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ABSTRACT

Proteins can form droplets via liquid-liquid phase separation (LLPS) in ceRgcent experiments demonstrate that LLPS is qualitatively N
different on two-dimensional (2D) surfaces compared to three-dimensional (3D) solutions. In this paper, we use mathematical modelingto
investigate the causes of the discrepancies between LLPS in 2D and 3D. We model the number of proteins and droplets inducing LLP@ by
continuous-time Markov chains and use chemical reaction network theory to analyze the model. To reflect the influence of space dlmer%lm
droplet formation and dissociation rates are determined using the first hitting times of diffusing proteins. We first show that our stochastﬁ:
model reproduces the appropriate phase diagram and is consistent with the relevant thermodynamic constraints. After further analyzmg,_:the
model,we find that it predicts that the space dimension induces qualitatively different features of LiRi8h are consistent with recent 8
experiments. While it has been claimed that the differences between 2D and 3D LLPS stem mainly from different diffusion coefficients, dur
analysis is independent of the diffusion coefficients of the proteins since we use the stationary model be®avicgsults thus give new
hypotheses about how space dimension affects LLPS.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION as the cytoplasm [ ]. Qualitative differences between
two-dimensional LLPS (2D-LLPS) and three-dimensional LLPS

In a cell, liquid-liquid phase separation (LLPS) manifests as (3D-LLPS) have been observed recently. "For example Snead
the formation of droplets from protein condensatiohese liquid €t al'“ revealed differences in droplet formation times between 2D
droplets in a dense phase separate from their surrounding spacesand 3D environments. While droplets in 2D can form within min-
of dilute phases.” Biologists have made significant strides in elu- utes,it takes hours for them to form in 3D. In addition, droplets
cidating the importance of LLPS and its involvementin cellular in 2D can be arrested within minutesuggesting resistance to size
processesRepair protein factorsfor example,are involved in the  growth, whereas in 3Dthey can reach their maximum size within
initiation of LLPS during DNA double-strand breaksn addition, hours. To explain these qualitative differences observed in 2D vs
it has been found that the condensates of SCOTIN, an EndoplasnB®, some have proposed that droplet size arrest may result from
Reticulum (ER) transmembrane protein with a cytosolic intrin- disparities of diffusion coefficients in 2D and 3D environments.
sically disordered region,inhibit ER-to-Golgi transport through For example diffusion coefficients ofe GFP proteins in 2D differ
LLPS! Furthermore, dysregulation of LLPS has been associated wittarkedly from 3D.
various diseases, including cancer: While it is true that diffusion coefficients differ in 2D vs 3D

LLPS is found in many different intracellular locations, includ-cellular environmentsthe space dimension has more fundamen-
ing on two-dimensional (2D) surfacessuch as the endoplasmic  tal effects on diffusion processeBor example far fewer steps are
reticulum membrane ' “or in three-dimensional (3D) spaces suchrequired (on average) for a random walk to find a target if the
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FIG. 1. Overview of modeling LLPS using a reaction network. (a) LLPS occurrence in 2D (e.g., membrane) and 3D (e.g., cytoplasm). (b) The value m represents the threshold
number required for droplet formation. (c) A visual representation of a state of the Markov chain X(t). (d) The hydrodynamic radius r of a protein. A droplet is approximated
as a sphere in 3D and a circle in 2D to derive its radius. (€) and (f) Understanding the reaction rates g, a’s and by’s. The ax and by are defined by mean first hitting and exit
times. (g) Plots of the rates ai, ak, b of 2D and 3D under equal diffusion coefficients and viscosity.
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search is restricted to a 2D lattice rather than a 3D latticeMore is determined by protein characteristics such as the droplet viscos-
mathematically sophisticated examples dimensionaldiscrepan- ity, the minimum size of droplets,and the hydrodynamic radius
cies include the recurrence vs transience of 2D vs 3D random of proteins. We first investigate the effect of the droplet viscosity,
walks”“" and the logarithmic vs algebraic singularities of the 2D indicating the strength of the protein—protein interactions. Within a
vs 3D Laplacian Green'’s functionsimportantly, these discrepan- wide range of droplet viscosity values, we find that 2D-LLPS forms
cies cannot be accounted for by merely rescaling time. Studying hiarge droplets,while proteins are likely to remain without form-
these fundamentalkdimensionaldifferences in diffusion affect cell ing in 3D-LLPS.Notably, a higher droplet viscosity is required in
biology has a long history in the biophysics literature." How do 3D than in 2D to increase the droplet size.Next, we find that
these differences affect LLPS? there exists a range of the minimum droplet size in which 2D- and

In this paper, we formulate and analyze the mathematical 3D-LLPS have significantly different probabilities of forming
models of microscopic intracellular LLPS and theoretically com- droplets. Finally, we show that when proteins are tethered on a
pare LLPS in 2D vs 3D.The main theoreticalframework for this  membrane yielding a reduction on the hydrodynamic radius of
is biochemical reaction network theory describing droplet for-  the protein, less droplets in 2D can be produced compared to a
mation, coarsening, and dissociation with reactions between speci&b, space but only for a sufficiently large reduction. We present
LLPS can be associated with a reaction network. Our model consittiese results using both mathematical analysisand numerical
of the following reactions: computations.

The stationary distribution thus reveals how diffusion in 2D vs
3D yields differences between 2D-LLPS and 3D-LLPS. Importantly,
the stationary distribution is independenbf the diffusion coeffi-
cient. Therefore,our analysis predicts thatprominent qualitative

a.
meé—Dm (droplet formation,

a
P+ Dkbg{)kn (coarsening and dissociatjon differences between 2D-LLPS and 3D-LLPS stem from fundamental
ot differences in spatial dimension rather than solely from differences
fork=m, ..., E1, () in diffusion coefficients. To our knowledge, our study provides the
i first model of intracellular LLPS using first passage time analysis,
D+ b; gks,_Dk"j (fusion and fission chemicalreaction network theory, and continuous-time Markov
i chains.
for2m<k+j <L, This paper is organized as follows. We first introduce biochem-

ical reaction networks, one of the key theoretical frameworks of this

where P denotes a single protein and d@enotes a droplet consist- study, in Sec. Il. In that section, we also derive the closed form sta-
ing of k proteins.m indicates the threshold number of proteins to tionary distribution of the copy numbers of the proteins and the
form a droplet. We modelthe reactions in with a continuous-  droplets. In Sec. |ll, we use first passage time theory to set the reac-
time Markov chain, which tracks the copy numbers of each “speci¢igh rates.In Sec.!\/, the main results are provided-eproduction
P and D. We derive the closed form of the stationary probability of thermodynamic description ofLLPS with our model and the
distribution of this Markov chain using biochemicateaction net-  qualitative differences of stationary distributions modeling 2D- and
work theory. The reaction rate parameters {a, f, and g in (3)] 3D-LLPS in terms of viscositythreshold droplet sizeand hydro-
are set via first passage time theory of diffusion processes to reflediynamic radius of proteins. In Sec.\/, we provide mathematical
spatial dimension differences. We then study how these dimensiomalalyses of our main results. We conclude in Sec. V| by discussing
disparities in diffusion yield differences for LLPS by computing thepotential avenues for future work.
resulting stationary distribution of (1).

The theoreticalstudy of LLPS spans various fieldfn physi-
cal chemistry scientists have investigated LLPS phenomena under,
thermodynamic theory by measuring energshowing that energy ll. REACTION NETWORK DESCRIPTION OF LLPS
minimization leads to the demixing of substances and liquid state We develop a stochastic procesamodeling LLPS based on
phase separation.” In addition, theorists used partial differential reaction networks to describe LLPS in both 2D and 3D cellular envi-
equation models, such as the Cahn—Hilliard equatidtien—-Cahn  ronments.A reaction network is a graph whose nodes and edges
equation;? and Cahn-Hilliard—Navier—Stokes equation,to ana- represent complexes and reactions, respectively. For example, in (3),
lyze and numerically simulate LLPS: Machine learning and  the reaction R Dx - Dy, ; describes the coarsening of the droplet
data-driven methods have also been employed to analyze phase of k proteins by recruiting an additional protein P. The reactant
separatior?’ In contrast to previous models that primarily use ther- P+ Dy is a complex consisting of a single copy of P and a single copy
modynamic frameworks such as free energy and chemical potentiafsDk, and &, 1 is the product complex of the reaction.

9L:6E:G) $Z0Z JOqWBNON /T

to explain LLPS, our model is built from first hitting times of We use a continuous-time Markov chain to model the stochas-
diffusing proteins. tic evolution of the copy numbers of species in a reaction network.
We now briefly summarize our results and their biophysical In particular, let Xt) = P(t), Dn(t), ..., Ot)) be a continuous-

implications.We first verify that our model reproduces the appro- time Markov chain associated with (1).Each coordinate ofX({)
priate phase diagram and phase separation and is consistent withgives the copy number of the corresponding speciesat time t
existing thermodynamic modeldVe then study qualitative differ- [ ]- The evolution of X is given by a reaction. For example, if
ences between 2D-LLPS and 3D-LLPS via the stationary distributiBr Dm - Dm, 4 fires at t, then Xt) —X(t-) = (,-1,1,0,...),.0

of the reaction network (1). The shape of the stationary distributiorThe reaction to fire and the time for the next reaction are randomly
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determined using the reaction intensity., , for a reaction y=» ¥ fork=m, ..., E1. HereJa denotes the indicator function, which
defined as is 1 if the condition A is satisfied and is zero otherwise. For instance,
PIX(L+ N) =X+ y,y X(1) =X ﬂ 1 ifp=m, )
>m =
= foy (X)AL+O(AL)  asAl> 0+,  (2) g 0,  otherwise.

where 1, is th’e reaction vectordescribing the net change of Abusing notation, for a reactiony , we can regard the com-
the reaction y» ¥ . For exampleymesn, = (1, 1,0,0,..),The  plexes y and y as vectors.For example,the complexes mP and
function Ay_)y provides the rate of the transition given by the reac- P+ Dy, can be represented by (m,0,...)0and (1,1,0,...),0
tion y » ¥ >* Hence, these intensities fully characterize X. We nowrespectivelyThen, for y » ¥, the reactlon vector can be denoted
highlight important assumptions for modeling LLPS. by y —y, which means the net gain of species via the reaction
¥ > Y. The probability distribution p(x, } =P(X(t) =x) of X({)

is governed by the chemical master equatiarsystem of ordinary
differential equations defined as

P(x,

(i) We assume thatthe timescale of LLPS is faster than pro-
tein production and degradation. Hence, we do not consider
production and degradation reactions, B8

We do not consider the reactions kP %‘D for k<m d
because we assume that there exists a threshold number, m, cﬁ“

(ii)

proteins to form a droplet [ ]. The existence of such = ars0,(x— (M,1,0,...))0(x~ (m, 1,0,...),0

a threshold was experimentally and theoretically verified in + DpsmP(x— M,—1,0,...))®P(x— m,-1,0,...)0)
Ref. 51. The volume fraction of the dense phase under the sta- L1

tionary distribution of X t), which we derive in (8), can also +3 (APeDos Dy, (x— MP(X— ¥, 1)

be used to theoretically support this. We provide more details k=m

about this setting in

Proteins inside droplets are expected to have a smaller mobil-
ity compared to proteins outside droplets,”” which means

that f and Jk,; are much smaller than the other reac-

tion rates. Hence, to simplify our analysis, we neglectthe

(iii) + By,,»PeD (X~ W)P(x— w, 1))
— (AP>Dp(X) + By mp(X)

L

+ L (AP0 (X + A5 pen()) P, 1, (6)

i

fusion reactions and the fission reactiops D ngJ—DkJ,j (see
4

for details on this assumption). where 1 and 1 are the reaction vectors associatedwith

Under these assumptionsthe reaction network describing P+ Dy > Diyand D1 » P+ Dx, respectively, for each k.

LLPS in this paper is
Remark 2. A well-known reaction network, the so-called
mPQ—Dm P+ Dy é_Dk+1 for k=m, ,E1. (3) Becker-Déring modelhas a similar reaction network structure to
b . This model is often employed to describe particle aggrega-
tion. However,due to the absence of the threshold of the protein
Remark 1. The reactionsin do not result in chemical concentration,this prior model is limited to describing protein
changes on the proteins or the droplets, although such reactions s@gsembly rather than phase separation (see Ref.
often termed “chemical reactions” in mathematical biology or chenpetween protein assembly and phase separation).
ical reaction network theory. For example, the birth of an animal can

for the difference

9L:6E:G) $Z0Z JOqWBNON /T

be described with a chemicakaction A 2A. In the same sense,
we also emphasize that the reactions in (3) do not mean protein
assemblywhich is a chemical process related tmyt distinct from
LLPS.We discuss protein assembly in relation to our modeling in

In Sec. and , we describe how this model
is consistent with certain thermodynamic aspects &f.PS.Based
on mass-action kineticsthe intensities of the reactions in are

defined at = p, dh, ... ,id as
Jmp5 D, (%) =AP(P—1) - P10+ 1)1pem,
20, mp( %) =Dt g1,

AP Dy, () =8Pk p211 4,1, (4)

and
Dy, 15 PD (X =Dy 1Gis 114, 51

A. Stationary distributions

We analyze the differences between 2D-LLPS and 3D-LLPS
using their stationary distributions. The stationary distributiaris
the limiting distribution of fx, t defined as

Impix,t = &

One advantage of the chemical reaction network description of LLPS
is that we can obtain the closed form of 7z To do this, we use
Theorem 1° (see ).

Using Theorem 1, the stationary distribution of the associated

for each x.

@)

Markov chain for |sforeach3(b ah,...,d,
1 L sz
=M _ LS 8
A MO o @
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for each state x, whergi® Brownian particles Bt) (/ =1, 2, ... ,)nwith diffusion coefficient
a D within the spherical or circular system dom&n= X : ||X|| <
( bi) if k=m, for some R> 0. In Ref. 59, probability fluxes were used to deter-
O = m ) mine the rate constant for m partiqles to be in close proxi.mit)}.'t
&48m, - Gy ) e me<k <| was also shown thata Markov chain under mass-action kinetics
Bmbm, 1 - by: - with the generalized Smoluchowski rate can closely approximate the
same system modeled with Brownian particldte that the shape
The constant M is the normalizing constant such that of the domain is irrelevant when the particle is sufficiently small
/ . Qdk \_1 relative to the domain. Then, the reaction ratean be set as
1
M = o ~k_ +1p200
\xzes, p!Em ad ) (10) a, = mef Vi (12)
T'(ct) '
whereSyis the state space containing x.

. Qne of the advantage§ gf thelglosed form of the stationar'y disyhere Imd iS as Tm=D x%z( %) (3m-5) 2, w=M-2),
tribution (5) for our model is its ability to generalize the numerical o, = 8m—5)/ 2, I'is the gamma functionand V is the volume of
results shown in Sec. |V. Indeed, the threshold number of proteinsihe system domain [see Ref. 59, Eq. (3.22)]. Note that
to form dropletd ™M) and the size of the largest dropléiscan vary
widely depending on several factors, including the concentration of a2 if d=2,
the proteins, their affinities to each other,and the specific condi- V=14 ) (13)
tions of the system.”“Owing to computational costs, we often use é”Rg if d=3.
small values of m and L for simulations, since the size and complexity )
of the state space of the model grow rapidly with these parameterd.nen yields that
However, due to the closed formmofn (8), we show that our main a2 ro2m2 4
results hold for general m and L (see Propositions 3—4). Tm| rm—2 ” 2 if d=2,

a, =
Ill. REACTION RATES 1 3V _ M1 4y 3m-5) 3 r 3m3q
| . | Toll 3 7)o g) o fd=3. Y
We choose the reaction rates in our model3) by regarding 4 r((3m-5)/2) " R r g
each protein as a randomly diffusing particle. We consider either a (14) g
disk (for 2D-LLPS) or a sphere (for 3D-LLPS) surrounding droplet Note that m=3 throughout this paper. g
to present a target of particles (proteins) as shown in . We now observe from that for any mthe rate of initial S
We view a protein as a circular/sphericabbject with a hydrody-  droplet formation & in 2D-LLPS is much greater than in 3D-LLPS 2
namic radius r that takes into account the hydrodynamic length of Since r <R, as long as the 3D diffusion coefficient is not far larger &
the protein or the interaction range of a Sing|e protein as Shown than the 2D diffusion Coefﬂcienﬂ—hat iS,the generating time Of a >
in . Assuming that the volume of a droplet Dis propor-  dropletin 2D is faster than in 3D [ .
tional to the number of proteins k, the radius r, 4 of the droplet
Dy in d-dimensional space satisfies Remark 3. The termm! in Tm comesfrom mass-action
. kinetics for MP > Dm. The intensity of MP - Dm under mass-
= dk if d =2, (1) action kinetics is combinatorially defined as itis proportional to
’ k"3 it d =3, (:) :W. Hence, we merge the terdm! to a.
foreach k=m, m+1,...,L.[See for this derivation.] The

proportionality constantxmay vary by the protein—protein binding
affinity and density of the protein aggregation. We simply@eti B. The droplet coarsening rate,
throughout this article. ay,form +1 <k <L —1

We assume that the reactionDi 5 Dy fires when a par- In our LLPS model, droplet coarsening happens when a protein
ticle (protein) hits the target R Hence, the rateskacan be defined hits the droplet. We th ’ % | the rat %th PP . P "
using first hitting times. Similarly, we defingand k& by regarding Its the dropiet. ] € thus mo e. © r.a .eso. e coarsemr.lg reac-: ion
the proteins as diffusing particles, P+ Dy 3wk+1 using the mean flrst.hlttlng tlme fora prgteln tg hit

a droplet Ox [ ]- Hence, we first consider the d-dimensional

. . <K 2
Throughout this article]V|| = ¥/, V? denotes the standard annular domain,

Euclidean norm of a vector &R, Furthermore,d =2 or 2D and d
d =3 or 3D indicate two-dimensional LLPS and three-dimensional Qg := XeR": Iia < Al .

LLPS, respectively. As in Sec.lll A, an individual protein is described by a Brownian

motion B(t) with diffusion coefficientD. Let 7 4 denote the first

A. The initial droplet formation rate, a, hitting time in d-dimensional space

The main idea for the generalized Smoluchowskamework
introduced in Ref59 is to consider m independent d-dimensional tq =inf (T =0 [IB(1)]| . (15)

J. Chem. Phys. 161, 204110 (2024); doi: 10.1063/5.0235456 161, 204110-5
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Forke m,m+1,..., 1}, taking the leading order behavior as 4D if =2
r/R - 0 yields 1 (Nea)? e
(2D/R) - El % 6D
: (R +mi O Ta? M9
_ 1 g = |In(RI) +In (16) ("ca)
Elzcd] 3D st ,
ﬁk R if d=3. Since each P contains k proteinswe multiply the inverse of the
mean first passage time by k to gseflhat is,
This rate of coarsening can also be obtained as a Smoluchowski reac-
tion rate®’ Indeed, the Smoluchowski reaction rate for two particles 4kD 4D ifd=2
is proportional to the inverse of the mean first hitting tinkgz; 4], Kk (Nea)® ~ V2 o=z
implying consistency betweer @nd the Smoluchowski rate. ~— =b = ’ (18)
E[ 7.l 6kD  gDKV3 a3
= | =3.

2 2
Remark 4. |n the formulation of 74 in , the circular (Mea) vr

(spherical) target is assumed to be centered at the origin. Howeve

by the Markovianity of Bt), the initial positions of &¢) and the Note that the dissociation rate constantdoes not depend on k in

2D, while it does in 3D.

target [x are negligible for the derivation of provided that the

target is sufficiently smaltelative to the size of the domair2. In

this vein, we need not assume that the dof&dmeither circular or Remark 5.The binding affinity affectszin , Which scales
spherical. the droplet size based on protein—protein bondinlg.is natural to

choosex as a decreasing function of the binding affinity. Although
we set the reaction proximity for mP Dm and the hydrodynam-
C. The dissociation rate, b ics radius of [ to be the same whewm =1, they should be treated
b differently whena #1. Recall that for simplicity, we set=1 in this
We now set the rate of the dissociation reactions R 4 5-P paper.
+ Dy. One of the key features of LLPS is that the droplets are liquid.
Hence,we determine b for the first time when a diffusing protein

inside a droplet hits the boundary of the droplet [ ]- .
We anticipate that proteins within droplets exhibit signif-  D- Analysis of rate constants

icantly slower diffusion coefficients compared to those outside To summarize, the reaction rates are given by

droplets due to interactions with other proteins within the confined

environment.”* We simply incorporate this effectby a constant Yo in 2D

V. This constant will be set by considering various factansjud- Al =17, N (19)

ing viscosity,valency the binding affinity of proteins,and surface e in 3D,

tension?"°" We will simply callV the viscosity constant. In partic-

ular, we l'JSé/.aS. a scaling param%ter for the diffusion coefficient of 2Ine in2Dforke=m+1,

the protein within a droplet ab =v. Aty = (20)
The valency refers to the number ofbinding sites a protein 343 in 3D for k=M + 1,

has, allowing it to interact with other proteins. An increased valency

can reduce the threshold concentration for phase separatibinis

may imply that there is less dissociation with higher valency, which 41 &2 in 2D,

we can modelby setting V as an increasing function ofvalency. bty = v 1)

The binding affinity is the strength of protein—protein interactions. 61 F2U3 in3D

Higher binding affinity reduces the dynamic rearrangementsof
molecules within phase-separated droplets’” Hence, the diffu-
sion coefficientD decreases with the binding affinity."” Existing ~ where § =R?/ D denotes the diffusion timescale, /R « 1 mea-
studies indicate that droplets with higher stability have higher sur- sures the length scale of protein interactions to the size of the

face tensioni! and thus, we can suppose that the viscosity constantonfining spatialdomain, V 1 measures how protein diffusion
increases with surface tensicBummarizingan increase in any of  slows in dropletsgp =M —2, 05 = 8m—5)/ 2, and

these factors increases the viscosity cons¥ant,

We now consider for the first time a Brownian particle to exit m_q 2  ap"-2 )
mi ) ] fd=2
a disk (or a sphere) of radiug; starting from the center. For each 2 r(m-2) ra=s,
ke mym+1,... )L let W= - ,
m3/2(m—1)%[( 3V 7 m-1 Apf3m-5) 3 ] =3
~ . _— - T _ =3.
T =inf {1 >0 :[B(1)[| >y q, 2 4 r((3m-5)/ 2)
(22)

where Bt) is a Brownian motion iR” with the diffusion coefficient Note that we have ignored the higher order k dependenceiirira
D, and kqis defined as in . The mean first passagedigie 2D since we assume that«l.

J. Chem. Phys. 161, 204110 (2024); doi: 10.1063/5.0235456 161, 204110-6
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There are several noteworthy features of —(21). First, distribution 7z and stochastic simulations to show our results and
m validate the analyses in Sec. . In Sec. V, we provide proofs veri-
a3Pazb =0(¢ ’1) ase 0. (23)  fying our results. Without loss of generality, we use a unit radius of
the system domain =1, for all the following simulations [except
Hence, the formation rate of an initial droplet consisting of for 1.
m proteins is much faster in 2D than in 3D. Second, foffk+ 1,
aP/a® =O(¢In &)  ase 0. (24)  A. Reproduction of LLPS

Hence, droplet coarsening is also faster in 2D than in 3D, although Htere,f\;\;]e fr:mg t:en?pnslls_.:]er:g zf cr)]urmr.nodnellwqh Cel'?t:'? that
the difference between 2D and 3D is not as pronounced as it is foPSPects ot thermodynamics. Thermodynamic analysis validates tha

N : D —p: when the total concentration of the systenpfs the system admits
the initial droplet formation rates%B and {% - Third, the coexistence ofdilute phasesof concentration ¢, and dense

B0/ bR2 ~0(1) ase 0. (25) phases of concentratiom, rather than a single phase of concen-
tration ¢* [ ] This is due to the concave region of the free
Hence,droplet dissociation in 2D and 3D occurs at similar rates. €nergy function thatimplies that the convex combination ofthe
Finally, the rate of droplet coarsening and dissociation grows with frée energies ap, and ¢, is less than the free energy at the con-
droplet size k in 3D, but these rates are independent of the droplefentration ¢”. That is, S ¢q) + A *S')F(%) <Fg*) for s such
size k in 2D (to leading order far <1). From this analysis, we can that $; + v _S.)¢2 = ¢ (for more details, see Ref. 4). This induces
expect that 2D is more favorable for phase separation than 3D as Phase separationand the phase diagram is derived as shown in

schematically described in . The main results of this paper - This phase separation and the phase diagram can be repro-
which are given in Sec. 1/, depend on this analysis [see ]djyced with samples of our Markov chair{ Y in (3) modeled with
a schematic summary]. the reaction rates defined in Sec.
We first visualize samples oX(t) in 2D to show how our
IV. RESULTS model can describe phase separation. Once an initial condipn X

= P, 0,0,...) B fixed, whereR is the initial protein count, we
Here,we provide four main results for a qualitative compari- sample a single trajectory in time (X) = P(t), Dn(t), ..., Ot))

son between 2D-LLPS and 3D-LLPS. We use plots of the stationanging the statistically exact Gillespie algorithThe plot of X(1) E
a */a? <1 b [pP ~1 ¥
Ve =3 T o./. 0% o >

3D YR — Soe ve® Sa.l

2D J _:l -:::'::/[ °~"-="% —>

£t e
» ] e s
> MY AP LB
L] L
Vorr
m

FIG. 2. Summary of the analysis of the rates. (a) Under identical settings, due to the differences in a4 and ax between 2D and 3D, droplet formation and coarsening occur
more quickly in 2D than in 3D. (b) We schematically summarize the main results of this paper. The higher the viscosity (or the hydrodynamic radius), both 2D and 3D have
more droplets. However, 2D and 3D have different responses to changes in Vorr. Similarly, while both have fewer droplets with a higher m, they have different responses
to changes in m.
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FIG. 3. Reproduce of phase separation. (a) and (b) Free energy explains phase separation and the phase diagram. (c) Xt) = P(t), Dn(t),- - -, D.(t)) , a time trajectory >
of X(t) in 2D, shows droplet coarsening and Ostwald ripening. (d) Cartoons of the snapshots of X( ) at four time points.
in (with realistic parameters;* see yshows Dy is the same for each k,which is consistentwith the previous
the coarsening of the droplets as time passes. Notably, the numbeanalyses of LLPS.
of smaller droplets decreasashile the number of bigger droplets LetE.(P) [respectivelyE.(Dk)] denote the expected number
increases. Hence, these plots also visualize Ostwald ripening as irdiproteins in the dilute phase (respectivel{he droplet of size k)
vidual proteins dissociate from a smaller droplet and join a bigger with respectto =z in (8). Define the average volume ratio othe
droplet (see for more detailsThen,we display the droplets to the system size V as
sampled state at four time points<{f, 3-10°, 12-10°, and 24-10°)
by randomly distributing the proteins and the droplets over the ZL V. oEA(Dx)
. . _2k=m Yk dEa Pk
spacewhere the counts of the proteins and droplets are given by VA
X(1) [ 1 2
Now, by computing the volume fraction of the dense phase M if d=2,
(droplets) and the dilute phase (outside droplets), we reproduce the v
phase diagramlet Vj 4 be the volume of 2, the droplet of size k. = (27)
Then, 747 Plot —E+(P)) -
e if d =3,
Aig= Kk ifd=2,
Via=14 5 4 3% o (26)  where we used the conservation of the total protein counts such that
éﬂrk,d_7]Zr if d=3.
L
Both the number of proteins in Pand the volume of R grow lin- Pot :=P(t) +Y KkDy(t) for each timet. (28)
early in k. Hence, the concentration of the proteins inside the droplet k=m
J. Chem. Phys. 161, 204110 (2024); doi: 10.1063/5.0235456 161, 204110-8
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can determine whether the system has either a singldunctions of thermodynamic temperature * 273, which is mea-

phase or two phasesVe assume that the system has two phases ifsured in Kelvin, we define V as a linear function of ™23 and
p E Lppz] for somep, < g and has a single phase otherwise. Thatr as a linear function of 273, as referenced in the literature
is, if droplets and proteins coexist with the volume fraction falling (a full description of V and r as a function of Tis given in

in the range, the system has two phased:urthermore,since the

).In this setting,we regardo as a function of the total

viscosity of liquid droplets and the hydrodynamic radius are specifigrotein count t and the temperature T.

500
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®® - i g ol
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FIG. 4. Reproduction of the phase diagram (a) Effect of temperature on the hydrodynamic radius r and viscosit)V with the graphs. (b) The volume fraction

as a function

of Pyt in 2D and 3D. o, and g, are the criteria for phase separation. (c) Phase diagrams in 2D and 3D. For example, a system at @ and @ will have a single phase and
two phases, respectively, which are schematically illustrated in (d).
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To compute the volume fraction usingas described in (8), the We are interested in finding a range of V for which the station-
state space has to be identifiddowever,when the initial number  ary distribution has a peak at a two-phase statdax some k=m,
of proteins is high, the state space is too large to search numeri- where a droplet is formed [ ]. To do that, we findsBsuch
cally. Therefore, we sample?tlne trajectories, using the Gillespie that
algorithm’® for 2D with up to 3 - 10* reactions and the tau-leaping
algorithn’® for 3D with up to 3.5 - 10* reactions. Then, we empir- By <V<Bi, ifandonlyif a(x) < ) (31)
ically computep using the samples. The supplementary plots show
f[hat the samples With 810t reactioqs in 2D and 3.51¢ reactions for any k <J <L. Using the closed forms of B for both 2D-LLPS
in 3D closely approximate the stationary state of the system in 2Dand 3D-LLPS, it turns out that a highéf is required forz to have

and 3D, respectively ( ) a peak at &for some k in 3D than in 2D [ ]. As mentioned

shows the graph ofp as a function of Por with insS ; : o .
. o X ec. , this result is not surprising because the reaction rates
different values of temperature T (Celsiud)ith this o, the phase a, and & are faster in 2Dwhile b<pare (gomparable in 2D and 3D
diagram was obtained from our model with, =4 - 102 and g, = '

0.6, and it turns out to display the well-known concave curve The closed form ofr leads to other interesting analyses about

[ 1 the relation betweerY and the droplet size distribution. For exam-
Remark 6.The plateau of, which appears for small values of ple, we investigated the range/dbr which.rhas a local maximum
Prot, implies that droplets are not formed when the total concentra-at the state afor m <K <L [ and ]. Leti&lenote the

tion Pot/ V is small. Hence, our model also reproduces the thresholdscosity constant such that
protein concentration for phase separation.

Remark 7.\While the threshold volume fractions 4102 and Geq =V <G ifandonlyif (%) < k) (32)

0.6 used to define the two phases were chosen somewhat arbitrar- )

ily in this paper, these values can be justified using existing theoryfor all M </ <L. 3D-LLPS also required a higher V' to have a
Indeed, the threshold protein concentrations of the system for phal@¢al maximum at x for some k =>m than 2D-LLPS [ I
separation are given by the free energy analysfsch is displayed Gy can also be related to an important experimentally observed
in . Hence,we can determingp, and p, as the volume frac- ~ phenomenon droplet arrest (the growth of small or mid-size of
tions of the dense phases at the threshold protein concentrations, droplets is paused).Precise calculations about &hd G are given
namelyg, and ¢, as in . Nonetheless, we chose them arbiin Sec. . ]

trarily because for any small valuesopfind for any large values of The same trend holds for general state spaces with larger P
1, we will obtain the same concave shape of the phase diagram die" example with Pror =200, the selection of marginalstationary
to the trends of the volume fractiopin . Hence, we chose distributions for the counts of proteins Pt) and the count of the
relatively smallo, to avoid highly intensive computations, which is argest droplet Lif) shows that a smaller number of largest droplets
out of the scope of this paper. are produced in 3D than in 2D [ 1

Remark 8. Note that Case’ mentioned that 2D spacessuch ¢ For large thresholds, ~ droplets can be formed
as cellmembranesshift the phase diagram to the leffpromoting in 2D but not in 3D
nucleation. Our model can also reproduce such a shift of the phase

diagram in 2D-LLPS [ 1 It has been claimed that membranesreduce the threshold

concentration for phase separation: Snead etal."* showed
that anchoring proteins onto membranes may induce a shiftof
. ] o the threshold concentration for phase separation compared to the
Here, we show that a higher viscosity is necessary for droplet y,-eshold of 3D LLPS Motivated by these experimentdindings,
formation in 3D than in 2D by showing how the viscosity constant i, this section,we study the effect of m (the threshold number of
V alters the shape of the stationary distributionsf 2D-LLPS and proteins for forming droplets) on LLPS. By varying m, we measure
3D-LLPS. To visualize the stationary distributions, we set the initigjy, o probability of the state where droplets are formed. Using iden-
protein COUI’.'It Pot :.L and 2m> L so that the state spac8 of the tical parameters for 2D-LLPS and 3D-LLR& identify a range of
Markov chain X?) is m for which the droplet formation probability is (i) nearly one in
2D and (ii) nearly zero for 3D. We prove this mathematically in
S= (L0 .. )dL-m1,0,.. .0 2D and (i) nearly P y
(L-m-1,0,1,0,..),0..(0,0,...)1, (29) Let % = P, 0, ... )Di.e., the state without droplets. We use
the probability 1— ) as a function of m to measure the prob-
and hence, it can be linearly aligned. We denote these states by ability that proteins form dropletsFor large m (respectivelgmall
m), the probability 1— ) is nearly 0 (respectively]) for both

B. Higher viscosity is required for LLPS in 3D

=1L,,00,...),0 2D-LLPS and 3D-LLPS.Interestingly,for m in an intermediate
xn=L-m,1,0,...),0 range,1— s#) in 2D can be much greater than in 3D ( ).
We prove the existence of such a range m in Seg. B. This dif-
=L-m—
e = 1" 0.1,0,..),0 (30) ference mainly arises from the rate constantd; as we highlight
: in Sec. . In 2D, m copies of proteins closely gather more
x=2000,...).1 frequently than in 3D. This result is consistent with the claim of the
J. Chem. Phys. 161, 204110 (2024); doi: 10.1063/5.0235456 161, 204110-10
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FIG. 5. Effect of V'in droplet formation. (a)~(c) The log-scaled graph of By and Gy defined as (31) and (32), respectively (left). The stationary distributions of X with

(m,L) = 10,19) and Py =L show the different probabilities of droplet formation and local maxima in 2D and 3D for certain values of

Vi's (right). For (b) and (c), for

clearer visualization, we usedz* (x,) = 7k|P(0) #L), the stationary distribution conditioned on states consisting of at least one droplet. (d) The joint marginal stationary

distributions of P and Dsg with Py =200.
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FIG. 6. Effects of m. The plots of the probabilities of droplet formation [1 — k)] as a function of the threshold m with three different choices of temperature T . For both
2D and 3D, there are critical m (indicated with circles) where the probabilities dramatically drop.

previous experimental studyhat membrane recruitment enhances if and only if

the local protein concentrationThus, we can interpret membrane

recruitment as a way for cells to efficiently facilitate the formation of 3D

biomolecular condensates at lower costs. -7
Furthermore, shows thatthe droplet formation prob-

ability 1 — 7#0) decreases dramatically around certain values of we further see the fold changes othese probabilities by varying

2D

(%) >1- 7 (%), (34)

m (indicated by circles) in both 2D and 3D. This indicates the sen-y gych that r*°=Hr?>, where 7° and 7°° denote the stationary
sitivity qf droplgt formation to the minimum number of proteins or istriputions of Xt) associated with 2D-LLPS and 3D-LLPS, respec-
nucleation barriers. tively. The plot in (left panel) shows thatwe can find
the critical value of H =H such that F(Hy) =0, meaning that
D. Reduction in the hydrodynamic radius in 2D may 1— %D()()) >1— %D(,.b) if and only if H > Hy. Using the closed
not be significant form of xin (8), we can also derive a closed form ofkkuch that
In Sec. , we analyzed how the coarsening ratesmal the ~ for each k=m,
droplet formation rate a are greater in 2D than in 3D. This yields
the key difference that 2D-LLPS tends to have more droplets than ﬂao(x()/”w %)
3D-LLPS However,by examining the dependence of an r , >1 ifandonly if H >Hy. (35)

D/ -2D(w )
it can be predicted that anchoring a protein to a membrane surface 3 (%)l *°(30)

can reduce the hydrodynamic radius [ ]. This reduction, in

turn, may inhibit droplet formation in 2D. In this section,despite  These H'’s guarantee a greater probability of droplet formation in
the reduction in rin 2D, the probability of droplet formation is 3D because (:H) >0if H =H for all k by . On top of this,
still higher in 2D than in 3D as long as the change in the hydro-  H turns out decreasingin k [ , right]. Hence, we
dynamic radius is not too large.We further analytically quantify  have

the ratio between the hydrodynamic radii in 2D and 3@} which

the probability of droplet formation in 3D becomes larger than that

in 28. y P 9 1— Plw) >1- P(x) if H=Hn (36)
Under the same setting of the state spa8€29), we first dis-

play the stationary distributions with different values of r. We denotgse Sec. for the derivation of the closed formkof H

by r?P and r°P the hydrodynamic radius ofa protein in 2D and
3D, respectivelyWe fix r 22 =0.005 for 2D-LLPS and set?? for
3D-LLPS as #° =2r?°, 8P =5r?° and r3P =5.5°P. Interestingly,

even though P < 3P < r3P| the probability of droplet formation, V. MATHEMATICAL ANALYSIS

1— i), remains higher in 2D than in 3D f§fand £°| , Here, we validate all the results shown in Secs. — using
left and middle]. For 3P, 2D and 3D have similar 1— ) the stationary distributions (8) ofthe stochastic modefor LLPS.
[ , right]. Using the relation Let Sx denote the closed communication class containing the initial

state x. We first provide the closed form of ghown in (9), which
will be used for the analysis of the main results. By using the closed

Sk 72237 % 30) ysis G

F(H) :=log( ’L<=”’ X ) >0 (33)  form of &, a, and & defined in Secs. —III C, we have that for
S ke 722 ()17 %P 30) m<k <[,

J. Chem. Phys. 161, 204110 (2024); doi: 10.1063/5.0235456 161, 204110-12
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FIG. 7. Effect of r. (a) The hydrodynamic radii of a protein in 2D and 3D spaces. (b) Stationary distributions with a fixed value of rin 2D and with different values of rin 3D. §
(c) (Left) The plot of F(H) in (33) as a function of the ratio H =r°Y r?° between the hydrodynamic radii. Hy is the critical value suchas 1 — 3 xg) >1— #xo) ifand =
only if H > Hy. (Right) Hy in is decreasing in k.
J
Tm. m"2 Vamita
-5l 2k—2—K—1 ifd=2,
D 1(m=2) " [y*2[1h In(¥49)]
Qc:= Tm | 3.m1 v M 5 3m-4)1 3 —I VEmet 3 (37)
— (= if d=3,
b | 4 3r((3m->5)/ 2) J y3k-3 k1/32kfm)
[
where y=1/r, in which r is the hydrodynamic radius of the pro-  A. Theoretical validation for Sec.
tein, and Tm is defined in Sec.lll A. D represents the diffusion We demonstrate how the values of vary with the viscosity
corsﬁlment of a single proteinWe also adopt the convention that  constantV. For simplicity, we choose the number of initial proteins
sm Us =1 for any sequence.uNe further assume that the radius P =L and L=2m—1 for a fixed threshold number m of proteins
of the domain R=1 with sufficiently small r such thatd <1 and  for forming droplets. In this setting, the state space is as , and we
a fixed temperature T. use the same notations far the states in this section.
J. Chem. Phys. 161, 204110 (2024); doi: 10.1063/5.0235456 161, 204110-13
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We first determine a range of viscosity with which the LLPS for both 2D and 3D.  Furthermore, there exists r, such that

model has two modes in the stationary distribution.

Proposition 1.Suppose that r&5 Aot =L, and L=2m—1 in

[ By} mk IS @ decreasing sequenaedt in both 2D and 3D.

Proof. For any m =5, by and , we have that for any

. Then, there existBy) m ., such that m <k <|.
Ax) L
Bo<V ifandonlyif ) < k), (38) o) (LR %=1 (39)
is equivalent to B< V, where
D (L—k)! F(m—2) o k1 1Y( k—m+1) o
. [ e )Y T o In(19)] . ifd=2, »
k = D (L—k)' 4 m—1 k1/32k7m 3r((3m_5)/ 2) y3k_3 ifd=3 ( )
oo |3 mrs ) Ym g ifd=3.

Now, we turn to show thatBs a decreasing sequence in 2D.
Note that for each ek < L,

2m-4
- =C
log & —log B4 +(k_m+1)(k_m+2) log y
+k2_1 log(log(¥?/9)) . log(Y?/K)
o (k—m+1)(k—-m+2) ~ k—m42’
(41)

D r(m-2
_log( o5 w2 ) | log(L—k)1  log(L—k—1)1 Cpa
where C_(k_m+1)( Komsg) * kmri T kemez which is inde-

pendentof y. Therefore,there exists p such thatif ¥ > % then

By =By, 4 for any m<K < L. The proof for{ B} m« in 3D can be
derived similarly such that

~ 3m-6
- =C
log & —log B+ +(k_m+1)(k_m+2) logy, (42)
—_ ( D (( 4)m71 _ 7%{( 3m75]/m27\ )) Lkl 1/32k,m
where C= og TmL!m1/(3k_;7+1)( k;%m+*21)zm<3 as) log (( k_zr;li1 )

L_K—1)1( ks 1) ¥ 3gk-m+1
_ logf( 1I3l(m+;) ). Thus, there existsorsuch that, if y> %

the inequality B> Bk, 1 holds for all m<k < L. O

Remark 9.Proposition 1 implies that
By <V<Bcy ifandonlyif a(») < ) (43)
for any k <j <L. Thus, if V<Bm, then a(x) > a%) for any
m <k <[, which means that there is only one mode at state x

Now, we turn to the ranges of viscosity with which a local
maximum ofzis at x

Proposition 2.Suppose that 5 R =L, and L =2m—1in
. Then, there existS&«| m«.. Such that

G <V ifandonlyif a{x) < k1) (44)

(

Furthermore there exists § such that{ Gy} ;.. IS an increasing
sequence if< ry, for each case b and 3D.

Proof. For any m =5, by (8) and , we have that for any

m<k<|,
1) _ (L=K)! Qe
Ax) (LK1 Q = #9)
is equivalent to G< V, where
2 21k
yi('z (j/kg ) if d =2,
G = 2p ket V3 (46)
By¢ simple calculation, in 2D, we find that if

y>= 2(m—-1)(1+m"™" then forany nek<L,

Gy (L—=K) In(Y2(k+1))
Ge ~(L-k-1) In(Y¥k)
N
Hence,forro =1/ (L —1)(1+m"""™  the results hold in 2D.
Similarly, in 3D, we find that for any<sm <k <L,

Guy  (L—K k(k+2)]% m_1[m(m+2)]%
G (L-k-1)"(k+1)2° "m-2" (m4+1)?

>1. (47)

f 4P —5nf+ 2 3
s

:(1+

This implies that Gx} m«-<L is also an increasing sequence in 3D for

any choice of sufficiently small r. O

Remark 10. Proposition 2 implies that G <V < G,_4 if and
only if

%) < ) (49)
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for any m <Jj <L. Under this range of the viscositythe stationary ~ Note thatf_7(£’) is the non-negative function for all &1 with h( 3)
distribution has a local maximum at state bdoreover, by ,we >1. By analyzing the derivative of f9§), we will show thdl(?) is
can see that for sufficiently small & in 2D is smaller than G in an increasing function as*3. In particular, we have

3D.

da - 1 1 1
—_logh(?) = ) b
Ge109R6) =gl 1+ ;) + g+ ]
1 30+ 1 210+ 22
B. Theoretical validation for Sec. + - log * * (55)

2 ( 2 ) 6(f+2)(30+1)°
We demonstrate the effect of the threshold m for droplet forma-

tion in 2D and 3D by using the value of the stationary distributionsThis expression can be bounded by the sum of two increasing
at state x = Prot, 0, 0, . . .), €hat do not include droplets. In the functions for £>3 as follows:
context of comparison,we will also use7?° and 7°° to denote
the stationary distribution in 2D and 3D, respectively. Through the ﬁ Iogﬁ(f) > 3+ 1) + (-21£-22) )
probabilities7] ») and 7°A %), we prove that there exists a range dé 2 6(¢+2)(30+1)
of m for whichz’® () is much greater thart{ ) . We first derive ,
an inequality for the ratio of the probability of forming no droplets 'I;hrough some elementary calculations, we can show that

log( (56)

1
2

between 2D and 3D. @ logh(f) >0. This implies that lo@(€) is an increasing function
Proposition 3. Suppose that =5, For fixed L =m and P, Of £for £ =3. Consequentlywe have thath(¢) is an increasing
>m, we have that for anyrq, function, which finally implies (f) >1 for any £=3 by (54).
Since for each % %, 3, . . . ,1X €S,/{ 3} , it must hold that
5 » >1 for at least one km. Therefore, by and ,
2P0) _ 1Y sy w %
%) - 14 EACa (50 2N _ s 0N .
Z)ES,O/{ %) 70 ) ﬂzo(m) = HSD()()) (57)
where y=1/r. for any =Sy /| ) . We now establish the following equality:
Proof. Let m>5 be fixed By and we can derive that ﬂ(x)
( T oAx = ) Y o
for any state x %, %, . . . ,iX €S/ %}, =N = %)
Lt RVRE S R (% )
( ) ) =II (&) - (51) = o) 1+ ¥ o =1 (58)
%) %) km R \ xesgll % A%0) )
For any m<k <L, the ratio @of 2D to 3D is So, we conclude that by ,
e D 1 LAty
QL QP = G'kmmvlﬁ jD(X)) _ + Z)ESO/{ %) ;;‘;(():)) (59)
Hs:m}/?_m (X)) 1+ Z)es,b/{ %) m
(S (" 9] > L (60)
k1/3gﬁ (k—1)1 Vi m/3yn-1 " Z)ES’@/{ ol %)
> O (M) > @ , (52) -
where y=1/r and Remark 11. Now, we show the existenceof a range of
m where the probability of forming no droplets is significantly dif-
r((3m=5)2) 4. M2 2 ferent between 2D and 3D in the following remark. To highlight the
Om = ( /2 (3) (53)  dependence on min this section, we denote by7° and 7" the

m— —(m-1) -
I 2) 3 L stationary distribution of 2D-LLPS and 3D-LLPS, respectively.

Let 5<My <L such that
For simplicity, we let &M —2 and define ) = @M" Based on 5
Ref. 77, which presents the lower and upper bounds of the gamma ],,3,,0(,()

. 5 AL 61)
function, we have X</ ) 7 (%)
3t
h(e) > (1) ( 2)€ 1 Zh(0). (54 for some « >0, where S,¢ is the state space for given y. Since
02 ety 3 (042023 T ﬁ% is obviously decreasing with respect to m for aag{ 3}
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and for both 2D and 3D,by Proposition (3),we have that for any
me §, my,

1 (X N
(%) >1+yn Lyl ol ) _1+Y" 62)
(%)~ 1+y L C L

S %) 20 x)

Here, for the second inequality,we used thatthe function f (2)

1+p2
= 1+/Z
there exists gsuch that

that n is not too big so thatm,(x) is relative higher thamm, ()
for xES’,ZO/{ %} . In this case,Proposition 3 implies that for each
me 5 m], we have

2P (%) 1+05;77 1
ﬂ%D(x)) - 15 7

(63)

1+0. 5y

where is a large number if £ 1/r is sufficiently large.

C. Theoretical validation for Sec.

We explore a sufficient condition for the fold-change constantﬂzf’(x /7?2 %) . However, ford ».)/7 30 %) >
H >1, which enhances the probability of forming droplets in 3D,

when the radius is reduced by anchormg a protein in 2D. This
condition is defined by the ratio®? r?? =H, where °and r*Prep-

resent the hydrodynamic radii of individual proteins in 2D and 3D, \/|. cONCLUSION

respectively.

Proposition 4.Suppose that 8 5 and m<Pot. Then, for each

r2D there exists Hsuch that

2D

1— Flw) =1- P(x) (64)
if H>H* where &= Prwt, 0,...)0
Proof. By , for any n=K <L, we have
H3k-3
QRPI QP = >1, (65)
Omaok

where ac =k"3 i ] with y =1/r?? and ©m is defined

Men (Y9
as . For each m<k <[, we define the sequenceHx
= (Gnha) "3 which satisfies the following equivalence
condition:
H >Hy ifand only if QF%/QF° >1. (66)
Let H* :=maxn« Hx. By the definition ofr (8),
1- Plo) 21— P(x)
if H >H* where x= Pwt, 0,...)0 o

Remark 12.\We found that there exists such thaf Hi} m<
is a decreasing sequencéfe /o [ ]. Forany nxk <L, we
show that logH«/ Hk, 1) is non-negative as follows:

is increasing for 2 0 wheng >1. For instance, suppose that
holds with =1/2. This roughly means

ARTICLE pubs.aip.org/aipljcp
log Hc —logHk. 1 J J
_ gu(K=1)log(log(yr K)) 3¢} log(log(¥/" 3)
3Kk -1)
(67)
J
3
[log|( .';’3—5,’%) + M—1) log log(y/ K)]

> K1) (68)
where @1 ='% Os""’ﬂ[kqgkﬂ)kq] andy =1/r?® Since, for any

a B >0, limyse, :gg(% =1, there existsorsuch that B >Hj, ; for

any m<k <L ify> o -8, H =maxndea Hi =Hm.
Consequently, for each#k,

QP _ e )i ()
QP ~ (3 )12 (%)

In the simple state space (29),if H =H., then 7°Y )iz »),

the probability of forming the largest droplet in 3D relatively

to the probablllty of nodroplets, is bigger than or equal to
Hoe )l ,0),

a bigger reduction in the hydrodynamic radlus in 2D is needed as it
holds only if H=Hm > H..

>1ifand only if #Hk.  (69)

We used a reaction network and the associated Markov chains
to study how spatial dimension affects LLP&e set the rate con-
stants using the concepts of mean first passage times and generalizegl
Smoluchowski reaction kinetics. These rate constants capture spatiak;
dimensionaleffectsand they further reflect the physicahfluence
of temperature on protein interaction range and viscosity in hydro-
dynamics.Using chemicalreaction network theory,we obtained
a closed form of the stationary distribution and revealed qualita-
tive differences between 2D-LLPS and 3D-LLPS using this closed
form.

Our model successfully reproduces the phase diagram of LLPS
as predicted by free energyBuilding on this validation, we per-
formed an analyticabnd numericalinvestigation into viscosity in
both 2D and 3D.This investigation shows that 2D-LLPS can form
droplets at lower viscosities compared to 3D-LLP8urthermore,
there exists a range of the threshold number of proteins required
for droplet formation in which 2D-LLPS has a much higher proba-
bility of forming droplets than 3D-LLPS. This may provide a reason
why cells utilize 2D spaces such as ER membranes for LLPS. Finally,
considering the effect of the hydrodynamic radius of proteiosir
paper identifies the ratio of the radii between 2D and 3D for which
3D-LLPS can have a similar number of droplets compared to 2D
systems, and this result is supported by an analytical proof.

The Markov model we proposed is based on the first passage
times of diffusing particles.While we primarily analyzed the sta-
tionary distribution of the model, there are many avenues for future
work analyzing other aspects of the model. For instance, one can use
chemical reaction network theory and present the Markov process
using the random time representatiorto study the diffusion limit
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and the fluid limit of the model under the volume scaling and time Conceptualization (lead)Funding acquisition (equal)Methodol-
scaling in future studiesFurthermore,the random-time represen- ogy (equal); Supervision (lead)Writing — original draft (equal);
tation and the Gillespie algorithm can also be employed to exploreWriting — review & editing (equal).
the transient dynamic of LLPS such as quasi-stationary behaviors
and the pre-equilibrium behaviors. As such, our Markovian chem- paoTA AVAILABILITY
ical reaction network theory of LLPS offers a new framework for
studying a variety of microscopic (or mesoscopic) perspectives on e
LLPS. created or analyzed in this study.
As in all mathematical models of biophysical stems made

a number of simplifying assumptionsFor instance,we assumed APPENDIX A: MODELING DETAILS
Markovian dynamics with simple diffusion to highlight the effects
of spatial dimensions.However,it is well established that protein
motion often follows anomalous diffusion due to molecular crowd-
ing, resulting in subdiffusion and a loss of the Markov property.
Incorporating subdiffusion and non-Markovian effectsinto our
model would be an interesting direction for future research. In
addition, further insights could be provided by considering the The minimal number of proteinsm, for droplet formation is
spatial distributions of proteins using approaches similar to the ~ €xperimentally and theoretically validated in Refs!, 4, and
Kawasaki—-Glaubemodel from statistical mechanicsy which In Ref. , the authors used the condition of zero flux to derive the
account for the positioning of individual particles and clusters. Ourcfitical number of proteins to form the nucleation barriewe can
model has the potential to be extended in these wagsd explor- also validate the existence of the minimal number with our Markov
ing such factors willhelp move us toward a more comprehensive Model and the volume fraction (27). As shown in (right),
understanding of LLPS. the volume fraction with m =3 (that is, assuming thata droplet

can be formed with three proteins) immediately increases when

Pot increasesas opposed to the case of m10 displayed in

Here,we give more details pertaining to modeling LLPS with
the stochastically modeled reaction network

1. The minimum number of proteins
for droplet formation

Data sharing is not applicable to this article as no new data were
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FIG. 8. Validation of the necessity of m> 3 using the volume fraction. Volume fractions as a function of Py for m =10 and m =3. Only the case of m =10 displays a
plateau on the range of small values Py that characterizes the threshold protein concentration for droplet formation.

timescale of phase separatiohhis setting is also used in Ref38. 7. Temperature effects on the volume fraction

Another possible scenario is that the assembly equilibrium is alreaalyd the phase diagram

made so that the process of the protein assembly is less dynamical  The temperature effect in the phase diagram can be explained

than phase separatiorence,we can average out the effect of the 5 follows Due to a low viscosity with high temperature higher

size distribution of the assemblies. In those scenarios, we assumefh@ler of proteins are needed to initiate forming droplets and

P represgnts the number of total proteins including both MOoNOMergaintaining them. However, a longer hydrodynamic radius with

and multimers. high temperature makes the volume of the droplets bigger so that the
ratio of the droplet volume can easily be large with high temperature.

4. Mass-action kinetics under well-mixed

compartments APPENDIX B: PARAMETERS IN ALL FIGURES

Phase separation obviously makes the space demixddw-

ever, each compartment can be well-mixed. That is, the space on a

diluted phase is well-mixed and the inner space of droplets is alsofunc

well-mixed. This condition is essential for the reactions to take place

in either dilute spaces or dense spaces. Under this condition of well- V=V, et

mixed compartments, it is reasonable to use mass-action kinetics for ’

the reactions in (3). r=ro. T+273.

We provide the values of the parameters we used in
The temperature T is measured in Celsius.The following
tions are used to generate all figures:

9L:6E:G) $Z0Z JOqWBNON /T

In general, we use a diffusion coefficient for both 2D and 3D,
5. Mobilities of droplets and the proteins in the dense D?P = D3P =1 and set the szstem size to Rfor all figures. How-
phase ever,for ,we usedD?P =10 ym?s™" as found in Ref. 14,

As droplet mass increasesthe diffusion coefficient of pro-  a system size of R=10° ym and r =5 um at T =36 based on an
teins inside the droplets decreasés’ which causes small mobility —existing study.For , time trajectories are sampled using the
of droplets. In addition, an existing study provided a more pre-  same algorithm and initial state described for 2D in with the
cise comparison between proteins inside and outside dropléte.  sampling process terminated after* t8actions for both m=3 and
authors experimentally found that the molecular rearrangement rat8 =10.
of membrane-bound proteins is slower within droplets compared t )
the same proteins outside the droplélsis motivated us to assume %rsﬁ%ﬁlBDLIJ)'(r%N%ERIVATION OF STATIONARY
that droplet fusion and fission events occur at a much slower rate
than droplet formation,coarseningand dissociation event3hus, In the literature of chemical reaction network theory,
we ignore fusion and fission in our model. Note that we incorporateesearchers use structural properties of chemical reaction networks
the disparity of protein mobilities into the reaction rate constants to derive the dynamicalfeatures of the associated dynamicsys-
with the constant?/in the rates A tems for the chemicalreaction networks.The following theorem

(Theorem 4.2 in Ref. 56) shows that a certain structural property can
6. Multicomponent LLPS imply a closed form of the stationary distribution of the associated

. . . Markov chain.
LLPS often takes place with multiple proteins as scaffold pro-

teins drive phase separation and clients are engaged intd itVe ‘Theorem 1.6t X be the associated continuous-time Markov
consider a single type of scaffold proteins in this work for the sake@tain for a chemical reaction network whose connected components
simplicity. are strongly connectedLet n and ¢ denote the numbers of the
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TABLE |. Parameter values for all figures.
Figures

Parameters Definition 1 3 4 5(d) 6 7 8 9

m Threshold 10 [5,35] 10 3,10 10

L The number of proteins 19 36 19 19 19

in the largest droplets
Vo Viscosity scaling €2 € e2® et e 12 e2®
constant
T Temperature 36 [0, 50] 36 10, 36, 60 36 [0, 50]
s Hydrodynamic 5;&3 . 53(%3
radius/system size

Prot Total proteins 510" (2D)[5 -10%,8-10°] 200 100 19 (2D)[3 -1(*, (2D)8 -10°, 1.5- 10",
& [1.5-10%, 3-104] 18 - 107] and 3-1¢*
(3D)[1C°, 2.3-10°] (3D) 23 - 10°, 45 - 10°,
& [45 -10°, 85-10°] and 65-10°

nodes and the connected componentshef chemicateaction net- d Visos

work, respectivelyEurthermorejet s be the dimension of the vector Ex(t) =3 11 (%(0))7(Y -Y),

space spaly —Yi : y » Y| - For X(0) =x if n—f —s=0, then yay 1=

X admits a unique stationary distributigisuch that for each state x, »

where M is the normalizing constany] = & XS H7:1 %) , and

d x
limess AX() = = a0 =MIT o, (C1)
i= W

Sy, is the closed communication class containing x

where c is any positive steady state of a system of ordinary differential\We now clarify some terminology in Theorem 1. We first

equations given by

a
2D Por = 8-103 P =1.5-10* P =3-10*
Q. 10000 ] T 1
s 9000 1 I 1
£ 8000 I 1 1
3 7000 ! ! !
o 1 1 1
2 6000 1 1 1
o
o | 1 1
=
5 1
£
S I 1
=z 1 1
1 1
1
b o 10000 20000 30000 40000 50000 o 10000 20000 30000 40000 50000 O 10000 20000 30000 40000 50
Number of reactions Number of reactions Number of reactions
3D  1e6 Py =23-10° Pooc = 45 - 10° Pio: = 65 - 10°
1
a . :
g * ! I
[ 1 1
5 3 1 1
s 1 |
4
G ! 1
5 3 ! !
E | '
1
=1 2 1
=z e ————————— m
1 I : [ =
1 1 f 1
0 o 35000 70000 105000 140000 175000 210000 o 35600 70000 105000 140000 175000 210000 o 35000 70000 105000 140000 175000 210000
Number of reactions Number of reactions Number of reactions

define connected components as the typical concept in graph theory

FIG. 9. Convergence of trajectories. The time trajectories with the different total numbers of proteins Py, and the different choices of the temperatures for 2D (top) and 3D

(bottom).
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