 0, . . . , 0)) p(x− (−m, 1, 0, . . . , 0) , t)
+ λDm→mP(x− (m,−1, 0, . . . , 0)) p(x− (m,−1, 0, . . . , 0) , t)

+
L−1
∑
k=m

( λP+Dk→Dk+1(x− ν+k )p(x− ν+k , t)

+ λDk+1→P+Dk(x− ν−k )p(x− ν−k , t) )

− (λmP→Dm(x) + λDm→mP(x)

+
L−1
∑
k=m

(λP+Dk→Dk+1(x) + λDk+1→P+Dk(x))) p(x, t) , (6)

where ν+k and ν−k are the reaction vectors associatedwith
P+ Dk → Dk+1 and Dk+1 → P+ Dk, respectively, for each k.

Remark 2. A well-known reaction network, the so-called
Becker–Döring model,has a similar reaction network structure to
(3).53–55 This model is often employed to describe particle aggrega-
tion. However,due to the absence of the threshold of the protein
concentration,this prior model is limited to describing protein
assembly rather than phase separation (see Ref. 2 for the difference
between protein assembly and phase separation).

A. Stationary distributions
We analyze the differences between 2D-LLPS and 3D-LLPS

using their stationary distributions. The stationary distributionπ is
the limiting distribution of p(x, t) defined as

lim
t→∞

p(x, t) = π(x) for each x. (7)

One advantage of the chemical reaction network description of LLPS
is that we can obtain the closed form of π. To do this, we use
Theorem 156 (see Appendix C).

Using Theorem 1, the stationary distribution of the associated
Markov chain for (3) is for each x= (p, dm, . . . , dL) ,

π(x) =M 1
p!

L

∏
k=m

Qdk
k

dk!
(8)
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for each state x, where Qk is

Qk :=

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

(
a1
bm

) if k=m,

(
a1am,⋅ ⋅ ⋅ak−1
bmbm+1⋅ ⋅ ⋅bk

) if m< k ≤L.
(9)

The constant M is the normalizing constant such that

M =
⎛
⎝
∑
x∈Sx

1
p!

L

∏
k=m

Qdk
k

dk!
⎞
⎠

−1

, (10)

whereSx is the state space containing x.
One of the advantages of the closed form of the stationary dis-

tribution (8) for our model is its ability to generalize the numerical
results shown in Sec. IV. Indeed, the threshold number of proteins
to form droplets(m) and the size of the largest droplets(L) can vary
widely depending on several factors, including the concentration of
the proteins,their affinities to each other,and the specific condi-
tions of the system.57,58Owing to computational costs, we often use
small values of m and L for simulations, since the size and complexity
of the state space of the model grow rapidly with these parameters.
However, due to the closed form ofπ in (8), we show that our main
results hold for general m and L (see Propositions 3–4).

III. REACTION RATES
We choose the reaction rates in our model(3) by regarding

each protein as a randomly diffusing particle. We consider either a
disk (for 2D-LLPS) or a sphere (for 3D-LLPS) surrounding droplet
to present a target of particles (proteins) as shown in Fig.1(d).
We view a protein as a circular/sphericalobject with a hydrody-
namic radius r that takes into account the hydrodynamic length of
the protein or the interaction range of a single protein as shown
in Fig. 1(d). Assuming that the volume of a droplet Dk is propor-
tional to the number of proteins k, the radius rk,d of the droplet
Dk in d-dimensional space satisfies

rk,d =
⎧⎪⎪
⎨
⎪⎪⎩

αrk1/ 2 if d=2,
αrk1/ 3 if d=3,

(11)

for each k=m, m+ 1, . . . , L. [See Fig. 1(d) for this derivation.] The
proportionality constantαmay vary by the protein–protein binding
affinity and density of the protein aggregation. We simply setα =1
throughout this article.

We assume that the reaction P+ Dk → Dk+1 fires when a par-
ticle (protein) hits the target Dk. Hence, the rates ak can be defined
using first hitting times. Similarly, we define a1 and bk by regarding
the proteins as diffusing particles.

Throughout this article,∥v∥ =
√

∑
K
i=1 v2

i denotes the standard
Euclidean norm of a vector v∈RK . Furthermore,d =2 or 2D and
d =3 or 3D indicate two-dimensional LLPS and three-dimensional
LLPS, respectively.

A. The initial droplet formation rate, a 1

The main idea for the generalized Smoluchowskiframework
introduced in Ref.59 is to consider m independent d-dimensional

Brownian particles Bi( t) (i =1, 2, . . . , m) with diffusion coefficient
D within the spherical or circular system domainΩ = {x :∥x∥ ≤R}
for some R> 0. In Ref. 59, probability fluxes were used to deter-
mine the rate constant for m particles to be in close proximity.It
was also shown thata Markov chain under mass-action kinetics
with the generalized Smoluchowski rate can closely approximate the
same system modeled with Brownian particles.59 Note that the shape
of the domain is irrelevant when the particle is sufficiently small
relative to the domain. Then, the reaction rate a1 can be set as

a1 =
⎡⎢⎢⎢⎢⎣

T m
4παd+1r2αd

m,d
Γ(αd)

⎤⎥⎥⎥⎥⎦
/V

m−1, (12)

where rm,d is as (11), T m =D ×m3/ 2

m! (
m−1

2 ) ( 3m−5)/ 2, α2 = (m−2) ,
α3 = (3m−5)/ 2,Γ is the gamma function,and V is the volume of
the system domain [see Ref. 59, Eq. (3.22)]. Note that

V =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

πR2 if d=2,
4
3
πR3 if d=3.

(13)

Then, (11) yields that

a1 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T m[
4m

m−2

Γ(m−2)
](

r
R)

2m−2 1
r2 if d=2,

T m[(
3
4
√
π)

m−1 4m( 3m−5)/ 3

Γ((3m−5)/ 2)
](

r
R)

3m−3 1
r2 if d=3.

(14)
Note that m≥3 throughout this paper.

We now observe from (14) that for any m,the rate of initial
droplet formation a1 in 2D-LLPS is much greater than in 3D-LLPS
since r≪R, as long as the 3D diffusion coefficient is not far larger
than the 2D diffusion coefficient.That is, the generating time of a
droplet in 2D is faster than in 3D [Fig. 1(g)].

Remark 3. The term m! in T m comes from mass-action
kinetics for mP→ Dm. The intensity of mP→ Dm under mass-
action kinetics is combinatorially defined as itis proportional to

(
P

m
) =P(P−1) ... (P−m+1)

m! . Hence, we merge the term 1/m! to a1.

B. The droplet coarsening rate,
a k , for m + 1 ≤k ≤L −1

In our LLPS model, droplet coarsening happens when a protein
hits the droplet. We thus model the rates of the coarsening reaction
P+ Dk

ak
→Ð Dk+1 using the mean first hitting time for a protein to hit

a droplet Dk [Fig. 1(f)]. Hence, we first consider the d-dimensional
annular domain,

Ωk,d = {∶ x ∈Rd : rk,d ≤ ∥x∥ ≤R}.

As in Sec.III A, an individual protein is described by a Brownian
motion B( t) with diffusion coefficient D. Let τk,d denote the first
hitting time in d-dimensional space,

τk,d =inf { t ≥0 :∥B( t)∥ =rk,d}. (15)
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For k∈ {m, m+ 1, . . . , L−1} , taking the leading order behavior as
r/R→ 0 yields60

1
E[τ k,d]

∼ak =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

(2D/R2)
ln (R/ r) +ln k−1/ 2 if d=2,

3D

R2
k1/ 3 r

R if d=3.

(16)

This rate of coarsening can also be obtained as a Smoluchowski reac-
tion rate.61 Indeed, the Smoluchowski reaction rate for two particles
is proportional to the inverse of the mean first hitting timeE[τ k,d] ,
implying consistency between ak and the Smoluchowski rate.62,63

Remark 4. In the formulation of τk,d in (15), the circular
(spherical) target is assumed to be centered at the origin. However,
by the Markovianity of B( t) , the initial positions of B( t) and the
target Dk are negligible for the derivation of (16) provided that the
target is sufficiently smallrelative to the size of the domainΩ. In
this vein, we need not assume that the domainΩ is either circular or
spherical.

C. The dissociation rate, b k

We now set the rate of the dissociation reactions Dk+1
bk
→Ð P

+ Dk. One of the key features of LLPS is that the droplets are liquid.
Hence,we determine bk for the first time when a diffusing protein
inside a droplet hits the boundary of the droplet [Fig. 1(f)].

We anticipate that proteins within droplets exhibit signif-
icantly slower diffusion coefficients compared to those outside
droplets due to interactions with other proteins within the confined
environment.9,52 We simply incorporate this effectby a constant
V. This constant will be set by considering various factors,includ-
ing viscosity,valency,the binding affinity of proteins,and surface
tension.64–67 We will simply callV the viscosity constant. In partic-
ular, we useV as a scaling parameter for the diffusion coefficient of
the protein within a droplet as̃D = D

V .
The valency refers to the number ofbinding sites a protein

has, allowing it to interact with other proteins. An increased valency
can reduce the threshold concentration for phase separation.2 This
may imply that there is less dissociation with higher valency, which
we can modelby setting V as an increasing function ofvalency.
The binding affinity is the strength of protein–protein interactions.
Higher binding affinity reduces the dynamic rearrangementsof
molecules within phase-separated droplets.68,69 Hence,the diffu-
sion coefficientD̃ decreases with the binding affinity.65,67 Existing
studies indicate that droplets with higher stability have higher sur-
face tension,70 and thus, we can suppose that the viscosity constant
increases with surface tension.Summarizing,an increase in any of
these factors increases the viscosity constant,V.

We now consider for the first time a Brownian particle to exit
a disk (or a sphere) of radius rk,d, starting from the center. For each
k ∈ {m, m+ 1, . . . , L} , let

τ̃k,d =inf { t ≥0 :∥B( t)∥ ≥rk,d} ,

where B( t) is a Brownian motion inRd with the diffusion coefficient
D̃, and rk,d is defined as in (11). The mean first passage timeτ̃k,d is71

1
E[ τ̃k,d]

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4D̃

( rk,d) 2 if d=2,

6D̃

( rk,d) 2 if d=3.
(17)

Since each Dk contains k proteins,we multiply the inverse of the
mean first passage time by k to set bk. That is,

k

E[ τ̃k,d]
=bk =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4kD̃

( rk,d) 2 =
4D

Vr2 if d=2,

6kD̃

( rk,d) 2 =
6Dk1/ 3

Vr2 if d=3.

(18)

Note that the dissociation rate constant bk does not depend on k in
2D, while it does in 3D.

Remark 5.The binding affinity affectsα in (11), which scales
the droplet size based on protein–protein bonding.It is natural to
chooseα as a decreasing function of the binding affinity. Although
we set the reaction proximity for mP→ Dm and the hydrodynam-
ics radius of Dk to be the same whenα =1, they should be treated
differently whenα ≠1. Recall that for simplicity, we setα =1 in this
paper.

D. Analysis of rate constants
To summarize, the reaction rates are given by

a1t0 =
⎧⎪⎪
⎨
⎪⎪⎩

γ2ε2α2 in 2D,
γ3ε2α3 in 3D,

(19)

akt0 =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

−2/ ln ε in 2D for k≥m+ 1,

3εk1/ 3 in 3D for k≥m+ 1,
(20)

bkt0 =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

4 1
Vε−2 in 2D,

6 1
Vε−2k1/ 3 in 3D,

(21)

where t0 =R2/ D denotes the diffusion timescale,ε =r/R≪1 mea-
sures the length scale ofprotein interactions to the size of the
confining spatialdomain, V ≫1 measures how protein diffusion
slows in droplets,α2 =m−2,α3 = (3m−5)/ 2, and

γd =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

m3/ 2(
m−1

2
)

3m−5
2
[

4mm−2

Γ(m−2)
] if d=2,

m3/ 2(
m−1

2
)

3m−5
2
[(

3
4
√
π)

m−1 4m( 3m−5)/ 3

Γ((3m−5)/ 2)
] if d=3.

(22)
Note that we have ignored the higher order k dependence in ak in
2D since we assume thatε ≪1.
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There are several noteworthy features of (19)–(21). First,

a3D
1 /a2D

1 =O(εm−1) asε →0. (23)

Hence, the formation rate of an initial droplet consisting of
m proteins is much faster in 2D than in 3D. Second, for k≥m+ 1,

a3D
k /a2D

k =O(ε ln ε) asε →0. (24)

Hence, droplet coarsening is also faster in 2D than in 3D, although
the difference between 2D and 3D is not as pronounced as it is for
the initial droplet formation rates a2D

1 and a3D
1 . Third,

b3D
k /b2D

k =O(1) asε →0. (25)

Hence,droplet dissociation in 2D and 3D occurs at similar rates.
Finally, the rate of droplet coarsening and dissociation grows with
droplet size k in 3D, but these rates are independent of the droplet
size k in 2D (to leading order forε ≪1). From this analysis, we can
expect that 2D is more favorable for phase separation than 3D as
schematically described in Fig. 2(a). The main results of this paper,
which are given in Sec. IV, depend on this analysis [see Fig. 2(b) for
a schematic summary].

IV. RESULTS
Here,we provide four main results for a qualitative compari-

son between 2D-LLPS and 3D-LLPS. We use plots of the stationary

distribution π and stochastic simulations to show our results and
validate the analyses in Sec. III D. In Sec. V, we provide proofs veri-
fying our results. Without loss of generality, we use a unit radius of
the system domain,R=1, for all the following simulations [except
for Fig. 3(c)].

A. Reproduction of LLPS
Here, we show the consistency of our model with certain

aspects of thermodynamics. Thermodynamic analysis validates that
when the total concentration of the system isϕ∗, the system admits
the coexistence ofdilute phasesof concentrationϕ1 and dense
phases of concentrationϕ2 rather than a single phase of concen-
tration ϕ∗ [Fig. 3(a)]. This is due to the concave region of the free
energy function that implies that the convex combination ofthe
free energies atϕ1 and ϕ2 is less than the free energy at the con-
centration ϕ∗. That is, sF(ϕ 1) + (1−s)F(ϕ 2) <F(ϕ ∗) for s such
that sϕ1 + (1−s)ϕ 2 = ϕ∗ (for more details, see Ref. 4). This induces
phase separation,and the phase diagram is derived as shown in
Fig. 3(b). This phase separation and the phase diagram can be repro-
duced with samples of our Markov chain X( t) in (3) modeled with
the reaction rates defined in Sec. III.

We first visualize samples ofX( t) in 2D to show how our
model can describe phase separation. Once an initial condition X(0)
= (Ptot, 0, 0, . . . , 0) is fixed, where Ptot is the initial protein count, we
sample a single trajectory in time X( t) = (P( t) , Dm( t) , . . . , DL( t))
using the statistically exact Gillespie algorithm.72 The plot of X( t)

FIG. 2. Summary of the analysis of the rates. (a) Under identical settings, due to the differences in a1 and ak between 2D and 3D, droplet formation and coarsening occur
more quickly in 2D than in 3D. (b) We schematically summarize the main results of this paper. The higher the viscosity (or the hydrodynamic radius), both 2D and 3D have
more droplets. However, 2D and 3D have different responses to changes in V or r. Similarly, while both have fewer droplets with a higher  m, they have different responses
to changes in m.
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FIG. 3. Reproduce of phase separation. (a) and (b) Free energy explains phase separation and the phase diagram. (c)  X( t) = (P( t) , Dm( t) , . . ., DL( t)) , a time trajectory
of X( t) in 2D, shows droplet coarsening and Ostwald ripening. (d) Cartoons of the snapshots of  X( t) at four time points.

in Fig. 3(c) (with realistic parameters,14 see Appendix B) shows
the coarsening of the droplets as time passes. Notably, the number
of smaller droplets decreases,while the number of bigger droplets
increases. Hence, these plots also visualize Ostwald ripening as indi-
vidual proteins dissociate from a smaller droplet and join a bigger
droplet (see Appendix A 2 for more details).Then,we display the
sampled state at four time points (t=0, 3⋅103, 12⋅103, and 24⋅103)
by randomly distributing the proteins and the droplets over the
space,where the counts of the proteins and droplets are given by
X( t) [Fig. 3(d)].

Now, by computing the volume fraction of the dense phase
(droplets) and the dilute phase (outside droplets), we reproduce the
phase diagram.Let Vk,d be the volume of Dk, the droplet of size k.
Then,

Vk,d =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

πr2
k,d = πr2k if d=2,

4
3
πr3

k,d =
4
3
πr3k if d=3.

(26)

Both the number of proteins in Dk and the volume of Dk grow lin-
early in k. Hence, the concentration of the proteins inside the droplet

Dk is the same for each k,which is consistentwith the previous
analyses of LLPS.1,4

Let Eπ(P) [respectively,Eπ(Dk) ] denote the expected number
of proteins in the dilute phase (respectively,the droplet of size k)
with respect to π in (8). Define the average volume ratio ofthe
droplets to the system size V as

ρ =∶ ∑
L
k=m Vk,dEπ(Dk)

V

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

πr2(Ptot −Eπ(P))
V if d=2,

π 4
3
r3(Ptot −Eπ(P))

V if d=3,

(27)

where we used the conservation of the total protein counts such that

Ptot =∶ P( t) +
L

∑
k=m

kDk( t) for each time t. (28)
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Theρ in (27) can determine whether the system has either a single
phase or two phases.We assume that the system has two phases if
ρ ∈ (ρ1,ρ2] for someρ1 < ρ2 and has a single phase otherwise. That
is, if droplets and proteins coexist with the volume fraction falling
in the range, the system has two phases.Furthermore,since the
viscosity of liquid droplets and the hydrodynamic radius are specific

functions of thermodynamic temperature T+ 273,which is mea-
sured in Kelvin, we defineV as a linear function of e1/(T+273) and
r as a linear function of T+ 273, as referenced in the literature73,74

(a full description of V and r as a function of T is given in
Appendix B).In this setting,we regardρ as a function of the total
protein count Ptot and the temperature T.

FIG. 4. Reproduction of the phase diagram (a) Effect of temperature on the hydrodynamic radius  r and viscosityV with the graphs. (b) The volume fraction (27) as a function
of P tot in 2D and 3D. ρ1 and ρ2 are the criteria for phase separation. (c) Phase diagrams in 2D and 3D. For example, a system at ① and ② will have a single phase and
two phases, respectively, which are schematically illustrated in (d).

J. Chem. Phys. 161, 204110 (2024); doi: 10.1063/5.0235456 161, 204110-9

Published under an exclusive license by AIP Publishing

 27 N
ovem

ber 2024 15:39:16



The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

To compute the volume fraction usingπ, as described in (8), the
state space has to be identified.However,when the initial number
of proteins is high, the state space is too large to search numeri-
cally. Therefore, we sample 102 time trajectories, using the Gillespie
algorithm75 for 2D with up to 3⋅104 reactions and the tau-leaping
algorithm76 for 3D with up to 3.5⋅104 reactions. Then, we empir-
ically computeρ using the samples. The supplementary plots show
that the samples with 3⋅104 reactions in 2D and 3.5⋅104 reactions
in 3D closely approximate the stationary state of the system in 2D
and 3D, respectively (Fig. 9).

Figure 4(b) shows the graph ofρ as a function of Ptot with
different values of temperature T (Celsius).With this ρ, the phase
diagram was obtained from our model withρ1 =4 ⋅10−2 andρ2 =
0.6, and it turns out to display the well-known concave curve
[Fig. 4(c)].

Remark 6.The plateau ofρ, which appears for small values of
Ptot, implies that droplets are not formed when the total concentra-
tion Ptot/V is small. Hence, our model also reproduces the threshold
protein concentration for phase separation.

Remark 7.While the threshold volume fractions 4⋅10−2 and
0.6 used to define the two phases were chosen somewhat arbitrar-
ily in this paper, these values can be justified using existing theory.
Indeed, the threshold protein concentrations of the system for phase
separation are given by the free energy analysis,4 which is displayed
in Fig. 3. Hence,we can determineρ1 and ρ2 as the volume frac-
tions of the dense phases at the threshold protein concentrations,
namelyϕ1 andϕ2 as in Fig. 3(a). Nonetheless, we chose them arbi-
trarily because for any small values ofρ1 and for any large values of
ρ2, we will obtain the same concave shape of the phase diagram due
to the trends of the volume fractionρ in Fig. 4(c). Hence, we chose
relatively smallρ2 to avoid highly intensive computations, which is
out of the scope of this paper.

Remark 8.Note that Case19 mentioned that 2D spaces,such
as cellmembranes,shift the phase diagram to the left,promoting
nucleation. Our model can also reproduce such a shift of the phase
diagram in 2D-LLPS [Fig. 4(c)].

B. Higher viscosity is required for LLPS in 3D
Here,we show that a higher viscosity is necessary for droplet

formation in 3D than in 2D by showing how the viscosity constant
V alters the shape of the stationary distributionsπ of 2D-LLPS and
3D-LLPS. To visualize the stationary distributions, we set the initial
protein count Ptot =L and 2m> L so that the state spaceS of the
Markov chain X( t) is

S= {(L, 0, . . . , 0) , (L−m, 1, 0, . . . , 0) ,
(L−m−1, 0, 1, 0, . . . , 0) , . . . ,(0, 0, . . . , 1)} , (29)

and hence, it can be linearly aligned. We denote these states by

x0 = (L, 0, 0, . . . , 0) ,
xm = (L−m, 1, 0, . . . , 0) ,

xm+1 = (L−m−1, 0, 1, 0, . . . , 0) ,
⋮

xL = (0, 0, 0, . . . , 1).

(30)

We are interested in finding a range ofV for which the station-
ary distribution has a peak at a two-phase state xk for some k≥m,
where a droplet is formed [Fig. 5(a)]. To do that, we find Bk’s such
that

Bk ≤V < Bk−1 if and only if π(x0) ≤ π(xj ) (31)

for any k ≤j ≤L. Using the closed forms of Bk for both 2D-LLPS
and 3D-LLPS, it turns out that a higherV is required forπ to have
a peak at xk for some k in 3D than in 2D [Fig. 5(a)]. As mentioned
in Sec. III D, this result is not surprising because the reaction rates
a1 and ak are faster in 2D,while bk are comparable in 2D and 3D
[Fig. 1(g)].

The closed form ofπ leads to other interesting analyses about
the relation betweenV and the droplet size distribution. For exam-
ple, we investigated the range ofV for whichπ has a local maximum
at the state xk for m ≤k ≤L [Figs. 5(b) and 5(c)]. Let Gk denote the
viscosity constant such that

Gk−1 ≤V ≤Gk if and only if π(xj) ≤ π(xk) (32)

for all m ≤j ≤L. 3D-LLPS also required a higher V to have a
local maximum at xk for some k ≥m than 2D-LLPS [Fig. 5(c)].
Gk can also be related to an important experimentally observed
phenomenon,droplet arrest (the growth of small or mid-size of
droplets is paused).14 Precise calculations about Bk and Gk are given
in Sec. V A.

The same trend holds for general state spaces with larger Ptot.
For example,with Ptot =200,the selection of marginalstationary
distributions for the counts of proteins P( t) and the count of the
largest droplet DL( t) shows that a smaller number of largest droplets
are produced in 3D than in 2D [Fig. 5(d)].

C. For large thresholds, droplets can be formed
in 2D but not in 3D

It has been claimed that membranesreduce the threshold
concentration for phase separation.13,14,19 Snead etal.14 showed
that anchoring proteins onto membranes may induce a shiftof
the threshold concentration for phase separation compared to the
threshold of 3D LLPS.Motivated by these experimentalfindings,
in this section,we study the effect of m (the threshold number of
proteins for forming droplets) on LLPS. By varying m, we measure
the probability of the state where droplets are formed. Using iden-
tical parameters for 2D-LLPS and 3D-LLPS,we identify a range of
m for which the droplet formation probability is (i) nearly one in
2D and (ii) nearly zero for 3D. We prove this mathematically in
Sec. V B.

Let x0 = (Ptot, 0, . . . , 0) , i.e., the state without droplets. We use
the probability 1− π(x0) as a function of m to measure the prob-
ability that proteins form droplets.For large m (respectively,small
m), the probability 1− π(x0) is nearly 0 (respectively,1) for both
2D-LLPS and 3D-LLPS.Interestingly, for m in an intermediate
range,1− π(x0) in 2D can be much greater than in 3D (Fig.6).
We prove the existence of such a range m in Sec.V B. This dif-
ference mainly arises from the rate constanta1 as we highlight
in Sec. III D. In 2D, m copies of proteins closely gather more
frequently than in 3D. This result is consistent with the claim of the
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FIG. 5. Effect of V in droplet formation. (a)–(c) The log-scaled graph of Bk and G k defined as (31) and (32), respectively (left). The stationary distributions of X with
(m, L) = (10, 19) and P tot =L show the different probabilities of droplet formation and local maxima in 2D and 3D for certain values of Vi ’s (right). For (b) and (c), for
clearer visualization, we usedπ∗(xk) = π(xk∣P(0) ≠L) , the stationary distribution conditioned on states consisting of at least one droplet. (d) The joint marginal stationary
distributions of P and D19 with Ptot =200.
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FIG. 6. Effects of m. The plots of the probabilities of droplet formation [1 − π(x0)] as a function of the threshold m with three different choices of temperature T . For both
2D and 3D, there are critical m (indicated with circles) where the probabilities dramatically drop.

previous experimental study14 that membrane recruitment enhances
the local protein concentration.Thus,we can interpret membrane
recruitment as a way for cells to efficiently facilitate the formation of
biomolecular condensates at lower costs.13

Furthermore,Fig. 6 shows that the droplet formation prob-
ability 1 − π(x0) decreases dramatically around certain values of
m (indicated by circles) in both 2D and 3D. This indicates the sen-
sitivity of droplet formation to the minimum number of proteins or
nucleation barriers.51

D. Reduction in the hydrodynamic radius in 2D may
not be significant

In Sec. III D, we analyzed how the coarsening rates ak and the
droplet formation rate a1 are greater in 2D than in 3D. This yields
the key difference that 2D-LLPS tends to have more droplets than
3D-LLPS.However,by examining the dependence of a1 on r (14),
it can be predicted that anchoring a protein to a membrane surface
can reduce the hydrodynamic radius [Fig. 7(a)]. This reduction, in
turn, may inhibit droplet formation in 2D. In this section,despite
the reduction in r in 2D, the probability of droplet formation is
still higher in 2D than in 3D as long as the change in the hydro-
dynamic radius is not too large.We further analytically quantify
the ratio between the hydrodynamic radii in 2D and 3D,at which
the probability of droplet formation in 3D becomes larger than that
in 2D.

Under the same setting of the state spaceS (29), we first dis-
play the stationary distributions with different values of r. We denote
by r2D and r3D the hydrodynamic radius of a protein in 2D and
3D, respectively.We fix r 2D=0.005 for 2D-LLPS and setr3D

i for
3D-LLPS as r3D

1 =2r2D, r3D
2 =5r2D, and r3D

3 =5.5r2D. Interestingly,
even though r2D < r3D

1 < r3D
2 , the probability of droplet formation,

1− π(x0) , remains higher in 2D than in 3D for r3D
1 and r3D

2 [Fig. 7(b),
left and middle]. For r3D

3 , 2D and 3D have similar 1− π(x0)
[Fig. 7(b), right]. Using the relation

F(H) :=log( ∑
L
k=m π3D(xk)/π 3D(x0)

∑
L
k=m π2D(xk)/π 2D(x0)

) > 0 (33)

if and only if

1− π3D(x0) >1− π2D(x0) , (34)

we further see the fold changes ofthese probabilities by varying
H such that r3D=Hr2D, whereπ2D and π3D denote the stationary
distributions of X( t) associated with 2D-LLPS and 3D-LLPS, respec-
tively. The plot in Fig. 7(c) (left panel) shows thatwe can find
the critical value of H =H0 such that F(H0) =0, meaning that
1− π3D(x0) >1− π2D(x0) if and only if H > H0. Using the closed
form of π in (8), we can also derive a closed form of Hk such that
for each k≥m,

π3D(xk)/π 3D(x0)
π2D(xk)/π 2D(x0)

≥1 if and only if H ≥Hk. (35)

These Hk’s guarantee a greater probability of droplet formation in
3D because F(H) >0 if H ≥Hk for all k by (33). On top of this,
Hk turns out decreasingin k [Fig. 7(c), right]. Hence, we
have

1− π3D(x0) >1− π2D(x0) if H ≥Hm. (36)

See Sec. IV D for the derivation of the closed form of Hk.

V. MATHEMATICAL ANALYSIS
Here, we validate all the results shown in Secs. IV B–IV D using

the stationary distributions (8) of the stochastic modelfor LLPS.
LetSx denote the closed communication class containing the initial
state x. We first provide the closed form of Qk shown in (9), which
will be used for the analysis of the main results. By using the closed
form of a1, ak, and bk defined in Secs. III A–III C, we have that for
m ≤k ≤L,
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FIG. 7. Effect of r. (a) The hydrodynamic radii of a protein in 2D and 3D spaces. (b) Stationary distributions with a fixed value of  r in 2D and with different values of r in 3D.
(c) (Left) The plot of F (H) in (33) as a function of the ratio H =r3D/ r2D between the hydrodynamic radii. H0 is the critical value such as 1 − π3D(x0) > 1 − π2D(x0) if and
only if H > H0. (Right) Hk in (35) is decreasing in k.

Qk =∶

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

T m

D [
mm−2

Γ(m−2)
]

Vk−m+1

[y2k−2∏
k−1
s=m ln (y2/ s) ]

if d=2,

T m

D

⎡⎢⎢⎢⎢⎣
(

3
4
)

m−1√ π(
m−1) 2m( 3m−4)/ 3

3Γ((3m−5)/ 2)

⎤⎥⎥⎥⎥⎦

Vk−m+1

y3k−3 (
m1/ 3

k1/ 32k−m ) if d=3,
(37)

where y=1/ r, in which r is the hydrodynamic radius of the pro-
tein, and T m is defined in Sec.III A. D represents the diffusion
coefficient of a single protein.We also adopt the convention that
∏

m−1
s=m us =1 for any sequence us. We further assume that the radius

of the domain R=1 with sufficiently small r such that L1/2r ≪1 and
a fixed temperature T.

A. Theoretical validation for Sec. IV B
We demonstrate how the values ofπ vary with the viscosity

constantV. For simplicity, we choose the number of initial proteins
Ptot =L and L=2m−1 for a fixed threshold number m of proteins
for forming droplets. In this setting, the state space is as (29), and we
use the same notations xk for the states in this section.
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We first determine a range of viscosity with which the LLPS
model has two modes in the stationary distribution.

Proposition 1.Suppose that m≥5, Ptot =L, and L=2m−1 in
(3). Then, there exists{Bk}m≤k≤L such that

Bk ≤V if and only if π(x0) ≤ π(xk) , (38)

for both 2D and 3D. Furthermore, there exists r0 such that
{Bk}m≤k≤L is a decreasing sequence ifr < r0 in both 2D and 3D.

Proof. For any m≥5, by (8) and (37), we have that for any
m ≤k ≤L,

π(xk)
π(x0)

=
L!

(L−k) !
Qk ≥1 (39)

is equivalent to Bk ≤V, where

Bk =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
D

T m

(L−k) !
L!

{
Γ(m−2)

mm−2 } y2k−2∏
k−1
s=m ln (y2/ s)]

1/( k−m+1)
if d=2,

⎡⎢⎢⎢⎢⎣

D
T m

(L−k) !
L!

⎧⎪⎪
⎨
⎪⎪⎩
(

4
3
)

m−1
(

k1/ 32k−m

m1/ 3 )
3Γ((3m−5)/ 2)

√
π(

m−1) 2m( 3m−4)/ 3

⎫⎪⎪
⎬
⎪⎪⎭

y3k−3
⎤⎥⎥⎥⎥⎦

1/( k−m+1)

if d=3.
(40)

Now, we turn to show that Bk is a decreasing sequence in 2D.
Note that for each m≤k < L,

log Bk −log Bk+1 =C+
2m−4

(k−m+ 1)( k−m+ 2)
log y

+
k−1
∑
s=m

log( log(y2/ s))
(k−m+ 1)( k−m+ 2)

+
log(y2/ k)
k−m+ 2

,

(41)

where C=
log( D

T mL!
Γ(m−2)
mm−2 )

( k−m+1)( k−m+2) +
log( L−k) !

k−m+1 − log( L−k−1) !
k−m+2 , which is inde-

pendentof y. Therefore,there exists r0 such that if y > 1
r0

, then
Bk ≥Bk+1 for any m≤k < L. The proof for{Bk}m≤k≤L in 3D can be
derived similarly such that

log Bk −log Bk+1 =C̄+
3m−6

(k−m+ 1)( k−m+ 2)
log y, (42)

where C̄=
log( D

T mL!m1/ 3 ((
4
3 )

m−1 3Γ(( 3m−5)/ 2)
√

π( m−1) 2m( 3m−4)/ 3 ))

( k−m+1)( k−m+2) +
log(( L−k) !k1/ 32k−m)

k−m+1

−
log(( L−k−1) !( k+1) 1/ 32k−m+1)

k−m+2 . Thus, there exists r0 such that, if y> 1
r0

,
the inequality Bk ≥Bk+1 holds for all m≤k < L. ◻

Remark 9.Proposition 1 implies that

Bk ≤V < Bk−1 if and only if π(x0) ≤ π(xj ) (43)

for any k ≤j ≤L. Thus, if V < Bm, then π(x0) > π(xk) for any
m ≤k ≤L, which means that there is only one mode at state x0.

Now, we turn to the ranges of viscosity with which a local
maximum ofπ is at xk.

Proposition 2.Suppose that m≥5, Ptot =L, and L=2m−1 in
(3). Then, there exists{Gk}m≤k<L such that

Gk ≤V if and only if π(xk) ≤ π(xk+1). (44)

Furthermore,there exists r0 such that {Gk}m≤k<L is an increasing
sequence ifr < r0, for each case of2D and 3D.

Proof. For any m≥5, by (8) and (37), we have that for any
m ≤k < L,

π(xk+1)
π(xk)

=
(L−k) !

(L−k−1) !
Qk+1
Qk

≥1 (45)

is equivalent to Gk ≤V, where

Gk =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

y2 ln (y2/ k)
(L−k)

if d=2,

2y3

(L−k)
(

k+ 1
k )

1/ 3
if d=3.

(46)

By simple calculation, in 2D, we find that if
y ≥

√
2(m−1)( 1+ m−1)m−1, then for any m≤k < L,

Gk+1
Gk

=
(L−k)

(L−k−1)
ln (y2/( k+ 1))

ln (y2/ k)
≥1. (47)

Hence,for r 0 =1/
√

(L−1)( 1+ m−1) L−m, the results hold in 2D.
Similarly, in 3D, we find that for any 5≤m ≤k < L,

Gk+1
Gk

=
(L−k)

(L−k−1)
[

k(k+ 2)
(k+ 1) 2 ]

1
3

≥
m−1
m−2

[
m(m+ 2)
(m+ 1) 2 ]

1
3

= (1+ 3m4 −4m3 −5m2 + 2m+ 8
(m−2) 3(m+ 1) 2 )

1
3

> 1. (48)

This implies that{Gk}m≤k<L is also an increasing sequence in 3D for
any choice of sufficiently small r. ◻

Remark 10.Proposition 2 implies that Gk ≤V < Gk−1 if and
only if

π(xj ) ≤ π(xk) (49)
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for any m≤j ≤L. Under this range of the viscosity,the stationary
distribution has a local maximum at state xk. Moreover, by (32), we
can see that for sufficiently small r,Gk in 2D is smaller than Gk in
3D.

B. Theoretical validation for Sec. IV C
We demonstrate the effect of the threshold m for droplet forma-

tion in 2D and 3D by using the value of the stationary distributions
at state x0 = (Ptot, 0, 0, . . . , 0) that do not include droplets.In the
context of comparison,we will also useπ2D and π3D to denote
the stationary distribution in 2D and 3D, respectively. Through the
probabilitiesπ2D(x0) andπ3D(x0) , we prove that there exists a range
of m for whichπ3D(x0) is much greater thanπ2D(x0) . We first derive
an inequality for the ratio of the probability of forming no droplets
between 2D and 3D.

Proposition 3.Suppose thatm ≥5. For fixed L≥m and Ptot

≥m, we have that for any r< 1,

π3D(x0)
π2D(x0)

≥
1+ ym−1∑x∈Sx0 /{ x0}

π3D(x)
π3D(x0)

1+ ∑x∈Sx0 /{ x0}
π3D(x)
π3D(x0)

, (50)

where y=1/ r.

Proof. Let m≥5 be fixed.By (8) and (37),we can derive that
for any state x= (x1, xm, . . . , xL) ∈Sx0/{ x0} ,

(
π2D(x)
π2D(x0)

)/(
π3D(x)
π3D(x0)

) =
L

∏
k=m

(
Q2D

k

Q3D
k

)
xk

. (51)

For any m≤k ≤L, the ratio Qk of 2D to 3D is

Q2D
k /Q3D

k = Θmk1/ 3 yk−1

[∏
k−1
s=m ln (y/

√
s) ]

= Θmk1/ 3 yk−m

[∏
k−1
s=m ln (y/

√
s) ]

ym−1

≥ Θmk1/ 3

¿
ÁÁÀ (k−1) !

(m−1) !
ym−1 ≥ Θmm1/ 3ym−1, (52)

where y=1/ r and

Θm =
Γ((3m−5)/ 2)

Γ(m−2)
(

4
3
)

m−2 2
m
√
π(

m−1) . (53)

For simplicity, we let ℓ=m−2 and define h( ℓ) = Θmm1/3. Based on
Ref. 77, which presents the lower and upper bounds of the gamma
function, we have

h( ℓ) >
( 3ℓ+1

2 )
3ℓ
2

ℓ ℓ −1/ 2
1

e
ℓ
2 +

1
12ℓ

+ 1
2
(

2
3
)

ℓ 1
( ℓ + 2) 2/ 3 =∶ h̄( ℓ). (54)

Note that h̄( ℓ) is the non-negative function for all ℓ≥1 with h̄(3)
≥1. By analyzing the derivative of logh̄( ℓ) , we will show that̄h( ℓ) is
an increasing function as ℓ≥3. In particular, we have

d
dℓ logh̄( ℓ) = [log( 1+ 1

3ℓ
) +

1
12ℓ2

+
1
2ℓ

]

+
1
2

log( 3ℓ + 1
2

) −
21ℓ+ 22

6( ℓ + 2)( 3ℓ + 1)
. (55)

This expression can be bounded by the sum of two increasing
functions for ℓ≥3 as follows:

d
dℓ logh̄( ℓ) ≥

1
2

log( 3ℓ + 1
2

) +
(−21ℓ−22)

6( ℓ + 2)( 3ℓ + 1)
. (56)

Through some elementary calculations, we can show that
d
dℓ logh̄( ℓ) >0. This implies that loḡh( ℓ) is an increasing function
of ℓ for ℓ ≥3. Consequently,we have that h̄( ℓ) is an increasing
function, which finally implies h( ℓ) ≥1 for any ℓ≥3 by (54).

Since for each x= (x1, xm, . . . , xL) ∈Sx0/{ x0} , it must hold that
xk ≥1 for at least one k≥m. Therefore, by (51) and (52),

π2D(x)
π2D(x0)

≥ym−1 π3D(x)
π3D(x0)

(57)

for any x∈Sx0/{ x0} . We now establish the following equality:

∑
x∈Sx0

π(x) = π(x0) ∑
x∈Sx0

π(x)
π(x0)

= π(x0)
⎛
⎜
⎝

1+ ∑
x∈Sx0 /{ x0}

π(x)
π(x0)

⎞
⎟
⎠
=1. (58)

So, we conclude that by (57),

π3D(x0)
π2D(x0)

=
1+ ∑x∈Sx0 /{ x0}

π2D(x)
π2D(x0)

1+ ∑x∈Sx0 /{ x0}
π3D(x)
π3D(x0)

(59)

≥
1+ ym−1∑x∈Sx0 /{ x0}

π3D(x)
π3D(x0)

1+ ∑x∈Sx0 /{ x0}
π3D(x)
π3D(x0)

. (60)

◻

Remark 11. Now, we show the existenceof a range of
m where the probability of forming no droplets is significantly dif-
ferent between 2D and 3D in the following remark. To highlight the
dependence on m,in this section,we denote byπ2D

m and π3D
m the

stationary distribution of 2D-LLPS and 3D-LLPS, respectively.
Let 5≤m0 ≤L such that

∑
x∈S

m0
x0 /{ x0}

π3D
m0(x)

π3D
m0(x0)

≥ α >0 (61)

for some α >0, whereSm0
x0 is the state space for given m0. Since

πm(x)
πm(x0)

is obviously decreasing with respect to m for any x∈Sm
x0/{ x0}
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and for both 2D and 3D,by Proposition (3),we have that for any
m ∈ [5, m0] ,

π3D
m (x0)

π2D
m (x0)

≥
1+ ym−1∑x∈Sm

x0
/{ x0}

π3D
m (x)

π3D
m (x0)

1+ ∑x∈Sm
x0
/{ x0}

π3D
m (x)

π3D
m (x0)

≥
1+ ym−1α

1+ α
. (62)

Here, for the second inequality,we used that the function f (z)
= 1+βz

1+z is increasing for z> 0 whenβ >1. For instance, suppose that
there exists m0 such that (61) holds withα =1/2. This roughly means
that m0 is not too big so thatπm0(x0) is relative higher thanπm0(x)
for x∈Sm0

x0 /{ x0} . In this case,Proposition 3 implies that for each
m ∈ [5, m0] , we have

π3D
m (x0)

π2D
m (x0)

≥
1+ 0.5y

m−1

1.5
, (63)

where1+0.5ym−1

1.5 is a large number if y=1/ r is sufficiently large.

C. Theoretical validation for Sec. IV D
We explore a sufficient condition for the fold-change constant

H ≥1, which enhances the probability of forming droplets in 3D,
when the radius is reduced by anchoring a protein in 2D. This
condition is defined by the ratio r3D/ r2D=H, where r2Dand r3Drep-
resent the hydrodynamic radii of individual proteins in 2D and 3D,
respectively.

Proposition 4.Suppose that m≥5 and m≤Ptot. Then, for each
r2D, there exists H∗ such that

1− π3D(x0) ≥1− π2D(x0) (64)

if H ≥H∗, where x0 = (Ptot, 0, . . . , 0) .

Proof. By (37), for any m≤k ≤L, we have

Q3D
k /Q2D

k =
H3k−3

Θmαk
≥1, (65)

whereαk =k1/ 3[ yk−1

∏
k−1
s=m ln ( y/

√
s)
] with y =1/ r2D and Θm is defined

as (53). For each m ≤k ≤L, we define the sequence Hk

= (Θmαk) 1/( 3k−3) , which satisfies the following equivalence
condition:

H ≥Hk if and only if Q3D
k /Q2D

k ≥1. (66)

Let H∗ =∶ maxm≤k≤LHk. By the definition ofπ (8),

1− π3D(x0) ≥1− π2D(x0)

if H ≥H∗, where x0 = (Ptot, 0, . . . , 0) . ◻

Remark 12.We found that there exists r0 such that{Hk}m≤k≤L

is a decreasing sequence if r2D< r0 [Fig. 7(c)]. For any m≤k < L, we
show that log(Hk/Hk+1) is non-negative as follows:

log Hk −logHk+1

= Θ1+
(k−1) log( log(y/

√
k)) −∑

k−1
s=m log( log(y/

√
s))

3k(k−1)
(67)

≥ Θ1+
[ log( log( y/

√
k)

log( y/
√

m) ) + (m−1) log log(y/
√

k)]

3k(k−1)
, (68)

where Θ1 =
log Θ3

m+ log[ k( k/ k+1) k−1]
9k( k−1) and y =1/ r2D. Since, for any

α,β >0, limy→∞
log( y/α)
log( y/β) =1, there exists r0 such that Hk ≥Hk+1 for

any m≤k ≤L if y> 1
r0

, i.e., H∗ =maxm≤k≤LHk =Hm.
Consequently, for each ℓ≥k,

Q3D
ℓ

Q2D
ℓ

=
π3D(xℓ )/π 3D(x0)
π2D(xℓ )/π 2D(x0)

≥1 if and only if H≥Hk. (69)

In the simple state space (29),if H =HL, then π3D(xL)/π 3D(x0) ,
the probability of forming the largest droplet in 3D relatively
to the probability of no droplets, is bigger than or equal to
π2D(xL)/π 2D(x0) . However, forπ3D(xL)/π 3D(x0) ≥ π2D(xL)/π 2D(x0) ,
a bigger reduction in the hydrodynamic radius in 2D is needed as it
holds only if H≥Hm > HL.

VI. CONCLUSION
We used a reaction network and the associated Markov chains

to study how spatial dimension affects LLPS.We set the rate con-
stants using the concepts of mean first passage times and generalized
Smoluchowski reaction kinetics. These rate constants capture spatial
dimensionaleffects,and they further reflect the physicalinfluence
of temperature on protein interaction range and viscosity in hydro-
dynamics.Using chemicalreaction network theory,we obtained
a closed form of the stationary distribution and revealed qualita-
tive differences between 2D-LLPS and 3D-LLPS using this closed
form.

Our model successfully reproduces the phase diagram of LLPS
as predicted by free energy.Building on this validation, we per-
formed an analyticaland numericalinvestigation into viscosity in
both 2D and 3D.This investigation shows that 2D-LLPS can form
droplets at lower viscosities compared to 3D-LLPS.Furthermore,
there exists a range of the threshold number of proteins required
for droplet formation in which 2D-LLPS has a much higher proba-
bility of forming droplets than 3D-LLPS. This may provide a reason
why cells utilize 2D spaces such as ER membranes for LLPS. Finally,
considering the effect of the hydrodynamic radius of proteins,our
paper identifies the ratio of the radii between 2D and 3D for which
3D-LLPS can have a similar number of droplets compared to 2D
systems, and this result is supported by an analytical proof.

The Markov model we proposed is based on the first passage
times of diffusing particles.While we primarily analyzed the sta-
tionary distribution of the model, there are many avenues for future
work analyzing other aspects of the model. For instance, one can use
chemical reaction network theory and present the Markov process
using the random time representation78 to study the diffusion limit
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and the fluid limit of the model under the volume scaling and time
scaling in future studies.Furthermore,the random-time represen-
tation and the Gillespie algorithm can also be employed to explore
the transient dynamic of LLPS such as quasi-stationary behaviors
and the pre-equilibrium behaviors. As such, our Markovian chem-
ical reaction network theory of LLPS offers a new framework for
studying a variety of microscopic (or mesoscopic) perspectives on
LLPS.

As in all mathematical models of biophysical stems,we made
a number of simplifying assumptions.For instance,we assumed
Markovian dynamics with simple diffusion to highlight the effects
of spatialdimensions.However,it is well established that protein
motion often follows anomalous diffusion due to molecular crowd-
ing, resulting in subdiffusion and a loss of the Markov property.79,80

Incorporating subdiffusion and non-Markovian effects into our
model would be an interesting direction for future research. In
addition, further insights could be provided by considering the
spatial distributions of proteins using approaches similar to the
Kawasaki–Glaubermodel from statistical mechanics,81–83 which
account for the positioning of individual particles and clusters. Our
model has the potential to be extended in these ways,and explor-
ing such factors willhelp move us toward a more comprehensive
understanding of LLPS.
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APPENDIX A: MODELING DETAILS

Here,we give more details pertaining to modeling LLPS with
the stochastically modeled reaction network (3).

1. The minimum number of proteins
for droplet formation

The minimal number of proteins,m, for droplet formation is
experimentally and theoretically validated in Refs.51, 84, and 85.
In Ref. 51, the authors used the condition of zero flux to derive the
critical number of proteins to form the nucleation barrier.We can
also validate the existence of the minimal number with our Markov
model and the volume fraction (27).As shown in Fig. 8 (right),
the volume fraction with m =3 (that is, assuming thata droplet
can be formed with three proteins) immediately increases when
Ptot increases,as opposed to the case of m=10 displayed in Fig.8
(left), where the plateau of the volume fraction characterizes the exis-
tence of the threshold protein concentration for phase separation.
This indicates that if an arbitrarily small number (such as m≤3) of
proteins can form droplets, then there is no threshold concentration
of the protein to form droplets. Hence, the condition of m≤3 fails
to capture the key feature of LLPS.

2. Ostwald ripening
If some proteins are dissociated from a droplet,the balance

between the influx and the outflow of the droplet can collapse.
This leads to the dilution of the dense state and is modeled by
Dm → mP. This reaction also models Ostwald ripening,which is
another mechanism to grow the size of droplets rather than coa-
lescence and fusion. According to Ostwald ripening, small droplets
disappear through the reaction Dm → mP, which leads to dilution
due to higher flux (or higher Laplace pressure) ofsmall droplets
and the proteins.In other words, the molecules on the surface of
a smaller droplet are energetically less stable compared to those in
larger droplets. Hence, the inside proteins leave the droplet.86 These
proteins diffuse and merge into large droplets as P+ Dk → Dk+1 for
some k.

3. Protein assembly and LLPS
Protein assembly and phase separation are distinct concepts.2

Proteins can not only form droplets but also assemble with other
proteins.2,38Multiple monomers can assemble to create a multimer.
A thermodynamical point of view revealed that the size distribution
of protein assemblies can change the configuration of LLPS.38

Therefore,it is meaningful to model such assembly processes
with reactions Pi + Pj ÐÐ⇀↽ÐÐPi+ j , where Pi represents i-mers.How-
ever,to build a more coarser-grained model,we assume that the
assembly process is on a much slower timescale compared to the
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FIG. 8. Validation of the necessity of m> 3 using the volume fraction. Volume fractions (27) as a function of Ptot for m =10 and m =3. Only the case of m =10 displays a
plateau on the range of small values Ptot that characterizes the threshold protein concentration for droplet formation.

timescale of phase separation.This setting is also used in Ref.38.
Another possible scenario is that the assembly equilibrium is already
made so that the process of the protein assembly is less dynamical
than phase separation.Hence,we can average out the effect of the
size distribution of the assemblies. In those scenarios, we assume that
P represents the number of total proteins including both monomers
and multimers.

4. Mass-action kinetics under well-mixed
compartments

Phase separation obviously makes the space demixed.How-
ever, each compartment can be well-mixed. That is, the space on a
diluted phase is well-mixed and the inner space of droplets is also
well-mixed. This condition is essential for the reactions to take place
in either dilute spaces or dense spaces. Under this condition of well-
mixed compartments, it is reasonable to use mass-action kinetics for
the reactions in (3).

5. Mobilities of droplets and the proteins in the dense
phase

As droplet mass increases,the diffusion coefficient of pro-
teins inside the droplets decreases,14,52which causes small mobility
of droplets. In addition, an existing study provided a more pre-
cise comparison between proteins inside and outside droplets.9 The
authors experimentally found that the molecular rearrangement rate
of membrane-bound proteins is slower within droplets compared to
the same proteins outside the droplets.9 This motivated us to assume
that droplet fusion and fission events occur at a much slower rate
than droplet formation,coarsening,and dissociation events.Thus,
we ignore fusion and fission in our model. Note that we incorporate
the disparity of protein mobilities into the reaction rate constants
with the constantV in the rates bk.

6. Multicomponent LLPS
LLPS often takes place with multiple proteins as scaffold pro-

teins drive phase separation and clients are engaged into it.87 We
consider a single type of scaffold proteins in this work for the sake of
simplicity.

7. Temperature effects on the volume fraction
and the phase diagram

The temperature effect in the phase diagram can be explained
as follows.Due to a low viscosity with high temperature,a higher
number of proteins are needed to initiate forming droplets and
maintaining them. However,a longer hydrodynamic radius with
high temperature makes the volume of the droplets bigger so that the
ratio of the droplet volume can easily be large with high temperature.

APPENDIX B: PARAMETERS IN ALL FIGURES

We provide the values of the parameters we used in Table I.
The temperature T is measured in Celsius.The following

functions are used to generate all figures:

V =V0 ⋅e
8500

T+273,

r =r0 ⋅ (T + 273).

In general, we use a diffusion coefficient for both 2D and 3D,
D2D =D3D =1, and set the system size to R=1 for all figures. How-
ever,for Fig. 3(c), we usedD2D =10 μm2s−1 as found in Ref.14,
a system size of R=103 μm and r =5 μm at T =36 based on an
existing study.For Fig. 8, time trajectories are sampled using the
same algorithm and initial state described for 2D in Fig. 4 with the
sampling process terminated after 104 reactions for both m=3 and
m =10.

APPENDIX C: DERIVATION OF STATIONARY
DISTRIBUTIONS

In the literature of chemical reaction network theory,
researchers use structural properties of chemical reaction networks
to derive the dynamicalfeatures of the associated dynamicalsys-
tems for the chemicalreaction networks.The following theorem
(Theorem 4.2 in Ref. 56) shows that a certain structural property can
imply a closed form of the stationary distribution of the associated
Markov chain.

Theorem 1.Let X be the associated continuous-time Markov
chain for a chemical reaction network whose connected components
are strongly connected.Let n and ℓ denote the numbers of the
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TABLE I. Parameter values for all figures.

Figures

Parameters Definition 1 3 4 5(d) 6 7 8 9

m Threshold 10 [5, 35] 10 3, 10 10
L The number of proteins 19 36 19 19 19

in the largest droplets
V0 Viscosity scaling e−25 e−19 e−25 e−6 e−12 e−25

constant
T Temperature 36 [0, 50] 36 10, 36, 60 36 [0, 50]
r0
R Hydrodynamic 5⋅10−3

309 ⋅ ⋅ ⋅ 5⋅10−3

309
radius/system size

Ptot Total proteins ⋅ ⋅ ⋅5⋅104 (2D) [5 ⋅102, 8⋅103] 200 100 19 (2D)[3 ⋅102, (2D) 8 ⋅103, 1.5⋅104,
& [1.5⋅104, 3⋅104] 18 ⋅102] and 3⋅104

(3D) [105, 2.3⋅105] (3D) 23⋅105, 45⋅105,
& [45 ⋅105, 85⋅105] and 65⋅105

nodes and the connected components ofthe chemicalreaction net-
work, respectively.Furthermore,let s be the dimension of the vector
space span{y′k −yk : yk → yk} . For X(0) =x0, if n−ℓ −s=0, then
X admits a unique stationary distributionπ such that for each state x,

lim t→∞ P(X( t) =x) = π(x) =M
d

∏
i=1

cxi
i

xi !
, (C1)

where c is any positive steady state of a system of ordinary differential
equations given by

d
dt

x( t) =∑
y→ y′

d

∏
i=1

(xi( t)) yi (y′ −y) ,

where M is the normalizing constant,M = (∑x∈Sx0
∏

d
i=1

cxi
i

xi ! )
−1

, and

Sx0 is the closed communication class containing x0.

We now clarify some terminology in Theorem 1. We first
define connected components as the typical concept in graph theory,

FIG. 9. Convergence of trajectories. The time trajectories with the different total numbers of proteins Ptot and the different choices of the temperatures for 2D (top) and 3D
(bottom).
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regarding the chemicalreaction network as a graph.A connected
component is strongly connected ifwhenever there exists a path
from node v to node u in the component, then there is also a path
from node u to v in the connected component. For example, in the
following reaction network,

the first connected component is strongly connected, but the second
one is not.

Remark 13.There are n=2L−2m+ 2 nodes in (3) and ℓ=L
−m+ 1 connected components,of which each is strongly con-
nected. In addition, the reaction vectors are

±(−m, 1, 0, . . . , 0) ,±(−1,−1, 1, . . . , 0) , . . . ,±(−1, 0, . . . ,−1, 1).

Hence, the dimension of the vector space spanned by these reaction
vectors is s=L−m+ 1. Hence,n−ℓ −s=0. This implies that the
closed form (8) of the stationary distribution of the Markov model
is associated with (3).

APPENDIX D: APPROXIMATE π WITH SAMPLE
TRAJECTORIES

The volume fractions and phase diagrams in Fig.4 are esti-
mated using the time trajectories sampled with Gillespie’s algorithm
(2D) and the tau-leaping method (3D).76 In the simulation, the
initial state is defined as

X(0) =
⎧⎪⎪
⎨
⎪⎪⎩

(0, Ptot/m, 0, . . . , 0) if d=2,
(Ptot/2, Ptot/2m, 0, . . . , 0) if d=3,

where the sampling process was terminated after 3⋅104 reactions
in 2D simulations. For the 3D case, to reduce computational costs,
we used the tau-leaping method and terminated the sampling at
3.5⋅104 reactions. Figure 9 shows that the samples closely approx-
imate the volume fraction (27),as the number of proteins in the
dilute phase P( t) stabilizes when the specified number of reactions is
fired.
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